WO2017078246A1 - Mandrin électrostatique intelligent, dispositif de traitement de substrat incluant ledit mandrin et procédé d'entraînement de module de communication associé - Google Patents

Mandrin électrostatique intelligent, dispositif de traitement de substrat incluant ledit mandrin et procédé d'entraînement de module de communication associé Download PDF

Info

Publication number
WO2017078246A1
WO2017078246A1 PCT/KR2016/007564 KR2016007564W WO2017078246A1 WO 2017078246 A1 WO2017078246 A1 WO 2017078246A1 KR 2016007564 W KR2016007564 W KR 2016007564W WO 2017078246 A1 WO2017078246 A1 WO 2017078246A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant voltage
control unit
smart
electrostatic chuck
disposed
Prior art date
Application number
PCT/KR2016/007564
Other languages
English (en)
Korean (ko)
Inventor
강창수
Original Assignee
(주)파웰이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파웰이엔지 filed Critical (주)파웰이엔지
Publication of WO2017078246A1 publication Critical patent/WO2017078246A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a semiconductor manufacturing facility, and more particularly, to a smart electrostatic chuck, a substrate processing apparatus including the same, and a communication module driving method thereof.
  • a semiconductor device may be manufactured through a plurality of unit processes.
  • Unit processes may include a thin film deposition process, a photo process, and an etching process.
  • the etching process may include a dry etching process using a plasma reaction.
  • the dry etching device may include an electrostatic chuck that receives the substrate. The electrostatic chuck may fix the substrate by electrostatic force during the plasma reaction.
  • One object of the present invention is to provide a smart electrostatic chuck capable of wireless communication.
  • Another object of the present invention is to provide a smart electrostatic chuck capable of removing high frequency power noise, a substrate processing apparatus including the same, and a method of driving the communication module thereof.
  • Another object of the present invention is to provide a smart electrostatic chuck capable of minimizing power consumption, a substrate processing apparatus including the same, and a method of driving the communication module thereof.
  • the present invention discloses a smart electrostatic chuck. Smart electrostatic chuck, the base plate; A ceramic plate disposed on the base plate; An electrode disposed in the ceramic plate; A sensor disposed between the electrode and the base plate and configured to sense a constant voltage provided to the electrode; And a communication module disposed in the base plate and configured to wirelessly receive and output a constant voltage detection signal of the sensor.
  • the communication module includes: a wireless transceiver; And a module controller connected to the wireless transceiver and the sensor and outputting a data signal corresponding to the constant voltage detection signal to the wireless transceiver.
  • the communication module includes: a high frequency power filter connected between the wireless transceiver and the control unit; And between the module control unit and the wireless transmission / reception unit, and between the module control unit and the high frequency power filter, and connect the module control unit to the wireless transmission / reception unit or the high frequency power filter according to the presence or absence of the constant voltage detection signal.
  • the switching unit may further include.
  • a substrate processing apparatus includes a chamber; Plasma electrodes disposed in the chamber and inducing a plasma reaction in the chamber; And a smart electrostatic chuck disposed in the chamber between the plasma electrodes and containing a substrate.
  • the smart electrostatic chuck includes: a base plate; A ceramic plate disposed on the base plate; An electrode disposed in the ceramic plate; A sensor disposed between the electrode and the base plate and configured to sense a constant voltage provided to the electrode; And a communication module disposed in the base plate and configured to wirelessly receive and output a constant voltage detection signal of the sensor.
  • the communication module includes: a wireless transceiver; And a module controller connected to the wireless transceiver and the sensor and outputting a data signal corresponding to the constant voltage detection signal to the wireless transceiver.
  • a method of driving a communication module of a smart electrostatic chuck including: receiving a constant voltage sensing signal from a capacitive sensor of the smart electrostatic chuck; Determining whether the constant voltage detection signal is present; If there is no constant voltage signal, outputting a first switching control signal directly connecting a module control unit and a wireless transceiver; And outputting a second switching control signal connecting the high frequency power filter between the module control unit and the wireless transceiver and the module control unit if there is the constant voltage signal.
  • the smart electrostatic chuck may include a communication module including a high frequency power filter between the control unit and the wireless transceiver and a switching unit between the control unit and the high frequency.
  • the high frequency filter may remove high frequency power to generate plasma power.
  • the switching unit may minimize the power consumption of the communication module of the smart electrostatic chuck by connecting between the control unit and the wireless transceiver, or between the control unit and the high frequency power filter depending on the presence or absence of high frequency power.
  • FIG. 1 is a view illustrating a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an example of the smart electrostatic chuck of FIG. 1.
  • FIG. 3 is a block diagram illustrating an example of the communication module of FIG. 2.
  • FIGS. 4 is a flowchart illustrating a method of driving the smart electrostatic chuck and the communication module of FIGS. 2 and 3.
  • FIG. 1 shows a substrate processing apparatus 10 according to an embodiment of the present invention.
  • the substrate processing apparatus 10 of the present invention may include a dry etching apparatus.
  • the substrate processing apparatus 10 may include a thin film deposition apparatus, an ashing apparatus, an ion implantation apparatus, a photo apparatus, or a cleaning apparatus.
  • the substrate processing apparatus 10 may include a device control unit 20, a chamber 30, a gas supply unit 40, plasma electrodes 50, a high frequency supply unit 60, and a constant voltage supply unit ( 70) and the smart electrostatic chuck 80.
  • the device control unit 20 may control the gas supply unit 40, the plasma electrodes 50, the high frequency supply unit 60, the constant voltage supply unit 70, and the smart electrostatic chuck 80.
  • the device control unit 20 may include a host computer.
  • the chamber 30 may provide the substrate W with a space independent from the outside.
  • the chamber 30 may have a vacuum lower than atmospheric pressure.
  • the gas in chamber 30 may be pumped to a vacuum pressure of about several mmTorr.
  • the gas supply unit 40 may provide a reaction gas in the chamber 30.
  • the gas supply part 40 may provide an etching gas of the substrate W.
  • the etching gas may include SF 6 , CF, or HF gas.
  • Plasma electrodes 50 may be disposed in chamber 30.
  • the plasma electrodes 50 may induce a plasma reaction 56 of the reactant gas.
  • the plasma electrodes 50 may include an upper electrode 52 and a lower electrode 54.
  • the upper electrode 52 may be disposed above the chamber 30.
  • the lower electrode 54 may be disposed below the chamber 30.
  • the high frequency supply unit 60 may provide high frequency power to the upper electrode 52 and the lower electrode 54.
  • the high frequency power of the upper electrode 52 can induce a plasma reaction 56.
  • the plasma reaction 56 may uniformly mix the reaction gases.
  • the plasma reaction 56 can electrically charge the reaction gas.
  • the high frequency power of the lower electrode 54 may concentrate the charged reaction gas onto the substrate W.
  • FIG. Vertical etching characteristics of the substrate W may be improved.
  • high frequency power may be provided from about 10 KW to about 700 KW.
  • the constant voltage supply unit 70 may provide a constant voltage to the smart electrostatic chuck 80.
  • the constant voltage may fix the substrate W on the smart electrostatic chuck 80.
  • the constant voltage may be provided at about -100V to -500V.
  • the smart electrostatic chuck 80 may be disposed below the chamber 30.
  • the smart electrostatic chuck 80 may be provided on the lower electrode 54.
  • the smart electrostatic chuck 80 may fix the substrate W on the lower electrode 54. This is because when the substrate W is separated from the lower electrode 54 by the plasma reaction 56, a defect of the etching process may be caused.
  • the smart electrostatic chuck 80 may communicate wirelessly with the device control unit 20.
  • FIG. 2 illustrates an example of the smart electrostatic chuck 80 of FIG. 1.
  • the smart electrostatic chuck 80 may include a base plate 82, a ceramic plate 84, an electrostatic electrode 86, a sensor 88, and a communication module 90.
  • Base plate 82 may comprise a metal plate.
  • the ceramic plate 84 may be disposed on the base plate 82.
  • the ceramic plate 84 may be smaller than the base plate 82.
  • the electrostatic electrode 86 may be disposed in the ceramic plate 84.
  • the electrostatic electrode 86 may be connected to the constant voltage supply unit 70.
  • the electrostatic electrode 86 may fix the substrate W on the ceramic plate 84 at a constant voltage.
  • Sensor 88 may be disposed in ceramic plate 84 between electrostatic electrode 86 and base plate 82. Sensor 88 may be insulated from electrostatic electrode 86 by ceramic plate 84. Sensor 88 may include a capacitive sensor. The sensor 88 may detect the constant voltage of the electrostatic electrode 86. For example, if a negative voltage is provided to the electrostatic electrode 86, the sensor 88 may be charged with a positive charge.
  • the communication module 90 may be disposed in the base plate 82. Alternatively, the communication module 90 may be disposed between the base plate 82 and the ceramic plate 84. The communication module 90 may be connected to the sensor 88. According to an example, the communication module 90 may implement bidirectional communication between the smart electrostatic chuck 80 and the device control unit 20.
  • the communication module 90 may output a data signal corresponding to the sensing signal of the sensor 88 to the device controller 20.
  • the communication module 90 may receive and store information of the smart electrostatic chuck 80 from the device controller 20.
  • the device control unit 20 may include a device wireless communication module and a device high frequency power filter.
  • FIG. 3 shows an example of the communication module 90 of FIG. 2.
  • the communication module 90 may include a module control unit 92, a wireless transmission / reception unit 94, a high frequency power filter 96, a switching unit 98, and a power supply unit 99. .
  • the module control unit 92 may control the wireless transceiver 94, the high frequency power filter 96, the switching unit 98, and the power supply unit 99.
  • the module controller 92 may provide a data signal corresponding to the detection signal of the sensor 88 to the wireless transceiver 94.
  • the module controller 92 may control a communication frequency of the wireless transceiver 94.
  • the module controller 92 may provide the device controller 20 with a unique identification (ID) of the smart electrostatic chuck 80 through the wireless transceiver 94.
  • the module control unit 92 may include a storage unit.
  • the storage unit may store a unique identification (ID).
  • the module controller 92 may receive an external input control signal through the wireless transceiver 94.
  • the input control signal may include history data of the smart electrostatic chuck 80.
  • the wireless transceiver 94 may wirelessly output the detection signal of the sensor 88.
  • the wireless transceiver 94 may include short range wireless communication such as Bluetooth and / or beacon.
  • the beacon may implement the Internet of Things (IoT) of the smart electrostatic chuck 80. Beacons can reduce the power consumption of the power supply 99 than commercial Bluetooth.
  • IoT Internet of Things
  • the high frequency power filter 96 may be connected between the wireless transceiver 94 and the switching unit 98.
  • the high frequency power filter 96 may filter high frequency power.
  • the high frequency power filter 96 may include a plurality of coils and / or condensations. The coils and / or condensations may be connected in parallel.
  • the switching unit 98 may be connected between the module control unit 92 and the wireless transceiver 94 and between the module control unit 92 and the high frequency power filter 96.
  • the switching unit 98 may include a selection switch.
  • the switching unit 98 may include at least one of a mechanical selection switch, a two-phase switch, a relay, a triac, a thyristor, and a transistor.
  • the power supply unit 99 may provide a power supply voltage to the module control unit 72, the wireless transmission / reception unit 74, and the high frequency power filter 76.
  • the power supply unit 79 may include a battery of about 1V to 10V.
  • the power supply unit 79 may be connected by wire from the outside.
  • the module controller 92 may determine that high frequency power is applied from the constant voltage detection signal.
  • the module control unit 92 may control the switching unit 98 to drive the high frequency power filter 96.
  • the switching unit 98 may be turned on to connect the module control unit 92 and the high frequency power filter 96.
  • the high frequency power filter 96 may act as a resistance between the module control unit 92 and the wireless transceiver 94.
  • the switching unit 78 may be turned on to directly connect the module control unit 92 and the wireless transmission / reception unit 94.
  • the voltage drop of the high frequency power filter 96 can be eliminated. Therefore, power consumption of the power supply unit 99 can be minimized.
  • the driving method of the communication module 90 of the smart electrostatic chuck 80 is as follows.
  • FIGS. 2 and 3 illustrates a method of driving the smart electrostatic chuck 80 and the communication module 90 of FIGS. 2 and 3.
  • the module control unit 92 may be initialized (S10).
  • the module control unit 92 generates a control signal (S20).
  • the module control unit 92 may input a control signal to the sensor 88.
  • the module control unit 92 receives an electrostatic voltage sensing signal (hereinafter referred to as EVSS) (S30).
  • EVSS electrostatic voltage sensing signal
  • the sensor 88 may provide the EVSS to the module control unit 92 according to the control signal.
  • the module control unit 92 determines the presence or absence of the EVSS (S40).
  • the module controller 92 may determine the presence or absence of the high frequency power according to the presence or absence of the EVSS. Without EVSS, there may be no high frequency power. That is, since the communication module 90 is not exposed to the high frequency power, noise of the high frequency power does not have to be removed from the communication module 90. On the other hand, with EVSS, high frequency power may act as noise in communication module 90. The noise of high frequency power should be removed.
  • the module control unit 92 when there is no EVSS, the module control unit 92 outputs the first switching control signal (SCS) to the switching unit 98 (S50).
  • the first SCS may be a control signal of the switching unit 98 directly connecting the module control unit 92 and the wireless transmission / reception unit 94.
  • the module control unit 92 and the wireless transmission / reception unit 94 may be directly connected through the switching unit 98.
  • the module control unit 92 when there is an EVSS, the module control unit 92 outputs the second SCS to the switching unit 98 (S60).
  • the second SCS may be a control signal of the switching unit 98 connecting the module control unit 92 to the high frequency power filter 96.
  • the module control unit 92 may be connected in series to the high frequency power filter 96 and the wireless transmission / reception unit 94 through the switching unit 98.
  • the module controller 92 outputs a data signal to the wireless transceiver 94 (S70). Since the noise of the high frequency power is removed, the device controller 20 may normally receive the data signal from the communication module 90. For example, the module controller 92 may output the constant voltage sensing data signal of the sensor 88 to the wireless transceiver 94. Alternatively, the module controller 92 may output a unique identification (ID) data signal of the smart electrostatic chuck 80.
  • ID unique identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

La présente invention concerne un mandrin électrostatique intelligent, un dispositif de traitement de substrat incluant ledit mandrin et un procédé d'entraînement de celui-ci. Le mandrin électrostatique intelligent comprend une plaque de base, une plaque de céramique, une électrode électrostatique, un capteur de tension constante et un module de communication. Le module de communication comprend : une unité d'émission/réception sans fil; et une unité de commande de module raccordée à l'unité d'émission/réception sans fil et au capteur, ladite unité de commande de module délivrant un signal de données correspondant au signal de tension constante capté, à destination de l'unité d'émission/réception sans fil.
PCT/KR2016/007564 2015-11-03 2016-07-12 Mandrin électrostatique intelligent, dispositif de traitement de substrat incluant ledit mandrin et procédé d'entraînement de module de communication associé WO2017078246A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0153795 2015-11-03
KR1020150153795A KR101719260B1 (ko) 2015-11-03 2015-11-03 스마트 정전 척, 그를 포함하는 기판 처리 장치, 및 그의 통신 모듈 구동 방법

Publications (1)

Publication Number Publication Date
WO2017078246A1 true WO2017078246A1 (fr) 2017-05-11

Family

ID=58496002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007564 WO2017078246A1 (fr) 2015-11-03 2016-07-12 Mandrin électrostatique intelligent, dispositif de traitement de substrat incluant ledit mandrin et procédé d'entraînement de module de communication associé

Country Status (2)

Country Link
KR (1) KR101719260B1 (fr)
WO (1) WO2017078246A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102235765B1 (ko) * 2018-08-24 2021-04-01 어플라이드 머티어리얼스, 인코포레이티드 정전척 조립체 및 정전척 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812361A (en) * 1996-03-29 1998-09-22 Lam Research Corporation Dynamic feedback electrostatic wafer chuck
KR20010080637A (ko) * 1998-12-10 2001-08-22 조셉 제이. 스위니 정전척의 표면 전위를 제어하는 장치 및 방법
KR20050018063A (ko) * 2003-08-13 2005-02-23 삼성전자주식회사 반도체 제조장치의 기판 척킹/디척킹 장치 및 그의 방법
KR20050056757A (ko) * 2003-12-10 2005-06-16 삼성전자주식회사 이온화 공정 챔버
KR20150002120A (ko) * 2013-06-28 2015-01-07 엘지디스플레이 주식회사 정전척 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047564A (ja) * 2006-08-10 2008-02-28 Tokyo Electron Ltd 真空処理装置、静電チャックの診断方法及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812361A (en) * 1996-03-29 1998-09-22 Lam Research Corporation Dynamic feedback electrostatic wafer chuck
KR20010080637A (ko) * 1998-12-10 2001-08-22 조셉 제이. 스위니 정전척의 표면 전위를 제어하는 장치 및 방법
KR20050018063A (ko) * 2003-08-13 2005-02-23 삼성전자주식회사 반도체 제조장치의 기판 척킹/디척킹 장치 및 그의 방법
KR20050056757A (ko) * 2003-12-10 2005-06-16 삼성전자주식회사 이온화 공정 챔버
KR20150002120A (ko) * 2013-06-28 2015-01-07 엘지디스플레이 주식회사 정전척 시스템

Also Published As

Publication number Publication date
KR101719260B1 (ko) 2017-03-23

Similar Documents

Publication Publication Date Title
CN101189772B (zh) 用于等离子体反应器的具有智能升降销机构的静电卡盘
JP6254513B2 (ja) 通信機器の制御システム及び方法
WO2017061689A1 (fr) Appareil électronique, procédé de commande de charge, et support d'enregistrement lisible par ordinateur
WO2020204658A1 (fr) Procédé d'émission de signal de référence de sondage et dispositif électronique pour cela
SG188354A1 (en) Polar regions for electrostatic de-chucking with lift pins
WO2019221466A1 (fr) Dispositif électronique et procédé de transmission d'informations à un dispositif externe pour régler une énergie sans fil à transmettre à partir d'un dispositif externe sur la base de la proximité d'un objet externe
WO2016099193A1 (fr) Procédé et appareil pour prendre en charge une commande d'installation de terminal
WO2017078246A1 (fr) Mandrin électrostatique intelligent, dispositif de traitement de substrat incluant ledit mandrin et procédé d'entraînement de module de communication associé
WO2017119704A1 (fr) Dispositif de traitement par plasma
CN1776993A (zh) 用于电气设备的充电系统和充电器及其控制方法
CN102622314A (zh) 使用独立状态机进行移动设备外围检测
WO2021045487A1 (fr) Procédé de charge sans fil et dispositif électronique compatible avec la charge sans fil
WO2020166894A1 (fr) Dispositif électronique et procédé de recommandation de mot associé
KR20140093244A (ko) 중간 주파수 rf 범위 내의 고 전압 바이어스 전력용 바이패스 커패시터들
WO2019209043A1 (fr) Appareil de charge sans fil et procédé d'alignement automatique de dispositifs électroniques l'utilisant
WO2019164181A1 (fr) Dispositif de conversion de courant et procédé
WO2013005985A2 (fr) Système de communication par proxy et procédé de contrôle de système de communication par proxy dans un environnement ban
WO2019050348A1 (fr) Procédé d'accès aléatoire fondé sur la mobilité et appareil associé
US20180187248A1 (en) Gene sequencing chip, gene sequencing apparatus and gene sequencing method
CN109266727B (zh) 基因测序结构、芯片、系统和基因测序方法
WO2022158660A1 (fr) Station de charge de drone et son procédé de fonctionnement
WO2018043902A2 (fr) Procédé de détection tactile et dispositif de détection tactile l'utilisant
WO2021157837A1 (fr) Dispositif électronique pour planifier basé sur un multi-processeur hétérogène et procédé de fonctionnement
CN108649620A (zh) 无线充电设备及方法
WO2011105855A2 (fr) Appareil de synchronisation d'une tension haute fréquence et d'une tension de polarisation cc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/08/2018)