WO2017076282A1 - Appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène - Google Patents

Appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène Download PDF

Info

Publication number
WO2017076282A1
WO2017076282A1 PCT/CN2016/104284 CN2016104284W WO2017076282A1 WO 2017076282 A1 WO2017076282 A1 WO 2017076282A1 CN 2016104284 W CN2016104284 W CN 2016104284W WO 2017076282 A1 WO2017076282 A1 WO 2017076282A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
flow field
end plate
separation chamber
Prior art date
Application number
PCT/CN2016/104284
Other languages
English (en)
Chinese (zh)
Inventor
卢善富
梁大为
相艳
Original Assignee
北京航空航天大学
卢善富
梁大为
相艳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学, 卢善富, 梁大为, 相艳 filed Critical 北京航空航天大学
Publication of WO2017076282A1 publication Critical patent/WO2017076282A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention relates to an electrolytic cell device using an oxygen reducing cathode based on a porous gas diffusion electrode, and belongs to the water treatment industrial technology in the field of environmental protection.
  • Electrochemical advanced oxidation is an effective method for treating such industrial wastewater. Electrochemical oxidation can effectively oxidize and degrade water by using free radicals generated on the surface of the electrode (such as direct oxidation of hydroxyl radicals) or generated oxidants (such as indirect oxidation of hypochlorous acid). Organic Pollutants.
  • the method has the characteristics of high processing efficiency, simple operation, environmental friendliness, and the like, and is convenient for technology. However, higher energy consumption has been a bottleneck that has plagued the application of electro-oxidation technology to wastewater treatment.
  • the conventional electrochemical oxidation method uses a hydrogen-producing cathode to generate hydrogen in the electrocatalytic reduction of protons in the cathode. Moreover, since the reaction is carried out in an open electrolytic cell, the hydrogen production of the cathode is not effectively recovered, and the mixing of the by-product oxygen of the anode with the hydrogen production of the cathode is also potentially dangerous.
  • the oxygen cathode used in the present invention has been widely used in industrial production of fuel cells and chlor-alkali. In a oxyhydrogen fuel cell, oxygen is reduced at the cathode to form water, and the cathode includes a gas diffusion layer whose main body is a carbon material and a catalytic layer containing a noble metal catalyst.
  • the invention provides an efficient and economical treatment process for changing traditional refractory organic wastewater.
  • the invention utilizes an electrolytic cell based on an oxygen reduction cathode, and under the condition of an applied voltage of 1-5 volts, the anode is highly mineralized to decompose organic pollutants and ammonia nitrogen in the organic wastewater, and the cathode reduces the oxygen which is introduced into water.
  • the invention is unique in that it is more conventional to use oxygen to reduce the cathode.
  • the higher electrode potential of the hydrogen producing cathode reduces the occurrence of reversible reduction of organic pollutants at the cathode and improves current efficiency.
  • the invention effectively reduces the electrode plate spacing and simultaneously increases the cathode potential, resulting in a significant reduction in the electrolytic cell voltage, greatly improving the economics of the electrochemical oxidation process for treating wastewater.
  • An electrolytic cell device using a porous gas diffusion electrode as a cathode comprising an anode chamber, a separation chamber and a cathode chamber;
  • the anode chamber includes an anode end plate, a separation chamber, a porous anode support material and an anode catalytic layer, the lower end of the water flow chamber is provided with a water inlet, and the upper end is provided with a water outlet; the anode catalytic layer and the porous anode support a material disposed between the anode end plate and the separation chamber; the anode catalytic layer is located on a side of the porous anode support material facing the separation chamber; the porous anode support material is provided An anode current collector, the anode current collector sealing out of the anode end plate;
  • the compartment is made of foamed plastic, PMMA or silica gel material, and the hollow portion is filled with a porous glass fiber material.
  • the anode chamber and the cathode chamber are separated by a compartment.
  • an electrolytic cell apparatus using an oxygen reduction cathode comprising:
  • the anode chamber includes an anode end plate, a porous anode support material and an anode catalytic layer, and an anode flow field groove is disposed on a side of the anode end plate facing the separation chamber, and an inlet end of the anode flow field groove is provided There is an anode water inlet, and an anode water outlet is arranged at the water outlet end of the anode flow field tank.
  • the anode catalytic layer is located between the separation chamber and the porous anode support material,
  • the cathode chamber includes a cathode end plate and a gas diffusion electrode, and a cathode flow field groove is disposed on a side of the cathode end plate facing the separation chamber, and a cathode air inlet is provided at an inlet end of the cathode flow field groove a gas outlet end of the cathode flow field groove is provided with a cathode gas outlet; the porous gas diffusion electrode is disposed between the cathode end plate and the separation chamber,
  • the compartment of the compartment is filled with a glass fiber filler.
  • the cathode chamber includes a cathode end plate and a porous gas diffusion electrode, the porous gas diffusion electrode sealing is disposed between the cathode end plate and the separation chamber; and the cathode end plate faces the porous gas diffusion electrode
  • One side is provided with a cathode flow field groove, and the cathode flow field a cathode inlet is disposed at an inlet end of the tank, a cathode outlet is disposed at an outlet end of the cathode flow field groove, a cathode current collector is disposed in the porous gas diffusion electrode, and the cathode current collector is sealed Outside the cathode end plate;
  • the anode end plate is made of polymethyl methacrylate (PMMA).
  • the porous male support material is a corrosion resistant wire mesh having a mesh number of 50-400 mesh, a wire diameter of 10-500 micrometers, and a wire mesh thickness of 100-1000 micrometers.
  • the anode catalytic layer is RuO 2 -TiO 2 , PbO 2 , SnO 2 -Sb 2 O 3 , Nb 2 O 5 -SnO 2 , SnO 2 -In 2 O 3 , IrO 2 -Ta 2 O 5 , or rare earth metal oxide / Sb 2 or a mixture of a medium 2 O 5 -SnO more.
  • the corrosion resistant wire comprises a tungsten wire, a titanium wire, a molybdenum wire or a twisted wire.
  • the corrosion resistant wire forming mesh is a foamed titanium mesh having a thickness of 300 micrometers to 2000 micrometers;
  • the corrosion-resistant wire forming mesh is a porous titanium plate having a thickness of 500 micrometers to 3000 micrometers and a porosity of more than 40%.
  • the anode flow field groove is designed to be a lateral bottom wide groove and a longitudinal narrow groove, the wide groove width is 3-6 mm, the narrow groove width is 1-3 mm, and the groove depth is 0.5-2.0 mm.
  • the cathode end plate is made of PMMA.
  • the porous gas diffusion electrode is composed of a gas diffusion layer, a hydrophobic skeleton, and a catalyst.
  • Materials constituting the gas diffusion layer include carbon black, graphite, carbon nanotubes, and carbon nanofibers.
  • the materials constituting the hydrophobic skeleton include polytetrafluoroethylene (PTFE), paraffin wax, polyethylene, polypropylene, and wax, and are added in the form of a dry powder additive, a liquid suspension (including a special dispersant), or a spherical shape. In the form of a film on a fiber or a porous substrate.
  • the catalyst is a Pt catalyst suitable for an oxygen reduction reaction.
  • the cathode flow field groove is designed to be a horizontal or vertical serpentine shape and a comb groove arrangement, the groove width is 1-3 mm, the groove depth is 0.5-2.0 mm, and two or three flow channel grooves are arranged in parallel, and the flow field channel is arranged. From the beginning of the water inlet to the end of the water outlet;
  • the cathode chamber and the anode chamber are separated by the separation chamber.
  • a silicon or foam seal that is sealed by the silicone seal between the anode end plate, the separation chamber, and the porous gas diffusion electrode.
  • the present invention employs an oxygen-reducing cathode, and oxygen is reduced at the cathode to form water. Compared with the conventional hydrogen-producing cathode, the voltage of the electrolytic cell can be greatly reduced due to changes in the electrode reaction.
  • Oxygen reduction cathode has higher potential than traditional hydrogen production cathode, effectively avoiding pollutants
  • a reversible redox reaction occurs at the yin and yang poles to improve current efficiency.
  • the electrolytic cell designed in the present invention can greatly reduce the plate spacing and reduce the solution potential drop compared to the conventional open electrolytic cell.
  • FIG. 1 is a diagram showing the structure of an oxygen cathode electrooxidation system according to an embodiment of the present invention.
  • Figure 2 is a development view of the oxygen cathode electrooxidation system of the embodiment shown in Figure 1.
  • Figure 3 is a front elevational view of an anode in accordance with one embodiment of the present invention.
  • Figure 4 is a left side view of the anode shown in Figure 3.
  • an electrolytic cell apparatus using an oxygen-reducing cathode includes a partitioning chamber 7 and a glass fiber filled therein and a cavity therein.
  • an anode flow field tank 2 the inlet end of the anode flow field tank 2 is provided with an anode water inlet 101, and the water outlet end of the anode flow field tank 2 is provided with an anode water outlet 102;
  • the anode catalytic layer 5 is located at the Between the separation chamber 7 and the porous anode support material 4, and is in close contact with the porous anode support material 4; the porous anode support material 4 is provided with an anode current collector 6, the an
  • the porous male support material 4 is a corrosion resistant wire mesh having a mesh number of 50-400 mesh, a wire diameter of 10-500 micrometers, and a wire mesh thickness of 100- 1000 micrometers;
  • the anode catalytic layer 5 is RuO 2 -TiO 2 , PbO 2 , SnO 2 -Sb 2 O 3 , Nb 2 O 5 -SnO 2 , SnO 2 -In 2 O 3 , IrO 2 -Ta 2 O 5 or / Sb one kind of rare earth metal oxide or a mixture of 2 2 O 5 -SnO more.
  • the wire of the corrosion resistant wire mesh is one or more selected from the group consisting of tungsten wire, titanium wire, molybdenum wire or wire.
  • the corrosion-resistant wire forming mesh is a foamed titanium mesh having a thickness of 300 micrometers to 2000 micrometers; or the corrosion-resistant wire mesh is porous titanium.
  • the plate has a thickness of from 500 micrometers to 3000 micrometers and a porosity of greater than 40%.
  • the cathode end plate 11 is made of polymethyl methacrylate (PMMA);
  • the cathode flow field groove 10 is designed as a lateral or longitudinal serpentine, combed groove arrangement,
  • the groove width is 1-3 mm, the groove depth is 0.5-2.0 mm, and two or three flow channel grooves are arranged in parallel to form a flow field channel from the air inlet to the end of the gas outlet;
  • the catalyst of the porous gas diffusion electrode 9 is a Pt catalyst .
  • the oxygen reduction cathode electrolyzer device further comprises a foam seal 3, the anode end plate 1 and the separation chamber 7 being sealed by the foam seal 3
  • the cathode end plate 11 and the separation chamber 7 are also sealed by the foam sealing ring 3.
  • the anode chamber includes an anode end plate 1, an anode flow field groove 10, a foam sealing ring 3, an anode current collector 6, a porous anode support material 4, and an anode catalytic layer 5.
  • the anode end plate 1 is made of PMMA, and the anode flow field groove is formed by a lateral bottom wide groove and a longitudinal narrow groove, the wide groove width is 3-6 mm, the narrow groove width is 1-3 mm, and the groove depth is 0.5-2.0. Millimeter.
  • the porous male support material is a wire mesh, and is made of corrosion-resistant metal wire such as tungsten wire, titanium wire, molybdenum wire, and/or silk wire, and the mesh number is 50-400 mesh, and the wire diameter is 10- 500 microns, the thickness of the wire mesh is from 100 microns to 1000 microns; in one embodiment, a titanium foam mesh is used as the anode support material having a thickness of from about 300 microns to about 2000 microns; in another embodiment, porous titanium is used.
  • a support material made plate having a thickness of 500-3000 microns, a porosity greater than 40%; the anode catalyst layer 5 RuO 2 -TiO 2, PbO 2, SnO 2 -Sb 2 O 3, Nb 2 O 5 -SnO 2, SnO 2 -In 2 O 3 , IrO 2 -Ta 2 O 5 , or a mixture of one or more of rare earth metal oxides/Sb 2 O 5 -SnO 2 .
  • the cathode includes a cathode end plate 11, a cathode flow field groove 10, a foam sealing ring 3, a gas diffusion electrode 9, a cathode current collector 8, a cathode end plate 11 made of PMMA material, and a cathode flow field 10 design different from the anode flow field 2.
  • It is a horizontal or vertical serpentine, comb-groove arrangement with a groove width of 1-3 mm and a groove depth of 0.5-2.0 mm.
  • Two or three flow channel grooves are arranged in parallel, and the flow field channel starts from the air inlet to the outlet.
  • the gas port ends; the gas diffusion electrode 9 is made of PTFE, acetylene black, and Pt catalyst.
  • the cathode chamber and the anode chamber of the electrolytic cell are separated by the partition chamber 7.
  • the partition chamber 7 used is filled with glass fiber and has a thickness of 500-2000 micrometers; the working voltage applied to the electrolytic cell is 1-5 volts, and the electrolytic cell
  • the working current density is 1-120 mA/cm2; the water inlet 101 on the anode plate 1 is connected to the beginning of the anode flow field 2 at the bottom of the electrode plate; the water outlet 102 on the anode plate 1 is disposed on the side of the plate upper portion, and The ends of the anode flow field 2 are connected.
  • the gas inlet port 201 on the cathode plate 11 is connected to the beginning of the cathode flow field 10 at the bottom of the electrode plate; the water outlet port 202 on the anode plate 11 is disposed on the side of the plate upper portion and is connected to the end of the cathode flow field 10.
  • the organic wastewater enters from the water inlet 101 on the anode plate 1 of the oxygen reduction cathode electrolysis cell at a flow rate of 0.02-0.20 ml/(cm 2 ⁇ min), and is degraded and mineralized under the electrooxidation of the anode, and the treated water is discharged from the anode.
  • the water outlet 102 on the plate 1 is discharged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

La présente invention concerne un appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène caractérisé en ce qu'il comporte: une chambre de séparation (7), une chambre d'anode sur un côté de la chambre de séparation (7), et une chambre de cathode sur l'autre côté de la chambre de séparation (7), la chambre d'anode comprenant une plaque à bornes d'anode (1), un matériau poreux de support d'anode (4), et une couche catalytique d'anode (5). Une cuve de champ d'écoulement d'anode (2) est prévue sur un côté, faisant face à la chambre de séparation (7), de la plaque à bornes anode (1), un orifice d'entrée d'eau (101) est prévu à une extrémité d'orifice d'entrée d'eau d'anode au niveau de la cuve de champ d'écoulement d'anode (2) et un orifice de sortie d'eau d'anode (102) est prévu au niveau d'un orifice de sortie d'eau de la cuve de champ d'écoulement d'anode (2). La couche catalytique d'anode (5) est située entre la chambre de séparation (7) et le matériau poreux de support d'anode (4). La chambre de cathode comporte une plaque à bornes de cathode (11) et une électrode de diffusion de gaz (9). Une cuve de champ d'écoulement de cathode (10) est prévue sur un côté faisant face à la chambre de séparation (7), de la plaque à bornes de cathode (11), un orifice entrée de gaz de cathode (201) est prévu à une extrémité d'orifice d'entrée de gaz de la cuve de champ d'écoulement de cathode (10) et un orifice de sortie de gaz de cathode (202) est prévu au niveau d'un orifice de sortie de gaz de la cuve de champ d'écoulement de cathode (10). L'électrode poreuse de diffusion de gaz (9) est disposée entre la plaque à bornes de cathode (11) et la chambre de séparation (7). Une cavité de la chambre de séparation (7) est remplie de charges de fibres de verre.
PCT/CN2016/104284 2015-11-06 2016-11-01 Appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène WO2017076282A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510751195.8A CN105461023B (zh) 2015-11-06 2015-11-06 一种采用氧还原阴极的电解槽装置
CN2015107511958 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017076282A1 true WO2017076282A1 (fr) 2017-05-11

Family

ID=55599250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104284 WO2017076282A1 (fr) 2015-11-06 2016-11-01 Appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène

Country Status (2)

Country Link
CN (1) CN105461023B (fr)
WO (1) WO2017076282A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976553A (zh) * 2022-12-28 2023-04-18 哈尔滨工业大学(威海) 一种带有紊流强化模块的电解水制氢装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105461023B (zh) * 2015-11-06 2018-08-10 北京航空航天大学 一种采用氧还原阴极的电解槽装置
CN109607694A (zh) * 2018-12-27 2019-04-12 陕西麦可罗生物科技有限公司 一种春雷霉素原药车间浓缩水循环利用装置及方法
CN111058054B (zh) * 2020-01-03 2022-01-18 大连理工大学 一种用盐桥取代Nafion膜的电催化氮还原合成氨的装置及其方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254650A (ja) * 1999-03-15 2000-09-19 Permelec Electrode Ltd 水処理方法及び水処理用装置
CN201358182Y (zh) * 2009-01-15 2009-12-09 杭州生源医疗保健技术开发有限公司 用现场发生的芬顿试剂进行水处理的装置
CN101734779A (zh) * 2008-11-17 2010-06-16 杭州生源医疗保健技术开发有限公司 现场制备Fenton试剂处理废水的方法
CN104192950A (zh) * 2014-09-11 2014-12-10 北京今大禹环保技术有限公司 一种连续进水式固态电解质电解槽阴极系统
CN104192957A (zh) * 2014-09-11 2014-12-10 北京今大禹环保技术有限公司 一种采用阴离子交换膜固态电解质电解槽装置
CN204111387U (zh) * 2014-09-11 2015-01-21 北京今大禹环保技术有限公司 一种采用阴离子交换膜固态电解质电解槽装置
CN204198463U (zh) * 2014-09-11 2015-03-11 北京今大禹环保技术有限公司 一种连续进水式固态电解质电解槽阴极系统
CN104817137A (zh) * 2015-05-19 2015-08-05 武汉威蒙环保科技有限公司 一种用于水处理的准零极距电解槽
CN105461023A (zh) * 2015-11-06 2016-04-06 北京航空航天大学 一种采用氧还原阴极的电解槽装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20012379A1 (it) * 2001-11-12 2003-05-12 Uhdenora Technologies Srl Cella di elettrolisi con elettrodi a diffusione di gas
DE102008015901A1 (de) * 2008-03-27 2009-10-01 Bayer Technology Services Gmbh Elektrolysezelle zur Chlorwasserstoffelektrolyse
CN104211141B (zh) * 2014-09-11 2016-07-06 北京今大禹环保技术有限公司 一种spe电解槽的布水结构及其布水方法
CN204151114U (zh) * 2014-09-11 2015-02-11 北京今大禹环保技术有限公司 一种spe电解槽的布水结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254650A (ja) * 1999-03-15 2000-09-19 Permelec Electrode Ltd 水処理方法及び水処理用装置
CN101734779A (zh) * 2008-11-17 2010-06-16 杭州生源医疗保健技术开发有限公司 现场制备Fenton试剂处理废水的方法
CN201358182Y (zh) * 2009-01-15 2009-12-09 杭州生源医疗保健技术开发有限公司 用现场发生的芬顿试剂进行水处理的装置
CN104192950A (zh) * 2014-09-11 2014-12-10 北京今大禹环保技术有限公司 一种连续进水式固态电解质电解槽阴极系统
CN104192957A (zh) * 2014-09-11 2014-12-10 北京今大禹环保技术有限公司 一种采用阴离子交换膜固态电解质电解槽装置
CN204111387U (zh) * 2014-09-11 2015-01-21 北京今大禹环保技术有限公司 一种采用阴离子交换膜固态电解质电解槽装置
CN204198463U (zh) * 2014-09-11 2015-03-11 北京今大禹环保技术有限公司 一种连续进水式固态电解质电解槽阴极系统
CN104817137A (zh) * 2015-05-19 2015-08-05 武汉威蒙环保科技有限公司 一种用于水处理的准零极距电解槽
CN105461023A (zh) * 2015-11-06 2016-04-06 北京航空航天大学 一种采用氧还原阴极的电解槽装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976553A (zh) * 2022-12-28 2023-04-18 哈尔滨工业大学(威海) 一种带有紊流强化模块的电解水制氢装置及方法

Also Published As

Publication number Publication date
CN105461023A (zh) 2016-04-06
CN105461023B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Espinoza-Montero et al. Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode
EP1033419B1 (fr) Cellule d'electrolyse a la soude, dotee d'une electrode de diffusion de gaz
CN104211141B (zh) 一种spe电解槽的布水结构及其布水方法
WO2017076282A1 (fr) Appareil à cuve électrolytique utilisant une cathode de réduction d'oxygène
Guerrini et al. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells
KR101399172B1 (ko) 산소 가스 확산 음극, 이것을 사용한 전해조, 염소 가스의 제조 방법, 및 수산화나트륨의 제조 방법
CN104176797B (zh) 一种低能耗的难降解有机废水电化学处理装置及方法
JP2000104189A (ja) 過酸化水素の製造方法及び製造用電解槽
Mousset Interest of micro-reactors for the implementation of advanced electrocatalytic oxidation with boron-doped diamond anode for wastewater treatment
JPH11104648A (ja) 海水電解装置
CN204162485U (zh) 一种低能耗的难降解有机废水电化学处理装置
De Sousa et al. Electrochemical ozone production using electrolyte-free water for environmental applications
Xie et al. Hydrogen peroxide generation from gas diffusion electrode for electrochemical degradation of organic pollutants in water: A review
KR101895525B1 (ko) 역전기투석 장치를 이용한 저 에너지 소비형 수산화나트륨 생산 장치 및 이를 이용한 하이브리드 시스템
CN112408554B (zh) 一种漂浮式双氧源气体扩散电极装置及应用
CN204111387U (zh) 一种采用阴离子交换膜固态电解质电解槽装置
Vasconcelos et al. Recent advances on modified reticulated vitreous carbon for water and wastewater treatment–A mini-review
CN107268023A (zh) 一种修饰石墨烯担载贵金属氧化物阳极的制备方法
Rufino et al. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
Park et al. Three-dimensionally interconnected titanium foam anode for an energy-efficient zero gap-type chlor-alkali electrolyzer
González Pérez et al. Electrochemical synthesis of hydrogen peroxide with a three‐dimensional rotating cylinder electrode
CN204151114U (zh) 一种spe电解槽的布水结构
CN205653218U (zh) 多维电解污水处理设备
CN104192957B (zh) 一种采用阴离子交换膜固态电解质电解槽装置
Qiao et al. Electrochemical production of H2O2 with 100% current efficiency and strong stability by adjusting the interfacial side reactions of air-breathing cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861550

Country of ref document: EP

Kind code of ref document: A1