CN107268023A - 一种修饰石墨烯担载贵金属氧化物阳极的制备方法 - Google Patents

一种修饰石墨烯担载贵金属氧化物阳极的制备方法 Download PDF

Info

Publication number
CN107268023A
CN107268023A CN201710540826.0A CN201710540826A CN107268023A CN 107268023 A CN107268023 A CN 107268023A CN 201710540826 A CN201710540826 A CN 201710540826A CN 107268023 A CN107268023 A CN 107268023A
Authority
CN
China
Prior art keywords
anode
grapheme modified
metal oxide
graphene
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710540826.0A
Other languages
English (en)
Inventor
辛永磊
段体岗
许立坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
725th Research Institute of CSIC
Original Assignee
725th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 725th Research Institute of CSIC filed Critical 725th Research Institute of CSIC
Priority to CN201710540826.0A priority Critical patent/CN107268023A/zh
Publication of CN107268023A publication Critical patent/CN107268023A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明提供了一种高性能金属氧化物阳极,其包括导电基体和在导电基体上沉积的一层由修饰石墨烯掺杂的贵金属氧化物涂层。通过水热化学合成方法实现贵金属前驱体在修饰石墨烯表面的有效担载,保证石墨烯在阳极涂层中的真实存在,大幅提升阳极电催化活性和稳定性。

Description

一种修饰石墨烯担载贵金属氧化物阳极的制备方法
技术领域
本发明属于电化学技术领域,尤其是一种修饰石墨烯担载贵金属氧化物的制备方法。
背景技术
电解工业用阳极要求具有良好的电催化活性,以便降低电解槽槽压,提高电解效率;同时,还需要有高稳定性和长的使用寿命。钛基金属氧化物阳极,是由钛基体上涂覆IrO2、RuO2、Ta2O5、SnO2等贵金属氧化物涂层而构成,因其具有良好的电化学活性、低消耗速率和长寿命,而且重量轻、易于加工成所需的形状,高的性价比和广谱适应性等优点,在氯碱工业、电镀、污水处理、阴极保护和有机电合成等领域作为析氧或析氯电极应用十分广泛。
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新型二维碳纳米材料,与碳纳米管(CNTs)和富勒烯(C60)相比,石墨烯有更大的比表面积(2630m2·g-1)和更高的化学稳定性。石墨烯不仅是已知材料中最薄的一种,而且还非常牢固坚硬,作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯凭借其优异的电学、力学和热学性质,在材料研究领域得到了广泛关注,掺杂适量石墨烯对改善金属氧化物阳极的电催化活性和稳定性具有明显促进作用。
我们先前申请的中国专利(辛永磊,刘峰,许立坤,一种石墨烯掺杂金属氧化物阳极的制备方法,申请号201510205726.3)公开了一种石墨烯掺杂金属氧化物阳极的制备方法,通过掺杂适量石墨烯,阳极的电催化活性和稳定性有所提高,但制备过程中发现石墨烯存在严重的高温烧蚀分解问题,导致其高表面积的优良特性无法得到充分发挥,制约了阳极性能的大幅提升。
发明内容
针对现有技术中的石墨烯掺杂金属氧化物阳极存在的石墨烯高温烧蚀分解的不足,本发明提供一种石墨烯修饰改性预处理方法,通过水热化学合成方法实现贵金属前驱体在修饰石墨烯表面的有效担载,保证石墨烯在阳极涂层中的真实存在,大幅提升阳极电催化活性和稳定性。
为解决上述技术问题,本发明提供一种高性能金属氧化物阳极,其包括导电基体和在导电基体上沉积的一层由修饰石墨烯掺杂的贵金属氧化物涂层。
其中,所述导电基体采用的是阀金属钛,质量百分比纯度大于99%。
其中,所述导电基体的结构形状可以为网状、板状、管状或棒状。
其中,所述贵金属氧化物涂层可以由IrO2、RuO2、PtO2、Ta2O5、SnO2中的单一组分或多组分复合构成。
其中,待修饰的石墨烯的单层率大于70%,纯度大于99%,厚度为0.8~1.2nm。
其中,所述修饰石墨烯是采用氮(N)官能团进行功能修饰的石墨烯。
其中,所述氮(N)官能团功能修饰的石墨烯采用等离子体预处理法修饰石墨烯表面获得。
本发明还提供应用于上述阳极的修饰石墨烯的制备方法,具体为:
在氮气气氛下等离子处理时间为80s~200s,氮气的流量控制在6×10-3m3/h,氮气压力为50Pa~300Pa,等离子功率为75W~120W,得到N官能团修饰的石墨烯。
本发明还提供应用于上述阳极的修饰石墨烯掺杂贵金属氧化物的方法,其包括:
第一步,修饰石墨烯的制备;
第二步,贵金属氧化物前驱体盐溶液的制备;
第三步,修饰石墨烯的掺杂。
本发明还提供上述阳极的制备方法,其包括:
第一步,修饰石墨烯的制备;
第二步,修饰石墨烯掺杂贵金属氧化物溶液的制备;
第三步,将含修饰石墨烯担载贵金属氧化物的溶液转移至电解槽中,经过除油、草酸刻蚀的钛基体作为阴极,铂片作为阳极,阴阳极间距为30mm,采用脉冲电源施加电流密度10mA/cm2~15mA/cm2,电沉积时间为10min~60min,最终在钛基体表面得到修饰石墨烯增强金属氧化物阳极,金属氧化物载量达到10g/m2~15g/m2
有益的技术效果
和现有技术相比,本发明涉及的新型修饰石墨烯担载金属氧化物阳极制备方法避免了石墨烯高温烧蚀分解的技术难题,使石墨烯优良特性得到充分发挥,阳极性能大幅提升,电催化活性和稳定性提高了一倍以上,且制备方法操作简单,工艺稳定。
附图说明
图1修饰石墨烯担载贵金属氧化物的表面形貌;
图2 Ti/IrO2-Ta2O5阳极(C)和Ti/IrO2-Ta2O5-G阳极(D)的循环伏安曲线;
图3 Ti/IrO2-Ta2O5阳极(C)和Ti/IrO2-Ta2O5-G阳极(D)的循环伏安电量;
图4 Ti/IrO2-Ta2O5阳极(C)和Ti/IrO2-Ta2O5-G阳极(D)的强化电解寿命。
具体实施方式
本发明提供一种高性能金属氧化物阳极,其包括导电基体和在导电基体上沉积的一层由修饰石墨烯掺杂的贵金属氧化物涂层。
所述导电基体采用的是阀金属钛,质量百分比纯度大于99%,钛基体的结构形状可以为网状、板状、管状或棒状。
所述贵金属氧化物涂层可以由IrO2、RuO2、PtO2、Ta2O5、SnO2中的单一组分或多组分复合构成。
待修饰的石墨烯的单层率大于70%,纯度大于99%,厚度为0.8~1.2nm。
所述修饰石墨烯是采用氮(N)官能团进行功能修饰的石墨烯,采用等离子体预处理法修饰石墨烯表面获得氮(N)官能团功能修饰的石墨烯。
所述修饰石墨烯的修饰方法为:
在氮气气氛下等离子处理时间为80s~200s,氮气的流量控制在6×10-3m3/h,氮气压力为50Pa~300Pa,等离子功率为75W~120W,得到N官能团修饰的石墨烯。
所述修饰石墨烯掺杂贵金属氧化物溶液的方法为:
第一步,贵金属氧化物前驱体盐溶液的制备,选择由H2IrCl6·6H2O、RuCl3、H2PtCl6·6H2O、TaCl5正丁醇溶液、SnCl4等金属元素形成的溶液或上述多种金属元素构成的混合溶液,加入适量的修饰石墨烯,添加多元醇溶剂控制修饰石墨烯在溶液中的含量为0.1g/L~3g/L,金属离子的总浓度为0.2mol/L~0.3mol/L。
第二步,修饰石墨烯的掺杂,将上述溶液放入水热釜中,在马弗炉中高温反应6h~12h,控制反应温度为350℃~450℃,N官能团修饰石墨烯与金属前驱体盐发生络合反应,反应结束后贵金属氧化物在修饰石墨烯表面有效担载。
所述多元醇可以为丙三醇、正丁醇等多种多元醇。
所述新型阳极的制备方法为:
将含修饰石墨烯担载贵金属氧化物的溶液转移至电解槽中,经过除油、草酸刻蚀的钛基体作为阴极,铂片作为阳极,阴阳极间距为30mm,采用脉冲电源施加电流密度10mA/cm2~15mA/cm2,电沉积时间为10min~60min,最终在钛基体表面得到修饰石墨烯增强金属氧化物阳极,金属氧化物载量达到10g/m2~15g/m2
以下采用实施例和附图来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
实施例1修饰石墨烯担载贵金属氧化物阳极
第一步,基体预处理:采用板状140mm×110mm×3mm的TA2工业纯钛板作为电极基体,首先采用粒度120μm的金刚砂对钛板进行喷砂处理,用蒸馏水冲洗除去残留砂粒和金属屑;然后将钛板放入丙酮中进行除油,最后将除油后的钛板放入10%(质量分数)草酸溶液中,在沸腾状态下保持2h,取出后用去离子水冲洗。将上述处理过的钛板吹干放入无水乙醇中备用。
第二步,石墨烯修饰,采用市售的石墨烯作为原材料,单层率为80%,厚度为0.8nm;采用等离子体预处理方法,在氮气气氛下等离子处理时间为120s,氮气的流量控制在6×10-3m3/h,氮气压力为150Pa,等离子功率为75W,得到N官能团修饰的石墨烯。
第三步,贵金属氧化物前驱体盐溶液的制备,将氯铱酸(H2IrCl6·6H2O)和TaCl5按摩尔比Ir∶Ta=70∶30加入到正丁醇中配制正丁醇溶液,加入第二步所述修饰石墨烯,进一步添加正丁醇溶剂控制修饰石墨烯在溶液中的含量为0.1g/L,金属离子总浓度为0.3mol/L,磁力搅拌至均匀得到混合溶液。
第四步,修饰石墨烯的掺杂将上述溶液放入,水热釜中,在马弗炉中高温反应8h,控制反应温度为350℃,修饰石墨烯与金属前驱体盐发生络合反应,反应结束后贵金属氧化物在石墨烯表面有效担载。
第五步,将上述含修饰石墨烯担载贵金属氧化物的溶液转移至电解槽中,预处理的钛基体作为阴极,铂片作为阳极,阴阳极间距为30mm,采用脉冲电源施加电流密度10mA/cm2,电沉积时间为20min,最终在钛基体表面得到修饰石墨烯增强金属氧化物阳极,金属氧化物载量达到12g/m2
比较例
对比样制备:将氯铱酸(H2IrCl6·6H2O)和TaCl5按摩尔比Ir∶Ta=70∶30加入到正丁醇溶剂中,涂液浓度为0.3mol/L,按照传统热分解方法在预处理的钛基体上制备金属氧化物涂层,保证金属氧化物载量达到12g/m2,该电极作为本发明阳极材料的对比样。
为比较本发明的修饰石墨烯担载贵金属氧化物阳极与传统金属氧化物阳极的区别,将对比样和实施例所得到的电极材料进行了测试比较。测试了制备的金属氧化物阳极的循环伏安曲线和强化电解寿命。
采用Ultra55场发射扫描电子显微镜(FESEM)观察石墨烯担载贵金属氧化物的表面形貌。
电化学测试使用Parstat2273电化学工作站,测试在三电极电解池中进行。工作电极测试面积为1cm2,辅助电极为铂铌电极,参比电极为饱和甘汞电极(SCE)。电解液为1mol.L-1H2SO4溶液,测试温度为(25±0.5)℃。制备的电极在电解液中浸泡2h后进行测试。循环伏安测试范围为0.16~1.16V,扫描速度为20mV·s-1下进行20次循环,仅对最后一个循环伏安曲线进行积分,求得循环伏安电量Q。极化曲线测试电位范围为0.2~1.8V,扫描速度为0.33mV·s-1
采用强化电解寿命测试来评价金属氧化物阳极的稳定性。在40℃的1mol/L H2SO4溶液中电解,阳极电流密度为2A/cm2,钛板作辅助阴极,极间距为2cm,规定槽电压上升至10V的电解时间为电极的强化电解寿命。
图1为石墨烯担载贵金属氧化物的表面形貌。如图所示,在石墨烯表面形成大量的白亮晶簇,结合EDX分析数据,表明该区域发生了活性元素Ir的表面富集,贵金属氧化物在石墨烯表面得到有效担载。
图2给出了添加修饰石墨烯的Ti/IrO2-Ta2O5-G阳极和普通的Ti/IrO2-Ta2O5阳极的循环伏安曲线。循环伏安电量Q正比于电极表面活性点的数目,对阳极的循环伏安曲线进行积分得到循环伏安电量Q见图3。从图中看出,Ti/IrO2-Ta2O5阳极和Ti/IrO2-Ta2O5-G阳极的循环伏安电量分别为40.06mC·cm-2和80.53mC·cm-2,阳极电化学活性点数量增加1倍,通过修饰石墨烯担载金属氧化物阳极,阳极的电催化活性大幅提升。
图4为未掺杂石墨烯的Ti/IrO2-Ta2O5阳极和添加修饰石墨烯的Ti/IrO2-Ta2O5-G阳极的强化电解寿命。如图所示,未掺杂石墨烯的Ti/IrO2-Ta2O5阳极的强化电解寿命为530h,Ti/IrO2-Ta2O5-G阳极的强化电解寿命为1130h,表明修饰石墨烯担载贵金属氧化物阳极的使用寿命显著延长,稳定性大幅提升。
所有上述的首要实施这一知识产权,并没有设定限制其他形式的实施这种新产品和/或新方法。本领域技术人员将利用这一重要信息,上述内容修改,以实现类似的执行情况。但是,所有修改或改造基于本发明新产品属于保留的权利。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种高性能金属氧化物阳极,其特征在于:包括导电基体和在导电基体上沉积的一层由修饰石墨烯掺杂的贵金属氧化物涂层。
2.如权利要求1所述的高性能金属氧化物阳极,其特征在于:所述导电基体采用的是阀金属钛,质量百分比纯度大于99%。
3.如权利要求1或2所述的高性能金属氧化物阳极,其特征在于:所述导电基体的结构形状可以为网状、板状、管状或棒状。
4.如权利要求1或2所述的高性能金属氧化物阳极,其特征在于:所述贵金属氧化物涂层可以由IrO2、RuO2、PtO2、Ta2O5、SnO2中的单一组分或多组分复合构成。
5.如权利要求4所述的高性能金属氧化物阳极,其特征在于:待修饰的石墨烯的单层率大于70%,纯度大于99%,厚度为0.8~1.2nm。
6.如权利要求1或2所述的高性能金属氧化物阳极,其特征在于:所述修饰石墨烯是采用氮(N)官能团进行功能修饰的石墨烯。
7.如权利要求1或2所述的高性能金属氧化物阳极,其特征在于:所述氮(N)官能团功能修饰的石墨烯采用等离子体预处理法修饰石墨烯表面获得。
8.应用于权利要求1至7任一项所述阳极的修饰石墨烯的制备方法,其特征在于:
在氮气气氛下等离子处理时间为80s~200s,氮气的流量控制在6×10-3m3/h,氮气压力为50Pa~300Pa,等离子功率为75W~120W,得到N官能团修饰的石墨烯。
9.应用于权利要求1至7任一项所述阳极的修饰石墨烯掺杂贵金属氧化物的方法,其特征在于,包括:
第一步,修饰石墨烯的制备;
第二步,贵金属氧化物前驱体盐溶液的制备;
第三步,修饰石墨烯的掺杂。
10.权利要求1至7任一项所述阳极的制备方法,其特征在于,包括:
第一步,修饰石墨烯的制备;
第二步,修饰石墨烯掺杂贵金属氧化物溶液的制备;
第三步,将含修饰石墨烯担载贵金属氧化物的溶液转移至电解槽中,经过除油、草酸刻蚀的钛基体作为阴极,铂片作为阳极,阴阳极间距为30mm,采用脉冲电源施加电流密度10mA/cm2~15mA/cm2,电沉积时间为10min~60min,最终在钛基体表面得到修饰石墨烯增强金属氧化物阳极。
CN201710540826.0A 2017-07-04 2017-07-04 一种修饰石墨烯担载贵金属氧化物阳极的制备方法 Pending CN107268023A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710540826.0A CN107268023A (zh) 2017-07-04 2017-07-04 一种修饰石墨烯担载贵金属氧化物阳极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710540826.0A CN107268023A (zh) 2017-07-04 2017-07-04 一种修饰石墨烯担载贵金属氧化物阳极的制备方法

Publications (1)

Publication Number Publication Date
CN107268023A true CN107268023A (zh) 2017-10-20

Family

ID=60071494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710540826.0A Pending CN107268023A (zh) 2017-07-04 2017-07-04 一种修饰石墨烯担载贵金属氧化物阳极的制备方法

Country Status (1)

Country Link
CN (1) CN107268023A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411349A (zh) * 2018-04-03 2018-08-17 西安交通大学 一种石墨烯掺杂多孔RuO2阳极的制备方法
CN109368744A (zh) * 2018-09-11 2019-02-22 南京理工大学 一种三维有序多孔二氧化钌膜电极及其制备方法
CN111188052A (zh) * 2020-02-27 2020-05-22 上海广锋生物科技有限公司 一种高性能次氯酸的制备方法
CN112246288A (zh) * 2020-10-23 2021-01-22 福建师范大学 一种基于等离子体的负载型贵金属催化剂制备方法
CN112536030A (zh) * 2020-12-07 2021-03-23 江苏威久科技发展有限公司 一种金属粒子负载的石墨烯催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746097A (zh) * 2015-04-28 2015-07-01 中国船舶重工集团公司第七二五研究所 一种石墨烯掺杂金属氧化物阳极的制备方法
CN105336505A (zh) * 2015-12-02 2016-02-17 哈尔滨工业大学 一种氮掺杂石墨烯电极材料的制备方法
CN105688677A (zh) * 2016-04-01 2016-06-22 中国科学院过程工程研究所 一种电渗析用复合电极、其制备方法和用途
CN106219533A (zh) * 2016-08-04 2016-12-14 桂林理工大学 一种冷等离子体氮掺杂多孔石墨烯的制备方法
CN106450397A (zh) * 2016-09-20 2017-02-22 福建农林大学 一种氮掺杂石墨烯电极材料的制备方法
CN106637291A (zh) * 2017-01-17 2017-05-10 嘉兴学院 一种石墨烯复合金属氧化物电极及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746097A (zh) * 2015-04-28 2015-07-01 中国船舶重工集团公司第七二五研究所 一种石墨烯掺杂金属氧化物阳极的制备方法
CN105336505A (zh) * 2015-12-02 2016-02-17 哈尔滨工业大学 一种氮掺杂石墨烯电极材料的制备方法
CN105688677A (zh) * 2016-04-01 2016-06-22 中国科学院过程工程研究所 一种电渗析用复合电极、其制备方法和用途
CN106219533A (zh) * 2016-08-04 2016-12-14 桂林理工大学 一种冷等离子体氮掺杂多孔石墨烯的制备方法
CN106450397A (zh) * 2016-09-20 2017-02-22 福建农林大学 一种氮掺杂石墨烯电极材料的制备方法
CN106637291A (zh) * 2017-01-17 2017-05-10 嘉兴学院 一种石墨烯复合金属氧化物电极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈野 等: ""Ti/SnO2-Sb2O5/PbO2电极的制备及降解不同污染物性能研究"", 《环境科学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411349A (zh) * 2018-04-03 2018-08-17 西安交通大学 一种石墨烯掺杂多孔RuO2阳极的制备方法
CN109368744A (zh) * 2018-09-11 2019-02-22 南京理工大学 一种三维有序多孔二氧化钌膜电极及其制备方法
CN111188052A (zh) * 2020-02-27 2020-05-22 上海广锋生物科技有限公司 一种高性能次氯酸的制备方法
CN112246288A (zh) * 2020-10-23 2021-01-22 福建师范大学 一种基于等离子体的负载型贵金属催化剂制备方法
CN112536030A (zh) * 2020-12-07 2021-03-23 江苏威久科技发展有限公司 一种金属粒子负载的石墨烯催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN107268023A (zh) 一种修饰石墨烯担载贵金属氧化物阳极的制备方法
Yang et al. Hypochlorite generation on Ru–Pt binary oxide for treatment of dye wastewater
CN107904614B (zh) 一种Ni3S2@Ni-Fe LDH析氧电催化电极及其制备方法与应用
Yoo et al. Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting
CN104746097B (zh) 一种石墨烯掺杂金属氧化物阳极的制备方法
Duan et al. Fabrication of dense spherical and rhombic Ti/Sb–SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition
CN103014755B (zh) 一种长寿命钛基电极的制备方法
CN103255434B (zh) 电解用电极、电解槽以及电解用电极的制造方法
WO2013038927A1 (ja) 塩素発生用陽極
Espinoza-Montero et al. Electrochemical production of hydrogen peroxide on Boron-Doped diamond (BDD) electrode
Zhang et al. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate
Guo et al. Nickel nanowire arrays electrode as an efficient catalyst for urea peroxide electro-oxidation in alkaline media
CN106086989B (zh) 一种银改性二氧化钛纳米管复合阳极及其制备方法
CN112962115A (zh) 一种泡沫镍负载的硫化物电催化剂及其制备方法与应用
CN102703953B (zh) 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法
CN101230467A (zh) 一种钛基锰铱复合氧化物涂层阳极及其制备方法
Şahin et al. Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes
Mahalingam et al. Electrosynthesis and characterization of lead oxide thin films
Guo et al. Solvothermal fabrication of three-dimensionally sphere-stacking Sb–SnO2 electrode based on TiO2 nanotube arrays
CN108328703A (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用
Wu et al. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode
CN105836698B (zh) 一种金‑二氧化钛复合纳米管阵列与金纳米管阵列电极的制备方法
KR20140013326A (ko) 수도수 전기분해용 금속 산화물 전극 및 그 제조 방법
CN112899715B (zh) 一种氧化钴纳米薄片析氯电极及其制备方法与应用
US9567677B2 (en) Electrochemical method of producing hydrogen peroxide using a titanium oxide nanotube catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020

RJ01 Rejection of invention patent application after publication