WO2017078472A1 - 압력 센서, 이를 구비하는 복합 소자 및 전자기기 - Google Patents

압력 센서, 이를 구비하는 복합 소자 및 전자기기 Download PDF

Info

Publication number
WO2017078472A1
WO2017078472A1 PCT/KR2016/012680 KR2016012680W WO2017078472A1 WO 2017078472 A1 WO2017078472 A1 WO 2017078472A1 KR 2016012680 W KR2016012680 W KR 2016012680W WO 2017078472 A1 WO2017078472 A1 WO 2017078472A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
dielectric layer
electrode
dielectric
layer
Prior art date
Application number
PCT/KR2016/012680
Other languages
English (en)
French (fr)
Inventor
박인길
노태형
정준호
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160143269A external-priority patent/KR101885665B1/ko
Priority claimed from KR1020160145767A external-priority patent/KR101928902B1/ko
Priority claimed from KR1020160145766A external-priority patent/KR20170057133A/ko
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Priority to US15/774,264 priority Critical patent/US20180326456A1/en
Priority to CN201680078546.6A priority patent/CN108463700A/zh
Publication of WO2017078472A1 publication Critical patent/WO2017078472A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means

Definitions

  • the present invention relates to a pressure sensor, and more particularly, to a pressure sensor capable of preventing a touch input error, and a composite device and an electronic device having the same.
  • input devices are used for the operation of electronic devices such as mobile communication terminals.
  • input devices such as buttons, keys, and touch screen panels are used.
  • Touch screen panels that is, touch input devices, are increasingly being used because electronic devices can be easily and simply operated with only a light touch by sensing a touch of a human body.
  • the touch input device is also used for the operation of mobile communication terminals, home appliances, industrial equipment, automobiles, and the like.
  • the touch input device used for an electronic device such as a mobile communication terminal may be provided between a protective window and a liquid crystal display panel displaying an image. Therefore, when a character or a symbol is displayed through a window from the liquid crystal display panel, and the user touches the corresponding portion, the touch sensor detects the position and performs a specific process according to the control flow.
  • the touch input device has technical means for detecting and recognizing whether a contact with a human body (finger) or a pen is made by detecting a human body current or a pressure or temperature change according to the contact.
  • a pressure sensor of a method of sensing contact with a human body or a pen by using a change in pressure has been in the spotlight.
  • the pressure sensor has a structure in which a material capable of compressing and restoring an air gap or silicon is provided between two electrodes.
  • the pressure sensor may detect pressure by detecting a change in capacitance depending on a distance between two electrodes according to a touch input.
  • the air gap since the dielectric constant of air is 1, in order to sense the capacitance value according to the change in the gap between the two electrodes, a large amount of change in the distance between the two electrodes is required, and the silicon material has a dielectric constant of 4 or less. This requires a large amount of change between the two electrodes.
  • the present invention provides a pressure sensor that can prevent the error of the touch input.
  • the present invention provides a pressure sensor capable of accurately sensing a change in capacitance value according to a small change between two electrodes.
  • the present invention provides a composite device and an electronic device having the pressure sensor.
  • Pressure sensor comprises a first electrode layer and a second electrode spaced apart from each other; And a dielectric layer provided between the first and second electrode layers, wherein the dielectric layer includes at least one of a material having a hardness of 10 or less, a plurality of dielectrics having a dielectric constant of 4 or more, and a plurality of pores.
  • the apparatus further includes a plurality of holes formed in at least one of the first and second electrode layers.
  • the dielectric layer further contains an electromagnetic shielding and absorbing material.
  • the dielectric layer is formed in an amount of 0.01% to 95% of the dielectric with respect to 100% of the dielectric layer.
  • the dielectric layer has a porosity of 1% to 95%.
  • the pores are formed in at least two sizes and in at least one shape.
  • the dielectric layer differs from at least one region having different porosities or pore sizes.
  • the dielectric layer has a pore cross-sectional area ratio of a vertical cross section smaller than a pore cross-sectional area ratio of a horizontal cross section.
  • the dielectric layer has a dielectric constant of 2-20.
  • the dielectric layer is formed to a thickness of 500 ⁇ m or less.
  • an insulating layer provided on at least one of an upper side of the first electrode layer, between the first and second electrode layers, and a lower side of the second electrode layer.
  • the apparatus may further include first and second connection patterns respectively provided on the first and second electrode layers and connected to each other.
  • a composite device includes a pressure sensor according to one aspect of the present invention and at least one functional portion having a function different from that of the pressure sensor.
  • the pressure sensor enables the functional part.
  • the function unit a piezoelectric element provided on one side of the pressure sensor; And a diaphragm provided at one side of the piezoelectric element.
  • the piezoelectric element is used as a piezoelectric vibrator or piezoelectric acoustic device according to the signal applied.
  • the function unit is provided on one side of the pressure sensor, and includes at least one of NFC, WPC, and MST each having at least one antenna pattern.
  • the function unit includes a piezoelectric element provided on one surface of the pressure sensor, a vibration plate provided on one surface of the piezoelectric element, and at least one of NFC, WPC, and MST provided on the other surface of the pressure sensor or one surface of the vibration plate.
  • the fingerprint sensor may be electrically connected to the pressure sensor to detect a fingerprint by measuring a difference in acoustic impedance generated by an ultrasonic signal at a valley and a floor of the fingerprint from the pressure sensor.
  • an electronic device includes a window; A display unit which displays an image through the window; And a pressure sensor for detecting a position and a pressure of a touch input applied through the window, wherein the pressure sensor includes a pressure sensor according to an aspect of the present invention.
  • the pressure sensor may include at least one of at least one first pressure sensor provided below the display unit and at least one second pressure sensor provided below the window.
  • the touch sensor may further include a touch sensor provided between the window and the display unit.
  • a bracket provided on at least one of an upper side of the first electrode layer, between the first and second electrode layers, and a lower side of the second electrode layer.
  • At least a part of any one of the first and second electrode layers is formed on the bracket.
  • the pressure sensor according to an embodiment of the present invention includes a dielectric layer formed between the first and second electrode layers spaced apart from each other, and the dielectric layer may be formed of a material having a hardness of 10 or less, which may be compressed and restored.
  • the dielectric layer may be compressed and restored, and may include a plurality of pores.
  • a dielectric layer having a dielectric constant of more than 4 is mixed with an insulator to form a dielectric layer, so that the dielectric constant of the dielectric layer may be 4 or more.
  • Embodiments of the present invention may be formed such that the dielectric layer is compressible and reconstructible and is formed of a material having a hardness of 10 or less, includes a plurality of pores, or has a dielectric constant of several times to several thousand times of air. Therefore, even if the touch pressure of the user is small, a sufficient amount of change between the first and second electrodes can be obtained. That is, the resolution according to the change amount of the capacitance value is improved, making it possible to make a pressure sensor with easy data processing.
  • the thickness can be minimized, thereby reducing the thickness of the pressure sensor and reducing the thickness of the module using the same.
  • the pressure sensor of the present invention can be employed in an electronic device that performs a predetermined function through a touch input. It may also be integrated with piezoelectric elements that function as piezoelectric acoustic elements or piezoelectric vibrating elements, or may be integrated with NFC, WPC, and MST.
  • FIG. 1 is a cross-sectional view of a pressure sensor according to a first embodiment of the present invention.
  • 2-4 are top plan schematic views of first and second electrode layers in accordance with embodiments of the present invention of a pressure sensor.
  • 5 to 9 are cross-sectional views of a pressure sensor according to other embodiments of the present invention.
  • FIGS. 10 and 11 are plan schematic views of first and second electrode layers according to other embodiments of the present invention of a pressure sensor.
  • FIGS. 12 and 13 are front and rear perspective views of an electronic device having a pressure sensor according to a first embodiment of the present invention.
  • FIG. 14 is a partial cross-sectional view of the line AA ′ of FIG. 12;
  • 15 is a cross-sectional view of an electronic device according to a second embodiment of the present disclosure.
  • 16 is a plan view schematically illustrating a configuration of a pressure sensor of an electronic device according to a second embodiment of the present disclosure.
  • 17 is a cross-sectional view of an electronic device having a pressure sensor according to a third embodiment of the present disclosure.
  • FIG. 18 is a schematic plan view showing an arrangement of the pressure sensor of the electronic device according to the fourth embodiment of the present disclosure.
  • 19 to 22 is a control block diagram of a pressure sensor according to embodiments of the present invention.
  • FIG. 23 is a block diagram illustrating a data processing method of a pressure sensor according to another embodiment of the present invention.
  • FIG. 24 is a block diagram of a fingerprint recognition sensor using a pressure sensor in accordance with embodiments of the present invention.
  • 25 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention.
  • 26 to 30 are views illustrating a pressure sensor integrated composite device according to various embodiments of the present disclosure.
  • FIGS. 2 to 4 are schematic views of first and second electrode layers of the pressure sensor.
  • the pressure sensor according to the first embodiment of the present invention may include a dielectric layer provided between the first and second electrode layers 100 and 200 spaced apart from each other, and the first and second electrode layers 100 and 200. 300).
  • the dielectric layer 300 may be compressed and restored, and may be formed using a material having a hardness of 10 or less.
  • the first and second electrode layers 100 and 200 are spaced apart by a predetermined interval in the thickness direction (ie, the vertical direction), and the dielectric layer 300 is provided therebetween.
  • the first and second electrode layers 100 and 200 are formed on the first and second support layers 110 and 120 and the first and second support layers 110 and 210, respectively. It may include. That is, the first and second support layers 110 and 210 are formed to be spaced apart by a predetermined interval, and the first and second electrodes 120 and 220 are formed on the surfaces of the first and second support layers 110 and 210, respectively. .
  • the first and second electrodes 120 and 220 may be formed to face each other or may not be formed to face each other.
  • the first and second electrodes 120 and 220 may be formed to face the dielectric layer 300, or one may be formed to face the dielectric layer 300 and the other may not face the dielectric layer 300.
  • the first and second electrodes 120 and 220 may be formed so as not to face the dielectric layer 300.
  • the first and second electrodes 120 and 220 may be formed in contact with the dielectric layer 300 or may not be in contact with each other.
  • a first support layer 110, a first electrode 120, a dielectric layer 300, a second electrode 220, and a second support layer 210 are stacked in a thickness direction from a lower side thereof. Pressure sensors can be implemented.
  • first and second support layers 110 and 210 support the first and second electrodes 120 and 220 so that the first and second electrodes 120 and 220 are formed on one surface thereof.
  • the first and second support layers 110 and 210 may be provided in a plate shape having a predetermined thickness.
  • the first and second support layers 110 and 210 may be provided in a film form to have flexible characteristics.
  • the first and second support layers 110 and 210 may be silicon, urethane, polyurethane, polyimide, PET, PC, etc., and a photocurable monomer and oligomer It may be a prepolymer using an oligomer and photoinitiate and additives.
  • the first and second support layers 110 and 210 may be transparent or opaque in some cases.
  • a plurality of pores may be provided in at least one of the first and second support layers 110 and 210.
  • the second support layer 210 which may be bent downward according to the touch or press of the object and may be deformed, may include a plurality of pores.
  • the pores have a size of, for example, 1 ⁇ m to 500 ⁇ m and may be formed at a porosity of 10% to 95%.
  • the elastic force and the restoring force of the second support layer 210 may be further improved. In this case, when the porosity is less than 10%, the improvement of the elastic force and the restoring force is insignificant.
  • the porosity is greater than 95%, the shape of the second support layer 210 may not be maintained.
  • the first and second electrodes 120 and 220 may be formed of a transparent conductive material such as indium tin oxide (ITO) or antimony tin oxide (ATO). However, the first and second electrodes 120 and 220 may be formed of a transparent conductive material other than such a material, or may be formed of an opaque conductive material such as silver (Ag), platinum (Pt), copper (Cu), or the like. have. In addition, the first and second electrodes 120 and 220 may be formed to cross each other. For example, the first electrode 120 may be formed in one direction to have a predetermined width, and the first electrode 120 may be formed to be spaced apart from each other by a predetermined interval.
  • ITO indium tin oxide
  • ATO antimony tin oxide
  • the first and second electrodes 120 and 220 may be formed of a transparent conductive material other than such a material, or may be formed of an opaque conductive material such as silver (Ag), platinum (Pt), copper (Cu), or the like. have.
  • the second electrode 220 may be formed in another direction orthogonal to one direction to have a predetermined width, and the second electrode 220 may be formed to be spaced apart at a predetermined interval in one direction orthogonal to the other direction. That is, the first and second electrodes 120 and 220 may be formed in directions perpendicular to each other as shown in FIG. 2.
  • the first electrode 120 is formed to a predetermined width in the horizontal direction, which is arranged in a plurality of spaced apart a predetermined interval in the vertical direction
  • the second electrode 220 is formed to a predetermined width in the vertical direction, which is predetermined in the thin direction A plurality of spaced apart may be arranged.
  • the widths of the first and second electrodes 120 and 220 may be greater than or equal to the gap therebetween.
  • the widths of the first and second electrodes 120 and 220 may be narrower than the gap therebetween, but the width is preferably larger than the gap.
  • the ratio of the width and the spacing of the first and second electrodes 120 and 220 may be 10: 1 to 0.5: 1. That is, when the interval is 1, the width may be 10 to 0.5.
  • the first and second electrodes 120 and 220 may be formed in various shapes in addition to these shapes. For example, as shown in FIG.
  • one of the first and second electrodes 120 and 220 is formed on the support layer as a whole, and the other is a substantially rectangular shape having a predetermined width and spacing in one direction and the other direction. It may be formed in a plurality of patterns. That is, the plurality of first electrodes 120 may be formed in a substantially rectangular pattern, and the second electrodes 220 may be entirely formed on the second support layer 120. Of course, in addition to the square, a variety of patterns, such as a circle, a polygon is possible. In addition, one of the first and second electrodes 120 and 220 may be formed on the support layer as a whole, and the other may be formed in a grid shape extending in one direction and the other direction.
  • the first and second electrodes 120 and 220 may be formed to have a thickness of, for example, 0.1 ⁇ m to 500 ⁇ m, and the first and second electrodes 120 and 220 may have an interval of 1 ⁇ m to 10000 ⁇ m, for example. It can be formed as.
  • the first and second electrodes 120 and 220 may be in contact with the dielectric layer 300.
  • the first and second electrodes 120 and 220 may be spaced apart from the dielectric layer 300 by a predetermined interval, and the first and second electrodes 120 may be applied when a predetermined pressure, for example, a user's touch input is applied. At least one of 220 may be in contact with the dielectric layer 300 locally. In this case, the dielectric layer 300 may be compressed to a predetermined depth.
  • a plurality of holes 130 may be formed in at least one of the first and second electrode layers 100 and 200.
  • a plurality of holes 130 may be formed in the first electrode layer 100. That is, the plurality of holes 130 may be formed in the electrode layer used as the ground electrode.
  • the hole 130 may be formed in the second electrode layer 200 used as the signal electrode in addition to the first electrode layer 100, and may be formed in both the first and second electrode layers 100 and 200.
  • the hole 130 may be formed such that at least one of the first and second electrodes 120 and 220 is removed to expose the first and second support layers 110 and 210, and the first and second electrodes are exposed.
  • the first and second support layers 110 and 210 may be removed. That is, the holes 130 may be formed to expose the support layers 110 and 210 by removing the electrodes 120 and 220, or may be formed to penetrate the support layers 110 and 210 from the electrodes 120 and 220. . In addition, the hole 130 may be formed in a region where the electrodes 120 and 220 overlap. For example, as illustrated in FIG. 4, the plurality of holes 130 may be formed in the first electrode 120 in an area overlapping the second electrode 220. Here, one hole 130 may be formed in an area overlapping the second electrode 220, or two or more holes may be formed. Of course, as shown in FIG.
  • the hole 130 may be formed in the.
  • the hole 130 is formed to facilitate the compression of the dielectric layer 300.
  • the holes 130 may be formed, for example, with a diameter of 0.05 mm to 10 mm. When the diameter of the hole 130 is less than 0.05 mm, the compressive effect of the dielectric layer 300 may be reduced, and when the diameter exceeds 10 mm, the restoring force of the dielectric layer 300 may be reduced.
  • the size of the hole 130 may be variously changed according to the size of the pressure sensor or the input device.
  • the dielectric layer 300 may be provided to a predetermined thickness between the first and second electrode layers 100 and 200, and may be provided to have a thickness of, for example, 10 ⁇ m to 5000 ⁇ m. That is, the dielectric layer 300 may be provided in various thicknesses according to the size of the electronic device in which the pressure sensor is employed. For example, the dielectric layer 300 may have a thickness of 10 ⁇ m to 5000 ⁇ m, preferably 500 ⁇ m or less, and more preferably 200 ⁇ m or less. The dielectric layer 300 may be formed such that a space, that is, no air gap, is formed therein.
  • Dielectric layer 300 may be used.
  • the dielectric layer 300 may use a material whose thickness may change according to a pressure change. That is, the dielectric layer 300 may use a material that can be compressed and restored.
  • the dielectric layer 300 may be formed of a material having a hardness of 10 or less.
  • the dielectric layer 300 may have a hardness of 0.1-10, preferably 2-10, more preferably 5-10.
  • the dielectric layer 300 may be formed using, for example, silicon, gel, rubber, urethane, or the like. Meanwhile, the dielectric layer 300 may further include an electromagnetic shielding and absorbing material. As such, the electromagnetic wave shielding and absorbing material is further contained in the dielectric layer 300 to shield or absorb the electromagnetic waves.
  • the electromagnetic shielding and absorbing material may include ferrite, alumina, or the like, and may be contained in an amount of 0.01 wt% to 50 wt% in the dielectric layer 300. That is, the electromagnetic shielding and absorbing material may be contained in an amount of 0.01 wt% to 50 wt% with respect to 100 wt% of the dielectric layer 300 material. If the electromagnetic shielding and absorbing material is less than 0.01% by weight, the electromagnetic shielding and absorbing properties are low. If the electromagnetic shielding and absorbing material is more than 50% by weight, the compressive characteristics of the dielectric layer 300 may be reduced.
  • the dielectric layer 300 may be formed of a material having a hardness of 10 or less. have. Since spacers are formed in the dielectric layer 300, foreign substances, moisture, and the like do not penetrate, and thus, the dielectric constant of the dielectric layer 300 does not change, thereby preventing a change in the sensing value. In addition, even with a small touch pressure, the amount of change between the first and second electrodes becomes large and sufficient data can be obtained. As a result, the resolution according to the change amount of the capacitance value is improved, so that a pressure sensor with easy data processing can be manufactured. In addition, a large thickness change is not required between the first and second electrode layers 100 and 200, thereby minimizing the thickness, thereby reducing the thickness of the pressure sensor and the pressure sensor module.
  • FIG. 5 is a cross-sectional view of a pressure sensor according to a second embodiment of the present invention.
  • the pressure sensor according to the second embodiment of the present invention may include a dielectric layer provided between the first and second electrode layers 100 and 200 spaced apart from each other, and the first and second electrode layers 100 and 200. 300, the dielectric layer 300 is compressible and reconstructible, and may be formed to have a plurality of pores 310.
  • the pores 310 may be formed in a size of 1 ⁇ m to 10000 ⁇ m.
  • the size of the pores 310 may be the shortest diameter or the longest diameter, or may be an average diameter. Among them, the shortest diameter may be 1 ⁇ m to 500 ⁇ m.
  • the pores 310 may be formed in a size of 1 ⁇ m to 10000 ⁇ m, may be formed in a size of 1 ⁇ m to 5000 ⁇ m, or may be formed in a size of 1 ⁇ m to 1000 ⁇ m. That is, the size of the pores 310 may be variously changed according to the size of the pressure sensor, the size of the electronic device employing the pressure sensor, the thickness and width of the dielectric layer 300, and the like.
  • the pores 310 may be formed in the same size or different sizes. For example, a first pore having an average size of 1 ⁇ m to 300 ⁇ m, a second pore having an average size of 300 ⁇ m to 600 ⁇ m, and a third pore having an average size of 600 ⁇ m to 1000 ⁇ m are mixed. Dielectric layer 300 may be formed.
  • the first to third pores may also have a plurality of sizes. That is, the first to third pores may have a respective average size, and may have a plurality of sizes within each average size.
  • the pores 310 may have various shapes.
  • the cross-sectional shape may be formed in a circular or elliptical shape, and at least some may be formed in a shape extending to one side.
  • at least a portion of the adjacent pores 310 may be connected, in this case, for example, may be formed in a peanut shape.
  • the pore 310 may be larger than the thickness of the dielectric layer 300 according to the thickness of the dielectric layer 300. In this case, the pores 310 may be formed in the thickness direction of the dielectric layer 300, so that an empty region may be provided between the first and second electrode layers 100 and 200.
  • the pore 310 when the pore 310 is large in size and a blank area is provided in the dielectric layer 300, the compressive force is weakened, and thus a large sensing output can be obtained even with a small contact pressure. That is, the sensing margin can be improved.
  • the pores 310 may be formed at a porosity of 1% to 95%. That is, the higher the porosity of the dielectric layer 300, the larger the dielectric layer 300 may be compressed even at low pressure. However, if the porosity of the dielectric layer 300 is too high, it is difficult to maintain the shape of the dielectric layer 300, and part of the dielectric layer 300 may collapse.
  • the plurality of pores 310 have a porosity of 1% to 95% in order to be compressed to a predetermined size at a predetermined pressure and to maintain a shape without part of the dielectric layer 300 collapsed.
  • the porosity may be defined as (the ratio of the cross-sectional area of pores in any vertical cross-section 1 cm 2 + the cross-sectional area ratio of pores in any horizontal cross-section 1 cm 2) / 2.
  • the dielectric layer 300 preferably has the same porosity in all regions. However, the porosity of the dielectric layer 300 may have at least one region of 10% or more.
  • the dielectric layer 300 may have a cross sectional area ratio of the pores 310 of the vertical cross section smaller than a cross sectional area ratio of the pores 310 of the horizontal cross section. That is, the dielectric layer 300 may have a cross sectional area ratio in the vertical direction of the pores 310 in at least one region, preferably in an entire region, than the cross sectional area ratio in the horizontal direction.
  • the dielectric layer 300 may be formed using a material whose thickness may change according to a pressure change. That is, the dielectric layer 300 may be formed using a material that can be compressed and restored.
  • the dielectric layer 300 may be formed of a material including the pores 310.
  • the dielectric layer 300 may be foamed, foamed silicone, foamed latex, foamed urethane, and the like, including pores 310, and may be formed of a compressible and recoverable material.
  • the dielectric layer 300 may be made of a thermosetting resin. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin.
  • Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin).
  • the dielectric layer 300 may be formed of a material having a hardness of 10 or less.
  • the dielectric layer 300 formed of such a material may have a dielectric constant of 2 or more and 20 or less.
  • the dielectric layer 300 of the second embodiment of the present invention may further include an electromagnetic shielding and absorbing material as in the first embodiment of the present invention.
  • the electromagnetic shielding and absorbing material may have a size smaller than the pores 310, and thus may be contained within the pores 310.
  • the electromagnetic shielding and absorbing material may have a larger size than the pores 310 and may be contained in the region where the pores 310 of the dielectric layer 300 are not formed.
  • the electromagnetic shielding and absorbing material may have a smaller size than the pores 310 and may be contained in the dielectric layer 300 in which the pores 310 are not formed.
  • the electromagnetic shielding and absorbing material may have a plurality of sizes larger or smaller than the pores 310, and some may be contained in the pores 310 or in the dielectric layer 300 in which no pores 310 are formed. .
  • the electromagnetic wave shielding and absorbing material is further contained in the dielectric layer 300 to shield or absorb the electromagnetic waves.
  • the electromagnetic shielding and absorbing material may include ferrite, alumina, or the like, and may be contained in an amount of 0.01 wt% to 50 wt% in the dielectric layer 300. That is, the electromagnetic shielding and absorbing material may be contained in an amount of 0.01 wt% to 50 wt% with respect to 100 wt% of the dielectric layer 300 material. If the electromagnetic shielding and absorbing material is less than 0.01% by weight, the electromagnetic shielding and absorbing properties are low. If the electromagnetic shielding and absorbing material is more than 50% by weight, the compressive characteristics of the dielectric layer 300 may be reduced.
  • a dielectric layer 300 having a plurality of pores 310 may be formed between the first and second electrode layers 100 and 200 spaced apart from each other. That is, the dielectric layer 300 may be formed with a plurality of pores 310 having a porosity of 1% to 95%. Therefore, even with a small pressure, the amount of change between the first and second electrodes 120 and 220 is increased, so that sufficient data can be obtained. As a result, the resolution according to the amount of change in capacitance value is improved, so that a pressure sensor with easy data processing can be manufactured. have.
  • FIG. 6 is a cross-sectional view of the pressure sensor according to the third embodiment of the present invention.
  • the pressure sensor according to the third embodiment of the present invention may include a dielectric layer provided between the first and second electrode layers 100 and 200 spaced apart from each other, and the first and second electrode layers 100 and 200. 300, wherein the dielectric layer 300 may be provided with dielectric 320 having a higher dielectric constant than silicon or rubber, for example having a dielectric constant of at least 4, preferably greater than 4, mixed in insulator 330, As such, the dielectric layer 300 may have a dielectric constant greater than or equal to four, preferably greater than four.
  • the dielectric layer 300 may further include not only the dielectric 230 but also the pores 310 described in the second embodiment of the present invention.
  • the dielectric layer 300 may be formed to have a predetermined thickness by providing a dielectric material 320 having a dielectric constant greater than 4 in the insulator 330.
  • dielectric layer 300 may have a dielectric constant of at least four.
  • the dielectric 320 may be mixed, for example, in the form of a powder having a size of 1 ⁇ m to 500 ⁇ m. In this case, the dielectric 320 may use a single powder or two or more powders having a plurality of sizes.
  • a first dielectric powder having an average particle diameter of 1 ⁇ m to 100 ⁇ m, a second dielectric powder having an average particle diameter of 100 ⁇ m to 300 ⁇ m, and a third dielectric powder having an average particle diameter of 300 ⁇ m to 500 ⁇ m It can mix and use.
  • a small dielectric powder may be formed to be interposed between the large dielectric powders, thereby further improving the content of the dielectric powder.
  • the first dielectric powder may be less than or equal to the second dielectric powder, and the second dielectric powder may be less than or equal to the third dielectric powder.
  • A: B: C is 10 to 100: 100 to 300: It may be 300 to 500.
  • A: B: C may be 10: 100: 300 and 100: 200: 500.
  • the dielectric 320 may have a predetermined shape larger than a powder having a size of 1 ⁇ m to 500 ⁇ m.
  • the dielectric 320 may be mixed with the insulator 330 in a substantially rectangular plate shape having a predetermined thickness.
  • the plate-shaped dielectric 320 may be provided in a substantially rectangular plate shape having a predetermined length in one direction and another direction perpendicular to the horizontal direction and a predetermined thickness in the vertical direction.
  • the rectangular plate-like dielectric 320 may have a size of, for example, 3 ⁇ m to 5000 ⁇ m.
  • the rectangular plate-like dielectric 320 may have a length in at least one direction of 3 ⁇ m to 5000 ⁇ m.
  • the plate-shaped dielectric 320 may also be composed of a single material or at least two or more materials having at least two or more sizes.
  • the dielectric 320 may be formed by mixing a first dielectric having a powder form having at least two or more sizes and a plate-shaped second dielectric having at least two or more sizes. Meanwhile, the size of the dielectric layer 320 may be larger than the thickness of the dielectric layer 300. In this case, the dielectric layer 320 may be provided in the horizontal direction to have a larger size in the horizontal direction than the thickness of the dielectric layer 300.
  • the dielectric 320 may use a material having a dielectric constant of 4 or more, preferably greater than 4, for example, a material including at least one of Ba, Ti, Nd, Bi, Zn, Al, for example, an oxide of the material. have.
  • the dielectric 320 may include one or more of BaTiO 3 , BaCO 3 , TiO 2 , Al 2 O 3 .
  • additives such as Nd, Bi, Zn and the like may be further added. By adding more additives, the dielectric constant can be improved. Meanwhile, the dielectric 320 may be formed at a density of 0.01% to 95%.
  • the dielectric 320 when the dielectric layer 310 in which the insulator 330 and the dielectric 320 are mixed is 100, the dielectric 320 may be mixed in an amount of about 0.01 to about 95. In this case, since the dielectric constant of the dielectric layer 300 increases as the density of the dielectric 320 increases, it is preferable to increase the density of the dielectric 320 in a range capable of maximally increasing the dielectric constant. In addition, the dielectric 320 is preferably provided in the same density in all areas. However, the dielectric 320 may be provided such that at least one region has a density of 0.01% or more.
  • the dielectric 320 has a density of about 1% and at least another region has a density of 95%, a larger capacitance change value may be sensed in a higher density region. Even if it has a density of 0.01% or more, the change in capacitance can be sufficiently sensed by the controller.
  • the insulator 330 may use a material whose thickness may change according to a pressure change. That is, the insulator 330 may use a material that can be compressed and restored. For example, it may include one or more selected from the group consisting of silicone, rubber, polymer, epoxy, polyimide, and liquid crystal crystalline polymer (LCP), but is not limited thereto. It doesn't happen. In addition, the insulator 330 has a hardness of 30 or less on the basis of rubber and may use foam rubber, gel, poron, urethane, or the like.
  • the urethane may be used independently without the dielectric 320 or may further include a dielectric 320 to further improve the dielectric constant. That is, the dielectric constant can be maintained at 4 or more without including the dielectric 320, and the dielectric constant can be further improved by including the dielectric 320.
  • the insulator 330 may be made of a thermosetting resin. Examples of thermosetting resins include Novolac Epoxy Resin, Phenoxy Type Epoxy Resin, BPA Type Epoxy Resin and BPF Type Epoxy Resin.
  • Hydrogenated BPA Epoxy Resin, Dimer Acid Modified Epoxy Resin, Urethane Modified Epoxy Resin, Rubber Modified Epoxy Resin and DC It may include one or more selected from the group consisting of PDPD type epoxy resin (DCPD Type Epoxy Resin).
  • DCPD Type Epoxy Resin PDPD type epoxy resin
  • the insulator 330 according to the third embodiment of the present invention may use a material usable as the dielectric layer 300 described in the first and second embodiments of the present invention in addition to the above material.
  • the dielectric layer 300 according to the third embodiment of the present invention may further include an electromagnetic shielding and absorbing material as in the first and second embodiments of the present invention.
  • the electromagnetic shielding and absorbing material may have a size smaller than the dielectric 320.
  • the electromagnetic shielding and absorbing material may have a larger size than the dielectric 320.
  • the electromagnetic shielding and absorbing material may have a plurality of sizes larger or smaller than the dielectric 320.
  • the electromagnetic wave shielding and absorbing material is further contained in the dielectric layer 300 to shield or absorb the electromagnetic waves.
  • the electromagnetic shielding and absorbing material may include ferrite, alumina, or the like, and may be contained in an amount of 0.01 wt% to 50 wt% in the dielectric layer 300.
  • the electromagnetic shielding and absorbing material may be contained in an amount of 0.01 wt% to 50 wt% with respect to 100 wt% of the dielectric layer 300 material. If the electromagnetic shielding and absorbing material is less than 0.01% by weight, the electromagnetic shielding and absorbing properties are low. If the electromagnetic shielding and absorbing material is more than 50% by weight, the compressive characteristics of the dielectric layer 300 may be reduced.
  • the dielectric layer 300 is formed between the first and second electrode layers 100 and 200 spaced apart from each other, and the dielectric layer 300 has a dielectric constant of 4 or more, Preferably, the dielectric 320, which is greater than 4, and the compressible and recoverable insulator 330 may be mixed.
  • dielectric layer 300 may have a dielectric constant of at least four. That is, the dielectric layer 300 is mixed by mixing a dielectric material 320 having a high dielectric constant powder or the like and a compressible and recoverable insulator 330 such as polymer, rubber, silicon, poron, foam rubber, urethane, or the like.
  • the material By forming the material, it is possible to produce a material having a dielectric constant of several times or more than several times the minimum air, and they can obtain sufficient data even with a small amount of change between the first and second electrode layers 100 and 200. Therefore, the resolution according to the change amount of the capacitance value is improved, so that a pressure sensor with easy data processing can be made. In addition, a large thickness change is not required between the first and second electrode layers 100 and 200, thereby minimizing the thickness, thereby reducing the thickness of the pressure sensor and the pressure sensor module.
  • the present invention measures the strength of the pressure by the amount of change in the capacitance value according to the change in the distance between the electrodes by pressing the dielectric layer 300, the density of the dielectric 320 dispersed according to the compression of the insulator 330 The increase in capacitance changes with pressure, thereby making it easier to measure changes in capacitance.
  • the present invention does not merely increase the dielectric constant of the dielectric layer 300, but facilitates the amount of change in capacitance due to compression by mixing the dielectric 320 having a high dielectric constant with the compressible insulator 330.
  • FIG. 7 is a cross-sectional view of a pressure sensor according to a fourth embodiment of the present invention.
  • the pressure sensor according to the fourth embodiment of the present invention may include a dielectric layer provided between the first and second electrode layers 100 and 200 spaced apart from each other, and the first and second electrode layers 100 and 200. 300 and a cutout 340 formed at a predetermined width and depth in at least one region of the dielectric layer 300.
  • the dielectric layer 300 may include at least one of the pores 310 and the dielectric 320.
  • the dielectric layer 300 may be formed at a predetermined width and interval in one direction and the other direction opposite thereto. That is, the dielectric layer 300 may have a cutout 340 formed at a predetermined depth and be separated in plurality at predetermined widths and intervals.
  • the cutout 340 may include a plurality of first cutouts having a predetermined width in one direction, and a plurality of second cutouts having a predetermined width in another direction perpendicular to the cutouts 340. Therefore, the dielectric layer 300 may be divided into a plurality of unit cells having a predetermined width and spacing by the plurality of first and second cutouts, respectively.
  • the entire thickness of the dielectric layer 300 may be cut, or a thickness of 50% to 95% of the total thickness may be cut. That is, the dielectric layer 300 may be cut in its entire thickness or 50% to 95% of the total thickness may be cut to form an incision.
  • the dielectric layer 300 has a predetermined flexible characteristic.
  • the dielectric layer 300 may be cut to have, for example, a size of about 10 ⁇ m to about 5000 ⁇ m and an interval of about 1 ⁇ m to about 300 ⁇ m. That is, the cutting unit 340 may have a unit cell having a size of about 10 ⁇ m to 5000 ⁇ m and an interval of 1 ⁇ m to 300 ⁇ m.
  • the first and second cutouts of the dielectric layer 300 may correspond to a gap between the electrodes of the first and second electrode layers 100 and 200. That is, the first cutout may be formed to correspond to the gap of the first electrode of the first electrode layer 100, and the second cutout may be formed to correspond to the gap of the second electrode of the second electrode layer 200. At this time, the spacing of the electrode layer and the spacing of the cut may be the same, the spacing of the electrode layer may be larger or smaller than the spacing of the cut. Meanwhile, the dielectric layer 300 may be cut by a laser, dicing, or bleed cut method, or a cutout may be formed by using a mold mold.
  • FIG. 8 is a cross-sectional view of a pressure sensor according to a fifth embodiment of the present invention.
  • the pressure sensor according to the fifth embodiment of the present invention is provided between the first and second electrode layers 100 and 200 spaced apart from each other and the first and second electrode layers 100 and 200.
  • the dielectric layer 300 having the plurality of cutouts 340 formed in the direction and the other direction, and the elastic layer 400 formed on the cutout 340 of the dielectric layer 300.
  • the dielectric layer 300 may include at least one of the pores 310 and the dielectric 320.
  • the cutout 340 may be formed over the entire thickness of the dielectric layer 300, and may be formed to have a predetermined thickness. That is, the cutout 340 may be formed to have a thickness of 50% to 100% of the thickness of the dielectric layer 300. Accordingly, the dielectric layer 300 may be separated by a cutout 340 in one direction and the other by a predetermined interval and separated into unit cell units, and an elastic layer 400 may be formed between the unit cells.
  • the elastic layer 400 may be formed using an elastic polymer, silicon, or the like. That is, the elastic layer 400 may use a material different from that of the dielectric layer 300. Since the elastic layer 400 is formed, it is possible to maintain the shape of the dielectric layer 300, and may have higher flexible characteristics than the fourth embodiment of the present invention in which the elastic layer 400 is not formed. That is, since the dielectric layer 300 includes the cutout 340, it may not be possible to maintain the shape of the dielectric layer 300 in some cases, but the elastic layer 400 is formed in a predetermined region to support the dielectric layers 300. Thus, the shape of the dielectric layer 300 can be maintained.
  • the flexible characteristics of the dielectric layer 300 may be limited, but the dielectric layers 300 are all cut and the elastic layer 400 is formed. Flexible characteristics may be improved to the extent that the dielectric layer 300 may be rolled or folded.
  • the elastic layer 400 may be formed to fill the cutout 340 formed at a partial thickness without the cutout 340 formed in the entire thickness of the dielectric layer 300.
  • FIG. 9 is a cross-sectional view of a pressure sensor according to a sixth embodiment of the present invention.
  • 10 and 11 are plan schematic views of first and second electrode layers according to other embodiments.
  • the pressure sensor according to the fourth embodiment of the present invention is provided between the first and second electrode layers 100 and 200 spaced apart from each other, and the first and second electrode layers 100 and 200.
  • Dielectric layer 300 As described in the embodiments of the present invention, the dielectric layer 300 may be formed of a material having a hardness of 10 or less, and may include at least one of the plurality of pores 310 and the dielectric 320.
  • the first and second electrode layers 100 and 200 may be formed on the first and second support layers 110 and 210, and the first and second electrodes 120 and 120 formed on the first and second support layers 110 and 210, respectively. , 220).
  • the pressure sensor according to the sixth embodiment has the same configuration as the pressure sensor according to the first embodiment described with reference to FIG. 1.
  • the first and second electrodes 120 and 220 may be formed to face each other or may not be formed to face each other.
  • the first and second electrodes 120 and 220 may be entirely formed on the first and second support layers 110 and 210 as shown in FIG. 10. That is, although the first and second electrodes 120 and 220 may be formed to have a predetermined pattern as shown in FIGS. 2 and 3, the first and second electrodes 120 and 220 may be formed on the support layers 110 and 210 as shown in FIG. 10. It may be formed.
  • the first and second electrode layers 100 and 200 having such a shape may be applied to a pressure sensor provided to detect pressure in a local region.
  • the electrodes 120 and 220 formed in a predetermined pattern as shown in FIGS. 2 and 3 may be used, and the local area may be used.
  • the electrodes 120 and 220 formed entirely on the support layers 110 and 210 as shown in FIG. 7 may be used.
  • both local pressure detection and overall pressure detection may be possible depending on the size of the pressure sensor regardless of the shape of the electrodes 120 and 220, and various electrode shapes and detection areas are possible according to the application or hardware specification to be used. .
  • a predetermined cutout 320 may be formed in the dielectric layer 300, or the elastic layer 400 may be formed on the cutout 320. ) May be formed.
  • openings 135 and 235 may be formed in predetermined regions. That is, as shown in FIG. 11, the first and second electrode layers 100 and 200 are formed in a predetermined shape, and the openings 135 and 235 are formed in predetermined regions of the first and second electrode layers 100 and 200. Can be formed.
  • the openings 135 and 235 may be provided so that another pressure sensor or a functional part having a function different from that of the pressure sensor can be inserted.
  • an opening overlapping the openings 135 and 235 formed in the first and second electrode layers 100 and 200 may be formed in the dielectric layer 300.
  • a pressure sensor may be used to enable another pressure sensor or function portion to be inserted into the openings 130 and 230.
  • the first and second electrode layers 100 and 200 may be formed in different shapes. That is, as shown in FIG. 11, in the first electrode layer 100, the first electrode 120 is entirely formed on the first support layer 110, and the second electrode layer 200 is formed of the second electrode 220. 2 may be provided on the support layer 210 spaced apart at predetermined intervals.
  • the second electrode 210 may have a substantially rectangular first region 210a, substantially rectangular second and third regions 220b and 220c formed with an opening 230 therebetween,
  • the fourth region 220d formed in a quadrangular shape may be formed to be spaced apart by a predetermined interval.
  • a first connection pattern 140 may be formed on the first support layer 110, and a second connection pattern 240 may be formed on the second support layer 210.
  • the first connection pattern 140 is formed in contact with the first electrode 110, and the second connection pattern 240 is formed to be spaced apart from the fourth region 220d.
  • the first and second connection patterns 140 and 240 may be formed to at least partially overlap.
  • a third connection pattern may be formed between at least a portion of the dielectric layer 300 between the first and second electrode layers 100 and 200 between the first and second connection patterns 140 and 240. . That is, the third connection pattern may be formed to be spaced apart from the dielectric layer 300. Therefore, the first and second connection patterns 140 and 240 may be connected through the third connection pattern.
  • the second electrode layer 200 may extend from the first to fourth regions 210a to 210d to form first to fourth extension patterns 250a, 250b, 250c, and 250d, respectively, and a second connection pattern.
  • the fifth extension pattern 250e may be formed to extend from the 240.
  • the first to fifth extension patterns 250a to 250d may extend with a connector (not shown) to be connected to the control unit or the power supply unit. Accordingly, a predetermined power source, for example, a ground power source, may be applied to the first connection pattern 140 through the fifth extension pattern 250e, the second connection pattern 240, and the third connection pattern. In addition, the voltage sensed by the first to fourth regions 220a to 220d may be transmitted to the connector through the first to fourth extension patterns 250a to 250d.
  • a predetermined power source for example a driving power source, may be applied to the first to fourth regions 220a and 220d through the first to fourth extension patterns 250a to 250d.
  • the pressure sensor according to the embodiments may be provided in an electronic device such as a smart phone to detect a user's touch or pressure.
  • an electronic device such as a smart phone to detect a user's touch or pressure.
  • FIG. 12 and 13 are front and rear perspective views of an electronic device having a pressure sensor according to an embodiment of the present invention
  • FIG. 14 is a partial cross-sectional view taken along the line AA ′ of FIG. 12.
  • an embodiment of the present invention will be described by taking an example of a mobile terminal including a smart phone as an electronic device having a pressure sensor, Figures 12 to 14 schematically show the main part related to the present invention.
  • the electronic apparatus 1000 includes a case 1100 forming an appearance, and includes a plurality of functional modules for performing a plurality of functions of the electronic apparatus 1000 in the case 1100.
  • a circuit or the like is provided.
  • the case 1100 may include a front case 1110, a rear case 1120, and a battery cover 1130.
  • the front case 1110 may form part of the upper side and the side of the electronic device 1000
  • the rear case 1120 may form part of the side surface and the bottom of the electronic device 1000. That is, at least a portion of the front case 1110 and at least a portion of the rear case 1120 may form a side surface of the electronic device 1000, and a portion of the front case 1110 may be part of the upper surface except for the display unit 1310.
  • the battery cover 1130 may be provided to cover the battery 1200 provided on the rear case 1120.
  • the battery cover 1130 may be provided integrally or detachably provided. That is, when the battery 1200 is integrated, the battery cover 1130 may be integrally formed. When the battery 1200 is detachable, the battery cover 1130 may also be detachable.
  • the front case 1110 and the rear case 1120 may be integrally manufactured. That is, the case 1100 is formed to close the side and the rear surface and expose the top surface without distinguishing the front case 1110 and the rear case 1120, and the battery cover 1130 to cover the back of the case 1100. It may be arranged.
  • At least a part of the case 1100 may be formed by injecting synthetic resin or formed of a metal material. That is, at least a part of the front case 1110 and the rear case 1120 may be formed of a metal material, for example, a part of the side surface of the electronic device 1000 may be formed of a metal material. Of course, the battery cover 1130 may also be formed of a metal material.
  • the metal material used for the case 1100 may include, for example, stainless steel (STS), titanium (Ti), aluminum (Al), or the like. Meanwhile, various parts, such as a display unit such as a liquid crystal display, a pressure sensor, a circuit board, and a haptic device, may be embedded in the space formed between the front case 1110 and the rear case 1120.
  • the front case 1110 may include a display 1310, a sound output module 1320, a camera module 1330a, and the like.
  • a microphone 1340, an interface 1350, and the like may be disposed at one side of the front case 1110 and the rear case 1120. That is, the display unit 1310, the sound output module 1320, the camera module 1330a, and the like are disposed on the upper surface of the electronic device 1000, and the microphone 1340 is disposed on one side, that is, the lower side, of the electronic device 1000.
  • the interface 1350 may be disposed.
  • the display unit 1310 is disposed on the upper surface of the electronic device 1000 and occupies most of the upper surface of the front case 1110.
  • the display unit 1310 is provided in a substantially rectangular shape having a predetermined length in the X and Y directions, respectively, and includes the central area of the upper surface of the electronic apparatus 1000 in most regions of the upper surface of the electronic apparatus 1000. Is formed. In this case, a predetermined space that is not occupied by the display unit 1310 is provided between the outside of the electronic apparatus 1000, that is, the outside of the front case 1110 and the display unit 1310, and the display unit 1310 in the X direction.
  • An audio output module 1320 and a camera module 1330a may be provided at an upper side thereof, and a user input unit including a front input unit 1360 may be provided at a lower side thereof.
  • a bezel area may be provided between two edges of the display unit 1310 extending in the X direction and the edge of the electronic device 1000, that is, between the edge of the display unit 1310 and the electronic device 1000 in the Y direction. have.
  • the display unit 1310 may be extended to the edge of the electronic device 1000 in the Y direction without a separate bezel area.
  • the display unit 1310 may output visual information and input tactile information of the user.
  • the display unit 1310 may be provided with a touch input device.
  • the touch input device may include a window 2100 covering the front surface of the terminal body, a display unit 2200 for outputting start information, for example, a liquid crystal display, and a user's touch or pressure information. It may include a first pressure sensor 2300 according to at least one of them.
  • the touch input device may further include a touch sensor provided between the window 2100 and the display unit 2200. That is, the touch input device may include a touch sensor and a first pressure sensor 2300.
  • the touch sensor may be formed, for example, on a transparent plate having a predetermined thickness with a plurality of electrodes spaced apart by a predetermined interval in one direction and another direction perpendicular thereto, and a dielectric layer disposed therebetween to detect a user's touch input. That is, the touch sensor may include a plurality of electrodes arranged in a grid shape, for example, and detect capacitance according to a distance between electrodes according to a user's touch input.
  • the touch sensor detects coordinates in the horizontal direction, ie, the X direction and the Y direction, which are touched by the user, and the first pressure sensor 2300 is not only the X and Y directions but also the vertical direction, that is, the coordinates in the Z direction.
  • the touch sensor and the first pressure sensor 2300 may simultaneously detect coordinates in the X direction and the Y direction, and the first pressure sensor 2300 may further detect the coordinates in the Z direction. As such, the touch sensor and the first pressure sensor 2300 simultaneously detect the horizontal coordinates, and the first pressure sensor 2300 detects the vertical coordinates, thereby more accurately detecting the user's touch coordinates.
  • the sound output module 1320, the camera module 1330a, the front input unit 1360, and the like may be provided in an area other than the display unit 1310 on the upper surface of the front case 1110.
  • the sound output module 1320 and the camera module 1330a are provided above the display unit 1310 in the X direction, and a user input unit such as the front input unit 1360 is positioned below the display unit 1310 in the X direction.
  • the front input unit 1360 may be configured as a touch key, a push key, or the like, and the front input unit 1350 may be configured by using a touch sensor or a pressure sensor.
  • a function module 3000 for a function of the front input unit 1360 may be provided inside the case 1100 under the front input unit 1360 in the lower side of the front input unit 1360, that is, in the Z direction. That is, a function module that performs a function of a touch key or a push key may be provided according to the driving method of the front input unit 1360, and a touch sensor or a pressure sensor may be provided.
  • the front input unit 1360 may include a fingerprint recognition sensor. That is, the front input unit 1360 may recognize the user's fingerprint and detect whether the user is a legitimate user.
  • the function module 3000 may include a fingerprint recognition sensor.
  • the second pressure sensor 2400 may be provided at one side and the other side of the front input unit 1360 in the Y direction. Since the second pressure sensor 2400 is provided at both sides of the front input unit 1360 as a user input unit, a function of detecting a user's touch input and returning to a previous screen and setting a screen of the display unit 1310 may be performed. . In this case, the front input unit 1360 using the fingerprint sensor may perform a function of returning to the initial screen as well as fingerprint recognition of the user.
  • the haptic feedback device such as a piezoelectric vibration device, may be further provided in contact with the display unit 1310 to provide feedback in response to a user's input or touch.
  • the haptic feedback device may be provided in a predetermined area of the electronic device 1000 other than the display unit 1310.
  • a haptic feedback device may be provided in an outer region of the sound output module 1310, an outer region of the front input unit 1360, and a bezel region.
  • the haptic feedback device may be provided under the display unit 1310.
  • a power supply unit and a side input unit may be further provided.
  • the power supply unit and the side input unit may be provided on two sides facing each other in the Y direction of the electronic device, or may be provided spaced apart from each other on one side.
  • the power supply unit may be used to turn on / off the electronic device, and may be used to enable or disable the screen.
  • the side input unit may be used to adjust the size of the sound output from the sound output module 1320.
  • the power supply unit and the side input unit may be configured as a touch key, a push key, or may be configured as a pressure sensor.
  • the electronic device according to the present invention may be provided with a pressure sensor in a plurality of areas other than the display unit 1310, respectively.
  • a pressure sensor for example, pressure sensing of the upper sound output module 1320 and the camera module 1330a of the electronic device, pressure control of the lower front input unit 1360, and controlling pressure of the side power supply unit and side input unit, etc.
  • At least one pressure sensor may be further provided.
  • a camera module 1330b may be additionally mounted on the rear surface of the electronic apparatus 1000, that is, the rear case 1120.
  • the camera module 1330b has a photographing direction substantially opposite to the camera module 1330a and may be a camera having different pixels from the camera module 1330a.
  • a flash (not shown) may be further disposed adjacent to the camera module 1330b.
  • a fingerprint sensor may be provided below the camera module 1330b. That is, the fingerprint sensor may not be provided at the front input unit 1360, but a fingerprint sensor may be provided at the rear of the electronic device 1000.
  • the battery 1200 may be provided between the rear case 1120 and the battery cover 1300, may be fixed, or may be detachably provided.
  • the rear case 1120 may have a concave region formed to provide an area into which the battery 1200 is inserted, and after the battery 1200 is mounted, the battery cover 1130 may cover the battery 1200 and the rear case. It may be provided to cover the 1120.
  • a bracket 1370 is provided between the display unit 1310 and the rear case 1130 in the electronic device 1000, and the window 2100 and the display unit (above the bracket 1370). 2200 and pressure sensor 2300 may be provided. That is, the touch input device according to the present invention may be provided above the bracket 1370 of the display unit 1310, and the bracket 1370 supports the touch input device.
  • the bracket 1370 may be extended to an area other than the display unit 1310. That is, as shown in FIG. 14, the bracket 1370 may be extended to a region where the front input unit 1360 and the like are formed. In addition, at least a portion of the bracket 1370 may be supported by at least a portion of the front case 1110.
  • the bracket 1370 extended to the outside of the display unit 1310 may be supported by an extension that extends from the front case 1110.
  • a partition wall having a predetermined height may be formed on the bracket 1370 of the boundary area between the display unit 1310 and the outside thereof.
  • the bracket 1370 supports the function module 3000 such as the pressure sensor 2400 and the fingerprint recognition sensor.
  • at least one for supplying power to a function module 3000 such as pressure sensors 2300 and 2400, a fingerprint recognition sensor, and a touch sensor on the bracket 1370, and inputting and detecting signals outputted from them.
  • a printed circuit board (PCB) or a flexible printed circuit board (FPCB) provided with a driving means may be provided.
  • At least one pressure sensor may be provided in a predetermined region in the electronic device.
  • the display unit 1310 and the user input unit may be provided respectively, or any one may be provided.
  • at least one pressure sensor may be provided in a predetermined region in the electronic device.
  • various embodiments of the electronic device according to the present invention, in which a pressure sensor may be provided in a plurality of regions, are as follows.
  • FIG. 15 is a cross-sectional view of an electronic device according to a second embodiment of the present disclosure, and is a cross-sectional view of a touch input device provided in the display unit 1310.
  • an electronic device includes a window 2100, a display unit 2200, a pressure sensor 2300, and a bracket 1370.
  • the window 2100 is provided above the display unit 2200 and supported by at least a portion of the front case 1310. In addition, the window 2100 forms an upper surface of the electronic device and contacts an object such as a finger or a stylus pen.
  • the window 2100 may be made of a transparent material, for example, may be made of acrylic resin, glass, or the like.
  • the window 2100 may be formed on the upper surface of the electronic device 1000 outside the display unit 1310 as well as the display unit 1310. That is, the window 2100 may be formed to cover the top surface of the electronic device 1000.
  • the display unit 2200 displays an image to the user through the window 2100.
  • the display unit 2200 may include a liquid crystal display (LCD) panel, an organic light emitting display (OLED) panel, and the like.
  • a backlight unit (not shown) may be provided below the display unit 2200.
  • the backlight unit may include a reflective sheet, a light guide plate, an optical sheet, and a light source.
  • the light source may be a light emitting diode (LED). In this case, the light source may be provided below the optical structure on which the reflective sheet, the light guide plate, and the optical sheet are stacked, or may be provided on the side surface.
  • the liquid crystal material of the liquid crystal display panel outputs a character or an image according to an input signal in response to the light source of the backlight unit.
  • a light blocking tape is attached between the display unit 2200 and the backlight unit to block light leakage.
  • the light blocking tape may be formed in a form in which an adhesive is applied to both sides of the polyethylene film.
  • the display unit 2200 and the backlight unit are adhered to the adhesive of the light blocking tape, and the light of the backlight unit is not leaked to the outside of the display unit 2200 by the polyethylene film inserted into the light blocking tape.
  • the pressure sensor 2300 may be provided below the backlight unit, or may be provided between the display unit 2200 and the backlight unit.
  • the pressure sensor 2300 may include the first and second electrode layers 100 and 200 and the dielectric layer 300 provided between the first and second electrode layers 100 and 200.
  • the first and second electrode layers 100 and 200 are formed on the first and second support layers 110 and 210 and the first and second support layers 110 and 210, respectively, and will be described with reference to FIGS. 1 to 9.
  • the first and second electrodes 120 and 220 may have at least one of the shapes. In this case, the first and second electrodes 120 and 220 may be provided to face each other with the dielectric layer 300 interposed therebetween. However, the first and second electrodes 120 and 220 may be formed such that one of them faces the dielectric layer 300 and the other does not face the dielectric layer 300, as shown in FIG. 15.
  • the first electrode layer 100 is formed so that the first electrode 120 is formed below the first support layer 110 so that the first electrode 120 does not face the dielectric layer 300, and the second electrode layer 200 is formed.
  • the first electrode 120, the first support layer 110, the dielectric layer 300, the second electrode 220, and the second support layer 210 may be formed in the order from the lower side to the upper side.
  • the pressure sensor 2300 may have adhesive layers 410, 420 and 400 formed on the lowermost layer and the uppermost layer.
  • the adhesive layers 410 and 420 may be provided to adhesively fix the pressure sensor 2300 between the display unit 2200 and the bracket 1370.
  • the adhesive layers 410 and 420 may use double-sided adhesive tape, adhesive tape, adhesive, or the like.
  • a first insulating layer 510 may be provided between the first electrode layer 100 and the adhesive layer 410
  • a second insulating layer 520 may be provided between the dielectric layer 300 and the second electrode 220. have.
  • the insulating layers 510, 520 and 500 may be formed using a material having elasticity and restoring force.
  • the insulating layers 510 and 520 may be formed using silicon, rubber, gel, teflon tape, or urethane having a hardness of 30 or less.
  • a plurality of pores may be formed in the insulating layers 510 and 520.
  • the pores have a size of, for example, 1 ⁇ m to 500 ⁇ m and may be formed at a porosity of 10% to 95%.
  • the elastic force and the restoring force of the insulating layers 510 and 520 may be further improved.
  • the first and second support layers 110 and 210 are formed to have a thickness of 50 ⁇ m to 150 ⁇ m, respectively, and the first and second electrodes 120 and 220 are each formed to have a thickness of 1 ⁇ m to 500 ⁇ m
  • the dielectric layer 300 may be formed to a thickness of 10 ⁇ m to 5000 ⁇ m.
  • the dielectric layer 300 may be formed to be the same or thicker than the first and second electrode layers 100 and 200, and the first and second electrode layers 100 and 200 may be formed to have the same thickness.
  • the first and second electrode layers 100 and 200 may be formed to have different thicknesses depending on the material.
  • the second electrode layer 200 may be formed to be thinner than the first electrode layer 100.
  • the first and second insulating layers 510 and 520 may each have a thickness of 3 ⁇ m to 500 ⁇ m
  • the first and second adhesive layers 410 and 420 may each have a thickness of 3 ⁇ m to 1000 ⁇ m. Can be.
  • the first and second insulating layers 510 and 520 may have the same thickness, and the first and second adhesive layers 410 and 420 may have the same thickness.
  • the insulating layers 510 and 520 may be formed in different thicknesses, and the adhesive layers 410 and 420 may be formed in different thicknesses.
  • the first adhesive layer 410 may be thicker than the second adhesive layer 420. Can be formed.
  • the bracket 1370 is provided above the rear case 1120 as shown in FIG. 11.
  • the bracket 1370 supports the upper touch sensor, the display unit 2200 and the pressure sensor 2300 and prevents the pressing force of the object from being distributed.
  • the bracket 1370 may be formed of a material whose shape is not deformed. That is, the bracket 1370 may be formed of a material such that the pressing force of the object is not dispersed and the touch sensor, the display unit 2200, and the pressure sensor 2300 are not deformed by pressure.
  • the bracket 1370 may be formed of a conductive material or an insulating material.
  • the bracket 1370 may be formed in a corner or whole bent structure, that is, bent structure. As the bracket 1370 is provided, the pressing force of the object may be concentrated without being distributed, and thus the touch area may be detected more accurately.
  • the pressure sensor may be formed in the entire area under the display unit 2200, or may be formed in at least a partial area under the display unit 2200.
  • the arrangement of such a pressure sensor is shown in FIG.
  • FIG. 16 is a plan view schematically illustrating an arrangement shape of a pressure sensor of an electronic device according to a second embodiment of the present disclosure, and illustrates an arrangement shape of the pressure sensor 2300 based on the display unit 2200.
  • the pressure sensor 2300 may be provided along an edge of the display unit 2200.
  • the pressure sensor 2300 may be provided at a predetermined width from an edge, that is, an edge of the display unit 2200 having a substantially rectangular shape, and provided at a predetermined length. That is, the pressure sensor 2300 having a predetermined width may be provided along two long sides of the display unit 2200, and the pressure sensor 2300 having a predetermined width may be provided along two short sides. Accordingly, four pressure sensors 2300 may be provided along the edge of the display unit 2200, and one pressure sensor 2300 may be provided along the shape of the edge of the display unit 2200.
  • the pressure sensor 2300 may be provided in the remaining area except for a predetermined width of the edge of the display unit 2200.
  • the pressure sensor 2300 may be provided in a region where two adjacent sides of the display unit 2200 meet, that is, a vertex region. That is, the pressure sensor 2300 may be provided at four corner regions of the display unit 2200.
  • the pressure sensor 2300 is provided in the remaining area except the edge area of the display unit 2200, and the filling material such as a double-sided tape is provided in the remaining area in which the pressure sensor 2300 is not provided. 2310 may be provided.
  • a plurality of pressure sensors 2300 may be provided at substantially equal intervals below the display unit 2200.
  • a filler 2310 such as a double-sided tape may be provided in an area where the pressure sensor 2300 is not provided in FIGS. 16A, 16C and 16D.
  • any one of the first and second electrode layers 100 and 200 of the present invention may be implemented on the bracket 1370. That is, the bracket 1370 may function as the first and second electrode layers 100 and 200. In this case, the first electrode 120 or the second electrode 220 may be formed on the bracket 1370. Therefore, the bracket 1370 may be used as the support layer of the first electrode layer 100 or the second electrode layer 200.
  • 17 illustrates an electronic device including a pressure sensor according to a third embodiment of the present invention. 17 illustrates a case where the first electrode 120 is formed on the bracket 1370. In this case, although not shown, a touch sensor may be further provided between the window 2100 and the display unit 2200.
  • the bracket 1370 may be used as the first electrode layer. That is, the bracket 1370 may be used as a ground electrode.
  • the bracket 1370 may be formed of an insulating material and the first electrode 120 may be formed in the bracket 1370.
  • the first electrode 120 may be arranged in one direction to have a predetermined width and spacing, or may be formed in a predetermined pattern.
  • the first electrode 120 may be entirely formed on the bracket 1370. In this case, the first electrode 120 on the bracket 1370 is formed to at least partially overlap the second electrode 220 of the second electrode layer 200.
  • the first and second electrodes 120 and 220 may overlap each other so that the capacitance changes as the distance between the first electrode 120 and the second electrode 220 changes.
  • the first electrode 120 formed on the bracket 1370 may be formed of a transparent conductive material.
  • the first electrode 120 may be formed of an opaque conductive material such as copper, silver, and gold.
  • the bracket 1370 may be applied with a ground potential through the first electrode 120. That is, a signal having a predetermined potential may be applied through the second electrode layer 200, and a ground potential may be applied through the bracket 1370.
  • the distance between the second electrode layer 200 and the bracket 1370 may be closer than the reference distance according to the touch of the object, and thus the capacitance between the second electrode layer 200 and the bracket 1370 may be changed.
  • a conductive tape and a conductive adhesive may be formed on at least a portion of the upper surface of the bracket 1370, and ground potential may be supplied to the first electrode 120 formed on the bracket 1370.
  • the ground potential may be applied to the first electrode 120 through the bracket 1370.
  • a conductive line may be formed in at least a portion of the bracket 1370, and upper and lower via-holes having conductive materials embedded in at least a portion of the first support layer 110 may be connected to the conductive line of the bracket 1370.
  • the embodiments of the present invention described the case where the pressure sensor 2300 is provided between the display unit 2200 and the bracket 1370.
  • the pressure sensor 2300 may be provided between the window 2100 and the display unit 2200, or may be provided between the display unit 2200 and the backlight unit.
  • FIG. 18 is a plan view schematically illustrating an arrangement shape of a pressure sensor of an electronic device according to a fourth embodiment of the present disclosure, and illustrates an arrangement shape of the pressure sensor 2400 based on the window 2100.
  • the pressure sensor 2400 may be provided along an edge of the window 2100.
  • the pressure sensor 2400 may be provided at a predetermined width from an edge of the substantially rectangular window 2100, that is, an edge, and may be provided at a predetermined length. That is, the pressure sensor 2400 of a predetermined width may be provided along two long sides of the window 2100, and the pressure sensor 2400 of a predetermined width may be provided along two short sides.
  • the pressure sensor 2400 may be provided in an area other than the display unit 1310, that is, the upper and lower regions of the display unit 1310 and the bezel region. In this case, four pressure sensors 2400 may be provided along the edge of the window 2100, and one may be provided along the shape of the edge of the window 2100.
  • the pressure sensor 2400 may be provided along the long edge of the window 2100. That is, the pressure sensor 2400 may be provided in an area between the edge of the display unit 1310 and the edge of the electronic device 1000, that is, the bezel area.
  • the pressure sensor 2400 may be provided in a region where two adjacent sides of the window 2100 meet, that is, a vertex region. That is, the pressure sensor 2400 may be provided at four corner regions of the window 2100.
  • the pressure sensor 2400 may be provided along a short side edge of the window 2100.
  • a plurality of pressure sensors 2400 may be provided at predetermined intervals along the long side and short side edges of the window 2100.
  • the plurality of pressure sensors 2400 may be provided at approximately equal intervals.
  • pressure sensors 2400 are provided in four corner regions of the window 2100, respectively, and the area between the pressure sensors 2400, that is, the long side and short side edges of the window 2100.
  • the region may be provided with a filler 2410 such as an adhesive tape.
  • 19 is a control configuration diagram of a pressure sensor according to an embodiment of the present disclosure, and is a control configuration diagram of a pressure sensor including first and second pressure sensors 2300 and 2400.
  • a control configuration of a pressure sensor includes a controller 2500 that controls driving of at least one of the first pressure sensor 2300 and the second pressure sensor 2400. can do.
  • the controller 2500 may include a driver 2510, a detector 2520, a converter 2530, and a calculator 2540.
  • the controller 2500 including the driver 2510, the detector 2520, the converter 2530, and the calculator 2540 may be implemented as one integrated circuit (IC). Accordingly, the output of the at least one pressure sensor 2300 and 2400 may be processed using one integrated circuit IC.
  • the driver 2510 applies a driving signal to at least one pressure sensor 2300 and 2400. That is, the driver 2510 may apply a driving signal to the first pressure sensor 2300 and the second pressure sensor 2400 or may apply a driving signal to the first pressure sensor 2300 or the second pressure sensor 2400. Can be. To this end, the driver 2510 may include a first driver for driving the first pressure sensor 2300 and a second driver for driving the second pressure sensor 2400. However, the driving unit 2510 may be configured as one to apply driving signals to the first and second pressure sensors 2300 and 2400. That is, one driving unit 2510 may apply driving signals to the first and second pressure sensors 2300 and 2400, respectively.
  • the driving unit 2510 may apply a driving signal to the plurality of pressure sensors 2300 and 2400.
  • the driving signal from the driver 2510 may be applied to any one of the first and second electrodes 120 and 220 constituting the first and second pressure sensors 2300 and 2400.
  • the driver 2510 may apply a predetermined driving signal to the second electrode 220.
  • the driving signals applied to the first and second pressure sensors 2300 and 2400 may be identical to each other or may be different from each other.
  • the driving signal may be a square wave, a sine wave, a triangle wave, or the like having a predetermined period and amplitude, and may be sequentially applied to each of the plurality of first electrodes 220.
  • the driver 2510 may simultaneously apply a driving signal to the plurality of first electrodes 220 or selectively apply only a portion of the plurality of first electrodes 220 to the driving signal.
  • the detector 2520 detects output signals of the pressure sensors 2300 and 2400. That is, the detector 2520 detects capacitance from the plurality of first electrodes 120 of the pressure sensor 2400. When a predetermined signal is applied to the second electrode 220 and a ground potential is applied to the first electrode 120 opposite thereto, the distances between the first and second electrodes 120 and 220 in the initial state are all the same. Has a capacitance. However, when the distance between the first and second electrodes 120 and 220 of at least one region approaches by a user's touch, the capacitance between them becomes larger than that of other portions. Accordingly, the detector 2520 detects an input by detecting a change in capacitance between the first and second electrodes 120 and 220 of the pressure sensors 2300 and 2400.
  • the detector 2520 may include first and second detectors for detecting the capacitances of the first and second pressure sensors 2300 and 2400, respectively. However, one detector 2520 may detect both of the capacitances of the first and second pressure sensors 2300 and 2400, and for this purpose, the detector 2520 may detect the first and second pressure sensors 2300 and 2400. The capacitance of can be detected sequentially. In this way, the detector 2520 may detect capacitances of the pressure sensors 2300 and 2400 to detect the touched region and the pressure of the region. For example, when a user touches with a finger, there may be a center region where the center of the finger is in contact so that the pressure is most transmitted, and a peripheral region where less pressure is transmitted around the center region.
  • the touch pressure of the user is transmitted the greatest, and thus the distance between the first and second electrodes is close, and the peripheral region is farther between the first and second electrodes than the center region, so that the capacitance of the center region is increased. Is larger than the surrounding area. Therefore, by detecting and comparing the capacitance of the plurality of areas, it is possible to detect the center area where the pressure is most transmitted and the peripheral area where the pressure is less than that, and consequently determine the area that the user wants to touch as the center area. Can be detected. Of course, the area that the user does not touch has a lower initial capacitance than the surrounding area.
  • the detector 2520 may include a plurality of CV converters (not shown) each having at least one operational amplifier and at least one capacitor, and the plurality of CV converters may include first and second pressure sensors 2300. And 2400 may be connected to a plurality of first electrodes, respectively.
  • the plurality of C-V converters may output an analog signal by changing the capacitance into a voltage signal.
  • each of the plurality of C-V converters may include an integrating circuit for integrating the capacitance.
  • the integrating circuit may integrate the capacitance and change the output to a predetermined voltage.
  • the CV converter may be provided with the number of the plurality of first electrodes. Can be.
  • the converter 2530 converts the analog signal output from the detector 2520 into a digital signal to generate a detection signal. For example, the converter 2530 measures a time at which the analog signal output from the detector 2520 reaches a predetermined reference voltage level in a voltage form and converts the time into a detection signal that is a digital signal. It may include an ADC (Analog-to-Digital Converter) circuit for measuring the amount of change in the level of the analog signal output from the digital converter (CDC) circuit or the detector 2520 for a predetermined time and converts it into a detection signal which is a digital signal. .
  • ADC Analog-to-Digital Converter
  • the calculator 2540 determines contact inputs applied to the first and second pressure sensors 2300 and 2400 using the detection signal.
  • the number, coordinates, and pressure of the touch inputs applied to the first and second pressure sensors 2300 and 2400 may be determined using the detection signal.
  • the detection signal based on the operation unit 2540 to determine the touch input may be data obtained by quantifying a change in capacitance, and in particular, data representing a difference between capacitance when no touch input occurs and when a touch input occurs. Can be.
  • the touch input of the first and second pressure sensors 2300 and 2400 may be determined using the controller 2500, and the touch input may be transmitted to, for example, the main controller of the host 4000 such as an electronic device. That is, the controller 2500 uses the detector 2520, the converter 2530, the calculator 2540, and the like to obtain X, Y coordinate data and Z pressure data using signals input from the pressure sensors 2300 and 2400. Create The generated X, Y coordinate data and Z pressure data are transferred to the host 4000, and the host 4000 touches the corresponding part using the X, Y coordinate data and the Z pressure data using, for example, the main controller. And pressure.
  • the controller 2500 may include a first controller 2500a that processes the output of the first pressure sensor 2300 and a second controller 2500b that processes the output of the second pressure sensor 2400. . That is, although FIG. 16 has described one control unit 2500 that processes the outputs of the first and second pressure sensors 2300 and 2400, the control unit 2500 may have the first and second pressures as shown in FIG. The first and second controllers 2500a and 2500b may respectively process the outputs of the sensors 2300 and 2400.
  • the first controller 2500a may include a first driver 2510a, a first detector 2520a, a first converter 2530a, and a first calculator 2540a
  • the second controller 2500b may include The second driver 2510b, the second detector 2520b, the second converter 2530b, and the second calculator 2540b may be included.
  • the first and second controllers 2500a and 2500b may be implemented in different integrated circuits IC, respectively. Thus, two integrated circuits may be needed to process the outputs of the first and second pressure sensors 2300 and 2400. However, the first and second controllers 2500a and 2500b may be implemented in one integrated circuit IC, respectively.
  • first and second control units 2500a and 2500b are the same as those described above with reference to FIG. 18 by dividing the outputs of the first and second pressure sensors 2300 and 2400, respectively, and thus, detailed descriptions thereof will be omitted. Shall be.
  • the electronic device may further include a touch sensor in addition to at least one of the first and second pressure sensors 2300 and 2400.
  • the driving of the touch sensor may be performed by one controller 2500 as shown in FIG. 21. That is, one controller 2500 may control at least one of the first and second pressure sensors 2300 and 2400 and the touch sensor 5000.
  • the touch sensor 5000 is further provided, as shown in FIG. 22, the third and second controllers 2500a and 2500b for controlling the first and second pressure sensors 2300 and 2400 may be added to the third sensor.
  • the controller 2500c may be further provided. That is, a plurality of controllers may be provided to control the first and second pressure sensors 2300 and 2400 and the touch sensor 5000, respectively.
  • FIG. 23 is a block diagram illustrating a data processing method of a pressure sensor according to another exemplary embodiment.
  • a first control unit 2600, a storage unit 2700, and a second control unit 2800 may be included to process data of a pressure sensor according to another exemplary embodiment of the present disclosure.
  • Such a configuration may be configured in the same IC or may be configured in another IC.
  • the data processing of the present invention may be performed in conjunction with the first control unit 2600 and the second control unit 2800.
  • the first and second control units 2600 and 2800 may be for processing data of the pressure sensor, respectively.
  • any one of the first and second control units 2600 and 2800 (for example, the first control unit) is a control unit for controlling the touch sensor, and the other (for example, the second control unit) controls the pressure sensor. It may be a control unit for.
  • the controller for controlling the touch sensor may control the pressure sensor simultaneously with the control of the touch sensor.
  • the storage unit 2700 serves as a data movement path between the first control unit 2600 and the second control unit 2800 and also stores data of the first and second control units 2600 and 2800.
  • the first controller 2600 scans a pressure sensor and stores raw data of the pressure sensor in the storage 2700.
  • the second controller 2800 inputs raw data from the storage 2700 to process the pressure sensor data, and stores the result value in the storage 2700.
  • the result value stored in the storage unit 2700 may include data such as a Z axis and a state.
  • the first controller 2600 reads the result of the pressure sensor from the storage 2700 and generates an interrupt when an event occurs and transmits the interrupt to the host.
  • the front input unit 1360 of the electronic apparatus 1000 may be formed as a fingerprint sensor, and the fingerprint sensor may use a pressure sensor according to the present invention.
  • 24 is a block diagram of a fingerprint recognition sensor using a pressure sensor according to embodiments of the present invention.
  • 25 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention.
  • a fingerprint recognition sensor using a pressure sensor includes a pressure sensor 2300 and a fingerprint detector 6000 electrically connected to the pressure sensor 2300 to detect a fingerprint. can do.
  • the fingerprint detector 6000 may include a signal generator 6100, a signal detector 6200, a calculator 6300, and the like.
  • the pressure sensor 2300 may further include a protective layer 500 as a protective coating on a surface on which a finger is placed, as shown in FIG. 25.
  • the protective layer 500 can be made of urethane or another plastic that can act as a protective coating.
  • the protective layer 500 is attached to the second electrode layer 200 using an adhesive.
  • the pressure sensor 100 may further include a support layer 600 that may be used as a support in the pressure sensor 1000.
  • the support layer 600 may be made of Teflon or the like. Of course, the support layer 600 may use other types of support materials instead of Teflon.
  • the support layer 600 may be attached to the first electrode layer 100 using an adhesive.
  • the dielectric layer 300 may be provided at predetermined intervals in one direction and the other direction by the cutout 320, and the elastic layer 400 may be disposed at the cutout 320. Can be formed. At this time, the elastic layer 400 is formed so that each vibration does not affect each other.
  • the fingerprint detector 6000 may be connected to the first and second electrodes 110 and 210 provided at upper and lower portions of the dielectric layer 300 of the pressure sensor 2300, respectively.
  • the fingerprint detector 6000 may generate an ultrasonic signal by applying a voltage having a resonance frequency of an ultrasonic band to the first and second electrodes 110 and 210 to vibrate the dielectric layer 300 up and down.
  • the signal generator 6100 is electrically connected to the plurality of first and second electrodes 110 and 210 included in the pressure sensor 2300, and applies an AC voltage having a predetermined frequency to each electrode.
  • an ultrasonic signal having a predetermined resonance frequency for example, 10 MHz, is emitted to the outside.
  • a specific object may be in contact with one surface of the pressure sensor 2300, for example, one surface of the protective layer 500.
  • the object in contact with one surface of the protective layer 500 is a finger of a person including a fingerprint
  • the pattern is determined differently. Assuming that no object is in contact with a contact surface such as one surface of the protective layer 500, almost all ultrasonic signals generated by the pressure sensor 2300 pass through the contact surface due to the difference between the contact surface and the air medium. I can't do it and come back.
  • the signal detector 6200 measures the difference in acoustic impedance generated by the ultrasonic signal in the valley and the ridge of the fingerprint from the pressure sensor 2300 so that the corresponding area is in contact with the ridge of the fingerprint. It may be determined whether the sensor is a sensor.
  • the calculator 6300 calculates a fingerprint pattern by analyzing a signal detected by the signal detector 6200.
  • the pressure sensor 2300 generated with a low intensity of the reflected signal is a pressure sensor 2300 abutting the ridge of the fingerprint, and generated with a high intensity of the reflected signal-ideally approximately equal to the intensity of the output ultrasonic signal.
  • the pressure sensor 2300 is a pressure sensor 2300 corresponding to a valley of the fingerprint. Therefore, the fingerprint pattern may be calculated from the difference in acoustic impedance detected in each area of the pressure sensor 2300.
  • the pressure sensor according to the embodiments of the present invention may be implemented as a composite device in combination with a haptic device, piezoelectric buzzer, piezoelectric speaker, NFC, WPC and MST (Magnetic Secure Transmission). That is, the pressure sensor according to the embodiments of the present invention may be combined with a functional part having a different function to implement a composite device. 26 to 28 show a composite device having such a pressure sensor according to the present invention.
  • the pressure sensor 2300 may use any structure of various embodiments of the present invention described with reference to FIGS. 1 to 11.
  • a piezoelectric element 7100 may be formed on the diaphragm 7200, and a pressure sensor 2300 according to embodiments of the present disclosure may be provided on the diaphragm 7200.
  • the piezoelectric element 7100 may be formed of a bimorph type having piezoelectric layers formed on both surfaces of the substrate, or may be formed of a unimorph type having piezoelectric layers formed on one surface of the substrate.
  • electrodes may be formed on upper and lower portions of the piezoelectric layer, respectively. That is, the piezoelectric element 7100 may be implemented by alternately stacking a plurality of piezoelectric layers and a plurality of electrodes.
  • the piezoelectric layer may be formed using, for example, PZT (Pb, Zr, Ti), NKN (Na, K, Nb), or BNT (Bi, Na, Ti) -based piezoelectric materials.
  • the diaphragm 7200 may be provided to have the same shape as the piezoelectric element 7100 and the pressure sensor 2300, and may be larger than the piezoelectric element 7100.
  • the piezoelectric element 7100 may be adhered to the upper surface of the diaphragm 7200 by an adhesive.
  • the diaphragm 7200 may use a metal, polymer, or pulp material.
  • the diaphragm 7200 may use a resin film, but a material having a large Young's modulus of 1 MPa to 10 GPa, such as ethylene fluoropropylene rubber or styrene butadiene rubber, may be used.
  • the diaphragm 7200 amplifies the vibration of the piezoelectric element 7100.
  • the piezoelectric element 7100 provided between the diaphragm 7200 and the pressure sensor 2300 may be driven by a piezoelectric acoustic element or a piezoelectric vibrating element according to a signal applied through an electronic device, that is, an AC power source. That is, the piezoelectric element 7100 may be used as an actuator for generating a predetermined vibration, that is, a haptic element according to an applied signal, or may be used as a piezoelectric buzzer or a piezoelectric speaker for generating a predetermined sound.
  • the pressure sensor 2300 and the piezoelectric element 7100 may be adhered by an adhesive or the like, or may be integrally formed.
  • the pressure sensor 2300 may have the structure described with reference to FIGS. 7 and 8. That is, a portion in which a plurality of piezoelectric layers and electrodes are repeatedly stacked, a first electrode may be formed on an upper portion thereof, a dielectric layer 300 may be formed on an upper portion thereof, and a second electrode may be formed thereon.
  • the first electrode may be formed by patterning, and the dielectric layer 300 may be cut in a predetermined cell unit by a plurality of cutouts, and the second electrode may be formed on the upper portion of the dielectric layer 300.
  • a predetermined resonance space is preferably provided between the piezoelectric element 7100 and the pressure sensor 2300. That is, as shown in FIG. 27, a support 7300 having a predetermined thickness may be provided at an edge between the piezoelectric element 7100 and the pressure sensor 2300.
  • the support 7300 may use a polymer.
  • the size of the resonance space between the piezoelectric element 7100 and the pressure sensor 2300 may be adjusted according to the height of the support 7300.
  • the support 7300 may be implemented by forming an adhesive tape along edges of the piezoelectric element 7100 and the pressure sensor 2300.
  • FIG. 27 a predetermined resonance space is preferably provided between the piezoelectric element 7100 and the pressure sensor 2300. That is, as shown in FIG. 27, a support 7300 having a predetermined thickness may be provided at an edge between the piezoelectric element 7100 and the pressure sensor 2300.
  • the support 7300 may use a polymer.
  • first support 7310 is formed at the edge between the piezoelectric element 7100 and the pressure sensor 2300, but also the second support between the piezoelectric element 7100 and the diaphragm 7200.
  • 7320 may be provided to provide a predetermined resonance space.
  • the pressure sensor may be combined with NFC, WPC, and MST, which may be combined with each of them or with at least two of them to implement a composite device.
  • NFC, WPC and MST may be formed in a predetermined antenna pattern on a predetermined sheet.
  • at least one of a piezoelectric speaker, a piezoelectric actuator, a WPC antenna, an NFC antenna, and an MST antenna may be integrally manufactured including a pressure sensor.
  • by implementing a multi-function in one module it is possible to reduce the area of the area occupied by each function compared to being provided separately.
  • 29 and 30 are an exploded perspective view and a combined perspective view of a composite device including NFC and WPC as an embodiment of the composite device having a pressure sensor according to the present invention.
  • the pressure sensor can be combined with NFC, WPC and MST, respectively, and these NFC, WPC and MST can be made in a predetermined antenna pattern.
  • the first sheet 8000 provided on one surface of the pressure sensor 1000 and the first antenna pattern 8100 is formed, and the upper or lower portion or the same surface of the first sheet 8000. It may include a second sheet 9000 provided in the second antenna pattern 9100 and the third antenna pattern 9200.
  • the first antenna pattern 8100 of the first sheet 8000 and the second antenna pattern 9100 of the second sheet 9000 are connected to each other to form a wireless power charge (WPC) antenna
  • the second The third antenna pattern 9200 of the sheet 9000 is formed outside the second antenna pattern 9100 to form a near field communication (NFC) antenna. That is, the composite device module according to the present invention may be provided with a pressure sensor, a WPC antenna and an NFC antenna integrated.
  • the first sheet 8000 is provided on one surface of the pressure sensor 2300, and a first antenna pattern 8100 is formed thereon.
  • the first sheet 8000 may be connected to the first antenna pattern 8100 and may be connected to the first and second extraction patterns 8200a and 8200b to the outside, and the third antenna pattern may be formed on the second sheet 9000.
  • a plurality of connection patterns 8310, 8320, and 8330 connecting the 9200 and third and fourth extraction patterns 8400a and 8400b connected to the third antenna pattern 9200 and drawn out are formed.
  • the first sheet 8000 may be provided in the same shape as the pressure sensor 2300. That is, the first sheet 8000 may be provided in a substantially rectangular plate shape.
  • the thickness of the first sheet 8000 may be the same as or different from the thickness of the pressure sensor 2300.
  • the first antenna pattern 8100 may be formed in a predetermined number of turns by rotating in a direction from, for example, a central portion of the first sheet 8000.
  • the first antenna pattern 8100 may have a predetermined width and spacing, and may be formed in a spiral that rotates outward in a counterclockwise direction.
  • the line width and the interval of the first antenna pattern 8100 may be the same or different. That is, the line width of the first antenna pattern 8100 may be larger than the interval.
  • an end of the first antenna pattern 8100 is connected to the first lead pattern 8200a.
  • the first drawing pattern 8200a is formed to have a predetermined width to be exposed to one side of the first sheet 8000.
  • the first drawing pattern 8200a is formed to extend in the long side direction of the first sheet 8000 to be exposed to one short side of the first sheet 8000.
  • the second extraction pattern 8200b is spaced apart from the first extraction pattern 8200a and is formed in the same direction as the first extraction pattern 8200a.
  • the second lead pattern 8200b is connected to the second antenna pattern 9100 formed on the second sheet 9000.
  • the second extraction pattern 8200b may be longer than the first extraction pattern 8200a.
  • a plurality of connection patterns 8310, 8320, and 8330 are provided to connect the third antenna patterns 9200 formed in the second sheet 9000.
  • the third antenna pattern 9200 is formed in, for example, a semicircular shape in which at least two regions are broken, and a plurality of connection patterns 8210, 8220, and 8230 are formed on the first sheet 8000 to connect them to each other. do.
  • the connection pattern 8210 is formed in a region between the first drawing patterns 8200a with a predetermined width and length in one short side direction.
  • the connection patterns 8220 and 8230 are formed at positions opposite to the connection pattern 8210 in the long side direction, that is, on the other short side where the first and second drawing patterns 8200a and 8200b are not formed, and are not exposed to the other short side. Without a predetermined width and length along the other short side direction.
  • connection patterns 8220 and 8230 are formed to be spaced apart from each other.
  • the third and fourth lead patterns 8400a and 8400b are formed to be spaced apart from the second lead pattern 8200b and are exposed to one short side.
  • the through holes 8500a and 8500b are spaced apart from regions in which the extraction patterns 8200 and 8400 on which the extraction patterns 8200 and 8400 are formed are not formed.
  • the drawing patterns 8200 and 8400 may be connected to a connection terminal (not shown), and thus may be connected to an electronic device.
  • the first sheet 8000 may be made of magnetic ceramic.
  • the first sheet 8000 may be formed using NiZnCu or NiZn-based magnetic material.
  • the NiZnCu-based magnetic sheet may be mixed with Fe 2 O 3 , ZnO, NiO, CuO as a magnetic material, Fe 2 O 3 , ZnO, NiO and CuO may be mixed in a ratio of 5: 2: 2: 1. have.
  • the first sheet 8000 is made of magnetic ceramic, the electromagnetic wave generated from the WPC antenna and the NFC antenna may be shielded or absorbed to suppress the interference of the electromagnetic wave.
  • the second sheet 9000 is provided on the first sheet 8000, and the second antenna pattern 9100 and the third antenna pattern 9200 are spaced apart from each other.
  • a plurality of holes 9310, 9320, 9330, 9340, 9350, 9360, 9370, and 9380 are formed in the second sheet 9000.
  • the second sheet 9000 may be provided in the same shape as the pressure sensor 2300 and the first sheet 8000. That is, the second sheet 9000 may be provided in a substantially rectangular plate shape.
  • the thickness of the second sheet 9000 may be the same as or different from the thickness of the pressure sensor 2300 and the first sheet 8000. That is, the second sheet 9000 may be thinner than the pressure sensor 2300 and have the same thickness as the first sheet 8000.
  • the second antenna pattern 9100 may be formed in a predetermined number of turns by rotating in a direction from, for example, a central portion of the second sheet 9000.
  • the second antenna pattern 9100 has a predetermined width and spacing and may be formed in a spiral that rotates outward in a clockwise direction. That is, the first antenna pattern 8100 formed in the first sheet 8000 is formed in a spiral starting from the same region and rotates in a clockwise direction, and the second drawing pattern 8200b formed on the first sheet 8000 and It may be formed up to an overlapping area.
  • the line width and spacing of the second antenna pattern 9100 may be the same as the line width and spacing of the first antenna pattern 8100, and the second antenna pattern 9100 and the first antenna pattern 9100 may overlap.
  • Holes 9310 and 9320 are formed at the start and end points of the second antenna pattern 9100, and conductive materials are filled in the holes 9310 and 9320. Accordingly, the start point of the second antenna pattern 9100 is connected to the start point of the first antenna pattern 8100 through the hole 9310, and the end point of the second antenna pattern 9100 is second drawn through the hole 9320. It is connected to a predetermined area of the pattern 8200b.
  • the third antenna pattern 9200 is formed to be spaced apart from the second antenna pattern 9100 and is formed with a plurality of turns along the edge of the second sheet 9000. That is, the third antenna pattern 9200 is provided to surround the second antenna pattern 9100 from the outside.
  • the third antenna pattern 9200 is formed in a shape broken in a predetermined region on the second sheet 9000. That is, the third antenna pattern 9200 may not be formed by a plurality of turns connected to each other, but may be formed in a form in which the third antenna pattern 9200 is broken in at least two areas and is not electrically connected to each other on the second sheet 9000.
  • the plurality of holes 9330, 9340, 9350, 9360, 9370, and 9380 are formed between the third antenna patterns 9200 that are broken in this way.
  • the plurality of holes 9330, 9340, 9350, 9360, 9370, and 9380 are filled with a conductive material and connected to the connection patterns 8310, 8320, and 8330 of the first sheet 8000, respectively.
  • the third antenna pattern 9200 is formed in at least two regions, the connection patterns 8310, 8320, and the plurality of holes 9330, 9340, 9350, 9360, 9370, and 9380 and the first sheet 8000 are formed. 8330 may be electrically connected to each other.
  • a plurality of through holes 9410 and 9420 are formed in the second sheet 9000 to expose the through holes 8500a and 8500b and the plurality of extraction patterns 8200 and 8400 of the first sheet 8000, respectively. .
  • four through holes 9420 are formed to expose a plurality of first sheets 8000, that is, four drawing patterns 8200 and 8400.
  • the second sheet 9000 may be made of a material different from that of the first sheet 8000.
  • the second sheet 9000 may be made of nonmagnetic ceramic, and may be made using low temperature co-fired ceramic (LTCC).
  • LTCC low temperature co-fired ceramic
  • the antenna patterns 8100, 9100, 9200, the drawing patterns 8200, 8400, the connection patterns 8310, 8320, 8330, and the like are formed using copper foil or a conductive paste.
  • the paste can be printed on the sheet by various printing methods.
  • conductive particles of the conductive paste gold (Au), silver (Ag), nickel (Ni), copper (Cu), palladium (Pd), silver coated copper (Ag coated Cu), silver coated nickel (Ag coated Ni), Nickel coated copper, metal particles of nickel coated graphite and carbon nanotubes, carbon black, graphite, silver coated graphite, and the like may be used. have.
  • the conductive paste is a substance in which the conductive particles are evenly dispersed in an organic binder having fluidity, and is applied onto a sheet by a method such as printing to exhibit electrical conductivity by heat treatment such as drying, curing, and baking.
  • a printing method roll-to-roll printing, inkjet printing, or the like, such as flat panel printing such as screen printing, gravure printing, or the like may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

본 발명은 서로 이격된 제 1 및 제 2 전극층; 및 상기 제 1 및 제 2 전극층 사이에 마련된 유전층을 포함하고, 상기 유전층은 압축 및 복원이 가능하며 경도가 10 이하인 재료, 유전율이 4 이상인 복수의 유전체 및 복수의 기공 중 적어도 하나를 포함하는 압력 센서, 이를 구비하는 복합 소자 및 전자기기를 제시한다.

Description

압력 센서, 이를 구비하는 복합 소자 및 전자기기
본 발명은 압력 센서에 관한 것으로, 특히 터치 입력 오류를 방지할 수 있는 압력 센서와, 이를 구비하는 복합 소자 및 전자기기에 관한 것이다.
이동통신 단말기 등의 전자기기의 조작을 위해 다양한 종류의 입력 장치들이 이용되고 있다. 예를 들어, 버튼(button), 키(key) 및 터치 스크린 패널(touch screen panel) 등의 입력 장치가 이용되고 있다. 터치 스크린 패널, 즉 터치 입력 장치는 인체의 접촉을 감지하여 가벼운 터치만으로 쉽고 간편하게 전자기기를 조작할 수 있으므로 이용이 증가하고 있다. 예를 들어, 터치 입력 장치는 이동통신 단말기, 가전제품, 산업기기, 자동차 등의 조작을 위해서도 이용되고 있다.
이동통신 단말기 등의 전자기기에 이용되는 터치 입력 장치는 보호용 윈도우와 영상을 표시하는 액정표시패널 사이에 마련될 수 있다. 따라서, 문자나 기호 등이 액정표시패널로부터 윈도우를 통해 나타나고, 사용자가 해당 부분을 터치하게 되면 터치 센서가 그 위치를 파악하고 제어 흐름에 따라 특정 처리를 실시하게 된다.
터치 입력 장치는 인체(손가락)나 펜과의 접촉 여부를 그 접촉에 따른 인체 전류의 감지나, 압력이나 온도변화 등을 이용해서 감지하고 인식하는 기술수단을 갖고 있다. 특히, 압력의 변화를 이용해서 인체나 펜과의 접촉 여부를 센싱하는 방식의 압력 센서가 각광받고 있다.
압력 센서는 두 전극 사이에 에어갭 또는 실리콘 등의 압축 및 복원이 가능한 물질이 마련된 구조를 갖는다. 이러한 압력 센서는 터치 입력에 따른 두 전극의 거리에 따라 정전용량이 변화하는 것을 검출하여 압력을 검출할 수 있다. 그런데, 에어갭을 형성하는 경우 에어의 유전율이 1이기 때문에 두 전극 사이의 간격 변화에 따른 캐패시턴스값을 센싱하기 위해서는 두 전극 사이의 많은 간격 변화량이 필요하고, 실리콘 재질도 보통 4 이하의 유전율을 가지고 있기 때문에 두 전극 사이의 많은 변화량을 필요로 한다.
(선행기술문헌)
한국공개특허 제2014-0023440호
한국등록특허 제10-1094165호
본 발명은 터치 입력의 오류를 방지할 수 있는 압력 센서를 제공한다.
본 발명은 두 전극 사이의 적은 변화에도 그에 따른 캐패시턴스값의 변화를 정확하게 센싱할 수 있는 압력 센서를 제공한다.
본 발명은 상기 압력 센서를 구비하는 복합 소자 및 전자기기를 제공한다.
본 발명의 일 양태에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층; 및 상기 제 1 및 제 2 전극층 사이에 마련된 유전층을 포함하고, 상기 유전층은 압축 및 복원이 가능하며 경도가 10 이하인 재료, 유전율이 4 이상인 복수의 유전체 및 복수의 기공 중 적어도 하나를 포함한다.
상기 제 1 및 제 2 전극층의 적어도 어느 하나에 형성된 복수의 홀을 더 포함한다.
상기 유전층은 전자파 차폐 및 흡수 재료를 더 함유한다.
상기 유전층은 유전층 100%에 대해 상기 유전체가 0.01% 내지 95%의 함량으로 형성된다.
상기 유전층은 1% 내지 95%의 기공율을 갖는다.
상기 기공은 적어도 둘 이상의 크기 및 적어도 하나 이상의 형상으로 형성된다.
상기 유전층은 적어도 일 영역의 기공율 또는 기공의 크기가 다른 영역과 다르다.
상기 유전층은 수직 단면의 기공 단면적율이 수평 단면의 기공 단면적율보다 작다.
상기 유전층은 2 내지 20의 유전율을 갖는다.
상기 유전층은 500㎛ 이하의 두께로 형성된다.
상기 제 1 전극층의 상측, 상기 제 1 및 제 2 전극층 사이, 그리고 상기 제 2 전극층의 하측 중 적어도 하나에 마련된 절연층을 더 포함한다.
상기 제 1 및 제 2 전극층 상에 각각 마련되며 서로 연결되는 제 1 및 제 2 연결 패턴을 더 포함한다.
본 발명의 다른 양태에 따른 복합 소자는 상기 본 발명의 일 양태에 따른 압력 센서와, 상기 압력 센서와는 다른 기능을 갖는 적어도 하나의 기능부를 포함한다.
상기 압력 센서는 상기 기능부를 인에이블시킨다.
상기 기능부는, 상기 압력 센서의 일측에 마련된 압전 소자; 및 상기 압전 소자의 일측에 마련된 진동판을 포함한다.
상기 압전 소자는 인가되는 신호에 따라 압전 진동 장치 또는 압전 음향 장치로 이용된다.
상기 기능부는 상기 압력 센서의 일측에 마련되며, 적어도 하나의 안테나 패턴을 각각 구비하는 NFC, WPC 및 MST 중 적어도 어느 하나를 포함한다.
상기 기능부는 상기 압력 센서의 일면 상에 마련된 압전 소자와, 상기 압전 소자의 일면 상에 마련된 진동판과, 상기 압력 센서의 타면 또는 진동판의 일면 상에 마련된 NFC, WPC 및 MST 중 적어도 하나를 포함한다.
상기 압력 센서와 전기적으로 연결되어 지문의 골과 마루에서 초음파 신호에 의해 생성되는 음향 임피던스 차이를 상기 압력 센서로부터 측정하여 지문을 감지하는 지문 감지부를 포함한다.
본 발명의 또다른 양태에 따른 전자기기는 윈도우; 상기 윈도우를 통해 영상을 표시하는 표시부; 및 상기 윈도우를 통해 인가되는 터치 입력의 위치 및 압력을 검출하는 압력 센서를 포함하고, 상기 압력 센서는, 상기 본 발명의 일 양태에 다른 압력 센서를 포함하는 전자기기.
상기 압력 센서는 상기 표시부 하측에 마련된 적어도 하나의 제 1 압력 센서와, 상기 윈도우 하측에 마련된 적어도 하나의 제 2 압력 센서 중 적어도 어느 하나를 포함한다.
상기 윈도우와 상기 표시부 사이에 마련된 터치 센서를 더 포함한다.
상기 제 1 전극층의 상측, 상기 제 1 및 제 2 전극층 사이, 그리고 상기 제 2 전극층의 하측 중 적어도 하나에 마련된 브라켓을 더 포함한다.
상기 제 1 및 제 2 전극층의 어느 하나의 적어도 일부가 상기 브라켓 상에 형성된다.
본 발명의 일 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층 사이에 형성된 유전층을 포함하고, 유전층은 압축 및 복원이 가능하며 경도가 10 이하인 재료로 형성될 수 있다. 또한, 본 발명의 다른 실시 예는 유전층이 압축 및 복원이 가능하며 복수의 기공을 포함하여 형성될 수 있다. 그리고, 본 발명의 또다른 실시 예는 유전율이 4를 초과하는 유전체가 절연물과 혼합되어 유전층이 형성되어 유전층의 유전율이 4 이상일 수 있다.
본 발명의 실시 예들은 유전층이 압축 및 복원이 가능하고 경도가 10 이하인 재료로 형성되거나, 복수의 기공을 포함하거나, 공기의 수배 내지 수천배의 유전율을 갖도록 형성될 수 있다. 따라서, 사용자의 터치 압력이 작더라도 제 1 및 제 2 전극 사이의 변화량이 커 충분한 데이터를 얻을 수 있다. 즉, 캐패시턴스값의 변화량에 따른 분해능이 좋아져 데이터 가공성이 용이한 압력 센서를 만들 수 있다.
또한, 제 1 및 제 2 전극 사이에 많은 변화량이 필요 없어 두께를 최소화 할 수 있어 압력 센서의 두께를 줄일 수 있고, 이를 이용한 모듈의 두께를 줄일 수 있다.
한편, 본 발명의 압력 센서는 터치 입력을 통해 소정의 기능이 수행되는 전자기기 내에 채용될 수 있다. 또한, 압전 음향 소자 또는 압전 진동 소자로 기능하는 압전 소자와 일체화될 수도 있고, NFC, WPC 및 MST와 일체화될 수도 있다.
도 1은 본 발명의 제 1 실시 예에 따른 압력 센서의 단면도.
도 2 내지 도 4는 압력 센서의 본 발명의 실시 예들에 따른 제 1 및 제 2 전극층의 평면 개략도.
도 5 내지 도 9는 본 발명의 다른 실시 예들에 따른 압력 센서의 단면도.
도 10 및 도 11은 압력 센서의 본 발명의 다른 실시 예들에 따른 제 1 및 제 2 전극층의 평면 개략도.
도 12 및 도 13은 본 발명의 제 1 실시 예에 따른 압력 센서를 구비하는 전자기기의 전면 사시도 및 후면 사시도.
도 14은 도 12의 A-A' 라인을 절단한 상태의 부분 단면도.
도 15는 본 발명의 제 2 실시 예에 따른 전자기기의 단면도.
도 16은 본 발명의 제 2 실시 예에 따른 전자기기의 압력 센서의 배치 형상을 도시한 평면 개략도.
도 17은 본 발명의 제 3 실시 예에 따른 압력 센서를 구비하는 전자기기의 단면도.
도 18은 본 발명의 제 4 실시 예에 따른 전자기기의 압력 센서의 배치 형상을 도시한 평면 개략도.
도 19 내지 도 22는 본 발명의 실시 예들에 따른 압력 센서의 제어 구성도.
도 23은 본 발명의 다른 실시 예에 따른 압력 센서의 데이터 처리 방법을 설명하기 위한 블럭도.
도 24는 본 발명의 실시 예들에 따른 압력 센서를 이용한 지문 인식 센서의 구성도.
도 25는 본 발명의 다른 실시 예에 따른 압력 센서의 단면도.
도 26 내지 도 30은 본 발명의 다양한 실시 예들에 따른 압력 센서 일체형 복합 소자의 도면.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 제 1 실시 예에 따른 압력 센서의 단면도이고, 도 2 내지 도 4는 압력 센서의 제 1 및 제 2 전극층의 개략도이다.
도 1을 참조하면, 본 발명의 제 1 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)을 포함한다. 이때, 유전층(300)은 압축 및 복원 가능하며, 경도가 10 이하인 재료를 이용하여 형성할 수 있다.
1. 전극층
제 1 및 제 2 전극층(100, 200)은 두께 방향(즉 수직 방향)으로 소정 간격 이격되며, 그 사이에 유전층(300)이 마련된다. 제 1 및 제 2 전극층(100, 200)은 제 1 및 제 2 지지층(110, 120)과 제 1 및 제 2 지지층(110, 210) 상에 각각 형성된 제 1 및 제 2 전극(120, 220)을 포함할 수 있다. 즉, 제 1 및 제 2 지지층(110, 210)이 소정 간격 이격되어 형성되며, 제 1 및 제 2 지지층(110, 210)의 표면에 제 1 및 제 2 전극(120, 220)이 각각 형성된다. 여기서, 제 1 및 제 2 전극(120, 220)은 서로 대면하는 방향에 형성될 수도 있고, 서로 대면하지 않도록 형성될 수도 있다. 즉, 제 1 및 제 2 전극(120, 220)은 유전층(300)에 대면하도록 형성될 수도 있고, 어느 하나가 유전층(300)에 대면하고 다른 하나는 유전층(300)에 대면하지 않도록 형성될 수도 있으며, 제 1 및 제 2 전극(120, 220)이 모두 유전층(300)에 대면하지 않도록 형성될 수 있다. 이때, 제 1 및 제 2 전극(120, 220)은 유전층(300)에 접촉되어 형성될 수도 있고, 접촉되지 않도록 형성될 수도 있다. 본 발명에 따른 압력 센서는 예를 들어 하측으로부터 두께 방향으로 제 1 지지층(110), 제 1 전극(120), 유전층(300), 제 2 전극(220) 및 제 2 지지층(210)이 적층되어 압력 센서가 구현될 수 있다. 여기서, 제 1 및 제 2 지지층(110, 210)은 그 일면 표면에 제 1 및 제 2 전극(120, 220)이 형성되도록 제 1 및 제 2 전극(120, 220)을 지지하며, 이를 위해 제 1 및 제 2 지지층(110, 210)은 소정 두께를 갖는 판 형상으로 마련될 수 있다. 또한, 제 1 및 제 2 지지층(110, 210)은 플렉서블 특성을 갖도록 필름 형태로 마련될 수도 있다. 이러한 제 1 및 제 2 지지층(110, 210)은 실리콘(Silicon), 우레탄(Urethane), 폴리우레탄(Polyurethane), 폴리이미드, PET, PC 등이 이용될 수 있고, 광경화성 모노머(monomer) 및 올리고머(oligomer)와 광개시제(photoinitiate) 및 첨가제(additives)를 이용한 프리폴리머일 수 있다. 또한, 제 1 및 제 2 지지층(110, 210)은 경우에 따라 투명할 수 있고, 불투명할 수도 있다. 한편, 제 1 및 제 2 지지층(110, 210)의 적어도 어느 하나에는 복수의 기공(미도시)이 마련될 수 있다. 예를 들어, 객체의 터치 또는 누름에 따라 하측으로 구부러져 형상이 변형될 수 있는 제 2 지지층(210)이 복수의 기공을 포함할 수 있다. 기공은 예를 들어 1㎛∼500㎛의 사이즈를 가지며 10%∼95%의 기공률로 형성될 수 있다. 제 2 지지층(210) 내에 복수의 기공이 형성됨으로써 제 2 지지층(210)의 탄성력과 복원력을 더욱 향상시킬 수 있다. 이때, 기공률이 10% 미만이면 탄성력과 복원력의 향상이 미미하며, 95%를 초과하는 경우 제 2 지지층(210)의 형상을 유지하지 못할 수도 있다. 또한, 복수의 기공을 갖는 지지층(110, 210)은 표면에는 기공이 형성되지 않는 것이 바람직하다. 즉, 전극(120, 220)이 형성되는 일 표면에 기공이 형성되면 전극(120, 220)이 끊어지거나 전극의 두께가 증가할 수 있으므로 전극(120, 220)이 형성되는 일 표면에는 기공이 형성되지 않는 것이 바람직하다.
제 1 및 제 2 전극(120, 220)은 ITO(Indium Tin Oxide), ATO(Antimony Tin Oxide) 등의 투명 도전성 물질로 형성될 수 있다. 그러나, 제 1 및 제 2 전극(120, 220)은 이러한 물질 이외에 다른 투명 도전성 물질로 형성될 수도 있고, 은(Ag), 백금(Pt), 구리(Cu) 등의 불투명 도전성 물질로 형성될 수도 있다. 또한, 제 1 및 제 2 전극(120, 220)은 서로 교차되는 방향으로 형성될 수 있다. 예를 들어, 제 1 전극(120)이 소정의 폭을 갖도록 일 방향으로 형성되며 이것이 타 방향으로 소정 간격 이격되어 형성될 수 있다. 제 2 전극(220)은 소정의 폭을 갖도록 일 방향과 직교하는 타 방향으로 형성되며, 이것이 타 방향과 직교하는 일 방향으로 소정 간격 이격되어 형성될 수 있다. 즉, 제 1 및 제 2 전극(120, 220)은 도 2에 도시된 바와 같이 서로 직교하는 방향으로 형성될 수 있다. 예를 들어 제 1 전극(120)이 가로 방향으로 소정 폭으로 형성되고 이것이 세로 방향으로 소정 간격 이격되어 복수 배열되고, 제 2 전극(220)이 세로 방향으로 소정 폭으로 형성되고 이것이 가고 방향으로 소정 간격 이격되어 복수 배열될 수 있다. 여기서, 제 1 및 제 2 전극(120, 220)의 폭은 그 사이의 간격보다 크거나 같을 수 있다. 물론, 제 1 및 제 2 전극(120, 220)의 폭이 그 사이의 간격보다 좁을 수도 있지만, 폭이 간격보다 큰 것이 바람직하다. 예를 들어, 제 1 및 제 2 전극(120, 220)의 폭 및 간격의 비율은 10:1 내지 0.5:1일 수 있다. 즉, 간격이 1이라 할 때 폭은 10 내지 0.5일 수 있다. 또한, 제 1 및 제 2 전극(120, 220)은 이러한 형상 이외에 다양한 형상으로 형성될 수도 있다. 예를 들어, 도 3에 도시된 바와 같이 제 1 및 제 2 전극(120, 220)의 어느 하나가 지지층 상에 전체적으로 형성되고 다른 하나는 일 방향 및 타 방향으로 소정의 폭 및 간격을 갖는 대략 사각형의 패턴으로 복수 형성될 수도 있다. 즉, 제 1 전극(120)이 대략 사각형의 패턴으로 복수 형성되고, 제 2 전극(220)이 제 2 지지층(120) 상에 전체적으로 형성될 수 있다. 물론, 사각형 이외에 원형, 다각형 등 다양한 형태의 패턴이 가능하다. 또한, 제 1 및 제 2 전극(120, 220)은 어느 하나가 지지층 상에 전체적으로 형성되고, 다른 하나는 일 방향 및 타 방향으로 연장되는 격자 모양으로 형성될 수도 있다. 한편, 제 1 및 제 2 전극(120, 220)은 예를 들어 0.1㎛∼500㎛의 두께로 형성되며, 제 1 및 제 2 전극(120, 220)은 예를 들어 1㎛∼10000㎛의 간격으로 형성될 수 있다. 여기서, 제 1 및 제 2 전극(120, 220)은 유전층(300)과 접촉될 수 있다. 물론, 제 1 및 제 2 전극(120, 220)은 유전층(300)과 소정 간격 이격된 상태를 유지하고, 소정의 압력, 예를 들어 사용자의 터치 입력이 인가되면 제 1 및 제 2 전극(120, 220)의 적어도 어느 하나가 국부적으로 유전층(300)과 접촉될 수 있다. 이때, 유전층(300)은 소정 깊이로 압축될 수도 있다.
한편, 제 1 및 제 2 전극층(100, 200)의 적어도 어느 하나에는 복수의 홀(130)이 형성될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 제 1 전극층(100)에는 복수의 홀(130)이 형성될 수 있다. 즉, 복수의 홀(130)은 그라운드 전극으로 이용되는 전극층에 형성될 수 있다. 물론, 홀(130)은 제 1 전극층(100) 이외에 신호 전극으로 이용되는 제 2 전극층(200)에 형성될 수도 있고, 제 1 및 제 2 전극층(100, 200)에 모두 형성될 수 있다. 또한, 홀(130)은 제 1 및 제 2 전극(120, 220)의 적어도 어느 하나가 제거되어 제 1 및 제 2 지지층(110, 210)이 노출되도록 형성될 수도 있고, 제 1 및 제 2 전극(120, 220) 뿐만 아니라 제 1 및 제 2 지지층(110, 210)이 제거되어 형성될 수도 있다. 즉, 홀(130)은 전극(120, 220)이 제거되어 지지층(110, 210)이 노출되도록 형성될 수도 있고, 전극(120, 220)으로부터 지지층(110, 210)을 관통하도록 형성될 수도 있다. 또한, 홀(130)은 전극(120, 220)이 중첩되는 영역에 형성될 수 있다. 예를 들어, 도 4에 도시된 바와 같이 복수의 홀(130)은 제 2 전극(220)과 중첩되는 영역의 제 1 전극(120)에 형성될 수 있다. 여기서, 홀(130)은 제 2 전극(220)과 중첩되는 영역에 하나 형성될 수도 있고, 둘 이상 복수 형성될 수도 있다. 물론, 도 2에 도시된 바와 같이 제 1 및 제 2 전극(120, 220)이 일 방향 및 이와 직교하는 타 방향으로 형성되는 경우에도 제 1 및 제 2 전극(120, 220)의 서로 교차되는 영역에 홀(130)이 형성될 수 있다. 홀(130)이 형성됨으로써 유전층(300)의 압축을 더욱 용이하게 할 수 있다. 이러한 홀(130)은 예를 들어 0.05㎜∼10㎜의 직경으로 형성될 수 있다. 홀(130)의 직경이 0.05㎜ 미만일 경우 유전층(300)의 압축 효과가 저하될 수 있고, 직경이 10㎜를 초과할 경우 유전층(300)의 복원력이 저하될 수 있다. 그러나, 홀(130)의 사이즈는 압력 센서 또는 입력 장치의 사이즈에 따라 다양하게 변경할 수 있다.
2. 유전층
유전층(300)은 제 1 및 제 2 전극층(100, 200) 사이에 소정 두께로 마련되며, 예를 들어 10㎛∼5000㎛의 두께로 마련될 수 있다. 즉, 유전층(300)은 압력 센서가 채용되는 전자기기의 사이즈에 따라 다양한 두께로 마련될 수 있다. 예를 들어, 유전층(300)은 10㎛~5000㎛, 바람직하게는 500㎛ 이하, 더욱 바람직하게는 200㎛ 이하의 두께로 마련될 수 있다. 이러한 유전층(300)은 내부에 스페이스, 즉 에어갭이 형성되지 않도록 형성될 수 있다. 즉, 유전층(300) 내에 스페이스가 형성될 경우 이물질이나 수분이 스페이스 내에 침투할 수 있고, 그에 따라 유전층(300)의 유전율을 변화시켜 센싱 값에 변화를 줄 수 있으므로 본 발명은 스페이스 등이 형성되지 않은 유전층(300)을 이용할 수 있다. 또한, 유전층(300)는 압력 변화에 따라 두께가 변화될 수 있는 물질을 이용할 수 있다. 즉, 유전층(300)은 압축 및 복원이 가능한 물질을 이용할 수 있다. 이러한 유전층(300)은 경도가 10 이하인 물질로 형성할 수 있다. 예를 들어, 유전층(300)은 경도가 0.1 내지 10, 바람직하게는 2 내지 10, 더욱 바람직하게는 경도가 5 내지 10일 수 있다. 이를 위해 유전층(300)은 예를 들어 실리콘, 겔, 고무, 우레탄 등을 이용하여 형성할 수 있다. 한편, 유전층(300)에는 전자파 차폐 및 흡수 재료가 더 포함될 수 있다. 이렇게 유전층(300) 내에 전자파 차폐 및 흡수 재료가 더 함유됨으로써 전자파를 차폐 또는 흡수할 수 있다. 전자파 차폐 및 흡수 재료는 페라이트, 알루미나 등을 포함할 수 있으며, 유전층(300) 내에 0.01중량% 내지 50중량% 함유될 수 있다. 즉, 유전층(300) 재료 100중량%에 대하여 전자파 차폐 및 흡수 재료는 0.01중량% 내지 50중량% 함유될 수 있다. 전자파 차폐 및 흡수 재료가 0.01중량% 미만이면 전자파 차폐 및 흡수 특성이 낮으며, 50중량%를 초과할 경우 유전층(300)의 압축 특성이 저하될 수 있다.
상기한 바와 같이 본 발명의 일 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200) 사이에 스페이서가 형성되지 않으며 경도가 10 이하인 재료로 유전층(300)이 형성될 수 있다. 유전층(300)에 스페이서가 형성됨으로써 이물질이나 수분 등이 침투하지 못하고, 그에 따라 유전층(300)의 유전율이 변화되지 않아 센싱 값의 변화를 방지할 수 있다. 또한, 작은 터치 압력에 의해서도 제 1 및 제 2 전극 사이의 변화량이 커져 충분한 데이터를 얻을 수 있다. 그에 따라 캐패시턴스값의 변화량에 따른 분해능이 좋아져 데이터 가공성이 용이한 압력 센서를 제작할 수 있다. 또한, 제 1 및 제 2 전극층(100, 200) 사이에 큰 두께 변화가 필요하지 않아 두께를 최소화할 수 있어 압력 센서 및 압력 센서 모듈의 두께를 줄일 수 있다.
도 5는 본 발명의 제 2 실시 예에 따른 압력 센서의 단면도이다.
도 5를 참조하면, 본 발명의 제 2 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)을 포함하며, 유전층(300)은 압축 및 복원 가능하며, 복수의 기공(310)을 갖도록 형성될 수 있다.
기공(310)은 1㎛∼10000㎛의 크기로 형성될 수 있다. 여기서, 기공(310)의 크기는 가장 짧은 지름 또는 가장 긴 지름일 수 있으며, 평균 지름일 수도 있다. 그 중에서, 가장 짧은 지름이 1㎛∼500㎛일 수 있다. 예를 들어, 기공(310)은 1㎛∼10000㎛의 크기로 형성될 수 있고, 1㎛∼5000㎛의 크기로 형성될 수도 있으며, 1㎛∼1000㎛의 크기로 형성될 수도 있다. 즉, 기공(310)의 크기는 압력 센서의 크기, 압력 센서가 채용되는 전자기기의 크기, 유전층(300)의 두께 및 너비 등에 따라 다양하게 변경 가능하다. 또한, 기공(310)은 동일 크기 또는 서로 다른 크기로 형성될 수 있다. 예를 들어, 1㎛∼300㎛의 평균 크기를 갖는 제 1 기공과, 300㎛∼600㎛의 평균 크기를 갖는 제 2 기공과, 600㎛∼1000㎛의 평균 크기를 갖는 제 3 기공이 혼합되어 유전층(300)을 형성할 수 있다. 이때, 제 1 내지 제 3 기공 또한 복수의 크기를 가질 수 있다. 즉, 제 1 내지 제 3 기공은 각각의 평균 크기를 가지고, 각각의 평균 크기 내에서 복수의 크기를 가질 수 있다. 이렇게 복수의 크기를 갖는 기공(310)을 이용함으로써 큰 기공 사이에 작은 기공이 형성될 수 있고, 그에 따라 기공율을 더욱 향상시킬 수 있다. 이러한 기공(310)은 다양한 형태를 가질 수 있다. 단면 형상이 예를 들어 원형, 타원형으로 형성될 수 있으며, 적어도 일부는 일측으로 연장된 형상으로 형성될 수도 있다. 또한, 인접한 기공(310)이 적어도 일부 연결될 수도 있으며, 이 경우 예컨데 땅콩 모양으로 형성될 수도 있다. 한편, 유전층(300)의 두께에 따라 기공(310)의 크기가 유전층(300)의 두께보다 클 수 있다. 이 경우 유전층(300)의 두께 방향으로 기공(310)이 형성되어 제 1 및 제 2 전극층(100, 200) 사이에 빈 영역이 마련될 수 있다. 그러나, 기공(310)의 크기가 커 유전층(300)에 빈 영역이 마련되면 압축력이 약해져 적은 접촉 압력으로도 큰 센싱 출력을 얻을 수 있다. 즉, 센싱 마진을 향상시킬 수 있다. 또한, 기공(310)은 1% 내지 95%의 기공율로 형성될 수 있다. 즉, 유전층(300)의 기공율이 높을수록 적은 압력에도 유전층(300)이 크게 압축될 수 있다. 그러나, 유전층(300)의 기공율이 너무 높으면 유전층(300)의 형상을 유지하기 어렵고, 유전층(300)의 일부가 붕괴될 수도 있다. 따라서, 소정의 압력에서 소정의 크기로 압축될 수 있고 유전층(300)의 일부가 붕괴되지 않고 형상을 유지할 수 있도록 복수의 기공(310)은 1% 내지 95%의 기공율을 갖는 것이 바람직하다. 이때, 기공률이 높을수록 감도가 증가할 수 있다. 한편, 기공율은 (임의의 수직 단면 1㎠ 내의 기공의 단면적 비율 + 임의의 수평 단면 1㎠ 내의 기공의 단면적 비율)/2로 정의될 수 있다. 또한, 유전층(300)은 모든 영역에서 동일 기공율을 갖는 것이 바람직하다. 그러나, 유전층(300)의 기공율은 적어도 일 영역이 10% 이상을 가질 수 있다. 예를 들어, 유전층(300)의 적어도 일 영역이 10% 정도의 기공율을 갖고 적어도 타 영역이 80%의 기공율을 갖게 되면, 기공율이 큰 영역에서 더 큰 정전용량의 변화값을 센싱할 수 있지만, 10% 이상의 밀도를 가지게 되더라고 그에 따른 정전용량의 변화값을 제어부에서 충분히 센싱할 수 있다. 또한, 유전층(300)은 수직 단면의 기공(310)의 단면적율이 수평 단면의 기공(310)의 단면적율보다 작을 수 있다. 즉, 유전층(300)은 적어도 일 영역, 바람직하게는 전체 영역에서 기공(310)의 수직 방향으로의 단면적율이 수평 방향으로의 단면적율보다 작을 수 있다.
한편, 유전층(300)는 압력 변화에 따라 두께가 변화될 수 있는 물질을 이용하여 형성할 수 있다. 즉, 유전층(300)은 압축 및 복원이 가능한 물질을 이용하여 형성할 수 있다. 또한, 유전층(300)은 기공(310)을 포함하는 물질로 형성될 수 있다. 예를 들어, 유전층(300)은 발포 고무, 발포 실리콘, 발포 라텍스, 발포 우레탄 등 발포가 가능하여 기공(310)을 포함하며 압축 및 복원 가능한 물질로 형성될 수 있다. 또한, 유전층(300)은 열경화성 수지로 이루어질 수 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 물론, 유전층(300)은 경도가 10 이하인 물질로 형성될 수도 있다. 이러한 물질로 형성된 유전층(300)은 2 이상 20 이하의 유전율을 가질 수 있다. 한편, 본 발명의 제 2 실시 예의 유전층(300)에는 본 발명의 제 1 실시 예와 마찬가지로 전자파 차폐 및 흡수 재료가 더 포함될 수 있다. 전자파 차폐 및 흡수 재료는 기공(310)보다 작은 크기를 가질 수 있고, 그에 따라 기공(310) 내에 함유될 수 있다. 물론, 전자파 차폐 및 흡수 재료는 기공(310)보다 큰 크기를 가질 수 있고, 유전층(300)의 기공(310)이 형성되지 영역 내에 함유될 수 있다. 또한, 전자파 차폐 및 흡수 재료는 기공(310)보다 작은 사이즈를 가질 수 있고, 기공(310)이 형성되지 않은 유전층(300) 내에 함유될 수 있다. 물론, 전자파 차폐 및 흡수 재료는 기공(310)보다 크거나 작은 복수의 크기를 가질 수 있고, 일부가 기공(310) 내에 함유되거나 기공(310)이 형성되지 않은 유전층(300) 내에 함유될 수도 있다. 이렇게 유전층(300) 내에 전자파 차폐 및 흡수 재료가 더 함유됨으로써 전자파를 차폐 또는 흡수할 수 있다. 전자파 차폐 및 흡수 재료는 페라이트, 알루미나 등을 포함할 수 있으며, 유전층(300) 내에 0.01중량% 내지 50중량% 함유될 수 있다. 즉, 유전층(300) 재료 100중량%에 대하여 전자파 차폐 및 흡수 재료는 0.01중량% 내지 50중량% 함유될 수 있다. 전자파 차폐 및 흡수 재료가 0.01중량% 미만이면 전자파 차폐 및 흡수 특성이 낮으며, 50중량%를 초과할 경우 유전층(300)의 압축 특성이 저하될 수 있다.
상기한 바와 같이 본 발명의 제 2 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200) 사이에 복수의 기공(310)을 갖는 유전층(300)이 형성될 수 있다. 즉, 유전층(300)은 1% 내지 95%의 기공율을 갖는 복수의 기공(310)이 형성될 수 있다. 따라서, 작은 압력에 의해서도 제 1 및 제 2 전극(120, 220) 사이의 변화량이 커져 충분한 데이터를 얻을 수 있고, 그에 따라 캐패시턴스값의 변화량에 따른 분해능이 좋아져 데이터 가공성이 용이한 압력 센서를 제작할 수 있다.
도 6은 본 발명의 제 3 실시 예에 따른 압력 센서의 단면도이다.
도 6을 참조하면, 본 발명의 제 3 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)을 포함하며, 유전층(300)은 유전율이 실리콘 또는 고무보다 높은, 예를 들어 유전율이 4 이상, 바람직하게는 4 초과인 유전체(320)가 절연물(330) 내에 혼합되어 마련될 수 있고, 그에 따라 유전층(300)은 유전율이 4 이상, 바람직하게는 4를 초과할 수 있다. 한편, 유전층(300)은 유전체(230) 뿐만 아니라 본 발명의 제 2 실시 예에서 설명한 기공(310)을 더 포함할 수 있다.
유전층(300)은 절연물(330) 내에 유전율이 4 초과인 유전체(320)가 마련되어 소정 두께로 형성될 수 있다. 따라서, 유전층(300)은 4 이상의 유전율을 가질 수 있다. 유전체(320)는 예를 들어 1㎛∼500㎛ 크기의 분말 형태로 혼합될 수 있다. 이때, 유전체(320)는 복수의 크기를 갖는 단일 분말 또는 2종 이상의 분말을 이용할 수 있다. 예를 들어, 1㎛∼100㎛의 평균 입경을 갖는 제 1 유전체 분말과, 100㎛∼300㎛의 평균 입경을 갖는 제 2 유전체 분말과, 300㎛∼500㎛의 평균 입경을 갖는 제 3 유전체 분말을 혼합하여 이용할 수 있다. 이렇게 복수의 크기를 갖는 유전체 분말을 이용함으로써 큰 유전체 분말 사이에 작은 유전체 분말이 끼어들게 형성될 수 있고, 그에 따라 유전체 분말의 함량을 더욱 향상시킬 수 있다. 여기서, 제 1 유전체 분말은 제 2 유전체 분말보다 작거나 같고, 제 2 유전체 분말은 제 3 유전체 분말보다 작거나 같을 수 있다. 즉, 제 1 유전체 분말의 평균 입경을 A, 제 2 유전체 분말의 평균 입경을 B, 그리고 제 3 유전체 분말의 평균 입경을 C라 할 때, A:B:C는 10∼100:100∼300:300∼500일 수 있다. 예를 들어, A:B:C는 10:100:300일 수 있고, 100:200:500일 수 있다. 또한, 유전체(320)는 1㎛∼500㎛ 크기의 분말보다 큰 소정의 형상을 가질 수도 있다. 예를 들어, 유전체(320)는 소정의 두께를 갖는 대략 사각형의 판 형상으로 절연물(330)에 혼합될 수 있다. 이때, 판 형상의 유전체(320)는 수평 방향으로 일 방향 및 이와 직교하는 타 방향으로 각각 소정의 길이를 갖고, 수직 방향으로 소정의 두께를 갖는 대략 사각형의 판 형상으로 마련될 수 있다. 이러한 사각형의 판 형상의 유전체(320)는 예를 들어 3㎛∼5000㎛의 크기를 가질 수 있다. 바람직하게, 사각형의 판 형상의 유전체(320)는 3㎛∼5000㎛의 적어도 일 방향의 길이를 가질 수 있다. 이때, 판 형상의 유전체(320) 또한 적어도 둘 이상의 크기를 갖는 단일 물질 또는 적어도 둘 이상의 물질로 구성될 수 있다. 물론, 유전체(320)는 적어도 둘 이상의 크기를 갖는 분말 형태의 제 1 유전체와, 적어도 둘 이상의 크기를 갖는 판 형상의 제 2 유전체가 혼합되어 구성될 수도 있다. 한편, 유전층(300)의 두께보다 유전체(320)의 크기가 더 클 수 있는데, 이 경우 유전체(320)는 수평 방향으로 마련되어 유전층(300)의 두께보다 수평 방향으로 더 큰 크기를 가질 수 있다.
유전체(320)는 유전율이 4 이상, 바람직하게는 4 초과인 물질, 예를 들어 Ba, Ti, Nd, Bi, Zn, Al 중 적어도 하나를 포함하는 물질, 예를 들어 상기 물질의 산화물을 이용할 수 있다. 예를 들어, 유전체(320)는 BaTiO3, BaCO3, TiO2, Al2O3 중의 하나 이상을 포함할 수 있다. 또한, Nd, Bi, Zn 등의 첨가물이 더 첨가될 수 있다. 첨가물이 더 첨가됨으로써 유전율을 향상시킬 수 있다. 한편, 유전체(320)는 0.01% 내지 95%의 밀도로 형성될 수 있다. 즉, 절연물(330)과 유전체(320)가 혼합된 유전층(310)을 100이라 할 때 유전체(320)는 0.01 내지 95 정도로 혼합될 수 있다. 이때, 유전체(320)의 밀도가 높을수록 유전층(300)의 유전율이 높아지므로 유전율을 최대로 증가시킬 수 있는 범위로 유전체(320)의 밀도를 증가시키는 것이 바람직하다. 또한, 유전체(320)는 모든 영역에서 동일 밀도로 마련되는 것이 바람직하다. 그러나, 유전체(320)는 적어도 일 영역이 0.01% 이상의 밀도를 갖도록 마련될 수 있다. 예를 들어, 유전체(320)의 적어도 일 영역이 1% 정도의 밀도를 갖고 적어도 타 영역이 95%의 밀도를 갖게 되면, 밀도가 큰 영역에서 더 큰 정전용량의 변화값을 센싱할 수 있지만, 0.01% 이상의 밀도를 가지게 되더라고 그에 따른 정전용량의 변화값을 제어부에서 충분히 센싱할 수 있다
절연물(330)은 압력 변화에 따라 두께가 변화될 수 있는 물질을 이용할 수 있다. 즉, 절연물(330)은 압축 및 복원이 가능한 물질을 이용할 수 있다. 예를 들어, 실리콘, 고무, 폴리머(polymer), 에폭시(epoxy), 폴리이미드(polyimide) 및 액정 결정성 폴리머(Liquid Crystalline Polymer, LCP)로 구성된 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 절연물(330)은 고무 기준으로 경도 30 이내이며 발포용 고무, 젤, 포론, 우레탄 등을 이용할 수 있다. 여기서, 유전율이 4 이상이며 압축 및 복원이 가능한 우레탄의 경우 유전체(320)를 함유하지 않고 독자적으로 이용될 수도 있고 유전체(320)를 포함하여 유전율을 더욱 향상시킬 수도 있다. 즉, 유전체(320)를 포함하지 않고도 유전율을 4 이상으로 유지할 수 있고, 유전체(320)를 포함하여 유전율을 더욱 향상시킬 수도 있다. 또한, 절연물(330)은 열경화성 수지로 이루어질 수 있다. 열경화성 수지로는 예를 들어 노볼락 에폭시 수지(Novolac Epoxy Resin), 페녹시형 에폭시 수지(Phenoxy Type Epoxy Resin), 비피에이형 에폭시 수지(BPA Type Epoxy Resin), 비피에프형 에폭시 수지(BPF Type Epoxy Resin), 하이드로네이트 비피에이 에폭시 수지(Hydrogenated BPA Epoxy Resin), 다이머산 개질 에폭시 수지(Dimer Acid Modified Epoxy Resin), 우레탄 개질 에폭시 수지(Urethane Modified Epoxy Resin), 고무 개질 에폭시 수지(Rubber Modified Epoxy Resin) 및 디씨피디형 에폭시 수지(DCPD Type Epoxy Resin)로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 물론, 본 발명의 제 3 실시 예에 따른 절연물(330)은 상기 물질 이외에 본 발명의 제 1 및 제 2 실시 예에서 설명된 유전층(300)으로 이용 가능한 물질을 이용할 수 있다.
한편, 본 발명의 제 3 실시 예에 따른 유전층(300)에는 본 발명의 제 1 및 제 2 실시 예와 마찬가지로 전자파 차폐 및 흡수 재료가 더 포함될 수 있다. 전자파 차폐 및 흡수 재료는 유전체(320)보다 작은 크기를 가질 수 있다. 물론, 전자파 차폐 및 흡수 재료는 유전체(320)보다 큰 크기를 가질 수 있다. 또한, 전자파 차폐 및 흡수 재료는 유전체(320)보다 크거나 작은 복수의 크기를 가질 수 있다. 이렇게 유전층(300) 내에 전자파 차폐 및 흡수 재료가 더 함유됨으로써 전자파를 차폐 또는 흡수할 수 있다. 전자파 차폐 및 흡수 재료는 페라이트, 알루미나 등을 포함할 수 있으며, 유전층(300) 내에 0.01중량% 내지 50중량% 함유될 수 있다. 즉, 유전층(300) 재료 100중량%에 대하여 전자파 차폐 및 흡수 재료는 0.01중량% 내지 50중량% 함유될 수 있다. 전자파 차폐 및 흡수 재료가 0.01중량% 미만이면 전자파 차폐 및 흡수 특성이 낮으며, 50중량%를 초과할 경우 유전층(300)의 압축 특성이 저하될 수 있다.
상기한 바와 같이 본 발명의 제 3 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200) 사이에 유전층(300)이 형성되고, 유전층(300)은 유전율이 4 이상, 바람직하게는 4 초과인 유전체(320)와 압축 및 복원 가능한 절연물(330)이 혼합되어 형성될 수 있다. 따라서, 유전층(300)은 4 이상의 유전율을 가질 수 있다. 즉, 유전율이 높은 세라믹 등의 분말 또는 그 이외의 형상을 갖는 유전체(320)와 폴리머, 고무, 실리콘, 포론, 발포 고무, 우레탄 등의 압축 및 복원 가능한 절연물(330)을 혼합하여 유전층(300)을 형성하게 되면 최소 공기의 수배에서 수천배 이상의 유전율을 갖는 재료를 만들 수 있으며, 이들은 제 1 및 제 2 전극층(100, 200) 사이의 작은 변화량에도 충분한 데이터를 얻을 수 있다. 따라서, 캐패시턴스값의 변화량에 따른 분해능이 좋아져 데이터 가공성이 용이한 압력 센서를 만들 수 있다. 또한, 제 1 및 제 2 전극층(100, 200) 사이에 큰 두께 변화가 필요하지 않아 두께를 최소화할 수 있어 압력 센서 및 압력 센서 모듈의 두께를 줄일 수 있다. 즉, 본 발명은 유전층(300)을 압착시켜 전극 사이의 거리 변화에 따른 정전용량값의 변화량으로 압력의 세기를 측정하는 것으로, 절연물(330)의 압축에 따라 분산된 유전체(320)의 밀도가 높아져 압력에 따른 정전용량 변화값이 커지게 되어 정전용량의 변화값 측정이 용이하게 된다. 결국, 본 발명은 단순히 유전층(300)의 유전율을 높이는 것이 아니고 압축 가능한 절연물(330)에 유전율이 높은 유전체(320)를 혼합함으로써 압축에 따른 정전용량 변화량을 용이하게 하는 것이다.
도 7은 본 발명의 제 4 실시 예에 따른 압력 센서의 단면도이다.
도 7을 참조하면, 본 발명의 제 4 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)과, 유전층(300)의 적어도 일 영역에 소정의 폭 및 깊이로 형성된 절개부(340)를 포함할 수 있다. 또한, 유전층(300)은 기공(310) 및 유전체(320)의 적어도 하나를 포함할 수 있다. 절개부(340)가 형성됨으로써 플렉서블 특성을 향상시킬 수 있고, 압력에 따른 변화량을 더욱 증대시킬 수 있다. 즉, 유전층(300)은 압력에 의한 변화량이 크지만, 절개부(340)가 형성됨으로써 압력에 의한 변화량을 더욱 증대시킬 수 있다.
유전층(300)은 일 방향 및 이와 대향되는 타 방향으로 소정의 폭 및 간격으로 형성될 수 있다. 즉, 유전층(300)은 소정 깊이로 절개부(340)가 형성되어 소정 폭 및 간격으로 복수 분리될 수 있다. 이때, 절개부(340)는 일 방향으로 소정 폭의 제 1 절개부가 복수 형성되고, 이와 직교하는 타 방향으로 소정 폭의 제 2 절개부가 복수 형성될 수 있다. 따라서, 유전층(300)은 각각 복수의 제 1 및 제 2 절개부에 의해 소정의 폭 및 간격을 갖는 복수의 단위 셀로 분할될 수 있다. 이때, 유전층(300)은 전체 두께가 절개될 수도 있고, 전체 두께의 50% 내지 95%의 두께가 절개될 수 있다. 즉, 유전층(300)은 전체 두께가 절개되거나 전체 두께의 50% 내지 95%가 절개되어 절개부가 형성될 수 있다. 이렇게 유전층(300)이 절개됨으로써 유전층(300)은 소정의 플렉서블 특성을 갖게 된다. 이때, 유전층(300)은 예를 들어 10㎛∼5000㎛ 정도의 크기를 갖고 1㎛∼300㎛의 간격을 가질 수 있도록 절개될 수 있다. 즉, 절개부(340)에 의해 단위 셀이 10㎛∼5000㎛ 정도의 크기를 갖고 1㎛∼300㎛의 간격을 가질 수 있다. 한편, 유전층(300)의 제 1 및 제 2 절개부는 제 1 및 제 2 전극층(100, 200)의 전극 사이의 간격에 대응될 수 있다. 즉, 제 1 전극층(100)의 제 1 전극의 간격에 대응하도록 제 1 절개부가 형성되고 제 2 전극층(200)의 제 2 전극의 간격에 대응하도록 제 2 절개부가 형성될 수 있다. 이때, 전극층의 간격과 절개부의 간격은 동일할 수도 있고, 전극층의 간격이 절개부의 간격보다 크거나 작을 수 있다. 한편, 유전층(300)을 레이저, 다이싱, 블레이트 컷 등의 방법으로 절개하거나 금형 틀을 이용하여 절개부를 형성할 수 있다.
도 8은 본 발명의 제 5 실시 예에 따른 압력 센서의 단면도이다.
도 8을 참조하면, 본 발명의 제 5 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련되며 일 방향 및 타 방향으로 복수의 절개부(340)가 형성된 유전층(300)과, 유전층(300)의 절개부(340)에 형성된 탄성층(400)을 포함할 수 있다. 또한, 유전층(300)은 기공(310) 및 유전체(320)의 적어도 하나를 포함할 수 있다. 이때, 절개부(340)는 유전층(300)의 두께 전체에 형성될 수 있고, 소정 두께로 형성될 수 있다. 즉, 절개부(340)는 유전층(300) 두께의 50% 내지 100%의 두께로 형성될 수 있다. 따라서, 유전층(300)은 절개부(340)에 의해 일 방향 및 타 방향으로 소정 간격 이격되어 단위 셀 단위로 분리되고, 단위 셀 사이에 탄성층(400)이 형성될 수 있다.
탄성층(400)은 탄성을 가진 폴리머, 실리콘 등을 이용하여 형성할 수 있다. 즉, 탄성층(400)은 유전층(300)과 다른 물질을 이용할 수 있다. 탄성층(400)이 형성되므로 유전층(300)의 형상을 유지할 수 있고, 탄성층(400)이 형성되지 않은 본 발명의 제 4 실시 예에 비해 더 높은 플렉서블 특성을 가질 수 있다. 즉, 유전층(300)이 절개부(340)를 포함하므로 경우에 따라 유전층(300)의 형상을 유지하지 못할 수도 있지만, 소정 영역에 탄성층(400)이 형성되므로 유전층(300) 사이를 지지하게 되고, 그에 따라 유전층(300)의 형상을 유지할 수 있다. 또한, 유전층(300)에 절개부(340)가 형성되지만 탄성층이 형성되지 않는 경우 유전층(300)의 플렉서블 특성은 제한적일 수 있지만, 유전층(300)이 모두 절개되고 탄성층(400)이 형성됨으로써 유전층(300)을 둥글게 말거나 접을 수 있을 정도로 플렉서블 특성을 향상시킬 수 있다. 물론, 탄성층(400)은 유전층(300)의 전체 두께에 절개부(340)가 형성되지 않고 일부 두께에 형성된 절개부(340)를 충진하도록 형성될 수도 있다.
도 9는 본 발명의 제 6 실시 예에 따른 압력 센서의 단면도이다. 또한, 도 10 및 도 11은 다른 실시 예들에 따른 제 1 및 제 2 전극층의 평면 개략도이다.
도 9에 도시된 바와 같이, 본 발명의 제 4 실시 예에 따른 압력 센서는 서로 이격된 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)을 포함한다. 유전층(300)은 본 발명의 실시 예들에서 설명한 바와 같이 경도가 10 이하인 물질로 형성될 수 있고, 복수의 기공(310) 및 유전체(320)의 적어도 하나를 포함할 수 있다. 여기서, 제 1 및 제 2 전극층(100, 200)은 각각 제 1 및 제 2 지지층(110, 210)과, 제 1 및 제 2 지지층(110, 210) 상에 형성된 제 1 및 제 2 전극(120, 220)을 포함할 수 있다. 즉, 제 6 실시 예에 따른 압력 센서는 도 1을 이용하여 설명한 제 1 실시 예에 따른 압력 센서와 동일한 구성을 갖는다. 이때, 제 1 및 제 2 전극(120, 220)은 서로 대면하도록 형성될 수도 있고, 대면하지 않도록 형성될 수도 있다. 그런데, 제 1 및 제 2 전극(120, 220)은 도 10에 도시된 바와 같이 제 1 및 제 2 지지층(110, 210) 상에 전체적으로 형성될 수 있다. 즉, 제 1 및 제 2 전극(120, 220)은 도 2 및 도 3에 도시된 바와 같이 소정의 패턴을 갖도록 형성될 수도 있지만, 도 10에 도시된 바와 같이 지지층(110, 210) 상에 전체적으로 형성될 수도 있다. 이러한 형상의 제 1 및 제 2 전극층(100, 200)은 국부적인 영역에서 압력을 검출하기 위해 마련된 압력 센서에 적용될 수 있다. 즉, 하나의 압력 센서를 이용하여 전자기기의 복수의 영역에서 압력을 검출하기 위해서는 도 2 및 도 3에 도시된 바와 같은 소정의 패턴으로 형성된 전극(120, 220)을 이용할 수 있고, 국부적인 영역에서 압력을 검출하기 위해서는 도 7에 도시된 바와 같은 지지층(110, 210) 상에 전체적으로 형성된 전극(120, 220)을 이용할 수 있다. 그러나, 전극(120, 220)의 형상에 관계없이 압력 센서의 크기 등에 따라 국부적인 압력 검출 및 전체적인 압력 검출이 모두 가능할 수 있으며, 사용하려는 애플리케이션 또는 하드웨어 사양에 따라 다양한 전극 형상 및 검출 영역이 가능하다.
또한, 지지층(110, 210) 상에 전체적으로 형성된 전극(210, 220)을 이용하는 경우에도 유전층(300)에 소정의 절개부(320)가 형성될 수도 있고, 절개부(320)에 탄성층(400)이 형성될 수도 있다.
한편, 본 발명에 따른 압력 센서는 소정 영역에 개구(135, 235)가 형성될 수 있다. 즉, 도 11에 도시된 바와 같이 제 1 및 제 2 전극층(100, 200)이 소정의 형상으로 형성되며, 제 1 및 제 2 전극층(100, 200)의 소정 영역에 개구(135, 235)가 형성될 수 있다. 개구(135, 235)는 또 다른 압력 센서 또는 압력 센서와 다른 기능을 갖는 기능부가 삽입될 수 있도록 마련될 수 있다. 이때, 도시되지 않았지만, 유전층(300)에도 제 1 및 제 2 전극층(100, 200)에 형성된 개구(135, 235)와 중첩되는 개구가 형성될 수 있다. 여기서, 압력 센서를 이용하여 개구(130, 230) 내에 삽입되는 또다른 압력 센서 또는 기능부를 인에이블시킬 수 있다. 즉, 압력 센서를 이용하여 개구(130, 230) 내에 삽입되는 또다른 압력 센서 또는 기능부에 전원을 인가하거나, 애플리케이션 또는 하드웨어적으로 압력 센서에 전원이 인가되는 동시에 또는 소정 시간 후에 개구(130, 230) 내에 삽입되는 또다른 압력 센서 또는 기능부에 전원이 인가될 수 있다. 한편, 제 1 및 제 2 전극층(100, 200)은 서로 다른 형상으로 형성될 수도 있다. 즉, 도 11에 도시된 바와 같이 제 1 전극층(100)은 제 1 전극(120)이 제 1 지지층(110) 상에 전체적으로 형성되고, 제 2 전극층(200)은 제 2 전극(220)이 제 2 지지층(210) 상에 소정 간격으로 이격되어 복수 마련될 수 있다. 예를 들어, 제 2 전극(210)은 대략 사각형 형태의 제 1 영역(210a)과, 개구(230)를 사이에 두고 형성된 대략 사각형 형태의 제 2 및 제 3 영역(220b, 220c)와, 대략 사각형 형상으로 형성된 제 4 영역(220d)이 소정 간격 이격되어 형성될 수 있다. 또한, 제 1 지지층(110) 상에 제 1 연결 패턴(140)이 형성되고, 제 2 지지층(210) 상에 제 2 연결 패턴(240)이 형성될 수 있다. 이때, 제 1 연결 패턴(140)은 제 1 전극(110)과 접촉되어 형성되며, 제 2 연결 패턴(240)은 제 4 영역(220d)와 이격되어 형성된다. 또한, 제 1 및 제 2 연결 패턴(140, 240)은 적어도 일부 중첩되도록 형성될 수 있다. 물론, 도시되지 않았지만, 제 1 및 제 2 전극층(100, 200) 사이의 유전층(300)의 적어도 일부에도 제 1 및 제 2 연결 패턴(140, 240) 사이에 제 3 연결 패턴이 형성될 수 있다. 즉, 유전층(300)과 이격되어 제 3 연결 패턴이 형성될 수 있다. 따라서 ,제 1 및 제 2 연결 패턴(140, 240)은 제 3 연결 패턴을 통해 연결될 수 있다. 또한, 제 2 전극층(200)에는 제 1 내지 제 4 영역(210a 내지 210d)으로부터 연장되어 제 1 내지 제 4 연장 패턴(250a, 250b, 250c, 250d)이 각각 형성될 수 있고, 제 2 연결 패턴(240)으로부터 연장되어 제 5 연장 패턴(250e)이 형성될 수 있다. 제 1 내지 제 5 연장 패턴(250a 내지 250d)은 커넥터(미도시)로 연장되어 제어부 또는 전원부와 연결될 수 있다. 따라서, 제 5 연장 패턴(250e)과 제 2 연결 패턴(240) 및 제 3 연결 패턴을 통해 제 1 연결 패턴(140)으로 소정의 전원, 예를 들어 그라운드 전원이 인가될 수 있다. 또한, 제 1 내지 제 4 영역(220a 내지 220d)에 의해 센싱된 전압이 제 1 내지 제 4 연장 패턴(250a 내지 250d)을 통해 커넥터로 전달될 수 있다. 물론, 제 1 내지 제 4 연장 패턴(250a 내지 250d)을 통해 제 1 내지 제 4 영역(220a, 220d)로 소정의 전원, 예를 들어 구동 전원이 인가될 수 있다.
상기 실시 예들에 따른 압력 센서는 스마트 폰 등의 전자기기 내에 마련되어 사용자의 터치 또는 압력을 검출할 수 있다. 이러한 본 발명에 실시 예들에 따른 압력 센서를 구비하는 전자기기를 도면을 이용하여 설명하면 다음과 같다.
도 12 및 도 13은 본 발명의 일 실시 예에 따른 압력 센서를 구비하는 전자기기의 전면 사시도 및 후면 사시도이고, 도 14은 도 12의 A-A' 라인을 따라 절취한 일부 단면도이다. 여기서, 본 발명의 실시 예는 압력 센서를 구비하는 전자기기로서 스마트 폰을 포함하는 이동 단말기를 예로 들어 설명하며, 도 12 내지 도 14는 본 발명과 관계된 주요 부분을 개략적으로 도시하였다.
도 12 내지 도 14를 참조하면, 전자기기(1000)는 외관을 이루는 케이스(1100)를 포함하고, 케이스(1100) 내부에 전자기기(1000)의 복수의 기능을 수행하기 위한 복수의 기능 모듈 및 회로 등이 마련된다. 이러한 케이스(1100)는 프론트 케이스(1110), 리어 케이스(1120) 및 배터리 커버(1130)를 포함할 수 있다. 여기서, 프론트 케이스(1110)는 전자기기(1000)의 상부와 측면 일부를 이룰 수 있고, 리어 케이스(1120)는 전자기기(1000)의 측면 일부와 하부를 이룰 수 있다. 즉, 프론트 케이스(1110)의 적어도 일부와 리어 케이스(1120)의 적어도 일부가 전자기기(1000)의 측면을 형성할 수 있고, 프론트 케이스(1110)의 일부가 디스플레이부(1310)를 제외한 상면 일부를 이룰 수 있다. 또한, 배터리 커버(1130)는 리어 케이스(1120) 상에 마련되는 배터리(1200)를 덮도록 마련될 수 있다. 한편, 배터리 커버(1130)는 일체로 마련되거나 착탈 가능하게 마련될 수 있다. 즉, 배터리(1200)가 일체형일 경우 배터리 커버(1130)는 일체로 형성될 수 있고, 배터리(1200)가 착탈 가능할 경우 배터리 커버(1130) 또한 착탈 가능할 수 있다. 물론, 프론트 케이스(1110)와 리어 케이스(1120)가 일체로 제작될 수도 있다. 즉, 프론트 케이스(1110) 및 리어 케이스(1120)의 구분없이 측면 및 후면을 폐쇄하고 상면을 노출시키도록 케이스(1100)가 형성되고, 케이스(1100)의 후면을 커버하도록 배터리 커버(1130)가 마련될 수도 있다. 이러한 케이스(1100)는 적어도 일부가 합성수지를 사출하여 형성되거나 금속 재질로 형성될 수 있다. 즉, 프론트 케이스(1110) 및 리어 케이스(1120)의 적어도 일부가 금속 재질로 형성될 수 있는데, 예를 들어 전자기기(1000)의 측면을 이루는 부분이 금속 재질로 형성될 수 있다. 물론, 배터리 커버(1130) 또한 금속 재질로 형성될 수 있다. 케이스(1100)로 이용되는 금속 재질로는 예를 들어 스테인레스 스틸(STS), 티타늄(Ti), 알루미늄(Al) 등을 포함할 수 있다. 한편, 프론트 케이스(1110)와 리어 케이스(1120)의 사이에 형성된 공간에는 액정표시장치 등의 표시부, 압력 센서, 회로 기판, 햅틱 장치 등 각종 부품이 내장될 수 있다.
프론트 케이스(1110)에는 디스플레이부(1310), 음향 출력 모듈(1320), 카메라 모듈(1330a) 등이 배치될 수 있다. 또한, 프론트 케이스(1110) 및 리어 케이스(1120)의 일 측면에는 마이크(1340), 인터페이스(1350) 등이 배치될 수 있다. 즉, 전자기기(1000)의 상면에 디스플레이부(1310), 음향 출력 모듈(1320) 및 카메라 모듈(1330a) 등이 배치되고, 전자기기(1000)의 일 측면, 즉 아래 측면에 마이크(1340), 인터페이스(1350) 등이 배치될 수 있다. 디스플레이부(1310)는 전자기기(1000)의 상면에 배치되어 프론트 케이스(1110)의 상면의 대부분을 차지한다. 즉, 디스플레이부(1310)는 X 및 Y 방향으로 각각 소정의 길이를 갖는 대략 직사각형의 형상으로 마련되며, 전자기기(1000) 상면의 중앙 영역을 포함하여 전자기기(1000) 상면의 대부분의 영역에 형성된다. 이때, 전자기기(1000)의 외곽, 즉 프론트 케이스(1110)의 외곽과 디스플레이부(1310) 사이에는 디스플레이부(1310)가 차지하지 않는 소정의 공간이 마련되는데, X 방향으로 디스플레이부(1310)의 상측에 음향 출력 모듈(1320) 및 카메라 모듈(1330a)이 마련되고, 하측에 전면 입력부(1360)를 포함한 사용자 입력부가 마련될 수 있다. 또한, X 방향으로 연장되는 디스플레이부(1310)의 두 가장자리와 전자기기(1000)의 테두리 사이, 즉 Y 방향으로 디스플레이부(1310)와 전자기기(1000)의 테두리 사이에 베젤 영역이 마련될 수 있다. 물론, 별도의 베젤 영역이 마련되지 않고 디스플레이부(1310)가 Y 방향으로 전자기기(1000)의 테두리까지 확장되어 마련될 수 있다.
디스플레이부(1310)는 시각 정보를 출력하고 사용자의 촉각 정보를 입력할 수 있다. 이를 위해 디스플레이부(1310)에는 터치 입력 장치가 마련될 수 있다. 터치 입력 장치는 단말기 바디의 전면을 커버하는 윈도우(2100)와, 시작 정보를 출력하는 예를 들어 액정표시장치 등의 표시부(2200)와, 사용자의 터치 또는 압력 정보를 입력하는 본 발명의 실시 예들의 적어도 어느 하나에 따른 제 1 압력 센서(2300)를 포함할 수 있다. 또한, 터치 입력 장치는 윈도우(2100)와 표시부(2200) 사이에 마련된 터치 센서를 더 포함할 수 있다. 즉, 터치 입력 장치는 터치 센서와 제 1 압력 센서(2300)를 포함할 수 있다. 터치 센서는 예를 들어 소정 두께의 투명한 판 상에 일 방향 및 이와 직교하는 타 방향으로 복수의 전극이 소정 간격 이격되어 형성되고 그 사이에 유전층이 마련되어 사용자의 터치 입력을 검출할 수 있다. 즉, 터치 센서는 복수의 전극이 예를 들어 격자 모양으로 배열되고, 사용자의 터치 입력에 따른 전극 사이의 거리에 따른 정전용량을 검출할 수 있다. 여기서, 터치 센서는 사용자가 터치하는 수평 방향, 즉 서로 직교하는 X 방향 및 Y 방향의 좌표를 검출하고, 제 1 압력 센서(2300)는 X 방향 및 Y 방향 뿐만 아니라 수직 방향, 즉 Z 방향의 좌표를 검출할 수 있다. 즉, 터치 센서 및 제 1 압력 센서(2300)가 X 방향 및 Y 방향의 좌표를 동시에 검출하고, 제 1 압력 센서(2300)가 Z 방향의 좌표를 더 검출할 수 있다. 이렇게 터치 센서 및 제 1 압력 센서(2300)가 수평 좌표를 동시에 검출하고 제 1 압력 센서(2300)가 수직 좌표를 검출함으로써 사용자의 터치 좌표를 보다 정확하게 검출할 수 있다.
한편, 프론트 케이스(1110) 상면의 디스플레이부(1310) 이외의 영역에는 음향 출력 모듈(1320), 카메라 모듈(1330a), 전면 입력부(1360) 등이 마련될 수 있다. 이때, 음향 출력 모듈(1320) 및 카메라 모듈(1330a)는 X 방향으로 디스플레이부(1310)의 상측에 마련되고, 전면 입력부(1360) 등의 사용자 입력부는 X 방향으로 디스플레이부(1310)의 하측에 마련될 수 있다. 전면 입력부(1360)는 터치키, 푸쉬키 등으로 구성될 수 있고, 터치 센서 또는 압력 센서를 이용하여 전면 입력부(1350)가 없는 구성도 가능하게 된다. 이때, 전면 입력부(1360)의 하측 내부, 즉 Z 방향으로 전면 입력부(1360) 하측의 케이스(1100) 내부에는 전면 입력부(1360)의 기능을 위한 기능 모듈(3000)이 마련될 수 있다. 즉, 전면 입력부(1360)의 구동 방식에 따라 터치키 또는 푸쉬키의 기능을 수행하는 기능 모듈이 마련될 수 있고, 터치 센서 또는 압력 센서가 마련될 수 있다. 또한, 전면 입력부(1360)는 지문 인식 센서를 포함할 수 있다. 즉, 전면 입력부(1360)를 통해 사용자의 지문을 인식하고 적법한 사용자인지 검출할 수 있고, 이를 위해 기능 모듈(3000)이 지문 인식 센서를 포함할 수 있다. 한편, Y 방향으로 전면 입력부(1360)의 일측 및 타측에는 제 2 압력 센서(2400)가 마련될 수 있다. 사용자 입력부로서 전면 입력부(1360) 양측에 제 2 압력 센서(2400)이 마련됨으로써 사용자의 터치 입력을 검출하여 이전 화면으로 돌아가는 기능 및 디스플레이부(1310)의 화면 설정을 위한 설정 기능을 수행할 수 있다. 이때, 지문 인식 센서를 이용하는 전면 입력부(1360)는 사용자의 지문 인식 뿐만 아니라 초기 화면으로 돌아가는 기능을 수행할 수도 있다. 한편, 디스플레이부(1310)에 접촉되어 압전 진동 장치 등의 햅틱 피드백 장치가 더 마련되어 사용자의 입력 또는 터치에 반응하여 피드백을 제공할 수 있다. 이러한 햅틱 피드백 장치는 디스플레이부(1310) 이외의 전자기기(1000)의 소정 영역에 마련될 수 있다. 예를 들어, 음향 출력 모듈(1310) 외측 영역, 전면 입력부(1360) 외측 영역, 베젤 영역 등에 햅틱 피드백 장치가 마련될 수 있다. 물론, 햅틱 피드백 장치는 디스플레이부(1310) 하측에 마련될 수도 있다.
전자기기(1000)의 측면에는 도시되지 않았지만 전원부 및 측면 입력부가 더 마련될 수 있다. 예를 들어, 전원부 및 측면 입력부가 전자기기의 Y 방향으로 서로 대향되는 두 측면에 각각 마련될 수 있고, 일 측면에 서로 이격되어 마련될 수도 있다. 전원부는 전자기기를 온/오프시킬 때 이용될 수 있고, 화면을 인에이블 또는 디스에이블할 때 이용할 수 있다. 또한, 측면 입력부는 음향 출력 모듈(1320)에서 출력되는 음향의 크기 조절 등에 이용할 수 있다. 이때, 전원부 및 측면 입력부는 터치키, 푸쉬키 등으로 구성될 수 있고, 압력 센서로 구성될 수도 있다. 즉, 본 발명에 따른 전자기기는 디스플레이부(1310) 이외의 복수의 영역에 압력 센서가 각각 마련될 수 있다. 예를 들어, 전자기기의 상측의 음향 출력 모듈(1320) 및 카메라 모듈(1330a) 등의 압력 감지, 하측의 전면 입력부(1360)의 압력 제어, 그리고 측면의 전원부 및 측면 입력부 등의 압력을 제어하기 위해 적어도 하나의 압력 센서가 더 마련될 수 있다.
한편, 전자기기(1000)의 후면, 즉 리어 케이스(1120)에는 도 12에 도시된 바와 같이 카메라 모듈(1330b)이 추가로 장착될 수 있다. 카메라 모듈(1330b)은 카메라 모듈(1330a)과 실질적으로 반대되는 촬영 방향을 가지며, 카메라 모듈(1330a)과 서로 다른 화소를 가지는 카메라일 수 있다. 카메라 모듈(1330b)에 인접하게는 플래시(미도시)가 추가로 배치될 수 있다. 또한, 도시되지 않았지만, 카메라 모듈(1330b)의 하측에 지문 인식 센서가 마련될 수 있다. 즉, 전면 입력부(1360)에 지문 인식 센서가 마련되지 않고 전자기기(1000)의 후면에 지문 인식 센서가 마련될 수도 있다.
배터리(1200)는 리어 케이스(1120)와 배터리 커버(1300) 사이에 마련될 수 있으며, 고정될 수도 있고, 탈착 가능하게 마련될 수도 있다. 이때, 리어 케이스(1120)는 배터리(1200)가 삽입되는 영역을 마련하도록 해당 영역이 오목하게 형성될 수 있고, 배터리(1200)가 장착된 후 배터리 커버(1130)가 배터리(1200) 및 리어 케이스(1120)를 덮도록 마련될 수 있다.
또한, 도 14에 도시된 바와 같이 전자기기(1000) 내부의 디스플레이부(1310)와 리어 케이스(1130) 사이에 브라켓(1370)이 마련되고, 브라켓(1370) 상측에 윈도우(2100), 표시부(2200) 및 압력 센서(2300)가 마련될 수 있다. 즉, 디스플레이부(1310)의 브라켓(1370) 상측에 본 발명에 따른 터치 입력 장치가 마련될 수 있고, 브라켓(1370)은 터치 입력 장치를 지지한다. 또한, 브라켓(1370)은 디스플레이부(1310) 이외의 영역으로 연장 형성될 수도 있다. 즉, 도 14에 도시된 바와 같이 전면 입력부(1360) 등이 형성된 영역으로 브라켓(1370)이 연장 형성될 수 있다. 또한, 브라켓(1370)의 적어도 일부는 프론트 케이스(1110)의 적어도 일부에 지지될 수 있다. 예를 들어, 디스플레이부(1310)의 외측으로 확장된 브라켓(1370)은 프론트 케이스(1110)로부터 연장된 연장부에 의해 지지될 수 있다. 그리고, 디스플레이부(1310)과 그 외측 사이의 경계 영역의 브라켓(1370) 상에는 소정 높이의 격벽이 형성될 수도 있다. 이러한 브라켓(1370)은 압력 센서(2400)와 지문 인식 센서 등의 기능 모듈(3000) 등을 지지하게 된다. 또한, 도시되지 않았지만, 브라켓(1370) 상에는 압력 센서(2300, 2400), 지문 인식 센서 등의 기능 모듈(3000) 및 터치 센서 등에 전원을 공급하고 이들로부터 출력되는 신호를 입력하여 검출하기 위한 적어도 하나의 구동 수단이 마련된 인쇄회로기판(Printed Circuit Board; PCB) 또는 플렉서블 인쇄회로기판(Flexible Printed Circuit Board; FPCB)이 마련될 수도 있다.
상기한 바와 같이 본 발명의 실시 예들에 따른 압력 센서는 전자기기 내의 소정 영역에 적어도 하나 마련될 수 있다. 예를 들어, 상기한 바와 같이 디스플레이부(1310) 및 사용자 입력부에 각각 마련될 수도 있고, 어느 하나 마련될 수도 있다. 그러나, 압력 센서는 전자기기 내의 소정 영역에 적어도 하나 이상 마련될 수 있다. 이렇게 복수의 영역에 압력 센서가 마련될 수 있는 본 발명에 따른 전자기기의 다양한 실시 예를 설명하면 다음과 같다.
도 15는 본 발명의 제 2 실시 예에 따른 전자기기의 단면도로서, 디스플레이부(1310)에 마련되는 터치 입력 장치의 단면도이다.
도 15를 참조하면, 본 발명의 제 2 실시 예에 따른 전자기기는 윈도우(2100), 표시부(2200), 압력 센서(2300) 및 브라켓(1370)을 포함한다.
윈도우(2100)는 표시부(2200) 상측에 마련되어 프론트 케이스(1310)의 적어도 일부에 의해 지지된다. 또한, 윈도우(2100)는 전자기기의 상면을 이루어 손가락, 스타일러스 펜 등의 객체가 접촉된다. 이러한 윈도우(2100)는 투명 재질로 마련될 수 있는데, 예를 들어 아크릴 수지, 유리 등으로 제작될 수 있다. 한편, 윈도우(2100)은 디스플레이부(1310) 뿐만 아니라 디스플레이부(1310) 외측의 전자기기(1000) 상면에 형성될 수 있다. 즉, 윈도우(2100)는 전자기기(1000)의 상면을 커버하도록 형성될 수 있다.
표시부(2200)는 윈도우(2100)를 통해 사용자에게 영상을 표시한다. 이러한 표시부(2200)는 액정표시(Liquid Crystal Display: LCD)패널, 유기발광표시(Organic Light Emitting Display: OLED)패널 등을 포함할 수 있다. 표시부(2200)가 액정표시 패널일 경우 표시부(2200) 하측에는 백라이트 유닛(미도시)이 마련될 수 있다. 백라이트 유닛은 반사 시트, 도광판, 광학 시트 및 광원을 포함할 수 있다. 광원은 발광 다이오드(Light Emitting Diode; LED)가 이용될 수 있다. 이때, 광원은 반사 시트, 도광판, 광학 시트가 적층된 광학 구조물의 하측에 마련될 수도 있고, 측면에 마련될 수도 있다. 액정표시패널의 액정 물질은 백라이트 유닛의 광원에 반응하여 입력되는 신호에 따른 문자 또는 영상 등을 출력한다. 한편, 표시부(2200)와 백라이트 유닛 사이에 차광 테이프(미도시)가 부착되어 빛의 누출을 차단한다. 차광 테이프는 폴리에틸렌 필름의 양 측면에 점착제가 도포된 형태로 구성될 수 있다. 표시부(2200) 및 백라이트 유닛은 차광 테이프의 점착제에 접착되고, 차광 테이프에 삽입된 폴리에틸렌 필름에 의해 백라이트 유닛의 빛은 표시부(2200)의 외부 측으로 새어나오지 못하게 된다. 한편, 백라이트 유닛이 마련되는 경우 압력 센서(2300)는 백라이트 유닛 하측에 마련될 수도 있고, 표시부(2200)와 백라이트 유닛 사이에 마련될 수도 있다.
압력 센서(2300)는 제 1 및 제 2 전극층(100, 200)과, 제 1 및 제 2 전극층(100, 200) 사이에 마련된 유전층(300)을 포함할 수 있다. 제 1 및 제 2 전극층(100, 200)은 제 1 및 제 2 지지층(110, 210)과, 제 1 및 제 2 지지층(110, 210) 상에 각각 형성되며 도 1 내지 도 9를 이용하여 설명된 형상 중 적어도 어느 하나의 형상을 갖는 제 1 및 제 2 전극(120, 220)을 포함할 수 있다. 이때, 제 1 및 제 2 전극(120, 220)는 유전층(300)을 사이에 두고 서로 대면하도록 마련될 수 있다. 그러나, 제 1 및 제 2 전극(120, 220)은 도 15에 도시된 바와 같이 어느 하나가 유전층(300)과 대면하고 다른 하나는 유전층(300)과 대면하지 않도록 형성될 수 있다. 즉, 제 1 전극층(100)은 제 1 지지층(110)의 하측에 제 1 전극(120)이 형성되어 제 1 전극(120)이 유전층(300)과 대면하지 않도록 형성되고, 제 2 전극층(200)은 제 2 지지층(210)의 하측에 제 2 전극(220)이 형성되어 제 2 전극(220)이 유전층(300)과 대면하도록 형성될 수 있다. 다시 말하면, 하측으로부터 상측으로 제 1 전극(120), 제 1 지지층(110), 유전층(300), 제 2 전극(220) 및 제 2 지지층(210)의 순으로 형성될 수 있다. 또한, 압력 센서(2300)는 최하층 및 최상층에 접착층(410, 420; 400)이 형성될 수 있다. 접착층(410, 420)은 압력 센서(2300)를 표시부(2200)와 브라켓(1370) 사이에 접착 고정시키기 위해 마련될 수 있다. 이러한 접착층(410, 420)은 양면 접착 테이프, 접착 테이프, 접착제 등을 이용할 수 있다. 또한, 제 1 전극층(100)과 접착층(410) 사이에 제 1 절연층(510)이 마련되고, 유전층(300)과 제 2 전극(220) 사이에 제 2 절연층(520)이 마련될 수 있다. 절연층(510, 520; 500)은 탄성력과 복원력을 가진 재료를 이용하여 형성할 수 있다. 예를 들어, 절연층(510, 520)은 경도가 30 이하인 실리콘, 고무, 겔, 테프론테이프, 우레탄을 이용하여 형성할 수 있다. 또한, 절연층(510, 520)에는 복수의 기공이 형성될 수 있다. 기공은 예를 들어 1㎛∼500㎛의 사이즈를 가지며 10%∼95%의 기공률로 형성될 수 있다. 절연층(510, 520) 내에 복수의 기공이 형성됨으로써 절연층(510, 520)의 탄성력과 복원력을 더욱 향상시킬 수 있다. 여기서, 제 1 및 제 2 지지층(110, 210)은 각각 50㎛∼150㎛의 두께로 형성되고, 제 1 및 제 2 전극(120, 220)은 각각 1㎛∼500㎛의 두께로 형성되며, 유전층(300)은 10㎛∼5000㎛의 두께로 형성될 수 있다. 즉, 유전층(300)은 제 1 및 제 2 전극층(100, 200)보다 같거나 두껍게 형성될 수 있고, 제 1 및 제 2 전극층(100, 200)은 동일 두께로 형성될 수 있다. 그러나, 제 1 및 제 2 전극층(100, 200)은 재질 등에 따라 서로 다른 두께로 형성될 수 있는데, 예를 들어 제 2 전극층(200)이 제 1 전극층(100)보다 얇은 두께로 형성될 수 있다. 또한, 제 1 및 제 2 절연층(510, 520)은 각각 3㎛∼500㎛의 두께로 형성되며, 제 1 및 제 2 접착층(410, 420)은 각각 3㎛∼1000㎛의 두께로 형성될 수 있다. 이때, 제 1 및 제 2 절연층(510, 520)은 동일 두께로 형성되며, 제 1 및 제 2 접착층(410, 420)은 동일 두께로 형성될 수 있다. 그러나, 절연층(510, 520)이 서로 다른 두께로 형성되고 접착층(410, 420)이 서로 다른 두께로 형성될 수 있는데, 예를 들어 제 1 접착층(410)이 제 2 접착층(420)보다 두껍게 형성될 수 있다.
브라켓(1370)은 도 11에 도시된 바와 같이 리어 케이스(1120) 상측에 마련된다. 이러한 브라켓(1370)은 상측의 터치 센서, 표시부(2200) 및 압력 센서(2300)를 지지하며, 객체의 누르는 힘이 분산되지 않도록 한다. 이러한 브라켓(1370)은 형상이 변형되지 않는 물질로 형성될 수 있다. 즉, 브라켓(1370)은 객체의 누르는 힘이 분산되지 않도록 하고, 터치 센서, 표시부(2200), 압력 센서(2300)를 지지하므로 압력에 의해 형상이 변형되지 않는 물질로 형성될 수 있다. 이때, 브라켓(1370)은 도전 물질 또는 절연 물질로 형성될 수 있다. 또한, 브라켓(1370)은 모서리 또는 전체가 벤딩된 구조, 즉 구부러진 구조로 형성될 수 있다. 이렇게 브라켓(1370)이 마련됨으로써 객체의 누르는 힘이 분산되지 않고 집중될 수 있고, 그에 따라 터치 영역을 더욱 정확하게 검출할 수 있다.
한편, 압력 센서는 표시부(2200) 하측의 전체 영역에 형성될 수도 있고, 표시부(2200) 하측의 적어도 일부 영역에 형성될 수 있다. 이러한 압력 센서의 배치 형태를 도 16에 도시하였다. 도 16은 본 발명의 제 2 실시 예에 따른 전자기기의 압력 센서의 배치 형상을 도시한 평면 개략도로서, 표시부(2200)를 기준으로 압력 센서(2300)의 배치 형상을 도시하였다.
도 16의 (a)에 도시된 바와 같이, 압력 센서(2300)는 표시부(2200)의 가장자리를 따라 마련될 수 있다. 이때, 압력 센서(2300)는 대략 사각형의 표시부(2200) 가장자리, 즉 에지(edge)로부터 소정의 폭으로 마련되며, 소정의 길이로 마련될 수 있다. 즉, 표시부(2200)의 두 장변을 따라 소정 폭의 압력 센서(2300)가 마련되고, 두 단변을 따라 소정 폭의 압력 센서(2300)가 마련될 수 있다. 따라서, 표시부(2200)의 가장자리를 따라 네개의 압력 센서(2300)가 마련될 수 있고, 표시부(2200)의 가장자리의 형상을 따라 하나의 압력 센서(2300)가 마련될 수도 있다.
도 16의 (b)에 도시된 바와 같이, 표시부(2200)의 가장자리의 소정 폭을 제외한 나머지 영역에 압력 센서(2300)가 마련될 수 있다.
도 16의 (c)에 도시된 바와 같이, 표시부(2200)의 인접한 두 변이 만나는 영역, 즉 꼭지점 영역에 압력 센서(2300)가 마련될 수 있다. 즉, 압력 센서(2300)는 표시부(2200)의 네 코너(corner) 영역에 마련될 수 있다.
도 16의 (d)에 도시된 바와 같이, 표시부(2200)의 가장자리 영역을 제외한 나머지 영역에 압력 센서(2300)가 마련되고, 압력 센서(2300)가 마련되지 않은 나머지 영역에는 양면 테이프 등의 충진재(2310)가 마련될 수 있다.
도 16의 (e)에 도시된 바와 같이, 표시부(2200) 하측에 복수의 압력 센서(2300)가 대략 등간격으로 마련될 수 있다.
물론, 도 16의 (a), (c) 및 (d)에서 압력 센서(2300)가 마련되지 않은 영역에 양면 테이프 등의 충진재(2310)가 마련될 수도 있다.
한편, 본 발명의 제 1 및 제 2 전극층(100, 200)의 어느 하나는 브라켓(1370) 상에 구현될 수 있다. 즉, 브라켓(1370)이 제 1 및 제 2 전극층(100, 200)로 기능할 수 있다. 이 경우 브라켓(1370) 상에 제 1 전극(120) 또는 제 2 전극(220)이 형성될 수 있다. 따라서, 브라켓(1370)이 제 1 전극층(100) 또는 제 2 전극층(200)의 지지층으로 이용될 수 있다. 이러한 본 발명의 제 3 실시 예에 따른 압력 센서를 구비하는 전자기기를 도 17에 도시하였다. 도 17은 브라켓(1370) 상에 제 1 전극(120)이 형성된 경우를 예시하였다. 이때, 도시되지 않았지만, 윈도우(2100)와 표시부(2200) 사이에 터치 센서가 더 마련될 수 있다.
브라켓(1370)은 제 1 전극층으로 이용될 수 있다. 즉, 브라켓(1370)은 그라운드 전극으로 이용될 수 있다. 이렇게 브라켓(1370)이 제 1 전극층, 즉 그라운드 전극으로 이용되기 위해 브라켓(1370)은 절연 물질로 형성되고 브라켓(1370)에는 제 1 전극(120)이 형성될 수 있다. 이러한 제 1 전극(120)은 소정의 폭 및 간격을 갖도록 일 방향으로 배열될 수 있고, 소정의 패턴으로 형성될 수도 있다. 또한, 제 1 전극(120)은 브라켓(1370) 상에 전체적으로 형성될 수 있다. 이때, 브라켓(1370) 상의 제 1 전극(120)은 제 2 전극층(200)의 제 2 전극(220)과 적어도 일부 중첩되도록 형성된다. 즉, 제 1 전극(120)과 제 2 전극(220) 사이에서 이들의 거리 변화에 따라 정전용량이 변화되도록 제 1 및 제 2 전극(120, 220)은 중첩되어 형성될 수 있다. 한편, 브라켓(1370) 상에 형성되는 제 1 전극(120)은 투명 도전성 물질로 형성될 수 있다. 그러나, 제 1 전극(120)은 구리, 은, 금 등의 불투명 도전성 물질로 형성될 수도 있다. 이러한 브라켓(1370)은 제 1 전극(120)을 통해 그라운드 전위가 인가될 수 있다. 즉, 제 2 전극층(200)을 통해 소정 전위의 신호가 인가되고 브라켓(1370)을 통해 그라운드 전위가 인가될 수 있다. 따라서, 객체의 터치에 따라 제 2 전극층(200)과 브라켓(1370) 사이의 거리가 기준 거리에 비해 가까워지고 그에 따라 제 2 전극층(200)과 브라켓(1370) 사이의 정전 용량이 변화될 수 있다. 한편, 브라켓(1370) 상면의 적어도 일부에는 도전성 테이프, 도전성 접착제가 형성되고, 이를 통해 브라켓(1370) 상에 형성된 제 1 전극(120)에 그라운드 전위가 공급될 수 있다. 또한, 브라켓(1370) 상에 제 1 지지층(110)이 형성되고 그 상부에 제 1 전극(120)이 형성되는 경우 브라켓(1370)을 통해 제 1 전극(120)에 그라운드 전위를 인가할 수도 있다. 이를 위해 브라켓(1370)의 적어도 일부에 도전 라인이 형성되고, 제 1 지지층(110)의 적어도 일부에 도전성 물질이 매립된 상하 관통형 비아홀이 형성되어 브라켓(1370)의 도전 라인과 연결될 수 있다.
한편, 상기 본 발명의 실시 예들은 압력 센서(2300)가 표시부(2200)와 브라켓(1370) 사이에 마련되는 경우를 설명하였다. 그러나, 압력 센서(2300)가 윈도우(2100)와 표시부(2200) 사이에 마련될 수도 있고, 표시부(2200)와 백라이트 유닛 사이에 마련될 수도 있다.
또한, 압력 센서는 디스플레이부(1310) 이외의 영역에 마련될 수도 있다. 이때, 적어도 하나의 압력 센서가 디스플레이부(1310) 이외의 영역에 마련될 수 있는데, 이러한 압력 센서의 배치 형태를 도 18에 도시하였다. 도 18은 본 발명의 제 4 실시 예에 따른 전자기기의 압력 센서의 배치 형상을 도시한 평면 개략도로서, 윈도우(2100)를 기준으로 압력 센서(2400)의 배치 형상을 도시하였다.
도 18의 (a)에 도시된 바와 같이, 압력 센서(2400)는 윈도우(2100)의 가장자리를 따라 마련될 수 있다. 이때, 압력 센서(2400)는 대략 사각형의 윈도우(2100) 가장자리, 즉 에지(edge)로부터 소정의 폭으로 마련되며, 소정의 길이로 마련될 수 있다. 즉, 윈도우(2100)의 두 장변을 따라 소정 폭의 압력 센서(2400)가 마련되고, 두 단변을 따라 소정 폭의 압력 센서(2400)가 마련될 수 있다. 다시 말하면, 압력 센서(2400)는 디스플레이부(1310) 이외의 영역, 즉 디스플레이부(1310)의 상측 및 하측 영역, 그리고 베젤 영역에 마련될 수 있다. 이때, 압력 센서(2400)는 윈도우(2100)의 가장자리를 따라 네개가 마련될 수 있고, 윈도우(2100)의 가장자리의 형상을 따라 하나가 마련될 수도 있다.
도 18의 (b)에 도시된 바와 같이, 압력 센서(2400)는 윈도우(2100)의 장변 가장자리를 따라 마련될 수 있다. 즉, 압력 센서(2400)는 디스플레이부(1310)의 가장자리와 전자기기(1000)의 테두리 사이의 영역, 즉 베젤 영역에 마련될 수 있다.
도 18의 (c)에 도시된 바와 같이, 윈도우(2100)의 인접한 두 변이 만나는 영역, 즉 꼭지점 영역에 압력 센서(2400)가 마련될 수 있다. 즉, 압력 센서(2400)는 윈도우(2100)의 네 코너(corner) 영역에 마련될 수 있다.
도 18의 (d)에 도시된 바와 같이, 압력 센서(2400)는 윈도우(2100)의 단변 가장자리를 따라 마련될 수 있다.
도 18의 (e)에 도시된 바와 같이, 복수의 압력 센서(2400)가 윈도우(2100)의 장변 및 단변 가장자리를 따라 소정 간격 이격되어 마련될 수 있다. 이때, 복수의 압력 센서(2400)는 대략 등간격으로 마련될 수 있다.
도 18의 (f)에 도시된 바와 같이, 윈도우(2100)의 네 코너 영역에 압력 센서(2400)가 각각 마련되고, 압력 센서(2400) 사이의 영역, 즉 윈도우(2100)의 장변 및 단변 가장자리 영역에는 접착 테이프 등의 충진재(2410)이 마련될 수 있다.
도 19는 본 발명의 일 실시 예에 따른 압력 센서의 제어 구성도로서, 제 1 및 제 2 압력 센서(2300, 2400)를 포함하는 압력 센서의 제어 구성도이다.
도 19를 참조하면, 본 발명의 일 실시 예에 따른 압력 센서의 제어 구성은 제 1 압력 센서(2300) 및 제 2 압력 센서(2400)의 적어도 어느 하나의 구동을 제어하는 제어부(2500)를 포함할 수 있다. 제어부(2500)는 구동부(2510), 검출부(2520), 변환부(2530) 및 연산부(2540)를 포함할 수 있다. 이때, 구동부(2510), 검출부(2520), 변환부(2530) 및 연산부(2540)를 포함하는 제어부(2500)는 하나의 집적 회로(IC)로 구현될 수 있다. 따라서, 적어도 하나의 압력 센서(2300, 2400)의 출력을 하나의 집적 회로(IC)를 이용하여 처리할 수 있다.
구동부(2510)는 적어도 하나의 압력 센서(2300, 2400)에 구동 신호를 인가한다. 즉, 구동부(2510)은 제 1 압력 센서(2300) 및 제 2 압력 센서(2400)에 구동 신호를 인가하거나, 제 1 압력 센서(2300) 또는 제 2 압력 센서(2400)에 구동 신호를 인가할 수 있다. 이를 위해, 구동부(2510)는 제 1 압력 센서(2300)를 구동시키기 위한 제 1 구동부와, 제 2 압력 센서(2400)를 구동하기 위한 제 2 구동부를 포함할 수 있다. 그러나, 구동부(2510)는 하나로 구성되어 제 1 및 제 2 압력 센서(2300, 2400)에 구동 신호를 인가할 수 있다. 즉, 하나의 구동부(2510)가 제 1 및 제 2 압력 센서(2300, 2400)에 구동 신호를 각각 인가할 수 있다. 제 1 및 제 2 압력 센서(2300, 2400)이 각각 복수로 구성되는 경우 구동부(2510)가 복수의 압력 센서(2300, 2400)에 구동 신호를 인가할 수 있다. 또한, 구동부(2510)로부터의 구동 신호는 제 1 및 제 2 압력 센서(2300, 2400)를 구성하는 제 1 및 제 2 전극(120, 220)의 어느 하나에 인가될 수 있다. 예를 들어, 구동부(2510)은 제 2 전극(220)에 소정의 구동 신호를 인가할 수 있다. 이때, 제 1 및 제 2 압력 센서(2300, 2400)에 인가되는 구동 신호는 서로 동일할 수 있고, 서로 다를 수도 있다. 구동 신호는 소정의 주기와 진폭을 갖는 구형파(Square Wave), 사인파(Sine Wave), 삼각파(Triangle Wave) 등일 수 있으며, 복수의 제 1 전극(220) 각각에 순차적으로 인가될 수 있다. 물론, 구동부(2510)는 복수의 제 1 전극(220)에 동시에 구동 신호를 인가하거나, 복수의 제 1 전극(220) 중에서 일부에만 선택적으로 구동 신호를 인가할 수도 있다.
검출부(2520)는 압력 센서(2300, 2400)의 출력 신호를 검출한다. 즉, 검출부(2520)는 압력 센서(2400)의 복수의 제 1 전극(120)으로부터의 정전용량을 검출한다. 제 2 전극(220)에 소정의 신호가 인가되고 이와 대향되는 제 1 전극(120)에 그라운드 전위가 인가되면 초기 상태에서 제 1 및 제 2 전극(120, 220) 사이의 거리가 모두 동일하여 동일한 정전용량을 갖는다. 그런데, 사용자의 터치에 의해 적어도 일 영역의 제 1 및 제 2 전극(120, 220) 사이의 거리가 가까워지면 이들 사이의 정전용량이 다른 부분에 비해 커지게 된다. 따라서, 검출부(2520)는 압력 센서(2300, 2400)의 제 1 및 제 2 전극(120, 220) 사이의 정전용량의 변화를 검출하여 입력을 검출하게 된다. 여기서, 검출부(2520)는 제 1 및 제 2 압력 센서(2300, 2400)의 정전용량을 각각 검출하기 위한 제 1 및 제 2 검출부를 포함할 수 있다. 그러나, 하나의 검출부(2520)가 제 1 및 제 2 압력 센서(2300, 2400)의 정전용량을 모두 검출할 수 있고, 이를 위해 검출부(2520)는 제 1 및 제 2 압력 센서(2300, 2400)의 정전용량을 순차적으로 검출할 수 있다. 이렇게 검출부(2520)는 압력 센서(2300, 2400)의 정전용량을 검출하여 터치되는 영역과 그 영역의 압력을 검출할 수 있다. 예를 들어, 사용자가 손가락으로 터치하는 경우 손가락의 중심이 접촉되어 압력이 가장 크게 전달되는 중심 영역과 그 주변에 그보다 적은 압력이 전달되는 주변 영역이 있을 수 있다. 중심 영역은 사용자의 터치 압력이 가장 크게 전달되고 그에 따라 제 1 및 제 2 전극 사이의 거리가 가깝고, 주변 영역은 중심 영역에 비해 제 1 및 제 2 전극 사이의 거리가 멀게 되어 중심 영역의 정전용량은 주변 영역에 비해 크게 된다. 따라서, 복수의 영역의 정전용량을 검출하고 이를 비교함으로써 압력이 가장 크게 전달된 중심 영역과 그보다 작은 압력이 전달된 주변 영역을 검출할 수 있고, 결과적으로 사용자가 터치하고자 하는 영역을 중심 영역으로 판단하여 검출할 수 있다. 물론, 사용자가 터치하지 않는 영역은 주변 영역보다 낮은 초기 정전용량을 갖게 된다. 한편, 이러한 검출부(2520)는 적어도 하나의 연산 증폭기와 적어도 하나의 캐패시터를 각각 구비하는 복수의 C-V 컨버터(미도시)를 포함할 수 있으며, 복수의 C-V 컨버터는 제 1 및 제 2 압력 센서(2300, 2400)의 복수의 제 1 전극과 각각 연결될 수 있다. 복수의 C-V 컨버터는 정전용량을 전압 신호로 변경하여 아날로그 신호를 출력할 수 있는데, 이를 위해 예를 들어 복수의 C-V 컨버터 각각은 정전용량을 적분하는 적분 회로를 포함할 수 있다. 적분 회로는 정전용량을 적분하여 소정의 전압으로 변경하여 출력할 수 있다. 한편, 구동부(2510)로부터 복수의 제 2 전극에 구동 신호를 순차적으로 인가하는 경우, 복수의 제 1 전극으로부터 정전용량을 동시에 검출할 수 있으므로, C-V 컨버터는 복수의 제 1 전극의 개수만큼 구비될 수 있다.
변환부(2530)는 검출부(2520)로부터 출력되는 아날로그 신호를 디지털 신호로 변환시켜 검출 신호를 생성한다. 예를 들어, 변환부(2530)는 전압 형태로 검출부(2520)가 출력하는 아날로그 신호가 소정의 기준 전압 레벨까지 도달하는 시간을 측정하여 이를 디지털 신호인 검출 신호로 변환하는 TDC(Time-to-Digital Converter) 회로 또는 검출부(2520)로부터 출력되는 아날로그 신호의 레벨이 소정 시간 동안 변화하는 양을 측정하여 이를 디지털 신호인 검출 신호로 변환하는 ADC(Analog-to-Digital Converter) 회로를 포함할 수 있다.
연산부(2540)는 검출 신호를 이용하여 제 1 및 제 2 압력 센서(2300, 2400)에 인가된 접촉 입력을 판단한다. 검출 신호를 이용하여 제 1 및 제 2 압력 센서(2300, 2400)에 인가된 터치 입력의 개수, 좌표 및 압력을 판단할 수 있다. 연산부(2540)가 터치 입력을 판단하는데 기초가 되는 검출 신호는 정전용량의 변화를 수치화한 데이터일 수 있으며, 특히 터치 입력이 발생하지 않은 경우와 터치 입력이 발생한 경우의 정전용량의 차이를 나타내는 데이터일 수 있다.
이렇게 제어부(2500)를 이용하여 제 1 및 제 2 압력 센서(2300, 2400)의 터치 입력을 판단하고, 이를 전자기기 등의 호스트(4000)의 예를 들어 메인 제어부에 전달할 수 있다. 즉, 제어부(2500)는 검출부(2520), 변환부(2530) 및 연산부(2540) 등을 이용하여 압력 센서(2300, 2400)로부터 입력된 신호를 이용하여 X, Y 좌표 데이터 및 Z 압력 데이터를 생성한다. 이렇게 생성된 X, Y 좌표 데이터 및 Z 압력 데이터는 호스트(4000)로 전달되며, 호스트(4000)는 예를 들어 메인 콘트롤러를 이용하여 X, Y 좌표 데이터 및 Z 압력 데이터를 이용하여 해당 부분의 터치 및 압력을 검출한다.
또한, 제어부(2500)는 제 1 압력 센서(2300)의 출력을 처리하는 제 1 제어부(2500a)와, 제 2 압력 센서(2400)의 출력을 처리하는 제 2 제어부(2500b)를 포함할 수 있다. 즉, 도 16은 제 1 및 제 2 압력 센서(2300, 2400)의 출력을 처리하는 하나의 제어부(2500)를 설명하였으나, 제어부(2500)는 도 20에 도시된 바와 같이 제 1 및 제 2 압력 센서(2300, 2400)의 출력을 각각 처리하는 제 1 및 제 2 제어부(2500a, 2500b)를 포함할 수 있다. 여기서, 제 1 제어부(2500a)는 제 1 구동부(2510a), 제 1 검출부(2520a), 제 1 변환부(2530a) 및 제 1 연산부(2540a)를 포함할 수 있고, 제 2 제어부(2500b)는 제 2 구동부(2510b), 제 2 검출부(2520b), 제 2 변환부(2530b) 및 제 2 연산부(2540b)를 포함할 수 있다. 한편, 제 1 및 제 2 제어부(2500a, 2500b)는 서로 다른 집적 회로(IC)에 각각 구현될 수 있다. 따라서, 제 1 및 제 2 압력 센서(2300, 2400)의 출력을 처리하기 위해 두개의 집적 회로가 필요할 수 있다. 그러나, 제 1 및 제 2 제어부(2500a, 2500b)가 하나의 집적 회로(IC)에 각각 구현될 수도 있다. 이들 제 1 및 제 2 제어부(2500a, 2500b)의 구성 및 기능은 제 1 및 제 2 압력 센서(2300, 2400)의 출력을 각각 나누어 처리하고 도 18을 이용하여 설명한 바와 동일하므로 상세한 설명은 생략하기로 한다.
한편, 전자기기가 제 1 및 제 2 압력 센서(2300, 2400)의 적어도 하나 이외에 터치 센서를 더 구비할 수도 있다. 이 경우 터치 센서의 구동은 도 21에 도시된 바와 같이 하나의 제어부(2500)에 의해 이루어질 수 있다. 즉, 하나의 제어부(2500)가 제 1 및 제 2 압력 센서(2300, 2400)이 적어도 하나와 터치 센서(5000)를 제어할 수 있다. 또한, 터치 센서(5000)를 더 구비하는 경우 도 22에 도시된 바와 같이 제 1 및 제 2 압력 센서(2300, 2400)를 제어하기 위한 제 1 및 제 2 제어부(2500a, 2500b)에 더하여 제 3 제어부(2500c)가 더 마련될 수 있다. 즉, 제 1 및 제 2 압력 센서(2300, 2400) 및 터치 센서(5000)를 각각 제어하기 위해 복수의 제어부가 마련될 수 있다.
도 23은 본 발명의 다른 실시 예에 따른 압력 센서의 데이터 처리 방법을 설명하기 위한 블럭도이다.
도 23에 도시된 바와 같이, 본 발명의 다른 실시 예에 따른 압력 센서의 데이터를 처리하기 위해 제 1 제어부(2600)와, 저장부(2700) 및 제 2 제어부(2800)를 포함할 수 있다. 이러한 구성은 동일 IC에 구성될 수도 있고, 다른 IC에 구성될 수도 있다. 또한, 본 발명의 데이터 처리는 제 1 제어부(2600)와 제 2 제어부(2800)가 연동하여 이루어질 수 있다. 여기서, 제 1 및 제 2 제어부(2600, 2800)는 각각 압력 센서의 데이터를 처리하기 위한 것일 수 있다. 또한, 제 1 및 제 2 제어부(2600, 2800) 중 어느 하나(예를 들어 제 1 제어부)가 터치 센서를 제어하기 위한 제어부이고, 다른 하나(예를 들어 제 2 제어부)가 압력 센서를 제어하기 위한 제어부일 수 있다. 이 경우 터치 센서를 제어하기 위한 제어부는 터치 센서의 제어와 동시에 압력 센서를 제어할 수 있다. 그리고, 저장부(2700)는 제 1 제어부(2600) 및 제 2 제어부(2800)의 데이터 이동 경로가 되는 동시에 제 1 및 제 2 제어부(2600, 2800)의 데이터를 저장하는 역할을 한다.
도 23에 도시된 바와 같이, 제 1 제어부(2600)는 압력 센서를 스캐닝하고 압력 센서의 로 데이터(raw data)를 저장부(2700)에 저장한다. 제 2 제어부(2800)는 저장부(2700)로부터 로 데이터를 입력하여 압력 센서 데이터를 처리하고, 그 결과 값을 저장부(2700)에 저장한다. 저장부(2700)에 저장되는 결과 값은 Z축, 상태 등의 데이터를 포함할 수 있다. 제 1 제어부(2600)는 저장부(2700)로부터 압력 센서의 결과값을 읽어온 후 이벤트 발생 시 인터럽트를 발생하여 호스트에 전송한다.
한편, 도 12 내지 도 14를 이용하여 설명한 바와 같이 전자기기(1000)의 전면 입력부(1360)이 지문 인식 센서로 이루어질 수 있는데, 지문 인식 센서는 본 발명에 따른 압력 센서를 이용할 수도 있다. 이러한 본 발명의 실시 예들에 따른 압력 센서를 이용한 지문 인식 센서의 구성도를 도 24에 도시하였다. 또한, 도 25는 본 발명의 다른 실시 예에 따른 압력 센서의 단면도이다.
도 24를 참조하면, 본 발명의 실시 예들에 따른 압력 센서를 이용한 지문 인식 센서는 압력 센서(2300)와, 압력 센서(2300)와 전기적으로 연결되어 지문을 감지하는 지문 감지부(6000)를 포함할 수 있다. 또한, 지문 감지부(6000)는 신호 생성부(6100), 신호 감지부(6200) 및 연산부(6300) 등을 포함할 수 있다.
한편, 압력 센서(2300)는 도 25에 도시된 바와 같이 손가락이 놓여지는 면에 보호 코팅으로서 보호층(500)이 더 형성될 수 있다. 보호층(500)은 우레탄 또는 보호 코팅으로 작용할 수 있는 또 다른 플라스틱으로 제조 가능하다. 보호층(500)은 접착제를 사용하여 제 2 전극층(200)에 부착된다. 또한, 압력 센서(100)는 압력 센서(1000) 내부에서 지지대로서 이용될 수 있는 지지층(600)을 더 포함할 수 있다. 지지층(600)은 테프론(Teflon) 등으로 제조 가능하다. 물론, 지지층(600)은 테프론 대신에 다른 형태의 지지 재료를 이용할 수 있다. 지지층(600)은 접착제를 이용하여 제 1 전극층(100)에 부착될 수 있다. 한편, 본 발명의 압력 센서(1000)는 유전층(300)이 절개부(320)에 의해 일 방향 및 타 방향으로 소정 간격 이격되어 마련될 수 있고, 절개부(320)에 탄성층(400)이 형성될 수 있다. 이때, 탄성층(400)이 형성됨으로써 각각의 진동이 서로 영향을 미치지 않도록 하는 것이 바람직하다.
지문 감지부(6000)는 압력 센서(2300)의 유전층(300)의 상하부에 마련된 제 1 및 제 2 전극(110, 210)과 각각 연결될 수 있다. 지문 감지부(6000)는 제 1 및 제 2 전극(110, 210)에 초음파 대역의 공진 주파수를 갖는 전압을 인가하여 유전층(300)을 상하부로 진동시킴으로써 초음파 신호를 생성할 수 있다.
신호 생성부(6100)는 압력 센서(2300)에 포함되는 복수의 제 1 및 제 2 전극(110, 210)과 전기적으로 연결되고, 각 전극에 소정의 주파수를 갖는 교류 전압을 인가한다. 전극에 인가되는 교류 전압에 의해 압력 센서(2300)의 유전층(300)이 상하로 진동하면서 소정의 공진 주파수, 예를 들어 10MHz를 갖는 초음파 신호가 외부로 방출된다.
압력 센서(2300) 상의 일면, 예를 들어 보호층(500)의 일면에 특정 물체가 접촉될 수 있다. 보호층(500)의 일면에 접촉되는 물체가 지문을 포함하는 사람의 손가락인 경우, 지문에 존재하는 미세한 골(valley)과 마루(ridge)에 따라 압력 센서(2300)가 방출하는 초음파 신호의 반사 패턴이 다르게 결정된다. 보호층(500)의 일면과 같은 접촉면에 어떠한 물체도 접촉되지 않은 경우를 가정하면, 접촉면과 공기(air)의 매질 차이로 인해 압력 센서(2300)에서 생성되는 초음파 신호는 거의 대부분이 접촉면을 통과하지 못하고 반사되어 되돌아온다. 반면, 접촉면에 지문을 포함하는 특정 물체가 접촉된 경우에는, 지문의 마루(ridge)에 직접 맞닿은 압력 센서(2300)에서 생성되는 초음파 신호의 일부가 접촉면과 지문의 계면을 통과하게 되고, 생성된 초음파 신호의 일부만이 반사되어 되돌아온다. 이와 같이 반사되어 돌아오는 초음파 신호의 세기는 각 물질의 음향 임피던스에 따라 결정될 수 있다. 결국, 신호 감지부(6200)는 지문의 골(valley)과 마루(ridge)에서 초음파 신호에 의해 생성되는 음향 임피던스 차이를 압력 센서(2300)로부터 측정하여 해당 영역이 지문의 마루(ridge)에 맞닿은 센서인지 여부를 판단할 수 있다.
연산부(6300)는 신호 감지부(6200)가 감지한 신호를 분석하여 지문 패턴을 연산한다. 반사 신호의 강도가 낮게 생성된 압력 센서(2300)는 지문의 마루(ridge)에 맞닿은 압력 센서(2300)이며, 반사 신호의 강도가 높게 생성된 - 이상적으로는 출력되는 초음파 신호의 강도와 거의 동일하게 생성된 - 압력 센서(2300)는 지문의 골(valley)에 대응하는 압력 센서(2300)이다. 따라서, 압력 센서(2300)의 각 영역에서 검출되는 음향 임피던스의 차이로부터 지문 패턴을 연산할 수 있다.
한편, 본 발명의 실시 예들에 따른 압력 센서는 햅틱 소자, 압전 부저, 압전 스피커, NFC, WPC 및 MST(Magnetic Secure Transmission) 등과 결합되어 복합 소자로 구현될 수 있다. 즉, 본 발명의 실시 예들에 따른 압력 센서는 이와는 다른 기능을 하는 기능부와 결합되어 복합 소자를 구현할 수 있다. 이러한 본 발명에 따른 압력 센서를 구비하는 복합 소자를 도 26 내지 도 28에 도시하였다. 여기서, 압력 센서(2300)는 도 1 내지 도 11을 이용하여 설명된 본 발명의 다양한 실시 예의 어느 하나의 구조를 이용할 수 있다.
도 26에 도시된 바와 같이, 진동판(7200) 상에 압전 소자(7100)가 형성되고 그 상부에 본 발명의 실시 예들에 따른 압력 센서(2300)가 마련될 수 있다. 압전 소자(7100)는 기판의 양면에 압전층이 형성된 바이모프 타입으로 형성될 수도 있고, 기판의 일면에 압전층이 형성된 유니모프 타입으로 형성될 수도 있다. 또한, 압전층의 상부 및 하부에는 각각 전극이 형성될 수 있다. 즉, 복수의 압전층과 복수의 전극이 교대로 적층되어 압전 소자(7100)가 구현될 수 있다. 여기서, 압전층은 예를 들어 PZT(Pb, Zr, Ti), NKN(Na, K, Nb), BNT(Bi, Na, Ti) 계열의 압전 물질을 이용하여 형성할 수 있다. 진동판(7200)은 압전 소자(7100) 및 압력 센서(2300)와 동일한 형상을 갖도록 마련되며, 압전 소자(7100)보다 크게 마련될 수 있다. 진동판(7200)의 상면에는 압전 소자(7100)가 접착제에 의해 접착될 수 있다. 이러한 진동판(7200)은 금속, 폴리머계 또는 펄프계 물질을 이용할 수 있다. 예를 들어, 진동판(7200)은 수지 필름을 이용할 수 있는데, 에틸렌 플로필렌 고무계, 스티렌 부타디엔 고무계 등 영율이 1MPa∼10GPa로 손실 계수가 큰 재료를 이용할 수 있다. 이러한 진동판(7200)은 압전 소자(7100)의 진동을 증폭시키게 된다.
이렇게 진동판(7200)과 압력 센서(2300) 사이에 마련된 압전 소자(7100)는 전자기기를 통해 인가되는 신호, 즉 교류 전원에 따라 압전 음향 소자 또는 압전 진동 소자로 구동될 수도 있다. 즉, 압전 소자(7100)는 인가되는 신호에 따라 소정의 진동을 발생시키는 액추에이터, 즉 햅틱 소자로 이용될 수 있고, 소정의 음향을 발생시키는 압전 부저 또는 압전 스피커로 이용될 수도 있다.
한편, 압력 센서(2300)와 압전 소자(7100)는 접착제 등에 의해 접착될 수도 있고, 일체로 형성될 수도 있다. 압력 센서(2300)와 압전 소자(7100)가 일체로 제작되는 경우 압력 센서(2300)는 도 7 및 도 8을 이용하여 설명된 구조가 가능하다. 즉, 복수의 압전층 및 전극이 반복적으로 적층된 부분과 그 상부에 제 1 전극이 형성되고, 그 상부에 유전층(300)이 형성되며, 그 상부에 제 2 전극이 형성될 수 있다. 이때, 제 1 전극은 패터닝되어 형성되며, 유전층(300)은 복수의 절개부에 의해 소정 셀 단위로 절개될 수 있으며, 그 상부에 제 2 전극이 패터닝되어 형성될 수 있다.
또한, 압전 소자(7100)가 압전 부저 또는 압전 스피커로 이용되는 경우 압전 소자(7100)와 압력 센서(2300) 사이에는 소정의 공명 공간이 마련되는 것이 바람직하다. 즉, 도 27에 도시된 바와 같이 압전 소자(7100)과 압력 센서(2300) 사이의 가장자리에 소정 두께의 지지대(7300)가 마련될 수 있다. 지지대(7300)는 폴리머를 이용할 수 있다. 지지대(7300)의 높이에 따라 압전 소자(7100)와 압력 센서(2300) 사이의 공명 공간의 크기가 조절될 수 있다. 한편, 지지대(7300)는 압전 소자(7100)와 압력 센서(2300)의 가장자리를 따라 접착 테이프 등이 형성되어 구현될 수도 있다. 또한, 도 28에 도시된 바와 같이 압전 소자(7100)와 압력 센서(2300) 사이의 가장자리에 제 1 지지대(7310)이 형성될 뿐만 아니라 압전 소자(7100)와 진동판(7200) 사이에도 제 2 지지대(7320)가 마련되어 소정의 공명 공간이 마련될 수 있다.
또한, 압력 센서는 NFC, WPC 및 MST와 결합될 수 있는데, 이들 각각과 결합되거나 이들의 적어도 둘 이상과 결합되어 복합 소자를 구현할 수도 있다. NFC, WPC 및 MST는 소정의 시트 상에 소정 형상의 안테나 패턴으로 형성될 수 있다. 물론, 압력 센서를 포함하여 압전 스피커, 압전 액추에이터, WPC 안테나, NFC 안테나 및 MST 안테나의 적어도 하나가 일체화되어 제작될 수도 있다. 또한, 하나의 모듈로 다기능을 구현함으로써 각 기능들이 개별적으로 구비되는 것에 비해 이들이 차지하는 영역의 면적을 줄일 수 있다.
도 29 및 도 30은 본 발명에 따른 압력 센서를 구비하는 복합 소자의 실시 예로서 NFC 및 WPC가 포함된 복합 소자의 분해 사시도 및 결합 사시도이다. 물론, 압력 센서가 NFC, WPC 및 MST 각각과 결합될 수 있으며, 이들 NFC, WPC 및 MST는 소정의 안테나 패턴으로 이루어질 수 있다.
도 29 및 도 30을 참조하면, 압력 센서(1000)의 일면 상에 마련되며 제 1 안테나 패턴(8100)이 형성된 제 1 시트(8000)와, 제 1 시트(8000)의 상부 또는 하부 또는 동일 면상에 마련되며 제 2 안테나 패턴(9100) 및 제 3 안테나 패턴(9200)이 형성된 제 2 시트(9000)를 포함할 수 있다. 여기서, 제 1 시트(8000)의 제 1 안테나 패턴(8100)과 제 2 시트(9000)의 제 2 안테나 패턴(9100)은 서로 연결되어 무선 충전(WPC: Wireless Power Charge) 안테나를 이루고, 제 2 시트(9000)의 제 3 안테나 패턴(9200)은 제 2 안테나 패턴(9100)의 외측에 형성되어 근거리 무선통신(NFC : Near Field Communication) 안테나를 이룬다. 즉, 본 발명에 따른 복합 소자 모듈은 압력 센서, WPC 안테나 및 NFC 안테나가 일체화되어 마련될 수 있다.
제 1 시트(8000)는 압력 센서(2300)의 일면 상에 마련되며, 상부에 제 1 안테나 패턴(8100)이 형성된다. 또한, 제 1 시트(8000)에는 제 1 안테나 패턴(8100)과 연결되어 외부로 인출되는 제 1 및 제 2 인출 패턴(8200a, 8200b)과, 제 2 시트(9000)에 형성된 제 3 안테나 패턴(9200)을 연결시키는 복수의 연결 패턴(8310, 8320, 8330)과, 제 3 안테나 패턴(9200)과 연결되어 외부로 인출되는 제 3 및 제 4 인출 패턴(8400a, 8400b)이 형성된다. 이러한 제 1 시트(8000)는 압력 센서(2300)와 동일 형상으로 마련될 수 있다. 즉, 제 1 시트(8000)는 대략 직사각형의 판 형상으로 마련될 수 있다. 이때, 제 1 시트(8000)의 두께는 압력 센서(2300)의 두께와 같을 수도 있고 다를 수도 있다. 제 1 안테나 패턴(8100)은 제 1 시트(8000)의 예를 들어 중앙부로부터 일 방향으로 회전하여 소정의 턴 수로 형성될 수 있다. 예를 들어, 제 1 안테나 패턴(8100)은 소정의 폭 및 간격을 가지며, 반시계 방향으로 외측으로 회전하는 나선형으로 형성될 수 있다. 이때, 제 1 안테나 패턴(8100)의 선폭 및 간격은 동일할 수도 있고, 다를 수도 있다. 즉, 제 1 안테나 패턴(8100)은 선폭이 간격보다 더 클 수도 있다. 또한, 제 1 안테나 패턴(8100)의 끝단은 제 1 인출 패턴(8200a)과 연결된다. 제 1 인출 패턴(8200a)은 소정의 폭으로 형성되어 제 1 시트(8000)의 일 변으로 노출되도록 형성된다. 예를 들어, 제 1 인출 패턴(8200a)은 제 1 시트(8000)의 장변 방향으로 연장 형성되어 제 1 시트(8000)의 일 단변에 노출되도록 형성된다. 또한, 제 2 인출 패턴(8200b)은 제 1 인출 패턴(8200a)과 이격되어 제 1 인출 패턴(8200a)과 동일 방향으로 형성된다. 이러한 제 2 인출 패턴(8200b)은 제 2 시트(9000) 상에 형성된 제 2 안테나 패턴(9100)과 연결된다. 여기서, 제 2 인출 패턴(8200b)은 제 1 인출 패턴(8200a)보다 길게 형성될 수 있다. 그리고, 복수의 연결 패턴(8310, 8320, 8330)이 제 2 시트(9000)에 형성된 제 3 안테나 패턴(9200)을 연결시키기 위해 마련된다. 즉, 제 3 안테나 패턴(9200)은 적어도 두 영역이 끊어진 예를 들어 반원 형상으로 형성되는데, 이들을 서로 연결시키기 위해 제 1 시트(8000) 상에 복수의 연결 패턴(8210, 8220, 8230)이 형성된다. 연결 패턴(8210)은 제 1 인출 패턴(8200a) 사이의 영역에 일 단변 방향으로 소정의 폭 및 길이로 형성된다. 연결 패턴(8220, 8230)은 연결 패턴(8210)과 장변 방향으로 대향되는 위치, 즉 제 1 및 제 2 인출 패턴(8200a, 8200b)이 형성되지 않은 타 단변 측에 형성되며, 타 단변으로 노출되지 않고 타 단변 방향을 따라 소정의 폭 및 길이로 형성된다. 또한, 연결 패턴(8220, 8230)은 서로 이격되도록 형성된다. 또한, 제 3 및 제 4 인출 패턴(8400a, 8400b)은 제 2 인출 패턴(8200b)와 이격되어 형성되며, 일 단변에 노출되도록 형성된다. 한편, 인출 패턴들(8200, 8400)이 형성된 일 변의 인출 패턴들(8200, 8400)이 형성되지 않은 영역에는 관통홀(8500a, 8500b)이 각각 이격되어 형성된다. 또한, 인출 패턴(8200, 8400)은 연결 단자(미도시)와 연결되고, 이를 통해 전자기기에 연결될 수 있다. 한편, 제 1 시트(8000)는 자성 세라믹으로 제작될 수 있다. 예를 들어, 제 1 시트(8000)는 NiZnCu 또는 NiZn계 자성체를 이용하여 형성할 수 있다. 구체적으로, NiZnCu계 자성 시트는 자성체로서 Fe2O3, ZnO, NiO, CuO가 혼합될 수 있는데, Fe2O3, ZnO, NiO 및 CuO가 5:2:2:1의 비율로 혼합될 수 있다. 이렇게 제 1 시트(8000)가 자성 세라믹으로 제작됨으로써 WPC 안테나 및 NFC 안테나에서 발생되는 전자파를 차폐하거나 전자파를 흡수하여 전자파의 간섭을 억제시킬 수 있다.
제 2 시트(9000)는 제 1 시트(8000) 상에 마련되며, 제 2 안테나 패턴(9100) 및 제 3 안테나 패턴(9200)이 서로 이격되어 형성된다. 또한, 제 2 시트(9000)에는 복수의 홀(9310, 9320, 9330, 9340, 9350, 9360, 9370, 9380)이 형성된다. 이러한 제 2 시트(9000)는 압력 센서(2300) 및 제 1 시트(8000)와 동일 형상으로 마련될 수 있다. 즉, 제 2 시트(9000)는 대략 직사각형의 판 형상으로 마련될 수 있다. 이때, 제 2 시트(9000)의 두께는 압력 센서(2300) 및 제 1 시트(8000)의 두께와 같을 수도 있고 다를 수도 있다. 즉, 제 2 시트(9000)는 압력 센서(2300)보다 얇고 제 1 시트(8000)와 동일 두께로 마련될 수 있다. 제 2 안테나 패턴(9100)은 제 2 시트(9000)의 예를 들어 중앙부로부터 일 방향으로 회전하여 소정의 턴 수로 형성될 수 있다. 예를 들어, 제 2 안테나 패턴(9100)은 소정의 폭 및 간격을 가지며, 시계 방향으로 외측으로 회전하는 나선형으로 형성될 수 있다. 즉, 제 1 시트(8000)에 형성된 제 1 안테나 패턴(8100)과 동일 영역에서 시작하여 시계 방향으로 회전하는 나선형으로 형성되며, 제 1 시트(8000) 상에 형성된 제 2 인출 패턴(8200b)과 중첩되는 영역까지 형성될 수 있다. 이때, 제 2 안테나 패턴(9100)의 선폭 및 간격은 제 1 안테나 패턴(8100)의 선폭 및 간격과 동일할 수 있고, 제 2 안테나 패턴(9100)과 제 1 안테나 패턴(9100)은 중첩될 수 있다. 제 2 안테나 패턴(9100)의 시작점과 끝점에는 각각 홀(9310, 9320)이 형성되며, 홀(9310, 9320)에는 도전 물질이 매립되어 있다. 따라서, 홀(9310)을 통해 제 2 안테나 패턴(9100)의 시작점은 제 1 안테나 패턴(8100)의 시작점과 연결되고, 홀(9320)을 통해 제 2 안테나 패턴(9100)의 끝점은 제 2 인출 패턴(8200b)의 소정 영역과 연결된다. 제 3 안테나 패턴(9200)은 제 2 안테나 패턴(9100)과 이격되어 형성되며, 제 2 시트(9000)의 가장자리를 따라 복수의 턴 수로 형성된다. 즉, 제 3 안테나 패턴(9200)은 제 2 안테나 패턴(9100)을 외부에서 둘러싸도록 마련된다. 이때, 제 3 안테나 패턴(9200)은 제 2 시트(9000) 상의 소정 영역에서 끊어진 형상으로 형성된다. 즉, 제 3 안테나 패턴(9200)은 서로 연결된 복수의 턴 수로 형성되지 않고, 적어도 두 영역에서 끊어져 제 2 시트(9000) 상에서 전기적으로 서로 연결되지 않는 형태로 형성될 수 있다. 이렇게 서로 끊어진 제 3 안테나 패턴(9200) 사이에는 복수의 홀(9330, 9340, 9350, 9360, 9370, 9380)이 형성된다. 또한, 복수의 홀(9330, 9340, 9350, 9360, 9370, 9380)은 도전 물질이 매립되어 제 1 시트(8000)의 연결 패턴(8310, 8320, 8330)과 각각 연결된다. 따라서, 제 3 안테나 패턴(9200)은 적어도 두 영역에서 끊어진 형태로 형성되지만 복수의 홀(9330, 9340, 9350, 9360, 9370, 9380) 및 제 1 시트(8000)의 연결 패턴(8310, 8320, 8330)을 통해 전기적으로 서로 연결될 수 있다. 또한, 제 2 시트(9000)에는 제 1 시트(8000)의 관통홀(8500a, 8500b) 및 복수의 인출 패턴(8200, 8400)을 각각 노출시키는 복수의 관통홀(9410, 9420)이 각각 형성된다. 또한, 관통홀(9420)은 제 1 시트(8000)의 복수, 즉 네개의 인출 패턴(8200, 8400)을 노출시키도록 네개 형성된다. 한편, 제 2 시트(9000)는 제 1 시트(8000)와는 다른 재질의 물질로 제작될 수 있다. 예를 들어, 제 2 시트(9000)는 비자성 세라믹으로 제작될 수 있는데, 저온 동시 소결 세라믹(Low Temperature Co-fired Ceramic; LTCC)을 이용하여 제작될 수 있다.
한편, 안테나 패턴(8100, 9100, 9200), 인출 패턴(8200, 8400), 연결 패턴(8310, 8320, 8330) 등은 동박 또는 도전성 페이스트를 이용하여 형성되는데, 도전성 페이스트를 이용하여 형성하는 경우 도전성 페이스트는 다양한 인쇄법에 의하여 시트 상에 인쇄될 수 있다. 도전성 페이스트의 도전성 입자로는 금(Au), 은(Ag), 니켈(Ni), 구리(Cu), 팔라듐(Pd), 은 코팅 구리(Ag coated Cu), 은 코팅 니켈(Ag coated Ni), 니켈 코팅 구리(Ni coated Cu), 니켈 코팅 그라파이트(Ni coated graphite)의 금속 입자와 카본 나노 튜브, 카본 블랙(Carbon black), 그라파이트(Graphite), 은 코팅 그라파이트(Ag coated graphite) 등이 이용될 수 있다. 도전성 페이스트는 도전성 입자가 유동성을 가지는 유기 바인더 중에 고르게 분산되어 있는 상태의 물질로서 인쇄 등의 방법에 의해 시트 상에 도포되어 건조, 경화, 소성 등의 열처리에 의해 전기적인 도전성을 나타낸다. 또한, 인쇄법으로서는 스크린 인쇄 등의 평판 인쇄, 그라비아 인쇄 등과 같은 롤투롤(Roll to Roll) 인쇄, 잉크젯 인쇄 등이 이용될 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.

Claims (24)

  1. 서로 이격된 제 1 및 제 2 전극층; 및
    상기 제 1 및 제 2 전극층 사이에 마련된 유전층을 포함하고,
    상기 유전층은 압축 및 복원이 가능하며 경도가 10 이하인 재료, 유전율이 4 이상인 복수의 유전체 및 복수의 기공 중 적어도 하나를 포함하는 압력 센서.
  2. 청구항 1에 있어서, 상기 제 1 및 제 2 전극층의 적어도 어느 하나에 형성된 복수의 홀을 더 포함하는 압력 센서.
  3. 청구항 1에 있어서, 상기 유전층은 전자파 차폐 및 흡수 재료를 더 함유하는 압력 센서.
  4. 청구항 1에 있어서, 상기 유전층은 유전층 100%에 대해 상기 유전체가 0.01% 내지 95%의 함량으로 형성된 압력 센서.
  5. 청구항 1에 있어서, 상기 유전층은 1% 내지 95%의 기공율을 갖는 압력 센서.
  6. 청구항 5에 있어서, 상기 기공은 적어도 둘 이상의 크기 및 적어도 하나 이상의 형상으로 형성된 압력 센서.
  7. 청구항 5에 있어서, 상기 유전층은 적어도 일 영역의 기공율 또는 기공의 크기가 다른 영역과 다른 압력 센서.
  8. 청구항 5에 있어서, 상기 유전층은 수직 단면의 기공 단면적율이 수평 단면의 기공 단면적율보다 작은 압력 센서.
  9. 청구항 1에 있어서, 상기 유전층은 2 내지 20의 유전율을 갖는 압력 센서.
  10. 청구항 1에 있어서, 상기 유전층은 500㎛ 이하의 두께로 형성된 압력 센서.
  11. 청구항 1에 있어서, 상기 제 1 전극층의 상측, 상기 제 1 및 제 2 전극층 사이, 그리고 상기 제 2 전극층의 하측 중 적어도 하나에 마련된 절연층을 더 포함하는 압력 센서.
  12. 청구항 1에 있어서, 상기 제 1 및 제 2 전극층 상에 각각 마련되며 서로 연결되는 제 1 및 제 2 연결 패턴을 더 포함하는 압력 센서.
  13. 청구항 1 내지 청구항 12 중 어느 한 항 기재의 압력 센서와,
    상기 압력 센서와는 다른 기능을 갖는 적어도 하나의 기능부를 포함하는 복합 소자.
  14. 청구항 13에 있어서, 상기 압력 센서는 상기 기능부를 인에이블시키는 복합 소자.
  15. 청구항 13에 있어서, 상기 기능부는,
    상기 압력 센서의 일측에 마련된 압전 소자; 및
    상기 압전 소자의 일측에 마련된 진동판을 포함하는 복합 소자.
  16. 청구항 15에 있어서, 상기 압전 소자는 인가되는 신호에 따라 압전 진동 장치 또는 압전 음향 장치로 이용되는 복합 소자.
  17. 청구항 13에 있어서, 상기 기능부는 상기 압력 센서의 일측에 마련되며, 적어도 하나의 안테나 패턴을 각각 구비하는 NFC, WPC 및 MST 중 적어도 어느 하나를 포함하는 복합 소자.
  18. 청구항 13에 있어서, 상기 기능부는 상기 압력 센서의 일면 상에 마련된 압전 소자와, 상기 압전 소자의 일면 상에 마련된 진동판과, 상기 압력 센서의 타면 또는 진동판의 일면 상에 마련된 NFC, WPC 및 MST 중 적어도 하나를 포함하는 복합 소자.
  19. 청구항 13에 있어서, 상기 압력 센서와 전기적으로 연결되어 지문의 골과 마루에서 초음파 신호에 의해 생성되는 음향 임피던스 차이를 상기 압력 센서로부터 측정하여 지문을 감지하는 지문 감지부를 포함하는 복합 소자.
  20. 윈도우;
    상기 윈도우를 통해 영상을 표시하는 표시부; 및
    상기 윈도우를 통해 인가되는 터치 입력의 위치 및 압력을 검출하는 압력 센서를 포함하고,
    상기 압력 센서는, 청구항 1 내지 청구항 12 중 어느 한 항 기재의 압력 센서를 포함하는 전자기기.
  21. 청구항 20에 있어서, 상기 압력 센서는 상기 표시부 하측에 마련된 적어도 하나의 제 1 압력 센서와, 상기 윈도우 하측에 마련된 적어도 하나의 제 2 압력 센서 중 적어도 어느 하나를 포함하는 전자기기.
  22. 청구항 20에 있어서, 상기 윈도우와 상기 표시부 사이에 마련된 터치 센서를 더 포함하는 전자기기.
  23. 청구항 20에 있어서, 상기 제 1 전극층의 상측, 상기 제 1 및 제 2 전극층 사이, 그리고 상기 제 2 전극층의 하측 중 적어도 하나에 마련된 브라켓을 더 포함하는 전자기기.
  24. 청구항 23에 있어서, 상기 제 1 및 제 2 전극층의 어느 하나의 적어도 일부가 상기 브라켓 상에 형성된 전자기기.
PCT/KR2016/012680 2015-11-06 2016-11-04 압력 센서, 이를 구비하는 복합 소자 및 전자기기 WO2017078472A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/774,264 US20180326456A1 (en) 2015-11-06 2016-11-04 Pressure sensor, and composite element and electronic device having same
CN201680078546.6A CN108463700A (zh) 2015-11-06 2016-11-04 压力传感器及具有所述压力传感器的复合元件及电子器件

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2015-0156158 2015-11-06
KR20150156158 2015-11-06
KR20150160636 2015-11-16
KR10-2015-0160636 2015-11-16
KR10-2015-0166550 2015-11-26
KR20150166550 2015-11-26
KR1020160143269A KR101885665B1 (ko) 2015-11-06 2016-10-31 압력 센서, 이를 구비하는 복합 소자 및 전자기기
KR10-2016-0143269 2016-10-31
KR10-2016-0145767 2016-11-03
KR1020160145767A KR101928902B1 (ko) 2015-11-26 2016-11-03 압력 센서, 이를 구비하는 복합 소자 및 전자기기
KR10-2016-0145766 2016-11-03
KR1020160145766A KR20170057133A (ko) 2015-11-16 2016-11-03 압력 센서, 이를 구비하는 복합 소자 및 전자기기

Publications (1)

Publication Number Publication Date
WO2017078472A1 true WO2017078472A1 (ko) 2017-05-11

Family

ID=58662908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012680 WO2017078472A1 (ko) 2015-11-06 2016-11-04 압력 센서, 이를 구비하는 복합 소자 및 전자기기

Country Status (1)

Country Link
WO (1) WO2017078472A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162212A (zh) * 2018-02-14 2019-08-23 三星显示有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110105388A (ko) * 2008-12-23 2011-09-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 미세다공성 유기실리케이트 재료를 갖는 유기 화학적 센서
US20110278078A1 (en) * 2010-05-11 2011-11-17 Synaptics Incorporated Input device with force sensing
KR20150051832A (ko) * 2013-11-05 2015-05-13 삼성전자주식회사 터치 기반 사용자 인터페이스를 포함하는 전자 장치
KR20150059331A (ko) * 2013-11-22 2015-06-01 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
WO2015152443A1 (ko) * 2014-04-02 2015-10-08 엘지전자 주식회사 스타일러스 및 이를 구비하는 이동 단말기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110105388A (ko) * 2008-12-23 2011-09-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 미세다공성 유기실리케이트 재료를 갖는 유기 화학적 센서
US20110278078A1 (en) * 2010-05-11 2011-11-17 Synaptics Incorporated Input device with force sensing
KR20150051832A (ko) * 2013-11-05 2015-05-13 삼성전자주식회사 터치 기반 사용자 인터페이스를 포함하는 전자 장치
KR20150059331A (ko) * 2013-11-22 2015-06-01 엘지이노텍 주식회사 터치 윈도우 및 이를 포함하는 디스플레이 장치
WO2015152443A1 (ko) * 2014-04-02 2015-10-08 엘지전자 주식회사 스타일러스 및 이를 구비하는 이동 단말기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162212A (zh) * 2018-02-14 2019-08-23 三星显示有限公司 显示装置
CN110162212B (zh) * 2018-02-14 2024-04-19 三星显示有限公司 显示装置

Similar Documents

Publication Publication Date Title
US20180326456A1 (en) Pressure sensor, and composite element and electronic device having same
KR101928902B1 (ko) 압력 센서, 이를 구비하는 복합 소자 및 전자기기
WO2017099400A1 (ko) 온도 보상이 적용된 압력을 검출할 수 있는 전극시트 및 터치 입력 장치
WO2016043546A2 (ko) 스마트폰
WO2016167529A1 (ko) 압력 검출 모듈 및 이를 포함하는 스마트폰
WO2016129827A1 (ko) 터치 입력 장치 및 전극 시트
WO2016043544A2 (ko) 터치 입력 장치
WO2016064237A2 (ko) 터치 입력 장치
KR101885665B1 (ko) 압력 센서, 이를 구비하는 복합 소자 및 전자기기
KR20170057133A (ko) 압력 센서, 이를 구비하는 복합 소자 및 전자기기
WO2011111906A1 (ko) 터치 패널
WO2016018126A1 (ko) 스마트폰
WO2020027398A1 (ko) 표시 장치
WO2017135774A1 (ko) 터치 입력 장치
WO2018131799A1 (en) Electronic device with light source
KR101880670B1 (ko) 압력 센서를 구비하는 전자기기
WO2017171224A1 (en) Stylus pen, electronic apparatus for receiving signal from stylus pen, and control method thereof
KR20170056450A (ko) 복합 소자 및 이를 구비하는 전자기기
WO2018151481A1 (ko) 터치 입력 장치
WO2018097460A1 (ko) 사용자 인터페이스 제공을 위한 터치 입력 방법 및 장치
WO2016093669A1 (ko) 전자기기 커버윈도우 일체형 지문센서 모듈 조립체
WO2013145464A1 (ja) 入力装置、表示装置、および電子機器
US20150002761A1 (en) Input apparatus, display apparatus, and electronic apparatus
KR20120121573A (ko) 투영 정전용량 터치 패널 및 그의 제조 방법
KR101920014B1 (ko) 압력 센서 및 이를 구비하는 터치 입력 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15774264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862487

Country of ref document: EP

Kind code of ref document: A1