WO2016145858A1 - 以太网供电控制方法及装置 - Google Patents

以太网供电控制方法及装置 Download PDF

Info

Publication number
WO2016145858A1
WO2016145858A1 PCT/CN2015/092987 CN2015092987W WO2016145858A1 WO 2016145858 A1 WO2016145858 A1 WO 2016145858A1 CN 2015092987 W CN2015092987 W CN 2015092987W WO 2016145858 A1 WO2016145858 A1 WO 2016145858A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission rate
data transmission
port
power
power supply
Prior art date
Application number
PCT/CN2015/092987
Other languages
English (en)
French (fr)
Inventor
吴海祥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016145858A1 publication Critical patent/WO2016145858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present invention relates to the field of power over Ethernet, and in particular, to a method and device for controlling a power supply of a power supply.
  • PoE Power Over Ethernet
  • IP-based terminals without any changes to the existing Ethernet Cat.5 cabling infrastructure.
  • Technology. PoE technology can ensure the normal operation of existing networks while minimizing costs while ensuring the security of existing structured cabling.
  • PoE is sometimes referred to as a Power over LAN (PoL) or Active Ethernet, sometimes referred to as Power over Ethernet.
  • PoL Power over LAN
  • Active Ethernet Active Ethernet
  • the IEEE 802.3af standard is a new standard based on the PoE of the Power over Ethernet system. It adds the standard for direct power supply through the network cable based on IEEE 802.3. It is an extension of the existing Ethernet standard and the first international standard for power distribution. standard.
  • a complete PoE system includes two parts: a Power Sourcing Equipment (PSE) and a Powered Device (PD).
  • the PSE is a device that supplies power to the Ethernet client device and is also the administrator of the entire PoE Ethernet power supply process; and the PD is a PSE load that receives power, that is, a client device of the PoE system, such as an IP phone, a network security camera, and an AP.
  • a client device of the PoE system such as an IP phone, a network security camera, and an AP.
  • Ethernet devices such as handheld computers (PDAs) or mobile phone chargers (actually, any device with a power of no more than 13W can get the corresponding power from the RJ45 socket).
  • PDAs handheld computers
  • mobile phone chargers actually, any device with a power of no more than 13W can get the corresponding power from the RJ45 socket.
  • the two Based on the IEEE 802.3af standard, the two establish information about the connection status, device type, and power consumption level of
  • the power supply process of the PoE is generally as follows: the PSE outputs a small voltage at the port, and then outputs another voltage, and a load impedance is obtained by the change of the current corresponding to the two voltages, if the load impedance is within the standard range. Then, it can be judged that it has been connected to a standard PD; when the PD is detected, the PSE classifies the PD according to the magnitude of the load impedance, and evaluates the power loss required by the PD, thereby supplying power thereto. That is, in the existing Power over Ethernet process, the PSE always provides a fixed power supply for the PD, but the PD is not always running at full load, and sometimes it is in an idle or dormant state, which will result in wasted power.
  • the embodiment of the invention provides a method and a device for controlling the power supply of the Ethernet, which aims to solve at least the technical problem of providing a fixed power supply to the powered device and causing waste of the power in the related art.
  • an embodiment of the present invention provides a method for controlling a power supply of a power supply.
  • the method is applied to a power over Ethernet system, and the method includes:
  • the detecting the port status of the PD, and acquiring the operation mode of the PD according to the port status of the PD includes:
  • the data transmission rate includes an uplink data transmission rate and/or a downlink data transmission rate
  • the step of determining a port status of the PD according to the data transmission rate includes:
  • the detecting the port status of the PD, and acquiring the operation mode of the PD according to the port status of the PD includes:
  • the step of determining a port status of the PD according to the heartbeat packet transmission rate includes:
  • heartbeat message transmission rate is less than the preset heartbeat message transmission rate threshold, start timing
  • the port state of the PD is determined to be an idle state.
  • an embodiment of the present invention further provides a power-on-network power supply control device, which is applied to a power over Ethernet system, and the device includes:
  • Obtaining a module configured to detect a port state of the PD of the power receiving device, and acquire an operation mode of the PD according to the port state of the PD, where the operation mode includes an operation mode and a sleep mode;
  • Determining a module configured to determine a power to be powered of the PD according to an operation mode of the PD;
  • the control module is configured to control the power supply device PSE to provide corresponding power to the PD according to the determined power to be powered.
  • the obtaining module includes:
  • a first acquiring unit configured to detect a data transmission rate of a port that the PD is connected to the server, and determine a port state of the PD according to the data transmission rate
  • the first determining unit is configured to determine an operating mode of the PD according to a port state of the PD.
  • the data transmission rate includes an uplink data transmission rate and/or a downlink data transmission rate
  • the first obtaining unit is further configured to determine a port state of the PD according to the uplink data transmission rate and/or the downlink data transmission rate.
  • the obtaining module includes:
  • a second acquiring unit configured to detect a heartbeat packet transmission rate of the port connected between the PD and the server, and determine a port state of the PD according to the heartbeat packet transmission rate;
  • a second determining unit configured to determine an operation mode of the PD according to a port state of the PD.
  • the second obtaining unit is further configured to:
  • heartbeat message transmission rate is less than the preset heartbeat message transmission rate threshold, start timing
  • the port state of the PD is determined to be an idle state.
  • the power supply control method and device of the embodiment of the present invention acquires an operation mode of the PD according to a port state of the PD by detecting a port state of the PD of the power receiving device, where the operation mode includes an operation mode and a sleep mode; Determining the power to be powered by the PD according to the operating mode of the PD; controlling the power supply device PSE to provide corresponding power to the PD according to the determined power to be powered; and flexibly controlling the power according to the operating mode of the powered device
  • the device supplies power to the powered device, reduces power waste, and achieves energy saving.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for controlling a power supply of a power supply according to the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of detecting a port state of a PD according to the port state of the PD, and acquiring an operation mode of the PD according to the port state of the PD;
  • FIG. 3 is a diagram of detecting a port state of a PD in a method for controlling a power supply of a power supply according to the present invention, and obtaining a port state according to the PD
  • FIG. 4 is a schematic structural diagram of an embodiment of a power supply control device according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of an acquisition module in a power supply control device of the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of an acquisition module in a power supply control device of the present invention.
  • FIG. 1 is a schematic flowchart of a method for controlling a power supply of a power supply according to an embodiment of the present invention. The method is applied to a power over Ethernet system, and the method includes:
  • the PD can be an IP phone, a network security camera, an AP and a handheld computer (PDA) or other Ethernet device such as a mobile phone charger.
  • PDA handheld computer
  • the operating mode of the PD includes an operating mode and a sleep mode.
  • the power consumption of the PD is large, that is, the power supply device needs to provide a large power supply for the PD; in the sleep mode, the power consumption of the PD is small, that is, the power supply device only needs to provide the PD.
  • a small power supply can be.
  • the port status of the port connected between the PD and the server is monitored, and then the operation mode of the PD is determined according to the port status.
  • the port status of the PD includes an active status and an idle status.
  • the port status of the PD is in the working state, it can be determined that the operating mode of the PD is the working mode; when the port state of the PD is in the idle state, it can be determined that the operating mode of the PD is the sleep mode.
  • the operating mode of the PD when the operating mode of the PD is in the working mode, according to the operating mode and the power to be powered The relationship of the PD to be powered is P1.
  • the power to be powered of the PD is determined to be P2 according to the mapping relationship between the operating mode and the power to be powered.
  • the power supply provided by the PSE also changes from P1 to P2, that is, the power supply is reduced for the PD, thereby reducing power waste and achieving energy saving.
  • the power supply provided by the PSE also changes from P2 to P1, that is, the power supply is increased for the PD to ensure the normal operation of the PD.
  • the operating mode of the PD is obtained according to the port state of the PD, and the operating mode includes an operating mode and a sleep mode. According to the operating mode of the PD, the PD is determined to be determined by the foregoing embodiment. Power supply power; according to the determined power to be powered, the power supply device PSE provides corresponding power supply for the PD; and can flexibly control the power supply device to provide power supply to the power receiving device according to the operating mode of the power receiving device, thereby reducing power waste and achieving energy saving .
  • FIG. 2 is a schematic flowchart diagram of an embodiment of detecting a port state of a PD according to the port state of the PD according to the port state of the PD, which is described in detail below.
  • the data transmission rate includes an uplink data transmission rate and/or a downlink data transmission rate.
  • the uplink data transmission rate is the rate at which the PD transmits data to the server, and the downlink data transmission rate PD receives the rate of data from the server.
  • the data transmission rate of the port connected between the PD and the server is detected as: detecting an uplink data transmission rate of the port connected between the PD and the server, that is, monitoring only the transmission rate of the data sent by the PD to the server, usually, such as the PD.
  • the network security camera uploads the collected data to the server.
  • the data transmission rate of the port connected between the PD and the server is detected as: detecting a downlink data transmission rate of the port connected between the PD and the server, that is, monitoring only the transmission rate of the PD receiving data from the server.
  • detecting a data transmission rate of the port connected between the PD and the server is: detecting an uplink data transmission rate and a downlink data transmission rate of the port connected between the PD and the server, that is, simultaneously monitoring a transmission rate and monitoring of the data sent by the PD to the server.
  • the transmission rate at which the PD receives data from the server typically, if the PD is a telephone.
  • the data transmission rate may be determined according to the type of the PD, including any one or two of an uplink data transmission rate and a downlink data transmission rate.
  • the data transmission is performed.
  • Rate includes The uplink data transmission rate, when the PD is a receiving device that is biased to receive data, the data transmission rate includes a downlink data transmission rate, and when the PD is a receiving device that receives data and receives data equally important, the data transmission rate includes an uplink data transmission rate. And downlink data transmission rate.
  • the port status of the PD is determined according to the data transmission rate. Generally, when the data transmission rate is less than a specific rate and the duration is greater than or equal to a specific time, the port status of the PD may be determined to be an idle state. Otherwise, it is determined that the port status of the PD is working.
  • determining, according to the data transmission rate, the port status of the PD is: determining the PD according to the uplink data transmission rate and/or the downlink data transmission rate. Port status.
  • the port status of the PD When the port status of the PD is in the working state, it can be determined that the operating mode of the PD is the working mode; when the port state of the PD is in the idle state, it can be determined that the operating mode of the PD is the sleep mode.
  • the data transmission rate includes an uplink data transmission rate
  • the step of determining a port state of the PD according to the data transmission rate includes:
  • the preset uplink rate threshold can be set as needed, and the second time threshold can be set as needed, for example, can be set to 5 minutes.
  • the uplink data transmission rate of the PD is collected in real time, and it is determined whether the uplink data transmission rate is less than a preset uplink rate threshold.
  • the initial determination may be performed.
  • the port status of the PD may be idle, and then start timing. If the uplink data transmission rate of the PD that continues to be collected in real time is still less than the preset uplink rate threshold during the timing, when the timing is greater than or equal to the second time threshold, Then, it is determined that the port status of the PD is an idle state. If the uplink data transmission rate of the PD that continues to be collected in real time is greater than or equal to the preset uplink rate threshold during the timing, the timing is cleared.
  • the data transmission rate includes an uplink data transmission rate and a downlink data transmission rate
  • the step of determining a port status of the PD according to the data transmission rate includes:
  • the port status of the PD is determined to be idle. .
  • the preset uplink rate threshold and the down rate threshold may be set as needed, and the third time threshold may be set as needed.
  • the third time threshold is the same as the second time threshold.
  • the uplink data transmission rate and the downlink data transmission rate of the PD are collected in real time, and it is determined whether the uplink data transmission rate is less than a preset uplink rate threshold and whether the downlink data transmission rate is less than a preset downlink rate threshold.
  • the port state of the PD may be initially determined to be idle, and then the timing is started, during the timing.
  • the port status of the PD is idle. If the uplink data transmission rate of the PD that is continuously collected is greater than or equal to the uplink rate threshold during the timing, or the downlink data transmission rate of the PD that continues to be collected is greater than or equal to the downlink rate threshold, then The timing is cleared.
  • the data transmission rate includes a downlink data transmission rate
  • the step of determining a port state of the PD according to the data transmission rate includes:
  • the preset down rate threshold can be set as needed, and the fourth time threshold can be set as needed, for example, can be set to 5 minutes.
  • the fourth time threshold is the same as the second time threshold.
  • the downlink data transmission rate of the PD is collected in real time, and it is determined whether the downlink data transmission rate is less than a preset downlink rate threshold.
  • the initial determination may be performed.
  • the port status of the PD may be idle, and then start timing. If the downlink data transmission rate of the PD that continues to be collected in real time is still less than the preset downlink rate threshold during the timing, when the timing is greater than or equal to the fourth time threshold, Then, it is determined that the port status of the PD is an idle state. If the downlink data transmission rate of the PD that continues to be collected in real time is greater than or equal to the preset downlink rate threshold during the timing, the timing is cleared.
  • FIG. 3 is a schematic flowchart diagram of another embodiment of detecting a port state of a PD according to the port state of the PD according to the port state of the PD, which is described in detail below.
  • the PD sends a heartbeat message to the server to indicate its operating mode to the server. In this step, get PD transmission The rate at which heartbeat packets are sent to the server.
  • the port state of the PD is determined according to the heartbeat packet transmission rate. Generally, when the heartbeat packet transmission rate is less than a specific value and the duration is greater than or equal to a specific time, the port state of the PD may be determined to be Idle state, otherwise it determines that the port status of the PD is working.
  • the port status of the PD When the port status of the PD is in the working state, it can be determined that the operating mode of the PD is the working mode; when the port state of the PD is in the idle state, it can be determined that the operating mode of the PD is the sleep mode.
  • the step of determining a port status of the PD according to the heartbeat packet transmission rate includes:
  • the port state of the PD is determined to be an idle state.
  • the preset heartbeat message transmission rate threshold may be set as needed, and the first time threshold may be set as needed.
  • the first time threshold is the same as the second time threshold.
  • the heartbeat packet transmission rate of the PD is collected in real time, and it is determined whether the heartbeat packet transmission rate is less than the preset heartbeat packet transmission rate threshold, and the heartbeat packet transmission rate is smaller than the heartbeat packet transmission rate threshold.
  • the port state of the PD may be initially determined to be idle, and then the timing is started. If the heartbeat packet transmission rate of the PD that is continuously collected in real time is still less than the preset heartbeat message transmission rate threshold, the timing is If the duration is greater than or equal to the first time threshold, the port state of the PD is determined to be idle. If the PD is configured to continue to collect the heartbeat packet of the PD, the rate of the heartbeat packet is greater than or equal to the preset heartbeat packet transmission rate. The value is cleared.
  • FIG. 4 is a schematic structural diagram of an embodiment of a power supply control device according to the present invention.
  • the device is applied to a power over Ethernet system, and the device includes:
  • the obtaining module 10 is configured to detect a port state of the powered device PD, and obtain an operating mode of the PD according to the port state of the PD, where the operating mode includes an operating mode and a sleep mode;
  • the determining module 20 is configured to determine, according to an operation mode of the PD, a power to be powered of the PD;
  • the control module 30 is configured to control the power supply device PSE to provide corresponding power to the PD according to the determined power to be powered.
  • the PD can be an IP phone, a network security camera, an AP and a handheld computer (PDA) or other Ethernet device such as a mobile phone charger.
  • PDA handheld computer
  • the operating mode of the PD includes an operating mode and a sleep mode.
  • the power consumption of the PD is large, that is, the power supply device needs to provide a large power supply for the PD; in the sleep mode, the power consumption of the PD is small, that is, the power supply device only needs to provide the PD.
  • a small power supply can be.
  • the acquisition module 10 acquires the operation modes of the respective PDs.
  • the obtaining module 10 monitors the port status of the port connected between the PD and the server, and determines the operating mode of the PD according to the port status.
  • the port status of the PD includes an active status and an idle status.
  • the port status of the PD is in the working state, it can be determined that the operating mode of the PD is the working mode; when the port state of the PD is in the idle state, it can be determined that the operating mode of the PD is the sleep mode.
  • mapping relationship between the operating mode and the power to be powered is set in advance, as shown in Table 1 above.
  • the determining module 20 determines that the power to be powered by the PD is P1 according to the mapping relationship between the operating mode and the power to be powered;
  • the determining module 20 determines that the power to be powered of the PD is P2 according to the mapping relationship between the operating mode and the power to be powered.
  • the control module 30 sends a control command to the PSE according to the determined power to be powered, so that the PSE provides corresponding power to the PD according to the control command. For example, when the power to be powered is P1, the PSE is controlled. The power supplied by the PD is P1. When the power to be supplied is P2, the power supplied by the PSE to the PD is controlled to be P2.
  • the power supply provided by the PSE also changes from P1 to P2, that is, the power supply is reduced for the PD, thereby reducing power waste and achieving energy saving.
  • the power supply provided by the PSE also changes from P2 to P1, that is, the power supply is increased for the PD to ensure the normal operation of the PD.
  • FIG. 5 is a schematic structural diagram of an embodiment of an acquisition module in a power-supply control device of the present invention, where the acquisition module includes:
  • the first obtaining unit 11 is configured to detect a data transmission rate of the port where the PD is connected to the server, and determine a port status of the PD according to the data transmission rate;
  • the first determining unit 12 is configured to determine an operating mode of the PD according to a port state of the PD.
  • the PD and the server perform service data exchange through a port, and the data transmission rate includes an uplink data transmission rate and/or a downlink data transmission rate.
  • the uplink data transmission rate is the rate at which the PD transmits data to the server, and the downlink data transmission rate PD receives the rate of data from the server.
  • the first obtaining unit 11 detects the data transmission rate of the port connected between the PD and the server: the first obtaining unit 11 detects the uplink data transmission rate of the port connected between the PD and the server, that is, only the PD is monitored and sent to the server.
  • the transmission rate of the data usually, if the PD is a network security camera, the network security camera uploads the collected data to the server.
  • the first obtaining unit 11 detects the data transmission rate of the port connected between the PD and the server: the first obtaining unit 11 detects the downlink data transmission rate of the port connected between the PD and the server, that is, only monitors the PD to receive from the server. The transfer rate of data.
  • the first obtaining unit 11 detects a data transmission rate of the port connected between the PD and the server: the first acquiring unit 11 detects an uplink data transmission rate and a downlink data transmission rate of the port connected between the PD and the server, that is, simultaneously Monitor the transmission rate of the PD sending data to the server and monitor the transmission rate of the PD receiving data from the server, typically, if the PD is a phone.
  • the first acquiring unit 11 may determine, according to the type of the PD, that the data transmission rate includes any one or two of an uplink data transmission rate and a downlink data transmission rate; and when the PD is a transmission of the biased transmission data.
  • the data transmission rate includes an uplink data transmission rate.
  • the PD is a receiving device that is biased to receive data
  • the data transmission rate includes a downlink data transmission rate.
  • the PD is a transceiver device that receives data and receives data as important as the receiving device,
  • the data transmission rate includes an uplink data transmission rate and a downlink data transmission rate.
  • the first obtaining unit 11 further determines a port status of the PD according to the data transmission rate. Generally, when the data transmission rate is less than a specific rate and the duration is greater than or equal to a specific time, the first acquiring unit 11 may determine that the port status of the PD is an idle state, and otherwise determine that the port status of the PD is an active state.
  • the first determining unit 12 may determine that the operating mode of the PD is the working mode; when the port state of the PD is the idle state, the first determining unit 12 may determine that the operating mode of the PD is the sleeping mode. mode.
  • the first acquiring unit 11 is further configured to determine the port of the PD according to the uplink data transmission rate and/or the downlink data transmission rate. status.
  • the first obtaining unit 11 is further configured to:
  • the uplink data transmission rate is less than or equal to the second time threshold of the preset uplink rate threshold, it is determined that the port state of the PD is an idle state.
  • the preset uplink rate threshold can be set as needed, and the second time threshold can be set as needed, for example, can be set to 5 minutes.
  • the first determining unit 12 collects the uplink data transmission rate of the PD in real time, and determines whether the uplink data transmission rate is less than a preset uplink rate threshold, where the uplink data transmission rate is less than a preset uplink rate threshold.
  • the timing duration is greater than or equal to the first
  • the time threshold is two, the port state of the PD is determined to be idle. If the uplink data transmission rate of the PD that continues to be collected in real time is greater than or equal to the preset uplink rate threshold, the timing is cleared.
  • the first obtaining unit 11 is further configured to:
  • the port state of the PD is determined to be an idle state.
  • the preset uplink rate threshold and the down rate threshold may be set as needed, and the third time threshold may be set as needed.
  • the third time threshold is the same as the second time threshold.
  • the first determining unit 12 collects the uplink data transmission rate and the downlink data transmission rate of the PD in real time, and determines whether the uplink data transmission rate is less than a preset uplink rate threshold and determines whether the downlink data transmission rate is less than Presetting the downlink rate threshold, when the uplink data transmission rate is less than the preset uplink rate threshold and the downlink data transmission rate is less than the preset downlink rate threshold, the port state of the PD may be initially determined to be idle, and then start Timing, during the timekeeping process, if the uplink data transmission rate that continues to be collected in real time is still less than the preset uplink rate threshold and the downlink data transmission rate that continues to be collected in real time is less than the preset downlink rate threshold, the timing duration is greater than or equal to the third time valve.
  • the port status of the PD is determined to be idle. If the uplink data transmission rate of the PD that is continuously collected is greater than or equal to the uplink rate threshold, or the downlink data transmission rate of the PD that continues to be collected is greater than or equal to The downstream rate threshold is cleared.
  • the first obtaining unit 11 is further configured to:
  • the port state of the PD is an idle state.
  • the preset down rate threshold can be set as needed, and the fourth time threshold can be set as needed, for example, can be set to 5 minutes.
  • the fourth time threshold is the same as the second time threshold.
  • the first determining unit 12 collects the downlink data transmission rate of the PD in real time, and determines whether the downlink data transmission rate is less than a preset downlink rate threshold, where the downlink data transmission rate is less than a preset downlink rate threshold.
  • the timing duration is greater than or equal to the first In the case of the four-time threshold, it is determined that the port state of the PD is idle. If the downlink data transmission rate of the PD that continues to be collected in real time is greater than or equal to the preset downlink rate threshold during the timing, the timing is cleared.
  • FIG. 6 is a schematic structural diagram of another embodiment of an acquisition module in a power-supply control device of the present invention, where the acquisition module includes:
  • the second obtaining unit 13 is configured to detect a heartbeat packet transmission rate of the port connected between the PD and the server, and determine a port state of the PD according to the heartbeat packet transmission rate.
  • the second determining unit 14 is configured to determine an operating mode of the PD according to a port state of the PD.
  • the PD sends a heartbeat message to the server to indicate its operating mode to the server.
  • the second obtaining unit 13 acquires the transmission rate of the heartbeat message sent by the PD to the server.
  • the second obtaining unit 13 determines the port status of the PD according to the heartbeat packet transmission rate. Generally, when the heartbeat packet transmission rate is less than a specific value and the duration is greater than or equal to a specific time, the port status of the PD may be determined. It is idle, otherwise it determines that the port status of the PD is working.
  • the second obtaining unit 13 is further configured to:
  • heartbeat message transmission rate is less than the preset heartbeat message transmission rate threshold, start timing
  • the port state of the PD is determined to be an idle state.
  • the preset heartbeat message transmission rate threshold may be set as needed, and the first time threshold may be set as needed.
  • the first time threshold is the same as the second time threshold.
  • the second acquiring unit 13 collects the heartbeat packet transmission rate of the PD in real time, and determines whether the heartbeat packet transmission rate is less than the preset heartbeat packet transmission rate threshold, and the heartbeat packet transmission rate is less than
  • the heartbeat packet transmission rate threshold it can be determined that the port state of the PD may be idle, and then the timing is started. During the timing, the heartbeat packet transmission rate of the PD that is continuously collected in real time is still smaller than the preset heartbeat packet.
  • the transmission rate threshold is greater than or equal to the first time threshold, the port state of the PD is determined to be idle. If the PD is configured to continue to collect the heartbeat packet rate of the PD, the rate of the heartbeat packet is greater than or equal to the preset.
  • the heartbeat message transmission rate threshold is cleared.
  • the Ethernet power supply control method and apparatus have the following beneficial effects: the port state of the PD of the power receiving device is detected, and the operation mode of the PD is obtained according to the port state of the PD.
  • the operation mode includes an operation mode and a sleep mode; determining, according to an operation mode of the PD, a power to be powered of the PD;
  • the power supply device PSE is configured to provide corresponding power supply power to the PD according to the determined power to be powered; the power supply device can be controlled to provide power supply to the power receiving device according to the operating mode of the power receiving device, thereby reducing power waste and achieving energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

提供一种以太网供电控制方法和以太网供电控制装置,该方法包括:检测受电设备(PD)的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式(S10);根据所述PD的运行模式,确定所述PD的待供电功率(S20);根据所述确定的待供电功率控制供电设备(PSE)为所述PD提供相应供电功率(S30)。采用本发明,可减少电能浪费,实现节能。

Description

以太网供电控制方法及装置 技术领域
本发明涉及以太网供电领域,尤其涉及一种以太网供电控制方法及装置。
背景技术
PoE(Power Over Ethernet)指的是在现有的以太网Cat.5布线基础架构不作任何改动的情况下,在为一些基于IP的终端传输数据信号的同时,还能为此类设备提供直流供电的技术。PoE技术能在确保现有结构化布线安全的同时保证现有网络的正常运作,最大限度地降低成本。
PoE有时也被称为基于局域网的供电系统(PoL,Power over LAN)或有源以太网(Active Ethernet),有时也被简称为以太网供电,这是利用现存标准以太网传输电缆的同时传送数据和电功率的最新标准规范,并保持了与现存以太网系统和用户的兼容性。IEEE 802.3af标准是基于以太网供电系统PoE的新标准,它在IEEE 802.3的基础上增加了通过网线直接供电的相关标准,是现有以太网标准的扩展,也是第一个关于电源分配的国际标准。
一个完整的PoE系统包括供电端设备(PSE,Power Sourcing Equipment)和受电端设备(PD,Powered Device)两部分。PSE是为以太网客户端设备供电的设备,同时也是整个PoE以太网供电过程的管理者;而PD是接受供电的PSE负载,即PoE系统的客户端设备,如IP电话、网络安全摄像机、AP及掌上电脑(PDA)或移动电话充电器等许多其他以太网设备(实际上,任何功率不超过13W的设备都可以从RJ45插座获取相应的电力)。两者基于IEEE 802.3af标准建立有关受电端设备PD的连接情况、设备类型、功耗级别等方面的信息联系,并以此为根据PSE通过以太网向PD供电。
在相关技术中,PoE的供电过程一般如下:PSE在端口输出较小的电压,然后再输出另一电压,通过两个电压对应电流的变化得到一个负载阻抗,如果这个负载阻抗在标准范围之内,那么即可判断已经连接到一个标准的PD;当检测到PD之后,PSE会根据负载阻抗的大小,为PD进行分类,并且评估此PD所需的功率损耗,进而为其供电。即在现有的以太网供电过程中,PSE一直为PD提供固定的供电功率,但是PD并不是一直处于满负荷运行,有时是处于空闲或休眠状态,这将导致电能浪费。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明实施例提供了一种以太网供电控制方法及装置,旨在至少解决相关技术中,为受电设备提供固定供电功率,而导致电能浪费的技术问题。
为至少实现上述目的,本发明实施例提供一种以太网供电控制方法,该方法应用于以太网供电系统,该方法包括:
检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;
根据所述PD的运行模式,确定所述PD的待供电功率;
根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率。
可选的,所述检测PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式包括:
检测PD与服务器连接的端口的数据传输速率,并根据所述数据传输速率确定所述PD的端口状态;
根据所述PD的端口状态确定所述PD的运行模式。
可选的,所述数据传输速率包括上行数据传输速率及/或下行数据传输速率;
所述根据所述数据传输速率确定所述PD的端口状态的步骤包括:
根据所述上行数据传输速率及/或下行数据传输速率确定所述PD的端口状态。
可选的,所述检测PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式包括:
检测PD与服务器连接的端口的心跳报文传输速率,并根据所述心跳报文传输速率确定所述PD的端口状态;
根据所述PD的端口状态确定所述PD的运行模式。
可选的,所述根据所述心跳报文传输速率确定所述PD的端口状态的步骤包括:
判断所述心跳报文传输速率是否小于预设心跳报文传输速率阀值;
若所述心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时;
若所述心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定所述PD的端口状态为空闲状态。
此外,为至少实现上述目的,本发明实施例还提供一种以太网供电控制装置,该装置应用于以太网供电系统,该装置包括:
获取模块,设置为检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;
确定模块,设置为根据所述PD的运行模式,确定所述PD的待供电功率;
控制模块,设置为根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率。
可选的,所述获取模块包括:
第一获取单元,设置为检测PD与服务器连接的端口的数据传输速率,并根据所述数据传输速率确定所述PD的端口状态;
第一确定单元,设置为根据所述PD的端口状态确定所述PD的运行模式。
可选的,所述数据传输速率包括上行数据传输速率及/或下行数据传输速率;
所述第一获取单元,还设置为根据所述上行数据传输速率及/或下行数据传输速率确定所述PD的端口状态。
可选的,所述获取模块包括:
第二获取单元,设置为检测PD与服务器连接的端口的心跳报文传输速率,并根据所述心跳报文传输速率确定所述PD的端口状态;
第二确定单元,设置为根据所述PD的端口状态确定所述PD的运行模式。
可选的,所述第二获取单元还设置为:
判断所述心跳报文传输速率是否小于预设心跳报文传输速率阀值;
若所述心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时;
若所述心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定所述PD的端口状态为空闲状态。
本发明实施例的以太网供电控制方法及装置,通过检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;根据所述PD的运行模式,确定所述PD的待供电功率;根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率;可灵活的根据受电设备的运行模式,控制供电设备为受电设备提供供电功率,减少电能浪费,实现节能。
附图说明
图1为本发明以太网供电控制方法一实施例的流程示意图;
图2为本发明以太网供电控制方法中的检测PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式的一实施例流程示意图;
图3为本发明以太网供电控制方法中的检测PD的端口状态,根据所述PD的端口状态获 取所述PD的运行模式的又一实施例流程示意图;
图4为本发明以太网供电控制装置一实施例的结构示意图;
图5为本发明以太网供电控制装置中获取模块的一实施例的结构示意图;
图6为本发明以太网供电控制装置中获取模块的另一实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,图1为本发明以太网供电控制方法一实施例的流程示意图,该方法应用于以太网供电系统,该方法包括:
S10、检测受电设备PD的端口状态,根据该PD的端口状态获取该PD的运行模式,该运行模式包括工作模式和休眠模式。
该PD可以是IP电话、网络安全摄像机、AP及掌上电脑(PDA)或移动电话充电器等其他以太网设备。
该PD的运行模式包括工作模式和休眠模式。通常,在工作模式下,PD的功耗较大,即供电设备需要为该PD提供较大的供电功率;在休眠模式下,PD的功耗较小,即供电设备只需为该PD提供较小的供电功率即可。
当在以太网系统中包括多个PD时,则在该步骤中,分别获取各个PD的运行模式。
在该步骤中,监控PD与服务器连接的端口的端口状态,进而根据端口状态确定该PD的运行模式,通常的,PD的端口状态包括工作状态和空闲状态。当PD的端口状态为工作状态时,可确定PD的运行模式为工作模式;当PD的端口状态为空闲状态时,可确定PD的运行模式为休眠模式。
S20、根据该PD的运行模式,确定该PD的待供电功率。
预先设置运行模式与待供电功率的映射关系,如表一所示,其中:P1>P2。
表一:
运行模式 待供电功率
工作模式 P1
休眠模式 P2
在一实施例中,当该PD的运行模式为工作模式时,则根据该运行模式与待供电功率的映 射关系,可确定该PD的待供电功率为P1;当该PD的运行模式为休眠模式时,则根据该运行模式与待供电功率的映射关系,可确定该PD的待供电功率为P2。
S30、根据该确定的待供电功率控制供电设备PSE为该PD提供相应供电功率。
根据该确定的待供电功率向PSE发送控制指令,以使该PSE根据该控制指令为该PD提供相应的供电功率,如当该待供电功率为P1时,则控制该PSE为该PD提供的供电功率为P1,当该待供电功率为P2时,则控制该PSE为该PD提供的供电功率为P2。
当PD的运行模式从工作模式切换到休眠模式时,PSE为其提供的供电功率也发生变化,从P1变成P2,即对该PD降低了供电功率,从而减少了电能浪费,实现了节能。
当PD的运行模式从休眠模式切换到工作模式时,PSE为其提供的供电功率也发生变化,从P2变成P1,即对该PD提高了供电功率,保证PD的正常运行。
采用上述实施例,通过检测受电设备PD的端口状态,根据该PD的端口状态获取该PD的运行模式,该运行模式包括工作模式和休眠模式;根据该PD的运行模式,确定该PD的待供电功率;根据该确定的待供电功率控制供电设备PSE为该PD提供相应供电功率;可灵活的根据受电设备的运行模式,控制供电设备为受电设备提供供电功率,减少电能浪费,实现节能。
参照图2,图2为本发明以太网供电控制方法中的检测PD的端口状态,根据该PD的端口状态获取该PD的运行模式的一实施例流程示意图,详述如下:
S11、检测PD与服务器连接的端口的数据传输速率。
该PD与服务器之间通过端口进行业务数据交互,在该步骤中,数据传输速率包括上行数据传输速率及/或下行数据传输速率。该上行数据传输速率为PD向服务器传输数据的速率,该下行数据传输速率PD从服务器接收数据的速率。
在一实施例中,检测PD与服务器连接的端口的数据传输速率为:检测PD与服务器连接的端口的上行数据传输速率,即只监控PD向服务器发送数据的传输速率,通常的,如该PD为网络安全摄像机,该网络安全摄像机将采集的数据上传给服务器。
在一实施例中,检测PD与服务器连接的端口的数据传输速率为:检测PD与服务器连接的端口的下行数据传输速率,即只监控PD从服务器接收数据的传输速率。
在一实施例中,检测PD与服务器连接的端口的数据传输速率为:检测PD与服务器连接的端口的上行数据传输速率和下行数据传输速率,即同时监控PD向服务器发送数据的传输速率和监控PD从服务器接收数据的传输速率,通常的,如该PD为电话。
即在具体实施时,可根据PD的类型,确定该数据传输速率包括上行数据传输速率、下行数据传输速率中的任一项或两项;当PD为偏向发送数据的发送设备时,该数据传输速率包括 上行数据传输速率,当PD为偏向接收数据的接收设备时,该数据传输速率包括下行数据传输速率,当PD为接收数据和接收数据同等重要的收发设备时,该数据传输速率包括上行数据传输速率和下行数据传输速率。
S12、根据该数据传输速率确定该PD的端口状态。
在该步骤中,根据该数据传输速率确定该PD的端口状态,通常的,当数据传输速率小于一特定速率,且持续时间大于或等于特定时间,则可以确定该PD的端口状态为空闲状态,否则确定该PD的端口状态为工作状态。
当该数据传输速率包括上行数据传输速率及/或下行数据传输速率时,该根据该数据传输速率确定该PD的端口状态为:根据该上行数据传输速率及/或下行数据传输速率确定该PD的端口状态。
S13、根据该PD的端口状态确定该PD的运行模式。
当PD的端口状态为工作状态时,可确定PD的运行模式为工作模式;当PD的端口状态为空闲状态时,可确定PD的运行模式为休眠模式。
进一步的,在一实施例中,该数据传输速率包括上行数据传输速率,该根据该数据传输速率确定该PD的端口状态的步骤包括:
S121、判断该上行数据传输速率是否小于预设上行速率阀值。
S122、若该上行数据传输速率小于预设上行速率阀值,则开始计时。
S123、若该上行数据传输速率小于预设上行速率阀值的计时时长大于或等于第二时间阀值时,确定该PD的端口状态为空闲状态。
该预设上行速率阀值可根据需要设置,该第二时间阀值可根据需要设置,如可设置为5分钟。
在本实施例中,实时采集PD的上行数据传输速率,并判断该上行数据传输速率是否小于预设上行速率阀值,在该上行数据传输速率小于预设上行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的上行数据传输速率仍然小于预设上行速率阀值,计时时长大于或等于第二时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的上行数据传输速率大于或等于预设上行速率阀值,则计时清零。
进一步的,在一实施例中,该数据传输速率包括上行数据传输速率和下行数据传输速率,该根据该数据传输速率确定该PD的端口状态的步骤包括:
S124、判断该上行数据传输速率是否小于预设上行速率阀值,及判断该下行数据传输速率是否小于预设下行速率阀值。
S125、若该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下 行速率阀值,则开始计时。
S126、若该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下行速率阀值的计时时长大于或等于第三时间阀值时,确定该PD的端口状态为空闲状态。
该预设上行速率阀值和下行速率阀值可根据需要设置,该第三时间阀值可根据需要设置,可选的,该第三时间阀值与第二时间阀值相同。
在本实施例中,实时采集PD的上行数据传输速率和下行数据传输速率,并判断该上行数据传输速率是否小于预设上行速率阀值及判断该下行数据传输速率是否小于预设下行速率阀值,在该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的上行数据传输速率仍然小于预设上行速率阀值且继续实时采集的下行数据传输速率小于预设下行速率阀值,计时时长大于或等于第三时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续采集的PD的上行数据传输速率大于或等于上行速率阀值,或继续采集的PD的下行数据传输速率大于或等于下行速率阀值,则计时清零。
进一步的,在一实施例中,该数据传输速率包括下行数据传输速率,根据该数据传输速率确定该PD的端口状态的步骤包括:
S127、判断该下行数据传输速率是否小于预设下行速率阀值。
S128、若该下行数据传输速率小于预设下行速率阀值,则开始计时。
S129、若该下行数据传输速率小于预设下行速率阀值的计时时长大于或等于第四时间阀值时,确定该PD的端口状态为空闲状态。
该预设下行速率阀值可根据需要设置,该第四时间阀值可根据需要设置,如可设置为5分钟。可选的,该第四时间阀值与第二时间阀值相同。
在本实施例中,实时采集PD的下行数据传输速率,并判断该下行数据传输速率是否小于预设下行速率阀值,在该下行数据传输速率小于预设下行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的下行数据传输速率仍然小于预设下行速率阀值,计时时长大于或等于第四时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的下行数据传输速率大于或等于预设下行速率阀值,则计时清零。
参照图3,图3为本发明以太网供电控制方法中的检测PD的端口状态,根据该PD的端口状态获取该PD的运行模式的又一实施例流程示意图,详述如下:
S14、检测PD与服务器连接的端口的心跳报文传输速率。
该PD向服务器发送心跳报文,向该服务器表明其运行模式。在该步骤中,获取PD发送 给服务器的心跳报文的传输速率。
S15、根据该心跳报文传输速率确定该PD的端口状态。
在该步骤中,根据心跳报文传输速率确定该PD的端口状态,通常的,当心跳报文传输速率小于一特定值,且持续时间大于或等于特定时间,则可以确定该PD的端口状态为空闲状态,否则确定该PD的端口状态为工作状态。
S16、根据该PD的端口状态确定该PD的运行模式。
当PD的端口状态为工作状态时,可确定PD的运行模式为工作模式;当PD的端口状态为空闲状态时,可确定PD的运行模式为休眠模式。
进一步的,在一实施例中,该根据该心跳报文传输速率确定该PD的端口状态的步骤包括:
S141、判断该心跳报文传输速率是否小于预设心跳报文传输速率阀值。
S142、若该心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时。
S143、若该心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定该PD的端口状态为空闲状态。
该预设心跳报文传输速率阀值可根据需要设置,该第一时间阀值可根据需要设置,可选的,该第一时间阀值与第二时间阀值相同。
在本实施例中,实时采集PD的心跳报文传输速率,并判断该心跳报文传输速率是否小于预设心跳报文传输速率阀值,在该心跳报文传输速率小于心跳报文传输速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的心跳报文传输速率仍然小于预设心跳报文传输速率阀值,计时时长大于或等于第一时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的心跳报文传输速率大于或等于预设心跳报文传输速率阀值,则计时清零。
参照图4,图4为本发明以太网供电控制装置一实施例的结构示意图,该装置应用于以太网供电系统,该装置包括:
获取模块10,设置为检测受电设备PD的端口状态,根据该PD的端口状态获取该PD的运行模式,该运行模式包括工作模式和休眠模式;
确定模块20,设置为根据该PD的运行模式,确定该PD的待供电功率;
控制模块30,设置为根据该确定的待供电功率控制供电设备PSE为该PD提供相应供电功率。
该PD可以是IP电话、网络安全摄像机、AP及掌上电脑(PDA)或移动电话充电器等其他以太网设备。
该PD的运行模式包括工作模式和休眠模式。通常,在工作模式下,PD的功耗较大,即供电设备需要为该PD提供较大的供电功率;在休眠模式下,PD的功耗较小,即供电设备只需为该PD提供较小的供电功率即可。
当在以太网系统中包括多个PD时,则该获取模块10分别获取各个PD的运行模式。
该获取模块10监控PD与服务器连接的端口的端口状态,进而根据端口状态确定该PD的运行模式,通常的,PD的端口状态包括工作状态和空闲状态。当PD的端口状态为工作状态时,可确定PD的运行模式为工作模式;当PD的端口状态为空闲状态时,可确定PD的运行模式为休眠模式。
预先设置运行模式与待供电功率的映射关系,如上述表一所示。
在一实施例中,当该PD的运行模式为工作模式时,则该确定模块20根据该运行模式与待供电功率的映射关系,可确定该PD的待供电功率为P1;当该PD的运行模式为休眠模式时,则该确定模块20根据该运行模式与待供电功率的映射关系,可确定该PD的待供电功率为P2。
该控制模块30根据该确定的待供电功率向PSE发送控制指令,以使该PSE根据该控制指令为该PD提供相应的供电功率,如当该待供电功率为P1时,则控制该PSE为该PD提供的供电功率为P1,当该待供电功率为P2时,则控制该PSE为该PD提供的供电功率为P2。
当PD的运行模式从工作模式切换到休眠模式时,PSE为其提供的供电功率也发生变化,从P1变成P2,即对该PD降低了供电功率,从而减少了电能浪费,实现了节能。
当PD的运行模式从休眠模式切换到工作模式时,PSE为其提供的供电功率也发生变化,从P2变成P1,即对该PD提高了供电功率,保证PD的正常运行。
参照图5,图5为本发明以太网供电控制装置中获取模块的一实施例的结构示意图,该获取模块包括:
第一获取单元11,设置为检测PD与服务器连接的端口的数据传输速率,并根据该数据传输速率确定该PD的端口状态;
第一确定单元12,设置为根据该PD的端口状态确定该PD的运行模式。
该PD与服务器之间通过端口进行业务数据交互,该数据传输速率包括上行数据传输速率及/或下行数据传输速率。该上行数据传输速率为PD向服务器传输数据的速率,该下行数据传输速率PD从服务器接收数据的速率。
在一实施例中,该第一获取单元11检测PD与服务器连接的端口的数据传输速率为:第一获取单元11检测PD与服务器连接的端口的上行数据传输速率,即只监控PD向服务器发送数据的传输速率,通常的,如该PD为网络安全摄像机,该网络安全摄像机将采集的数据上传给服务器。
在一实施例中,该第一获取单元11检测PD与服务器连接的端口的数据传输速率为:第一获取单元11检测PD与服务器连接的端口的下行数据传输速率,即只监控PD从服务器接收数据的传输速率。
在一实施例中,该第一获取单元11检测PD与服务器连接的端口的数据传输速率为:第一获取单元11检测PD与服务器连接的端口的上行数据传输速率和下行数据传输速率,即同时监控PD向服务器发送数据的传输速率和监控PD从服务器接收数据的传输速率,通常的,如该PD为电话。
即在具体实施时,该第一获取单元11可根据PD的类型,确定该数据传输速率包括上行数据传输速率、下行数据传输速率中的任一项或两项;当PD为偏向发送数据的发送设备时,该数据传输速率包括上行数据传输速率,当PD为偏向接收数据的接收设备时,该数据传输速率包括下行数据传输速率,当PD为接收数据和接收数据同等重要的收发设备时,该数据传输速率包括上行数据传输速率和下行数据传输速率。
该第一获取单元11还根据该数据传输速率确定该PD的端口状态。通常的,当数据传输速率小于一特定速率,且持续时间大于或等于特定时间,则该第一获取单元11可以确定该PD的端口状态为空闲状态,否则确定该PD的端口状态为工作状态。
当PD的端口状态为工作状态时,该第一确定单元12可确定PD的运行模式为工作模式;当PD的端口状态为空闲状态时,该第一确定单元12可确定PD的运行模式为休眠模式。
进一步的,当该数据传输速率包括上行数据传输速率及/或下行数据传输速率时,该第一获取单元11,还设置为根据该上行数据传输速率及/或下行数据传输速率确定该PD的端口状态。
进一步的,在一实施例中,该第一获取单元11还设置为:
判断该上行数据传输速率是否小于预设上行速率阀值;
若该上行数据传输速率小于预设上行速率阀值,则开始计时;
若该上行数据传输速率小于预设上行速率阀值的计时时长大于或等于第二时间阀值时,确定该PD的端口状态为空闲状态。
该预设上行速率阀值可根据需要设置,该第二时间阀值可根据需要设置,如可设置为5分钟。
在本实施例中,该第一确定单元12实时采集PD的上行数据传输速率,并判断该上行数据传输速率是否小于预设上行速率阀值,在该上行数据传输速率小于预设上行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的上行数据传输速率仍然小于预设上行速率阀值,计时时长大于或等于第二时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的上行数据传输速率大于或等于预设上行速率阀值,则计时清零。
进一步的,在一实施例中,该第一获取单元11还设置为:
判断该上行数据传输速率是否小于预设上行速率阀值,及判断该下行数据传输速率是否小于预设下行速率阀值;
若该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下行速率阀值,则开始计时;
若该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下行速率阀值的计时时长大于或等于第三时间阀值时,确定该PD的端口状态为空闲状态。
该预设上行速率阀值和下行速率阀值可根据需要设置,该第三时间阀值可根据需要设置,可选的,该第三时间阀值与第二时间阀值相同。
在本实施例中,该第一确定单元12实时采集PD的上行数据传输速率和下行数据传输速率,并判断该上行数据传输速率是否小于预设上行速率阀值及判断该下行数据传输速率是否小于预设下行速率阀值,在该上行数据传输速率小于预设上行速率阀值且该下行数据传输速率小于预设下行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的上行数据传输速率仍然小于预设上行速率阀值且继续实时采集的下行数据传输速率小于预设下行速率阀值,计时时长大于或等于第三时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续采集的PD的上行数据传输速率大于或等于上行速率阀值,或继续采集的PD的下行数据传输速率大于或等于下行速率阀值,则计时清零。
进一步的,在一实施例中,该第一获取单元11还设置为:
判断该下行数据传输速率是否小于预设下行速率阀值。
若该下行数据传输速率小于预设下行速率阀值,则开始计时。
若该下行数据传输速率小于预设下行速率阀值的计时时长大于或等于第四时间阀值时,确定该PD的端口状态为空闲状态。
该预设下行速率阀值可根据需要设置,该第四时间阀值可根据需要设置,如可设置为5分钟。可选的,该第四时间阀值与第二时间阀值相同。
在本实施例中,该第一确定单元12实时采集PD的下行数据传输速率,并判断该下行数据传输速率是否小于预设下行速率阀值,在该下行数据传输速率小于预设下行速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的下行数据传输速率仍然小于预设下行速率阀值,计时时长大于或等于第四时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的下行数据传输速率大于或等于预设下行速率阀值,则计时清零。
参照图6,图6为本发明以太网供电控制装置中获取模块的另一实施例的结构示意图,该获取模块包括:
第二获取单元13,设置为检测PD与服务器连接的端口的心跳报文传输速率,并根据该心跳报文传输速率确定该PD的端口状态;
第二确定单元14,设置为根据该PD的端口状态确定该PD的运行模式。
该PD向服务器发送心跳报文,向该服务器表明其运行模式。该第二获取单元13获取PD发送给服务器的心跳报文的传输速率。
该第二获取单元13根据心跳报文传输速率确定该PD的端口状态,通常的,当心跳报文传输速率小于一特定值,且持续时间大于或等于特定时间,则可以确定该PD的端口状态为空闲状态,否则确定该PD的端口状态为工作状态。
进一步的,该第二获取单元13还设置为:
判断该心跳报文传输速率是否小于预设心跳报文传输速率阀值;
若该心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时;
若该心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定该PD的端口状态为空闲状态。
该预设心跳报文传输速率阀值可根据需要设置,该第一时间阀值可根据需要设置,可选的,该第一时间阀值与第二时间阀值相同。
在本实施例中,该第二获取单元13实时采集PD的心跳报文传输速率,并判断该心跳报文传输速率是否小于预设心跳报文传输速率阀值,在该心跳报文传输速率小于心跳报文传输速率阀值时,可初步判断该PD的端口状态可能为空闲状态,然后开始计时,在计时过程中,若继续实时采集的PD的心跳报文传输速率仍然小于预设心跳报文传输速率阀值,计时时长大于或等于第一时间阀值时,则确定该PD的端口状态为空闲状态,若在计时过程中,继续实时采集的PD的心跳报文传输速率大于或等于预设心跳报文传输速率阀值,则计时清零。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
如上所述,本发明实施例提供的一种以太网供电控制方法及装置,具有以下有益效果:通过检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;根据所述PD的运行模式,确定所述PD的待供电功率; 根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率;可灵活的根据受电设备的运行模式,控制供电设备为受电设备提供供电功率,减少电能浪费,实现节能。

Claims (10)

  1. 一种以太网供电控制方法,该方法应用于以太网供电系统,该方法包括:
    检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;
    根据所述PD的运行模式,确定所述PD的待供电功率;
    根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率。
  2. 如权利要求1所述的以太网供电控制方法,其中,所述检测PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式包括:
    检测PD与服务器连接的端口的数据传输速率,并根据所述数据传输速率确定所述PD的端口状态;
    根据所述PD的端口状态确定所述PD的运行模式。
  3. 如权利要求2所述的以太网供电控制方法,其中,所述数据传输速率包括上行数据传输速率及/或下行数据传输速率;
    所述根据所述数据传输速率确定所述PD的端口状态的步骤包括:
    根据所述上行数据传输速率及/或下行数据传输速率确定所述PD的端口状态。
  4. 如权利要求1所述的以太网供电控制方法,其中,所述检测PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式包括:
    检测PD与服务器连接的端口的心跳报文传输速率,并根据所述心跳报文传输速率确定所述PD的端口状态;
    根据所述PD的端口状态确定所述PD的运行模式。
  5. 如权利要求4所述的以太网供电控制方法,其中,所述根据所述心跳报文传输速率确定所述PD的端口状态的步骤包括:
    判断所述心跳报文传输速率是否小于预设心跳报文传输速率阀值;
    若所述心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时;
    若所述心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定所述PD的端口状态为空闲状态。
  6. 一种以太网供电控制装置,该装置应用于以太网供电系统,该装置包括:
    获取模块,设置为检测受电设备PD的端口状态,根据所述PD的端口状态获取所述PD的运行模式,所述运行模式包括工作模式和休眠模式;
    确定模块,设置为根据所述PD的运行模式,确定所述PD的待供电功率;
    控制模块,设置为根据所述确定的待供电功率控制供电设备PSE为所述PD提供相应供电功率。
  7. 如权利要求6所述的以太网供电控制装置,其中,所述获取模块包括:
    第一获取单元,设置为检测PD与服务器连接的端口的数据传输速率,并根据所述数据传输速率确定所述PD的端口状态;
    第一确定单元,设置为根据所述PD的端口状态确定所述PD的运行模式。
  8. 如权利要求7所述的以太网供电控制装置,其中,所述数据传输速率包括上行数据传输速率及/或下行数据传输速率;
    所述第一获取单元,还设置为根据所述上行数据传输速率及/或下行数据传输速率确定所述PD的端口状态。
  9. 如权利要求6所述的以太网供电控制装置,其中,所述获取模块包括:
    第二获取单元,设置为检测PD与服务器连接的端口的心跳报文传输速率,并根据所述心跳报文传输速率确定所述PD的端口状态;
    第二确定单元,设置为根据所述PD的端口状态确定所述PD的运行模式。
  10. 如权利要求9所述的以太网供电控制装置,其中,所述第二获取单元还设置为:
    判断所述心跳报文传输速率是否小于预设心跳报文传输速率阀值;
    若所述心跳报文传输速率小于预设心跳报文传输速率阀值,开始计时;
    若所述心跳报文传输速率小于预设心跳报文传输速率阀值的计时时长大于或等于第一时间阀值,则确定所述PD的端口状态为空闲状态。
PCT/CN2015/092987 2015-08-27 2015-10-27 以太网供电控制方法及装置 WO2016145858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510535469.X 2015-08-27
CN201510535469.XA CN106487522A (zh) 2015-08-27 2015-08-27 以太网供电控制方法及装置

Publications (1)

Publication Number Publication Date
WO2016145858A1 true WO2016145858A1 (zh) 2016-09-22

Family

ID=56918285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092987 WO2016145858A1 (zh) 2015-08-27 2015-10-27 以太网供电控制方法及装置

Country Status (2)

Country Link
CN (1) CN106487522A (zh)
WO (1) WO2016145858A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428727B (zh) * 2017-08-28 2020-06-26 华为技术有限公司 供电设备和以太网供电的节能方法
US10880106B1 (en) * 2019-07-01 2020-12-29 Elementech International Co., Ltd. Active power over ethernet control apparatus with low power consumption
CN112422298B (zh) * 2020-10-21 2022-10-18 武汉虹信科技发展有限责任公司 Poe供电装置、方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286854A (zh) * 2007-04-11 2008-10-15 美国博通公司 以太网供电方法和系统
CN101640598A (zh) * 2008-07-30 2010-02-03 日本电气株式会社 供电系统、服务器、供电方法、程序和存储介质
CN102025511A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种为终端设备供电的方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886973B2 (en) * 2008-08-18 2014-11-11 Cisco Technology, Inc. System employing signaling at a powered communications interface to modify or override a power-withholding policy at a power-sourcing equipment
CN104429020B (zh) * 2012-01-19 2018-07-20 爱立信(中国)通信有限公司 基于以太网的供电的监控的方法与装置
CN104754619B (zh) * 2013-12-31 2019-01-01 中国移动通信集团公司 一种无线接入点ap的供电控制方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286854A (zh) * 2007-04-11 2008-10-15 美国博通公司 以太网供电方法和系统
CN101640598A (zh) * 2008-07-30 2010-02-03 日本电气株式会社 供电系统、服务器、供电方法、程序和存储介质
CN102025511A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种为终端设备供电的方法及设备

Also Published As

Publication number Publication date
CN106487522A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
US7921314B2 (en) Providing power over ethernet cables
US9531551B2 (en) Dynamically configurable power-over-ethernet apparatus and method
US7886165B2 (en) Power management for Power-over-Ethernet-capable switch
EP3637675B1 (en) Power control and management of cascaded powered devices
EP2584733B1 (en) Method and apparatus of power over ethernet
US8028175B2 (en) System and method for power sourcing equipment detection of a powered device power failure for power backup
US9519327B2 (en) Communication apparatus and control method therefor
US8479043B2 (en) Power over ethernet powered device with power fallback states
US20200228353A1 (en) Energy-saving power sourcing method, power sourcing equipment, and powered device
US20210247832A1 (en) Intermediary device for extracting power supplied over a data connection
WO2016145858A1 (zh) 以太网供电控制方法及装置
JP2012118635A (ja) データ処理装置、データ処理装置の制御方法及びプログラム
WO2014040466A1 (zh) 控制ap的方法和装置
US8380860B2 (en) Reducing carbon footprint and providing power savings in session initiated protocol conferencing
WO2019041763A1 (zh) 供电设备和以太网供电的节能方法
CN102904671A (zh) 图像处理装置以及图像处理装置的通信方法
US8219691B1 (en) Methods and apparatus for remotely waking up a computer system on a computer network
KR20090016288A (ko) PoE를 이용하는 휴대용 컴퓨터시스템과 그 전원장치 및전원제어방법
US20150180540A1 (en) Zero Standby Power for Powerline Communication Devices
US20150169033A1 (en) Systems and methods for power management in stackable switch
CN112256479A (zh) 一种受电端设备的重启方法、装置、终端设备和存储介质
WO2012100491A1 (zh) 网管系统及其监控电源的方法
CN112003710B (zh) 一种提高poe受电端稳定性的系统及方法
KR20100113383A (ko) 서버 전원 관리 시스템 및 그 방법
CN107846312A (zh) 一种网络通信保障装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885228

Country of ref document: EP

Kind code of ref document: A1