WO2017076013A1 - 多通道测序反应小室及多通道测序反应装置 - Google Patents

多通道测序反应小室及多通道测序反应装置 Download PDF

Info

Publication number
WO2017076013A1
WO2017076013A1 PCT/CN2016/086877 CN2016086877W WO2017076013A1 WO 2017076013 A1 WO2017076013 A1 WO 2017076013A1 CN 2016086877 W CN2016086877 W CN 2016086877W WO 2017076013 A1 WO2017076013 A1 WO 2017076013A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
reagent
channel
chamber
sequencing reaction
Prior art date
Application number
PCT/CN2016/086877
Other languages
English (en)
French (fr)
Inventor
盛司潼
冯传发
Original Assignee
武汉康昕瑞基因健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉康昕瑞基因健康科技有限公司 filed Critical 武汉康昕瑞基因健康科技有限公司
Publication of WO2017076013A1 publication Critical patent/WO2017076013A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to the field of biochemical devices, and more particularly to a multi-channel sequencing reaction chamber and a multi-channel sequencing reaction device.
  • Gene sequencing technology has developed very rapidly in recent years. Unlike the first-generation sequencing technology "capillary electrophoresis sequencing", the current gene sequencing technology detects nucleic acids by a gene sequencer, and obtains a nucleic acid sequence by data processing. In the genetic sequencer, an important device, the sequencing reaction chamber, is included.
  • a sequencing reaction chamber is used to perform the sequencing reaction.
  • the sequencing reaction chamber has a reaction channel with a middle width and a narrow end.
  • the processed sample to be tested is first fixed in the sequencing reaction chamber, and then the sequencing reaction reagent is injected.
  • the reagent flows through the sequencing reaction chamber through the reaction channel, and a sequencing reaction occurs with the sample to be tested.
  • the sequencing signal is collected by the signal acquisition device, and the gene sequence is obtained through the later data processing.
  • a multi-channel sequencing reaction chamber In view of the low efficiency of single-channel sequencing reaction chambers for sequencing multiple samples, a multi-channel sequencing reaction chamber was designed.
  • the multi-channel sequencing reaction chamber in the prior art has multiple reaction channels, and simultaneous sequencing reactions can be simultaneously performed in multiple reaction channels. Since each reaction channel requires a reagent to be introduced, each reaction chamber has a reagent inlet and a reagent outlet, and a pipe is connected to the reagent inlet and the reagent outlet for the entry and exit of the reagent.
  • the structure of the multi-channel sequencing reaction chamber in the prior art is very cumbersome and complicated, and it is necessary to disassemble a plurality of tubes during cleaning, which is very inconvenient, and is often prone to sealing failure during the disassembly and assembly process, resulting in a sequencing reaction process. There is a leak in the case.
  • a new multi-channel sequencing reaction chamber and degree channel sequencing reaction device is needed, which can simplify the structure of the multi-channel sequencing reaction chamber and facilitate the disassembly and cleaning of the sequencing reaction chamber.
  • the object of the present invention is to provide a multi-channel sequencing reaction chamber, which aims to solve the problem that the sequencing reaction chamber in the prior art has a complicated structure and is inconvenient to be disassembled and cleaned.
  • a multi-channel sequencing reaction chamber includes a first slide and a second slide that are adapted to form a plurality of hollow reaction channels with the second slide, A reagent buffer for holding a reagent is respectively disposed at two ends of the reaction channel, and the first slide or the second slide is provided with a reagent inlet connected to the reagent buffer, and the first slide or the second slide is further A reagent outlet that is in communication with the reagent buffer is provided.
  • the reaction channel and the reagent buffer are both disposed on the lower surface of the first slide, and the reagent inlet is disposed on the first slide or the second slide.
  • the through hole, the reagent outlet is a through hole disposed on the first slide or the second slide.
  • the reaction channel and the reagent buffer are both disposed on the upper surface of the second slide, and the reagent inlet is disposed on the first slide or the second slide.
  • the through hole, the reagent outlet is a through hole disposed on the first slide or the second slide.
  • the first slide is located above the second slide, the lower surface of the first slide is provided with a plurality of elongated grooves, and the second slide is attached to the lower surface of the first slide Forming a hollow reaction channel with the elongated groove; the reagent buffer is disposed on the lower surface of the first slide and the upper surface of the second slide, and the reagent buffer disposed on the first slide
  • the shape of the region is the same as the shape of the reagent buffer disposed on the second slide.
  • the first slide is located above the second slide, and the lower surface of the first slide and the upper surface of the second slide are provided with a plurality of elongated grooves, the first slide and After the second slide is attached, the elongated long groove forms a hollow reaction channel; the reagent buffer is disposed on the lower surface of the first slide and the upper surface of the second slide, and is disposed at the first
  • the shape of the reagent buffer on the slide is the same as the shape of the reagent buffer disposed on the second slide.
  • the shape of the reagent inlet and the reagent outlet are the same as the shape of the reagent buffer.
  • the first slide is formed by closely fitting a cover glass and a liquid guide sheet
  • the second slide is a slide
  • the liquid guide is located between the cover glass and the slide.
  • the liquid guiding sheet is provided with a long through hole, and the reaction channel is surrounded by a cover glass, a long through hole and a glass slide; or
  • the first slide is a cover glass
  • the second slide is formed by closely contacting a liquid guide sheet and a slide glass.
  • the liquid guide sheet is provided with an elongated through hole
  • the reaction channel is composed of The cover glass, the long through hole and the slide are enclosed.
  • the reagent buffer is a through hole disposed on the liquid guiding sheet or a through hole disposed on the cover glass.
  • the reagent buffer is semicircular, the reagent buffer has a circular arc side and a straight edge, and the straight edge of the buffer is located on a side close to the reaction channel.
  • the reagent buffer is triangular.
  • the present invention also provides a multi-channel sequencing reaction device having the above-described multi-channel sequencing reaction chamber, which is composed of a multi-channel sequencing reaction chamber, a chamber upper assembly and a chamber lower assembly, wherein:
  • the chamber upper assembly includes an inlet channel and a outlet channel
  • the chamber lower assembly includes a chamber upper cover and a chamber base, the chamber base is configured to place the multi-channel sequencing reaction chamber, and the chamber upper cover is mounted on the chamber base;
  • the chamber upper assembly is for mounting on a chamber lower assembly, and the inlet passage of the chamber upper assembly is in communication with a reagent inlet of the multi-channel sequencing reaction chamber, the outlet passage of the chamber upper assembly being The reagent exit of the channel sequencing reaction chamber is connected.
  • the chamber upper assembly further comprises a bottom plate, a heat insulation plate, a cooling plate, a heat conducting plate and a temperature sensor;
  • the heat insulation board is fixed under the bottom plate, the heat insulation board has a through hole in a middle portion thereof, the cooling sheet is disposed in the through hole of the heat insulation board, and the upper surface of the cooling sheet is opposite to the lower surface of the bottom plate contact;
  • the heat conducting plate is fixed under the cooling sheet, and the upper surface of the heat conducting plate is in contact with the lower surface of the cooling sheet.
  • the upper chamber assembly is mounted on the lower chamber assembly, the lower surface of the heat conducting plate and the multi-channel sequencing reaction chamber Contact
  • the temperature sensor is configured to detect the temperature of the multi-channel sequencing reaction chamber
  • the liquid inlet channel and the liquid outlet channel are respectively through holes penetrating through the bottom plate, the heat insulation plate and the heat conduction plate.
  • a central portion of the upper cover of the chamber has a through hole, and when the upper portion of the small chamber is mounted on the lower assembly of the small chamber, the heat insulating plate and the heat conducting plate of the upper portion of the small chamber protrude into the through hole of the upper cover of the small chamber.
  • the heat conducting plate is in close contact with the multi-channel sequencing reaction chamber, and the liquid inlet channel is in communication with a reagent inlet of the multi-channel sequencing reaction chamber, and the liquid outlet channel is in communication with the reagent outlet of the multi-channel sequencing reaction chamber.
  • the cell upper assembly further includes a top plate and a heat dissipation plate, the top plate is disposed above the bottom plate, and the heat dissipation plate is located between the top plate and the bottom plate and is fixed on the bottom plate, the heat dissipation plate has a plurality of heat dissipation fins sheet.
  • the bottom plate and the heat insulation board are connected by screws, and the steel tube is provided with a steel pipe in the middle, and the steel pipe is an inlet channel and a liquid outlet channel.
  • the heat conducting plate is further provided with a sealing rubber pad, and the sealing rubber pad is disposed at an outlet of the liquid inlet passage and an inlet of the liquid outlet passage, and when the small chamber upper assembly is mounted on the lower chamber assembly, The sealing pad is placed against the multi-channel sequencing reaction chamber.
  • the lower part of the upper cover of the chamber is elastically connected with a compact, and the compact is pressed on the multi-channel sequencing reaction chamber.
  • the upper cover of the small chamber is provided with a buckle, and the buckle is used for being stuck on the small base of the chamber.
  • the upper part of the small chamber is provided with a through hole for taking a bright field map for seeing whether the distribution of the magnetic beads in the small chamber is uniform.
  • the design of the reagent buffer buffer simplifies the structure of the multi-channel sequencing reaction chamber, facilitates the cleaning of the interior of the multi-channel sequencing reaction chamber, and is very convenient, and reduces the seal which occurs during disassembly and assembly. Poor results in leakage during the sequencing reaction; it can be reused many times during actual use, which greatly reduces the cost of the device compared to the one-time use of the reaction chamber in the prior art.
  • FIG 1 and 2 are schematic views showing the structure of a reaction channel in a multi-channel sequencing reaction chamber according to an example of the present invention.
  • FIG. 3 and FIG. 4 are schematic diagrams showing the structure of a reaction channel in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • Fig. 5 is a schematic view showing the structure of a reaction channel in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • Fig. 6a is a schematic view showing the structure of a reaction channel in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • Fig. 6b is a schematic view showing the structure of a reaction channel in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • FIG. 7 is a schematic structural view of a reagent buffer in a multi-channel sequencing reaction chamber according to an example of the present invention.
  • Figure 8 is a schematic view showing the structure of a reagent buffer in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • Figure 9 is a schematic view showing the structure of a reagent buffer in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • 10a and 10b are schematic diagrams showing the structure of a reagent buffer in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • 11a and 11b are schematic diagrams showing two structures of a reagent buffer shape in a multi-channel sequencing reaction chamber according to an example of the present invention.
  • Figures 12a, 12b, and 12c are three exemplary diagrams of reagent inlets and reagent outlets in a multi-channel sequencing reaction chamber of the present invention.
  • Figure 13a is a schematic diagram showing the structure of a reagent inlet and a reagent outlet in a multi-channel sequencing reaction chamber of one example of the present invention.
  • Figure 13b is a schematic view showing the structure of a reagent inlet and a reagent outlet in a multi-channel sequencing reaction chamber according to another example of the present invention.
  • Figure 14 is a schematic view showing the structure of a multi-channel sequencing reaction apparatus according to an example of the present invention.
  • 15 is a schematic longitudinal cross-sectional view showing an upper portion of a cell in a multi-channel sequencing reaction device according to another example of the present invention.
  • Figure 16 is a schematic longitudinal sectional view showing a multi-channel sequencing reaction apparatus according to another example of the present invention.
  • Figure 17 is a schematic longitudinal sectional view showing a multi-channel sequencing reaction apparatus according to another example of the present invention.
  • the present invention proposes a first embodiment.
  • This embodiment proposes a multi-channel sequencing reaction chamber, which enables multiple samples to simultaneously perform sequencing reactions, and realizes parallel sequencing of multi-channel sequencing reaction chambers.
  • the multi-channel sequencing reaction chamber includes a first slide and a second slide, the first slide being used to form a plurality of hollow reaction channels with the second slide, both ends of the reaction channel A reagent buffer for holding a reagent is respectively disposed, and the first slide or the second slide is provided with a reagent inlet connected to the reagent buffer, and the first slide or the second slide is further provided with a reagent buffer The reagent outlet for the zone is connected.
  • the reagent inlet is in communication with a conduit for supplying reagent
  • the reagent outlet is in communication with a conduit for excluding reagent.
  • the reagent flows out and enters the reagent buffer at the other end of the reaction channel. After the reagent buffer is collected, the reagent is discharged from the reagent discharge pipe. discharge. Due to the presence of the reagent buffer, the reagent buffer can store a certain amount of reagent, and will flow into the reagent buffer before the reagent passes into the reaction channel.
  • the reagent buffer is favorable for uniformly discharging the air in the reaction channel, and the reagent enters the reaction. When the internal pressure of the channel is reached, the reagent can pass through the respective reaction channels uniformly, thus ensuring the uniformity of the flow rate of each reaction channel and the uniformity of the diffusion.
  • a sequencing reaction chamber having a plurality of channels has a plurality of reaction channels, and an inlet and an outlet of each reaction channel require an access pipe for the entry and the outflow of the reagent; the sequencing reaction chamber of the structure
  • the structure is very cumbersome and complicated.
  • When cleaning the sequencing reaction chamber it is necessary to disassemble a plurality of tubes, which is very inconvenient. In the process of disassembly and assembly, sealing defects are likely to occur, resulting in leakage during the sequencing reaction. .
  • the sequencing reaction of the multiple channels can be completed, and the structure of the multi-channel sequencing reaction chamber is simplified;
  • the invention can be reused many times during actual use, and the invention greatly reduces the cost of the device compared to the one-time use reaction chamber in the prior art.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are attached.
  • 1 is a schematic cross-sectional view of a first slide 10 and a second slide 20
  • FIG. 2 is a schematic perspective view of the first slide 10, the first slide 10 being located above the second slide 20, the first The slide 10 is used to form a plurality of hollow reaction channels 101 with the second slide 20, and the reagent buffers 102 are respectively provided at both ends of the reaction channel 101, and in the present example, the reaction channel 101 And the reagent buffer 102 are disposed on the lower surface of the first slide 10.
  • the bottom surface of the first slide 10 is provided with an elongated groove, and the second slide 20 is covered by the first slide.
  • the reagent buffer 102 is disposed on the lower surface of the first slide 10.
  • the first slide 10 is provided with a reagent inlet 103 and a reagent outlet 104 respectively communicating with the reagent buffer 102.
  • the reagent inlet 103 and the reagent outlet 104 are both disposed on the first slide. Through hole on 10.
  • the inner wall of the reaction channel 101 is used for fixing a plurality of samples to be tested, and the number of the reaction channels 101 can be set as needed, for example, a six-channel sequencing reaction chamber. It can also be an eight-channel sequencing reaction chamber, shown in Figure 2 as the first slide 10 of the six-channel sequencing reaction chamber.
  • the reagent inlet 103 is in communication with the conduit for supplying the reagent
  • the reagent outlet 104 is in communication with the conduit for discharging the reagent.
  • the sequencing reaction chamber is preferably placed vertically before the sequencing reaction, and the reagent inlet 103 Located below.
  • the reagent injected through the reagent inlet 103 first enters the reagent buffer 102 located at the reagent inlet 103, and after the reagent is continuously injected, the reagent is filled with the reagent buffer 102 at the reagent inlet 103, and then enters the sixth simultaneously.
  • the sample to be tested fixed in the reaction channel 101 is separately subjected to a sequencing reaction, and then flows out into the reagent buffer 102 located at the reagent outlet 102. After the reagent buffer 102 is collected, the reagent is discharged.
  • the reagent is discharged from the pipeline, and the reagent is continuously injected, and the reagent continuously flows through the reaction channel 101 to undergo a sequencing reaction with the sample to be tested. Due to the presence of the reagent buffer 102, the reagent buffer 102 can store a certain amount of reagent before the reagent passes into the reaction channel 101 or after flowing out of the reaction channel 101, ensuring the uniformity and diffusion of the flow rate of each reaction channel 101. Uniformity of sex.
  • the invention simplifies the structure of the multi-channel sequencing reaction chamber. When it is necessary to disassemble and clean the sequencing reaction chamber, it is only necessary to disassemble a liquid inlet pipe communicating with the reagent inlet 103 and a liquid outlet connected to the reagent outlet 104.
  • the tube after separating the first slide 10 and the second slide 20, can clean the reaction channel 101, the reagent buffer 102, the reagent inlet 103 and the reagent outlet 104 of the sequencing reaction chamber, which is very convenient and reduces at the same time. Leakage occurred during the disassembly and assembly process, resulting in leakage during the sequencing reaction.
  • the installation is very convenient.
  • the present invention also provides an example for the reaction channel of the multi-channel sequencing reaction chamber.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20, and FIG. 3 is a schematic cross-sectional view of the first slide 10 and the second slide 20.
  • FIG. 4 is a first slide 10 and Schematic diagram of the second slide 20, the first slide 10 is located above the second slide 20, and the first slide 10 is used to form a plurality of hollow reaction channels 101 with the second slide 20, and A reagent buffer 102 for containing a reagent is respectively disposed at both ends of the reaction channel 101.
  • the upper surface of the second slide 20 has a plurality of elongated grooves, and when the first slide 10 is attached to the second slide 20, the elongated concave The groove encloses the first slide 10 to form a hollow reaction channel 101, and both ends of the reaction channel 101 communicate with the reagent buffer 102, and the reagent buffer 102 is disposed on the lower surface of the first slide 10.
  • the first slide 10 is provided with a reagent inlet 103 and a reagent outlet 104 respectively communicating with the reagent buffer 102, and the reagent inlet 103 and the reagent outlet 104 are both disposed on the first slide 10. hole.
  • the inner wall of the reaction channel 101 of the hollow structure is used to fix a plurality of samples to be tested, the reagent inlet 103 is in communication with a conduit for supplying reagents, and the reagent outlet 104 is connected to a conduit for discharging reagents.
  • the sequencing reaction chamber Prior to performing the sequencing reaction, the sequencing reaction chamber is placed vertically and the reagent inlet 103 is located below.
  • the reagent injected through the reagent inlet 103 first enters the reagent buffer 102 located at the reagent inlet, and after the reagent is continuously injected, the reagent is filled with the reagent buffer 102 at the reagent inlet, and then multiple reactions are simultaneously entered.
  • the channel 101 then flows out into the reagent buffer 102 at the reagent outlet 104. After the reagent buffer 102 is collected, the reagent is discharged from the conduit for discharging the reagent, and the reagent is passed in due to the presence of the reagent buffer 102. Before the reaction channel 101 or after flowing out of the reaction channel 101, the reagent buffer 102 can store a certain amount of reagents, thus ensuring uniformity of flow rate and uniformity of diffusion of each reaction channel 101.
  • the invention simplifies the structure of the multi-channel sequencing reaction chamber, and is very convenient when the sequencing reaction chamber needs to be disassembled and cleaned, and at the same time, the sealing failure occurring during the disassembly and assembly process is reduced, and the liquid leakage occurs during the sequencing reaction process. .
  • the reagent buffer 102 is disposed on the lower surface of the first slide 10
  • a plurality of elongated grooves are disposed on the second slide 20
  • a reagent buffer of a different structure is processed on the same slide. And the reaction channel, this program reduces the processing difficulty.
  • the present invention also provides an example in which the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are attached, FIG. A schematic cross-sectional view of the first slide 10 and the second slide 20, the first slide 10 is located above the second slide 20, and the first slide 10 is used to form a plurality of hollow reaction channels 101 with the second slide 20. And a reagent buffer 102 for accommodating the reagent is respectively disposed at both ends of the reaction channel 101.
  • the lower surface of the first slide 10 and the upper surface of the second slide 20 are each provided with an elongated groove, in the first slide 10 and the second slide 20
  • the elongated groove on the first slide 10 is fitted with the elongated groove on the second slide 20 to form a hollow reaction channel 101, and the reagent buffer 102 is disposed at the first On the lower surface of the slide, the reaction channel is in communication with the reagent buffer 102.
  • a sealing treatment is employed to prevent leakage.
  • the first slide 10 is provided with a reagent inlet 103 and a reagent outlet that are respectively connected to the reagent buffer.
  • the reagent inlet 103 and the reagent outlet 104 are both through holes provided on the first slide 10.
  • the reagent injected through the reagent inlet 103 first enters the reagent buffer 102 located at the reagent inlet 103, and after the reagent is continuously injected, the reagent is filled with the reagent buffer 102 at the reagent inlet 103, and then enters at the same time.
  • a sequencing reaction is performed with the sample to be tested, and simultaneous sequencing reactions of a plurality of samples are realized.
  • the invention simplifies the structure of the multi-channel sequencing reaction chamber, and is very convenient when it is necessary to disassemble and clean the sequencing reaction chamber.
  • the present invention also provides an example of the multi-channel sequencing reaction chamber enabling simultaneous sequencing of multiple samples to achieve parallel sequencing of multi-channel sequencing reaction chambers.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are adapted to form a plurality of hollow reaction channels 101 with the second slide 20, the reaction channels Each of the two ends of the 101 is provided with a reagent buffer 102 for accommodating a reagent.
  • the first slide 10 is provided with a reagent inlet 103 and a reagent outlet 104 respectively communicating with the reagent buffer 102.
  • the first slide 10 is formed by closely fitting a cover glass 30 and a liquid guide 40, and the second slide 20 is a slide 50, and the liquid guide 40 is located on the cover slip 30 and Between the slides 50; the liquid-guiding sheet 40 is provided with an elongated through-hole, and when the cover glass 30 and the slide 50 are respectively attached to the upper and lower surfaces of the liquid-leaf sheet, The through hole is enclosed to form the reaction channel 101; the liquid guiding sheet 40 is provided with a through hole, and when the cover glass 30 and the slide glass 50 are respectively attached to the upper and lower surfaces of the liquid guiding sheet, The hole enclosing constitutes the reagent buffer 102.
  • the multi-channel sequencing reaction chamber in the present embodiment is vertically placed on the sequencing device, the reagent inlet 103 is connected to the pipeline through which the reagent is passed, and the reagent outlet 104 is connected to the pipeline flowing out of the reagent, and a plurality of The sample is fixed on the inner wall of the reaction channel 101 of the liquid guiding sheet.
  • the reagent Before the reagent enters the reaction channel 101, the reagent first enters the reagent buffer 102 located at one end of the reaction channel 101, and the reagent buffer 102 is filled, and the reagent is loaded.
  • the sequencing reaction occurs simultaneously with the sample to be tested in the plurality of reaction channels 101, thereby overcoming the problem that the single sequencing sample can only be sequenced in the conventional sequencing reaction chamber, and the efficiency is relatively low.
  • the reagent flows out and enters the reagent buffer 102 at the other end of the reaction channel. After the reagent buffer 102 is collected, the reagent is discharged from the conduit for discharging the reagent.
  • the reagent buffer 102 is capable of storing a certain amount of reagent, which flows into the reagent buffer 102 before the reagent passes into the reaction channel, and the reagent buffer 102 facilitates uniform discharge into the reaction channel 101. Air, when the reagent enters the reaction channel, the internal pressure is constant, and the reagent can uniformly pass through each reaction channel, thus ensuring uniformity of flow rate and uniformity of diffusion of each reaction channel 101.
  • the multi-channel sequencing reaction chamber of the present invention simplifies the structure of the multi-channel sequencing reaction chamber compared with the sequencing reaction chamber in the prior art; when the sequencing reaction chamber needs to be disassembled and cleaned, it is only necessary to connect the reagent inlet 103 and The pipe of the reagent outlet 104 is disassembled, and after the cover glass 30, the liquid guide 40 and the slide 50 are separated, the inside of the sequencing reaction chamber can be cleaned, which is very convenient, since only one reagent is required to be disassembled.
  • the pipe and a pipe that flows out of the reagent reduce the sealing failure during the disassembly and assembly process and reduce the leakage during the sequencing reaction. The condition of the liquid.
  • the present invention also provides an example for a multi-channel sequencing reaction chamber comprising a first slide 10 and a second slide 20 that are attached, the first glass
  • the sheet 10 is configured to form a plurality of hollow reaction channels 101 with the second slide 20, and the reagent channel 101 is respectively provided with a reagent buffer 102 for accommodating reagents, and the first slide 10 is provided with The reagent buffer 102 and the reagent outlet 104 are respectively connected to the reagent buffer 102.
  • the first slide 10 is a cover glass 30, and the second slide 20 is composed of a liquid guide 40 and a slide 50.
  • the liquid-conducting sheet 40 is disposed between the cover glass 30 and the glass slide 50; the liquid-leading sheet 40 is provided with an elongated through-hole, when the cover glass 30 and the slide glass are provided 50 is respectively attached to the upper and lower surfaces of the liquid guiding sheet, and is surrounded by the elongated through hole to form the reaction channel 101; the liquid guiding sheet 40 is further provided with a through hole, when the cover glass 30 and the slide glass are provided When 50 is attached to the upper and lower surfaces of the liquid guide sheet, respectively, the reagent buffer buffer 102 is formed by being enclosed with the through hole.
  • the multi-channel sequencing reaction chamber is vertically placed on the sequencing device, the reagent inlet 103 is connected to the pipeline through which the reagent is passed, the reagent outlet 104 is connected to the pipeline flowing out of the reagent, and the plurality of samples to be tested are fixed to the guide.
  • the reagent On the inner wall of the reaction channel 101 of the liquid sheet 40, before the reagent enters the reaction channel 101, the reagent first enters the reagent buffer 102 located at one end of the reaction channel 101, and after the reagent buffer 102 is filled, the reagent enters the liquid guiding simultaneously. In the reaction channel 101 of the sheet 40, a sequencing reaction occurs simultaneously with the sample to be tested in the plurality of reaction channels 101.
  • the liquid-guiding sheet 40 is provided with an elongated through-hole, and is attached to the liquid-leading sheet 40 through the cover glass 30 and the slide glass 50, and the strip
  • the through-holes of the shape constitute a reaction channel 101.
  • a plurality of elongated grooves may be provided, and when the upper surface of the liquid guiding sheet 40 is provided with a long groove.
  • the cover glass 30 is attached to the liquid-leading sheet, and forms a hollow reaction channel with the elongated groove.
  • the slide is attached to the liquid guide.
  • the elongated groove forms a hollow reaction channel.
  • the number of reaction channels 101 can be adjusted according to the number of samples to be tested which are subjected to a sequencing reaction, and the reaction chambers in the above examples each have six reaction channels.
  • the structure of the reaction channel 101 is not specifically limited, and the cross section of the reaction channel 101 may be semicircular or square or other shapes, but it should be noted that, in general, the sample to be tested needs to be fixed on a flat surface to facilitate sequencing reaction. And the cleaning of the reaction channel after the sequencing reaction. Therefore, in the examples described in FIG. 1 and FIG. 2, the sample to be tested is fixed on the upper surface of the second slide 20, and there is no requirement for the shape of the reaction channel; In the example illustrated in FIGS. 3 and 4 and the example illustrated in FIG.
  • the sample to be tested is fixed in the elongated groove on the second slide 20, and therefore, the bottom surface of the elongated groove is one.
  • the corner of the elongated groove can be set as a curved surface, and the design of the structure reduces the multi-channel
  • the processing difficulty of the sequencing reaction chamber facilitates the mass production of the multi-channel sequencing reaction chamber, and the curved surface of the long groove is easier to clean during cleaning.
  • the reagent buffers 102 are disposed on the lower surface of the first slide 10.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are attached, and FIG. 7 is a first slide 10 and A schematic cross-sectional view of the second slide 20, the first slide 10 is located above the second slide 20, and the first slide 10 is used to form a plurality of hollow reaction channels 101 with the second slide 20, and Reagent buffers 102 for containing reagents are respectively disposed at both ends of the reaction channel 101.
  • the reaction channel 101 is disposed on the upper surface of the second slide 20, however, any of the above-described schemes regarding the position of the reaction channel 101 can be applied in this example, and in this example, the reaction is not correct.
  • the location of the channel is described in detail.
  • the reagent buffer 102 is a groove disposed on the second slide 20, and after the first slide 10 is covered on the second slide 20, the reagent inlet 103 and the reagent outlet disposed on the first slide 10.
  • 104 is in communication with the reagent buffer 102, and the head end of the reaction channel 101 is in communication with the reagent buffer 102, respectively.
  • the sequencing reaction chamber Before the sequencing reaction, the sequencing reaction chamber is placed vertically, and the reagent inlet 103 is located below, so that the internal air is discharged when the sequencing reaction is performed.
  • the reagent injected through the reagent inlet 103 first fills the reagent inlet 103.
  • the reagent buffer 102 at the same time enters the plurality of reaction channels 101 at the same time, realizing simultaneous sequencing reactions of multiple samples.
  • the present invention also provides an example for the reagent buffer 102 of the multi-channel sequencing reaction chamber.
  • the reaction channel 101 is disposed on the lower surface of the first slide 10 for the reaction channel 101.
  • the position of the reaction channel 101 in any of the above schemes can be applied in this example, so the position of the reaction channel 101 will not be described in detail in this embodiment.
  • the reagent buffer 102 is a groove disposed on a lower surface of the first slide 10 and an upper surface of the second slide 20, and a shape of the groove provided on the first slide 10 is disposed on the second glass
  • the grooves on the sheet 20 are identical in shape, and when the first slide 10 is attached to the second slide 20, the grooves coincide to form the reagent buffer 102.
  • the first slide 10 is provided with a reagent inlet 103 and a reagent outlet 104 respectively communicating with the reagent buffer 102.
  • the reagent inlet 103 and the reagent outlet 104 are both disposed on the first slide 10. Through hole.
  • the sequencing reaction chamber Prior to performing the sequencing reaction, the sequencing reaction chamber is placed vertically and the reagent inlet 103 is located below. It should be noted that the sequencing reaction chamber can only be placed vertically for sequencing reaction. When the sequencing reaction chamber is placed horizontally, the sequencing reaction can also be completed.
  • the sequencing reaction chamber referred to in the specification is only a vertical placement. Good solution.
  • the reagent injected through the reagent inlet 103 first fills the reagent buffer 102 at the reagent inlet 103, and simultaneously enters the plurality of reaction channels 101 to realize simultaneous sequencing reactions of the plurality of samples.
  • the reagent buffer 102 since the longitudinal depth of the reagent buffer 102 is greater than the depth of the reaction channel 101, even when the multi-channel sequencing reaction chamber in this example is placed horizontally for the sequencing reaction, when the reagent is introduced through the reagent inlet 103, the reagent is also Instead of entering the reaction channel 101 directly, it first enters the reagent buffer 102.
  • the reagent buffer 102 on the second slide 20 is filled with reagent, the reagent enters the reaction channel 101 at the same time.
  • the present invention also provides an example for the reagent buffer 102 of the multi-channel sequencing reaction chamber.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 which are closely attached, and the first slide 10 is closely attached by the cover glass 30 and the liquid guide sheet 40.
  • the second slide 20 is a slide 50.
  • the liquid guide 40 is located between the cover glass 30 and the slide 50.
  • the cover slip 30 is provided with a reagent buffer 102.
  • the liquid guiding sheet 40 is provided with an elongated through hole, and when the cover glass 30 and the slide glass 50 are respectively attached to the upper and lower surfaces of the liquid guiding sheet, The through hole is enclosed to form the reaction channel 101; the liquid guiding sheet 40 is provided with a through hole, and the slide 50 is provided with a groove, and the through hole is adapted to the shape of the groove When the cover glass 30 and the slide glass 50 are respectively attached to the upper and lower surfaces of the liquid guide sheet 40, the through holes are matched with the grooves to constitute the reagent buffer 102.
  • the reagent buffer 102 when the multi-channel sequencing reaction chamber is placed vertically or horizontally, the reagent buffer 102 can store certain reagents, and the reagent does not directly enter the reaction channel 101, thereby ensuring each reaction.
  • the present invention also provides an example for a reagent buffer 102 of a multi-channel sequencing reaction chamber comprising a first slide 10 and a second glass that are attached to each other.
  • the first slide 10 is formed by closely fitting a cover glass 30 and a liquid guide 40
  • the second slide 20 is a slide 50
  • the liquid guide 40 is located on the cover glass 30.
  • the through hole is provided with a reagent buffer 30.
  • the liquid guiding sheet 40 is provided with an elongated through hole.
  • the long through hole forms a sealed reaction channel 101, and when the cover glass 30 and the liquid guide 40, the slide 50 and the liquid guide 40 are attached, sealing treatment is required. Prevent leakage during the sequencing reaction.
  • the reagent buffer 102 and the reaction channel 101 are respectively disposed on the cover glass 30 and the liquid guide sheet 40, so that the processing of the reagent buffer 102 and the reaction channel 102 is simpler, and the processing efficiency is improved.
  • the multi-channel sequencing reaction chamber of the present invention simplifies the structure of the multi-channel sequencing reaction chamber as compared to the sequencing reaction chamber of the prior art.
  • the cover glass 30 is removed from the liquid-leaf sheet 40, and the liquid-leaflet 40 is removed from the slide glass 50, respectively, to the cover glass 30, the liquid-leaf sheet 40, and the slide glass 50. Cleaning is performed, and the reagent buffer 102 on the cover glass 30 and the reaction channel 101 on the liquid guiding sheet 40 can be directly cleaned, which is very convenient.
  • the present invention provides an example for the shape of the reagent buffer 102.
  • the reagent buffer 102 has a semicircular shape, and the reagent buffer 102 has an arc.
  • the side edges of the buffer zone 102 are located on the side close to the reaction channel 101 with sides and straight edges.
  • the structure of the reagent buffer 102 is not limited.
  • the size and shape of the reagent buffer 102 are designed according to actual needs.
  • the reagent buffer 102 may be square or rectangular, and the scheme shown in FIG. 11a is only a preferred example. . As shown in FIG.
  • the reagent buffer 102 is triangular, and each process is ensured by the design of the triangular structure by injecting the reagent into the reagent buffer 102.
  • the uniformity of the flow rate of the reaction channel 101 and the uniformity of the diffusivity are uniform; the sequencing reactions in the plurality of reaction channels 101 are simultaneously performed.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20, and the first slide 10 is used to form a plurality of hollow reaction channels with the second slide 20, two of the reaction channels
  • the reagent buffers for holding reagents are respectively provided at the ends; in this example, the reaction channels and reagent buffers in the above examples can be applied in this example, so the reaction channels and reagent buffers are not performed in this example.
  • the reagent inlet 103 is disposed on the upper surface of the first slide 10
  • the reagent outlet 104 is disposed on the lower surface of the second slide 20, and the reagent is introduced from the reagent inlet 103 on the first slide 10. It flows through the reaction channel and flows out of the reagent outlet 104 on the second slide 20.
  • the present invention also provides an example in which the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are attached for multi-channel sequencing reactions.
  • the reaction channel and reagent buffers that the chamber has, the reaction channels and reagent buffers in the above examples can all be used in this example, so the reaction channels and reagent buffers are not described in detail in this example; in this example
  • the reagent inlet 103 is disposed on the lower surface of the second slide 20, and the reagent outlet 104 is disposed on the upper surface of the first slide 10.
  • the reagent is passed through the reagent inlet of the second slide 20, and the reagent flows through the reaction. After the passage, it flows out from the reagent outlet 103 on the second slide 20.
  • the present invention also provides an example for the location of the reagent inlet 103 and the reagent outlet 104.
  • the multi-channel sequencing reaction chamber includes a first slide 10 and a second slide 20 that are attached, and, similarly, In the present embodiment, the reaction channel and the reagent buffer provided in the multi-channel sequencing reaction chamber are not described in detail.
  • the reagent inlet 103 and the reagent outlet 104 are both disposed on the bottom surface of the second slide 20 for sequencing reaction.
  • the reagent is passed from the reagent inlet 103 on the second slide 20, and the reagent flows through the reaction channel and flows out from the reagent outlet of the second slide 104.
  • the setting of the position of the reagent inlet and the reagent outlet can be determined according to the actual situation, and the present invention does not limit the position of the reagent inlet 103 and the reagent outlet 104 in any way.
  • the reagent inlet 103 is disposed on the lower surface of the second slide 20
  • the sequencing reaction is performed and the multi-channel sequencing reaction chamber is in a horizontally placed state
  • the reagent inlet 103 is passed to the reaction channel.
  • the reagent is injected into the reagent buffer, and does not directly enter the reaction channel. Therefore, when the reagent inlet is disposed on the lower surface of the second slide, it is suitable for the case where the multi-channel sequencing reaction chamber needs to be placed horizontally for sequencing reaction.
  • the through holes are provided on the first slide 10 or the second slide 20, and further, the reagent inlet 103 and the reagent outlet 104 are provided.
  • Shape the present invention also proposes an example, as shown in Fig. 13a, in the present example, when the shape of the reagent inlet 103 and the reagent outlet 104 provided on the first slide 10 is the same as the shape of the reagent buffer 102
  • the reagent inlet 103 and the reagent outlet 104 are also equivalent to the reagent buffer 102.
  • the solution is an extension based on the solution shown in FIG.
  • reaction channel 101 is not limited in this embodiment.
  • shape of the reagent inlet 103 and the reagent outlet 104 provided on the first slide 10 is the same as the shape of the reagent buffer 102.
  • a multi-channel sequencing reaction chamber needs to be placed vertically in a sequencing instrument and passed through a reagent from below to help empty the air in the multi-channel sequencing reaction chamber.
  • the sequencing reaction when the reagent is injected into the reagent inlet 103 (ie, the reagent buffer 102) through the pipe for injecting the reagent, since the reagent inlet 103 (reagent buffer 102) occupies a relatively large area, the reagent is not directly After entering the reaction channel 101, the reagent first fills the reagent buffer 102. After the reagent is continuously injected, the reagent enters the plurality of reaction channels 101 at the same time, and performs sequencing reaction with the sample to be tested in the reaction channel 101.
  • the positions of the reagent inlet 103 and the reagent outlet 104 are not specifically limited in this embodiment, for example, when the reagent inlet 103 is disposed on the lower surface of the second slide 20 and the reagent outlet 104 is disposed on the first glass At the upper surface of the sheet 20, as shown in Fig. 13b, the shape of the reagent inlet 103 and the reagent outlet 104 are the same as the shape of the reagent buffer 102.
  • the multi-channel sequencing reaction chamber can be directly placed horizontally through The reagent inlet 103 (ie, the reagent buffer 102) is passed through the reagent.
  • the reagent inlet 103 faces downward, the reagent first fills the reagent buffer 102 (ie, the reagent inlet 103), and the reagent does not directly enter the reaction channel 103, and this
  • the structure helps to discharge the air inside the multi-channel sequencing reaction chamber; after the reagent is continuously injected, the reagent enters the plurality of reaction channels 101 at the same time, and performs sequencing reaction with the sample to be tested in the reaction channel 101.
  • the materials of the first slide 10 and the second slide 20 are not limited, and the materials of the second slide 10 and the second slide 20 may be glass, PMMA, and PC. , PE or any of them.
  • the second slide 20 can not only firmly hold the sample, prevent the sample from falling off during the reaction, and reduce the flux, and the light can smoothly pass through the second slide 20, so that the drawing component for taking the picture can be clearly sequenced.
  • the image provides a strong guarantee for the increase of flux.
  • the first slide 10 is composed of a cover glass 30 and a liquid guide 40
  • the second slide is a slide, or the first slide is a cover slip, and the second slide is guided by a liquid guide.
  • the materials of the cover glass 30, the liquid guide sheet 40, and the glass slide 50 are not limited, and the material of the cover glass 30, the liquid guide sheet 40, and the glass slide 50 may be glass. , PMMA, PC, PE or other materials, in addition, the liquid guide sheet 40 can also be used stainless steel sheet or silica gel sheet.
  • the multi-channel sequencing reaction chamber may also be provided with Mark points for image coincidence positioning, and the shape of the Mark points is not limited to the cross shape, as long as it is clear and easy to identify. Mark The point setting facilitates the processing and synthesis of the drawing device after the drawing, and improves the image quality.
  • the present invention also proposes a second embodiment.
  • a multi-channel sequencing reaction device is proposed for realizing simultaneous sequencing reactions of multiple samples.
  • the multi-channel sequencing reaction device is composed of a small chamber upper assembly 60, a small chamber lower assembly 70, and a multi-channel sequencing reaction chamber 80.
  • the multi-channel sequencing reaction chamber in this embodiment is in any of the above schemes. The multi-channel sequencing reaction chamber is therefore not described in this example.
  • the chamber upper assembly 60 includes a liquid inlet passage 601 and a liquid outlet passage 602;
  • the chamber lower assembly 70 includes a chamber upper cover 701 and a chamber base 702 for placing the multi-channel sequencing reaction chamber 80
  • the chamber upper cover 701 is mounted on the chamber base 702;
  • the chamber upper assembly 60 is for mounting on the chamber lower assembly 70, and the inlet passage 601 of the chamber upper assembly 60 and the multi-channel sequencing reaction chamber
  • the reagent inlet 103 of the 80 is in communication, and the outlet passage 602 of the chamber upper assembly 60 is in communication with the reagent outlet 104 of the multi-channel sequencing reaction chamber 80.
  • the small chamber upper cover 701 is mounted on the small chamber base 702, and the small chamber upper cover 701 is provided with a liquid inlet passage 601 for facilitating communication with the multi-channel sequencing reaction chamber 80 reagent inlet 103, and the liquid discharge.
  • the channel 602 is in communication with the multi-channel sequencing reaction chamber 80 reagent outlet 104.
  • the structure may be a through hole disposed in the upper chamber cover 701.
  • the present invention also provides an example for the multi-channel sequencing reaction device.
  • the multi-channel sequencing reaction device is composed of a small chamber upper assembly 60 and a chamber.
  • the lower assembly 70 and the multi-channel sequencing reaction chamber 80 comprise a liquid inlet channel 601 and a liquid outlet channel 602;
  • the chamber lower assembly 70 includes a chamber upper cover 701 and a chamber base 702, the chamber base 702
  • the chamber upper cover 701 is mounted on a chamber base 702;
  • the chamber upper assembly 60 is for mounting on the chamber lower assembly 70, and the chamber upper assembly 60
  • the inlet channel 601 is in communication with the reagent inlet 103 of the multi-channel sequencing reaction chamber 80, and the outlet channel 602 of the chamber upper assembly 60 is in communication with the reagent outlet 104 of the multi-channel sequencing reaction chamber 80.
  • the cell upper assembly 60 further includes a bottom plate 603, a heat insulation plate 604, a cooling fin 605, and a heat conduction plate 606; wherein the heat insulation plate 604 is fixed under the bottom plate 603 to insulate The middle portion of the plate 604 has a through hole, and the cooling fin 605 is disposed in the through hole of the heat insulating plate 604; the heat conducting plate 606 is fixed under the heat insulating plate 604 and the cooling fin 605; the liquid inlet passage 601 and the outlet The liquid passages 602 are through holes penetrating through the bottom plate 603, the heat insulating plate 604, and the heat conducting plate 606, respectively.
  • the inlet passage 601 is in communication with the reagent inlet 103 of the multi-channel sequencing reaction chamber 80, and the outlet passage 602 is in communication with the reagent outlet 104 of the multi-channel sequencing reaction chamber 80, due to aisle
  • the sequencing reaction chamber 80 needs to raise or lower the temperature during the sequencing reaction, so that the heat conducting plate 606 in the chamber upper assembly 60 is in contact with the multi-channel sequencing reaction chamber 80 to achieve an optimum heating or cooling effect.
  • the lower surface of the cooling fin 605 is in close contact with the upper surface of the heat conducting plate 606.
  • the temperature of the multi-channel sequencing chamber 80 is raised or lowered by the transfer of the heat conducting plate 606. To achieve the desired temperature.
  • the chamber upper assembly 60 further includes a temperature sensor for detecting the temperature of the multi-channel sequencing reaction chamber and preventing multi-channel sequencing when the cooling sheet 605 is warming or cooling the multi-channel sequencing reaction chamber.
  • the temperature of the reaction chamber is too high or too low.
  • the heat conducting plate 606 has a recess on the upper surface thereof, the temperature sensor 607 is disposed in the recess, and the temperature sensor 607 is located below the cooling fin 605. It should be noted that, for the position setting of the temperature sensor 607, the above is only a preferred embodiment, and the temperature sensor 607 can also be directly disposed on the multi-channel sequencing reaction chamber, directly to the multi-channel sequencing reaction chamber. The temperature is measured.
  • the cooling fin 605 is a semiconductor refrigerating sheet
  • the temperature sensor 607 is a K-type thermocouple.
  • the refrigerating sheet 605 is not limited to a semiconductor refrigerating sheet
  • the temperature sensor 607 is not limited to a K-type thermoelectric. I.
  • the present invention also provides an example for the cell upper assembly 60 and the cell lower assembly 70 of the multi-channel sequencing reaction device, as shown in FIG.
  • the middle portion of the cover 701 has a through hole.
  • the heat shield 604 and the heat conducting plate 606 of the small chamber upper assembly 60 extend into the through hole of the upper cover 701 of the chamber.
  • the heat conducting plate 606 is in close contact with the multi-channel sequencing reaction chamber 80, and the liquid inlet channel 601 is in communication with the reagent inlet 103 of the multi-channel sequencing reaction chamber 80.
  • the reagent channel 602 and the reagent of the multi-channel sequencing reaction chamber 80 The outlet 104 is connected.
  • the primary function of the chamber upper assembly 60 is to warm or cool the multi-channel sequencing reaction chamber 80 through the refrigeration plate 605.
  • This configuration of the multi-channel sequencing reaction device concentrates the heating and cooling portions of the multi-channel sequencing reaction chamber 80 in The chamber upper assembly 60 facilitates the separation of the chamber upper assembly 60 and the chamber lower assembly 70.
  • the split structure is designed to facilitate automatic sample change; the lower chamber assembly 70 is primarily used to secure the multi-channel sequencing reaction chamber 80, while the chamber The lower assembly 70 is also used for automatic spotting, and the reaction channel 101 of the multi-channel sequencing reaction chamber 80 is aligned by a pipette tip, and the sample to be tested is injected into each reaction channel 101 at a constant rate.
  • the present invention also proposes a third embodiment for a multi-channel sequencing reaction apparatus.
  • the multi-channel sequencing reaction apparatus comprises a small chamber upper assembly 60, a small chamber lower assembly 70, and the above multi-channel.
  • the sequencing reaction chamber 80 is constructed; wherein the chamber upper assembly 60 includes a liquid inlet channel 601 and a liquid outlet channel 602; the chamber lower portion assembly 70 includes a chamber upper cover 701 and a chamber base 702, the chamber base 702 is used for placing the chamber
  • the multi-channel sequencing reaction chamber 80 is described, and the chamber upper cover 701 is mounted on the chamber base 702.
  • the chamber upper assembly 60 further includes a bottom plate 603, a heat insulation plate 604, a cooling fin 605, a heat conduction plate 606, and a temperature sensor 607; wherein the heat insulation plate 604 is fixed under the bottom plate 603, and the heat insulation plate 604 has a through hole in a middle portion thereof.
  • the cooling fin 605 is disposed in the through hole of the heat insulation board 604, and the heat conduction board 606 is fixed to the heat insulation board 604.
  • the heat conducting plate 606 has a recess on the upper surface thereof, the temperature sensor 607 is disposed in the recess, and the temperature sensor 607 is located below the cooling fin 605.
  • the middle portion of the upper chamber cover 701 has a through hole.
  • the heat shield 604 and the heat conducting plate 606 of the small chamber upper assembly 60 extend into the upper cover 701 of the small chamber.
  • the thermally conductive plate 606 is in close contact with the multi-channel sequencing reaction chamber 80.
  • the cell upper assembly 60 further includes a top plate 608 and a heat dissipation plate 609 disposed above the bottom plate 603, the heat dissipation plate 609 being located between the top plate 608 and the bottom plate 603 and fixed to the bottom plate 603
  • the heat dissipation plate 609 has a plurality of heat dissipation fins, and the bottom plate 603 and the heat insulation plate 604 are connected by screws.
  • the steel pipe is provided with a steel pipe in the middle, and the steel pipe is the liquid inlet channel 601 and the liquid outlet channel 602. .
  • a pressing block is elastically connected to the lower portion of the upper chamber cover 701, and the pressing block is pressed on the multi-channel sequencing reaction chamber 80.
  • the small chamber upper cover 701 is provided with a buckle, and the buckle is used for being stuck.
  • the chamber base 702 is fastened to the chamber base 702 by the action of the buckle, and the multi-channel sequencing reaction chamber 80 is used due to the action of the pressure block of the upper chamber cover 701. Press around to prevent leakage and sample contamination when spotting.
  • the cooling sheet 605 heats the multi-channel sequencing reaction chamber 80
  • the lower surface of the cooling sheet 605 is a hot surface
  • the upper surface of the cooling sheet 605 is a cold surface
  • the cooling sheet 605 is placed in the heat insulation.
  • the cold surface is separated from the hot surface by the action of the heat insulating plate 604.
  • the cooling sheet 605 cools the multi-channel sequencing reaction chamber 80
  • the lower surface of the cooling sheet 605 is The cold sheet and the upper surface of the cooling sheet 605 are hot surfaces, and the heat insulating board separates the cold surface from the hot surface, thereby improving the efficiency of heating or cooling the cooling sheet.
  • a sealing rubber pad 90 is further disposed on the heat conducting plate 606, and the sealing rubber pad 90 is disposed at the outlet of the liquid inlet passage 601 and at the inlet of the liquid outlet passage 602, the sealing rubber pad 90 is also attached to the cover glass 30 of the multi-channel sequencing reaction chamber 80, while the outlet of the inlet channel 601 is in communication with the reagent buffer 102, and the inlet of the outlet channel 602 is in communication with the reagent buffer 102.
  • Two through holes may be disposed in the top plate 608, the heat dissipation plate 609, the bottom plate 603, the heat insulation plate 604, and the heat conduction plate 606 in the upper chamber assembly 60. The two through holes are windows, and the bright field map is taken through two windows. Used to see if the distribution of the magnetic beads is uniform.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)

Abstract

一种多通道测序反应小室及多通道测序反应装置;所述多通道测序反应小室包括相贴合的第一玻片(10)和第二玻片(20),所述第一玻片(10)用于与第二玻片(20)形成多条中空的反应通道(101),所述反应通道(101)的两端分别设有用于容纳试剂的试剂缓冲区(102),所述第一玻片(10)或第二玻片(20)上设置有与试剂缓冲区(102)连通的试剂入口(103),所述第一玻片(10)或第二玻片(20)上还设置有与试剂缓冲区(102)连通的试剂出口(104);通过试剂缓冲区(102)的设计,简化了多通道测序反应小室的结构,便于对多通道测序反应小室的内部进行清洗,可多次重复使用,降低了设备的成本。

Description

多通道测序反应小室及多通道测序反应装置 技术领域
本发明涉及生化设备领域,更具体地说,本发明涉及一种多通道测序反应小室及多通道测序反应装置。
背景技术
基因测序技术近年来发展非常迅猛。与第一代测序技术“毛细管电泳测序”不同,当前的基因测序技术是通过基因测序仪来检测核酸,通过数据处理得到核酸序列。而在基因测序仪中包含一个重要设备--测序反应小室。
测序反应小室用于进行测序反应。在现有技术的基因测序仪中,测序反应小室具有一个中间宽、两端窄的反应通道,在进行测序时,首先将处理好的待测样品固定在测序反应小室内,然后注入测序反应试剂,该试剂通过反应通道流经测序反应小室,与待测样品发生测序反应。在测序反应结束后,通过信号采集装置采集测序信号,通过后期的数据处理从而得到基因序列。
由于基因测序是在纳米数量级的操作,对于仪器加工精度及各种生化材料的制备精度要求都非常高,对生化反应的温度、试剂剂量、时间控制等的要求也非常严格。而正是由于上述限制,在现有技术的基因测序仪中,所设计的测序反应小室为单个通道。当需要对多个待测样品进行测序时,只能分别进行多次测序反应,这使得对多样品测序的效率非常低。
鉴于单个通道的测序反应小室对多样品测序效率低,因此设计出多通道的测序反应小室。现有技术中的多通道测序反应小室,具有多个反应通道,可同时在多个反应通道内同时进行测序反应。由于每一个反应通道均需要通入试剂,因此每一个反应腔单独具有试剂进口和试剂出口,并且在试剂进口和试剂出口上连接有管道,供试剂的进入和流出。现有技术中的多通道测序反应小室的结构非常繁琐与复杂,并且在清洗时需要将多根管道进行拆卸,非常的不方便,在拆卸与组装过程中还容易出现密封不良,造成测序反应过程中出现漏液的情况。
因此需要一种新的多通道测序反应小室及度通道测序反应装置,能够简化多通道测序反应小室的结构,方便测序反应小室的拆卸与清洗。
发明内容
本发明的目的在于提供一种多通道测序反应小室,旨在解决现有技术中测序反应小室结构复杂、不便于进行拆卸和清洗的问题。
为了实现发明目的,多通道测序反应小室包括:包括相贴合的第一玻片和第二玻片,所述第一玻片用于与第二玻片形成多条中空的反应通道,所述反应通道的两端分别设有用于容纳试剂的试剂缓冲区,所述第一玻片或第二玻片上设置有与试剂缓冲区连通的试剂入口,所述第一玻片或第二玻片上还设置有与试剂缓冲区连通的试剂出口。
其中,所述第一玻片位于第二玻片上方,所述反应通道和试剂缓冲区均设置在第一玻片的下表面,所述试剂入口为设置于第一玻片或第二玻片上的通孔,所述试剂出口为设置于第一玻片或第二玻片上的通孔。
其中,所述第一玻片位于第二玻片上方,所述反应通道和试剂缓冲区均设置在第二玻片的上表面,所述试剂入口为设置于第一玻片或第二玻片上的通孔,所述试剂出口为设置于第一玻片或第二玻片上的通孔。
其中,所述第一玻片位于第二玻片上方,所述第一玻片的下表面设置有多个长条形的凹槽,第二玻片贴合在第一玻片下表面上后,与所述的长条形凹槽构成了中空的反应通道;所述试剂缓冲区设置在第一玻片的下表面和第二玻片的上表面,且设置于第一玻片上的试剂缓冲区的形状与设置于第二玻片上的试剂缓冲区的形状相同,当第一玻片贴合在第二玻片上时,设置于第一玻片上的试剂缓冲区与设置于第二玻片上的试剂缓冲区相吻合。
其中,所述第一玻片位于第二玻片上方,所述第一玻片的下表面和第二玻片的上表面设置有相吻合的多个长条形凹槽,第一玻片和第二玻片相贴合后,相吻合的长条形凹槽构成了中空的反应通道;试剂缓冲区设置在第一玻片的下表面和第二玻片的上表面,且设置于第一玻片上的试剂缓冲区的形状与设置于第二玻片上的试剂缓冲区的形状相同,当所述的第一玻片贴合在第二玻片上时,设置于第一玻片上的试剂缓冲区与设置于第二玻片上的试剂缓冲区相吻合。
其中,所述试剂入口和试剂出口的形状与试剂缓冲区的形状相同。
其中,所述第一玻片由盖玻片和导液片紧密贴合而成,所述第二玻片为载玻片,所述导液片位于盖玻片与载玻片之间,所述导液片上设置有长条形的通孔,所述反应通道由盖玻片、长条形的通孔以及载玻片围合而成;或者
所述第一玻片为盖玻片,所述第二玻片由导液片和载玻片紧密贴合而成,所述导液片上设置有长条形的通孔,所述反应通道由盖玻片、长条形的通孔以及载玻片围合而成。
进一步的,所述试剂缓冲区为设置在导液片上的通孔或为设置在盖玻片上的通孔。
进一步的,所述试剂缓冲区呈半圆形,试剂缓冲区具有圆弧边与直线边,且所述缓冲区的直线边位于靠近所述反应通道的一侧。
进一步的,所述试剂缓冲区呈三角形。
另外,本发明还提出了一种具有上述的多通道测序反应小室的多通道测序反应装置,它由多通道测序反应小室、小室上部组件和小室下部组件构成,其中:
所述小室上部组件包括进液通道和出液通道;
所述小室下部组件包括小室上盖和小室底座,所述小室底座用于放置所述的多通道测序反应小室,所述小室上盖安装在小室底座上;
所述小室上部组件用于安装在小室下部组件上,且所述小室上部组件的进液通道与所述多通道测序反应小室的试剂入口连通,所述小室上部组件的出液通道与所述多通道测序反应小室的试剂出口连通。
其中,所述小室上部组件还包括底板、隔热板、制冷片、导热板以及温度传感器;其中
所述隔热板固定在底板的下方,所述隔热板的中部具有通孔,所述制冷片设置于隔热板的通孔内,且所述制冷片的上表面与底板的下表面相接触;
所述导热板固定在制冷片的下方,导热板的上表面与制冷片的下表面相接触,当小室上部组件安装在小室下部组件上时,所述导热板的下表面与多通道测序反应小室相接触;
所述温度传感器用于检测所述的多通道测序反应小室的温度;
所述进液通道和出液通道分别为贯穿于所述底板、隔热板和导热板的通孔。
进一步的,所述小室上盖的中部具有通孔,所述小室上部组件安装在小室下部组件上时,所述小室上部组件的隔热板和导热板伸入小室上盖的通孔内,所述导热板紧贴于多通道测序反应小室上,且所述进液通道与多通道测序反应小室的试剂入口连通,所述出液通道与多通道测序反应小室的试剂出口连通。
进一步的,所述小室上部组件还包括顶板和散热板,所述顶板设置在底板上方,所述散热板位于顶板与底板之间并固定于所述底板上,所述散热板具有若干个散热鳍片。
进一步的,所述底板和隔热板通过螺钉连接,所述螺钉中间设置有钢管,该钢管即为进液通道和出液通道。
进一步的,所述导热板上还设置有密封胶垫,且密封胶垫设置于进液通道的出口处和出液通道的入口处,所述小室上部组件安装在小室下部组件上时,所述密封胶垫紧贴于多通道测序反应小室上。
其中,所述小室上盖的下方弹性连接有压块,所述压块压在多通道测序反应小室上。
其中,所述小室上盖上设置有卡扣,所述卡扣用于卡在所述的小室底座上。
进一步的,所述小室上部组件上设置有通孔,该通孔用于拍摄明场图,用于看清楚小室中的磁珠分布是否均匀。
由上可知,本发明通过试剂缓冲区的设计,简化了多通道测序反应小室的结构,便于对多通道测序反应小室的内部进行清洗,非常的方便,降低了在拆卸与组装过程中出现的密封不良而造成测序反应过程中出现漏液的情况;在实际使用过程中可多次重复使用,相对于现有技术中一次性使用的反应腔,大大降低了设备的成本。
附图说明
图1、图2为本发明一个示例的多通道测序反应小室中关于反应通道的结构示意图。
图3、图4为本发明另一个示例的多通道测序反应小室中关于反应通道的结构示意图。
图5为本发明另一个示例的多通道测序反应小室中关于反应通道的结构示意图。
图6a为本发明另一个示例的多通道测序反应小室中关于反应通道的结构示意图。
图6b为本发明另一个示例的多通道测序反应小室中关于反应通道的结构示意图。
图7为本发明一个示例的多通道测序反应小室中关于试剂缓冲区的结构示意图;
图8为本发明另一个示例的多通道测序反应小室中关于试剂缓冲区的结构示意图。
图9为本发明另一个示例的多通道测序反应小室中关于试剂缓冲区的结构示意图。
图10a、图10b为本发明另一个示例的多通道测序反应小室中关于试剂缓冲区的结构示意图。
图11a、图11b为本发明一个示例的多通道测序反应小室中关于试剂缓冲区形状的两种结构示意图。
图12a、图12b、图12c为本发明的多通道测序反应小室中关于试剂入口和试剂出口的三种示例图。
图13a为本发明一个示例的多通道测序反应小室中关于试剂入口和试剂出口的结构示意图。
图13b为本发明另一个示例的多通道测序反应小室中关于试剂入口和试剂出口的结构示意图。
图14为本发明一个示例的多通道测序反应装置的结构示意图。
图15为本发明另一个示例的多通道测序反应装置中小室上部组件的纵截面结构示意图。
图16为本发明另一个示例的多通道测序反应装置的纵截面结构示意图。
图17为本发明另一个示例的多通道测序反应装置的纵截面结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明提出第一实施例,本实施例提出了一种多通道测序反应小室,该多通道测序反应小室使得多个样品同时进行测序反应,实现了多通道测序反应小室平行测序。所述多通道测序反应小室包括相贴合的第一玻片和第二玻片,所述第一玻片用于与第二玻片形成多条中空的反应通道,所述反应通道的两端分别设有用于容纳试剂的试剂缓冲区,所述第一玻片或第二玻片上设置有与试剂缓冲区连通的试剂入口,所述第一玻片或第二玻片上还设置有与试剂缓冲区连通的试剂出口。
本实施例中,所述的试剂入口与供应试剂的管道连通,试剂出口与排除试剂的管道连通。将多个待测样品固定于位于第一玻片和第二玻片之间的反应通道的内壁上,通过供应试剂的管道往多通道测序反应小室内通入试剂,在试剂进入反应通道前,试剂首先会进入位于反应通道一端的试剂缓冲区中,将试剂缓冲区填充后,试剂再同时进入多个通中空的反应通道中,与多个反应通道中待测样品同时发生测序反应,克服了传统的测序反应小室内只能单个样品进行测序,效率比较低下的问题;此后试剂则流出并进入反应通道另一端的试剂缓冲区中,试剂在该试剂缓冲区汇集后,从排出试剂的管道中排出。由于试剂缓冲区的存在,试剂缓冲区均能够存储一定量的试剂,在试剂通入反应通道前会流入试剂缓冲区内,试剂缓冲区有利于均匀的排出个反应通道中的空气,试剂进入反应通道时内部压力一至,试剂能够均匀的通过各个反应通道,因此保证了每一个反应通道流速的均匀性以及扩散性的均匀一致。
现有技术中的具有多个通道的测序反应小室,由于具有多个反应通道,每一个反应通道的入口和出口均需要接入管道,供试剂的进入和流出;这种结构的测序反应小室的结构非常繁琐与复杂,在对测序反应小室进行清洗时,需要将多根管道进行拆卸,非常的不方便,在拆卸与组装过程中还容易出现密封不良,造成测序反应过程中出现漏液的情况。而本实施例中的多通道测序反应小室,由于试剂缓冲区的设置,只需要一根管道接入试剂缓冲区,就可以完成多个通道的测序反应,简化了多通道测序反应小室的结构;另外,在需要对测序反应小室进行拆卸清洗时,只需要拆卸一根与试剂入口连通的进液的管道和一根与试剂出口连通的出液的管道,就可以对测序反应小室的内部进行清洗,非常的方便,降低了在拆卸与组装过程中出现的密封不良而造成测序反应过程中出现漏液的情况。在实际使用过程中可多次重复使用,相对于现有技术中一次性使用的反应腔,本发明大大降低了设备的成本。
下面针对多通道测序反应小室的各个部件进行详细的说明。
(一)关于多通道测序反应小室的反应通道
对于多通道测序反应小室的反应通道,本发明提出了一示例,如图1、图2所示,所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,图1为第一玻片10和第二玻片20的截面示意图,图2为第一玻片10的立体结构示意图,所述第一玻片10位于第二玻片20上方,所述第一玻片10用于与第二玻片20形成多条中空的反应通道101,且所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102,本示例中,所述反应通道101和试剂缓冲区102均设置在第一玻片10的下表面,具体的,所述第一玻片10的底面上设置有长条形的凹槽,第二玻片20盖在第一玻片10上后与长条形的凹槽形成密闭的中空结构的反应通道101,试剂缓冲区102设置在第一玻片10的下表面。另外,所述第一玻片10上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104,在本示例中,所述试剂入口103和试剂出口104均为设置在第一玻片10上的通孔。
如图1所示,在所述反应通道101中,反应通道101的内壁用于固定多个待测样品,反应通道101的数量可根据需要进行设定,例如可以是六通道的测序反应小室,也可以是八通道的测序反应小室,图2中所示的即为六通道测序反应小室的第一玻片10。在本示例中,试剂入口103与供应试剂的管道连通,试剂出口104与排出试剂的管道连通,考虑到试剂的流动,在进行测序反应前,优选将测序反应小室竖直放置,并且试剂入口103位于下方。在进行测序反应时,通过试剂入口103注入的试剂首先进入位于试剂入口103处的试剂缓冲区102,持续注入试剂后,试剂充满了试剂入口103处的试剂缓冲区102后,才会同时进入六个反应通道101中,分别与固定于反应通道101中的待测样品进行测序反应,然后流出并进入位于试剂出口102处的试剂缓冲区102中,试剂在该试剂缓冲区102汇集后,从排出试剂的管道中排出,持续注入试剂,试剂则不断的从反应通道101中流过,与待测样品发生测序反应。由于试剂缓冲区102的存在,在试剂通入反应通道101前,或者从反应通道101流出后,试剂缓冲区102均能够存储一定量的试剂,保证了每一个反应通道101流速的均匀性以及扩散性的均匀一致。本发明简化了多通道测序反应小室的结构,在需要对测序反应小室进行拆卸清洗时,只需要拆卸一根与试剂入口103连通的进液的管道和一根与试剂出口104连通的出液的管道,将第一玻片10与第二玻片20分离后,就可以对测序反应小室的的反应通道101、试剂缓冲区102、试剂入口103以及试剂出口104进行清洗,非常的方便,同时降低了在拆卸与组装过程中出现的密封不良而造成测序反应过程中出现漏液的情况。在进行第一玻片和第二玻片的安装时,由于试剂入口、试剂出口、反应通道和试剂缓冲区均设置在第一玻片上,因此安装非常的便利。
如图3、图4所示,对于多通道测序反应小室的反应通道,本发明还提出了一示例,所述 的多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,图3为第一玻片10和第二玻片20的截面示意图,图4为第一玻片10和第二玻片20的立体结构示意图,所述第一玻片10位于第二玻片20上方,所述第一玻片10用于与第二玻片20形成多条中空的反应通道101,且所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102。具体的,在本示例中,所述第二玻片20的上表面具有多个长条形的凹槽,当第一玻片10贴合在第二玻片20上时,长条形的凹槽与第一玻片10围合构成中空的反应通道101,并且反应通道101的两端与试剂缓冲区102连通,试剂缓冲区102设置在第一玻片10的下表面。另外,所述第一玻片10上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104,并且所述试剂入口103和试剂出口104均为设置在第一玻片10上的通孔。
中空结构的反应通道101的内壁用于固定多个待测样品,试剂入口103与供应试剂的管道连通,试剂出口104与排出试剂的管道连通。在进行测序反应前,将测序反应小室竖直放置,并且试剂入口103位于下方。在进行测序反应时,通过试剂入口103注入的试剂首先进入位于试剂入口处的试剂缓冲区102,持续注入试剂后,试剂充满了试剂入口处的试剂缓冲区102后,才会同时进入多个反应通道101中,然后流出并进入位于试剂出口104处的试剂缓冲区102中,试剂在该试剂缓冲区102汇集后,从排出试剂的管道中排出,由于试剂缓冲区102的存在,在试剂通入反应通道101前,或者从反应通道101流出后,试剂缓冲区102均能够存储一定量的试剂,因此保证了每一个反应通道101流速的均匀性以及扩散性的均匀一致。本发明简化了多通道测序反应小室的结构,在需要对测序反应小室进行拆卸清洗时非常的方便,同时降低了在拆卸与组装过程中出现的密封不良而造成测序反应过程中出现漏液的情况。本示例中,由于试剂缓冲区102设置在第一玻片10的下表面,多个长条形凹槽设置在第二玻片20上,相对于在同一玻片上加工出不同结构的试剂缓冲区和反应通道,本方案降低了加工难度。
对于多通道测序反应小室的反应通道,如图5所示,本发明还提出了一示例,所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,图5为第一玻片10和第二玻片20的截面示意图,第一玻片10位于第二玻片20上方,第一玻片10用于与第二玻片20形成多条中空的反应通道101,且所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102。具体的,在本示例中,所述第一玻片10的下表面和第二玻片20的上表面均设置有长条形的凹槽,在第一玻片10和第二玻片20相贴合后,第一玻片10上长条形的凹槽与第二玻片20上的长条形凹槽相适配,构成了中空反应通道101,所述试剂缓冲区102设置于第一玻片的下表面,反应通道与试剂缓冲区102连通。当所述的第一玻片10贴合在第二玻片20上时,采用密封处理,防止出现漏液。进一步的,第一玻片10上设置有与试剂缓冲区分别连通的试剂入口103和试剂出口 104,并且试剂入口103和试剂出口104均为设置在第一玻片10上的通孔。在进行测序反应时,通过试剂入口103注入的试剂首先进入位于试剂入口103处的试剂缓冲区102,持续注入试剂后,试剂充满了试剂入口103处的试剂缓冲区102后,才会同时进入多个反应通道101中,与待测样品进行测序反应,实现多个样品的同时测序反应。本发明简化了多通道测序反应小室的结构,在需要对测序反应小室进行拆卸清洗时非常的方便。
对于多通道测序反应小室的反应通道101,如图6a所示,本发明还提出了一示例,所述多通道测序反应小室使得多个样品同时进行测序反应,实现了多通道测序反应小室平行测序。多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,所述第一玻片10用于与第二玻片20形成多条中空的反应通道101,所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102,所述第一玻片10上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104,在示例中,如图8所示,所述第一玻片10由盖玻片30和导液片40紧密贴合而成,所述第二玻片20为载玻片50,所述导液片40位于盖玻片30与载玻片50之间;所述导液片40上设置有长条形的通孔,当盖玻片30和载玻片50分别贴合在导液片的上下表面时,与长条形的通孔围合构成所述的反应通道101;所述导液片40上设置有通孔,当盖玻片30和载玻片50分别贴合在导液片的上下表面时,与所述通孔围合构成了试剂缓冲区102。在进行测序反应前,将本实施例中的多通道测序反应小室竖直安放在测序装置上,试剂入口103与通入试剂的管道连通,试剂出口104与流出试剂的管道连通,将多个待测样品固定于导液片的反应通道101的内壁上,在试剂进入反应通道101前,试剂首先会进入位于反应通道101一端的试剂缓冲区102中,将试剂缓冲区102填充后,试剂才会同时进入导液片40的反应通道101中,与多个反应通道101中待测样品同时发生测序反应,克服了传统的测序反应小室内只能单个样品进行测序,效率比较低下的问题。此后试剂流出并进入反应通道另一端的试剂缓冲区102中,试剂在该试剂缓冲区102汇集后,从排出试剂的管道中排出。由于试剂缓冲区102的存在,试剂缓冲区102均能够存储一定量的试剂,在试剂通入反应通道前会流入试剂缓冲区102内,试剂缓冲区102有利于均匀的排出个反应通道101中的空气,试剂进入反应通道时内部压力一直,试剂能够均匀的通过各个反应通道,因此保证了每一个反应通道101流速的均匀性以及扩散性的均匀一致。本发明的多通道测序反应小室与现有技术中的测序反应小室相比较,简化了多通道测序反应小室的结构;在需要对测序反应小室进行拆卸清洗时,只需将连入试剂入口103和试剂出口104的管道拆卸,将盖玻片30、导液片40和载玻片50分离后,就可以对测序反应小室的内部进行清洗,非常的方便,由于只需要拆卸一根通入试剂的管道和一根流出试剂的管道,相比需要拆卸多根管道的测序反应小室,降低了在拆卸与组装过程中出现的密封不良而造成测序反应过程中出现漏 液的情况。
如图6b所示,对于多通道测序反应小室,本发明还提出了一示例,所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,所述第一玻片10用于与第二玻片20形成多条中空的反应通道101,所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102,所述第一玻片10上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104,在本示例中,所述第一玻片10为盖玻片30,所述第二玻片20由导液片40和载玻片50紧密贴合而成,所述导液片40位于盖玻片30与载玻片50之间;所述导液片40上设置有长条形的通孔,当盖玻片30和载玻片50分别贴合在导液片的上下表面时,与长条形的通孔围合构成所述的反应通道101;导液片40上还设置有通孔,当盖玻片30和载玻片50分别贴合在导液片的上下表面时,与所述通孔围合构成了试剂缓冲区102。在进行测序反应前,将多通道测序反应小室竖直安放在测序装置上,试剂入口103与通入试剂的管道连通,试剂出口104与流出试剂的管道连通,将多个待测样品固定于导液片40的反应通道101的内壁上,在试剂进入反应通道101前,试剂首先会进入位于反应通道101一端的试剂缓冲区102中,将试剂缓冲区102填充后,试剂才会同时进入导液片40的反应通道101中,与多个反应通道101中待测样品同时发生测序反应。在图6a、图6b所述的示例中,导液片40上均设置有长条形的通孔,并且通过盖玻片30和载玻片50贴合在导液片40上,与长条形的通孔围合构成反应通道101。但需要说明的是,在所述的导液片40的上表面或者下表面上,可以设置有多个长条形的凹槽,当导液片40的上表面设置长条形的凹槽时,盖玻片30贴合在导液片上,与长条形的凹槽构成了中空的反应通道,到导液片的下表面设置长条形的凹槽时,载玻片贴合在导液片上,与长条形的凹槽构成了中空的反应通道。
在上述的任意方案中,反应通道101的数量可以根据需要进行测序反应的待测样品的数量进行调整,上述的示例中反应小室均具有六个反应通道。所述反应通道101的结构无具体限制,反应通道101的横截面可以为半圆形或方形或者其他形状,但需要说明的是,一般的,待测样品需要固定在平整面上,便于测序反应的进行以及测序反应后对于反应通道的清洗,因此,在图1、图2所述的示例中,待测样品固定于第二玻片20的上表面,对于反应通道的形状则并无要求;在图3、图4所述的示例中以及图5所述的示例中,待测样品固定在第二玻片20上的长条形凹槽内,因此,长条形凹槽的底面为一平整面,另外,考虑到反应通道101的加工难度以及反应通道101的清洗难易度,长条形凹槽的拐角处可以设置为一弧形面,通过这种结构的设计,降低了多通道测序反应小室的加工难度,便于实现多通道测序反应小室的批量生产,在清洗时,长条形凹槽的弧形面更便于清洗。
(二)关于多通道测序反应小室的试剂缓冲区
在上述的对于反应通道阐述的任意方案中,所述的试剂缓冲区102均设置在第一玻片10的下表面上。对于试剂缓冲区102,本发明还提出了一示例,该示例中所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,图7为第一玻片10和第二玻片20的截面示意图,所述第一玻片10位于第二玻片20上方,所述第一玻片10用于与第二玻片20形成多条中空的反应通道101,且所述反应通道101的两端分别设有用于容纳试剂的试剂缓冲区102。本示例中,所述反应通道101设置在第二玻片20的上表面,但是,上述的方案中任意一种关于反应通道101位置的方案均能够在本示例中适用,本示例中则不对反应通道的位置再进行详细的说明。所述试剂缓冲区102为设置在第二玻片20上的凹槽,当第一玻片10盖在第二玻片20上后,设置于第一玻片10上的试剂入口103和试剂出口104则与试剂缓冲区102连通,同时,反应通道101的首尾端分别与试剂缓冲区102连通。在进行测序反应前,将测序反应小室竖直放置,并且试剂入口103位于下方,便于在进行测序反应时排出内部的空气,进行测序反应时,通过试剂入口103注入的试剂首先会充盈试剂入口103处的试剂缓冲区102,才会同时进入多个反应通道101中,实现多个样品的同时测序反应。
如图8所示,对于多通道测序反应小室的试剂缓冲区102,本发明还提出了一示例,本示例中,所述反应通道101设置在第一玻片10的下表面,对于反应通道101的位置,上述任意方案中的反应通道101的位置均可以在本示例中适用,因此本方案中则不对反应通道101的位置进行详细的说明。所述试剂缓冲区102为设置在第一玻片10的下表面和第二玻片20的上表面的凹槽,且设置于第一玻片10上的凹槽的形状与设置于第二玻片20上的凹槽的形状相同,当第一玻片10贴合在第二玻片20上时,凹槽相吻合,构成了试剂缓冲区102。所述第一玻片10上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104,在本示例中,所述试剂入口103和试剂出口104均为设置在第一玻片10上的通孔。在进行测序反应前,将测序反应小室竖直放置,并且试剂入口103位于下方。需要说明的是,并非测序反应小室只能够竖直放置进行测序反应,当测序反应小室水平放置时,也能够完成测序反应,本是说明书中所指的测序反应小室竖直放置仅为一种较佳的方案。在进行测序反应时,通过试剂入口103注入的试剂首先会充盈试剂入口103处的试剂缓冲区102,才会同时进入多个反应通道101中,实现多个样品的同时测序反应。在本示例中,由于试剂缓冲区102的纵向深度大于反应通道101的深度,因此即使当本示例中的多通道测序反应小室水平放置进行测序反应,在通过试剂入口103通入试剂时,试剂也不会直接进入反应通道101,而是先进入试剂缓冲区102,当位于第二玻片20上的试剂缓冲区102充满试剂后,试剂才会同时进入反应通道101内。
如图9所示,对于多通道测序反应小室的试剂缓冲区102,本发明还提出了一示例,本示 例中,所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,所述第一玻片10由盖玻片30和导液片40紧密贴合而成,所述第二玻片20为载玻片50,所述导液片40位于盖玻片30与载玻片50之间,所述盖玻片片30上设置有与试剂缓冲区102分别连通的试剂入口103和试剂出口104;所述导液片40上设置有长条形的通孔,当盖玻片30和载玻片50分别贴合在导液片的上下表面时,与长条形的通孔围合构成所述的反应通道101;所述导液片40上设置有通孔,并且所述载玻片50上设置有凹槽,通孔与所述的凹槽形状相适配,当盖玻片30和载玻片50分别贴合在导液片40的上下表面时,通孔与所述的凹槽相吻合,构成所述的试剂缓冲区102。试剂缓冲区的此种结构,多通道测序反应小室处于竖直放置状态或者是水平放置状态时,试剂缓冲区102均能够存储一定的试剂,试剂不会直接进入反应通道101,保证了每一个反应通道101流速的均匀性以及扩散性的均匀一致。
如图10a、图10b所述,对于多通道测序反应小室的试剂缓冲区102,本发明还提出了一示例,所述多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,所述第一玻片10由盖玻片30和导液片40紧密贴合而成,所述第二玻片20为载玻片50,所述导液片40位于盖玻片30与载玻片50之间;所述盖玻片30上设置有通孔,该通孔即为试剂缓冲区30。如图10b所示,所述的导液片40上设置有长条形的通孔,当盖玻片30贴合在导液片40的上表面,载玻片50贴合在导液片40的下表面时,长条形的通孔即形成了密封的反应通道101,在盖玻片30与导液片40、载玻片50与导液片40进行贴合时,需要进行密封处理,防止在进行测序反应时出现漏液的情况。在本示例中,分别将试剂缓冲区102和反应通道101设置在盖玻片30上和导液片40上,使得试剂缓冲区102和反应通道102的加工更为简单,提高了加工的效率。本发明的多通道测序反应小室与现有技术中的测序反应小室相比较,简化了多通道测序反应小室的结构。在需要进行清洗时,将盖玻片30从导液片40上取下,将导液片40从载玻片50上取下,分别对盖玻片30、导液片40以及载玻片50进行清洗,可以直接对盖玻片30上的试剂缓冲区102和导液片40上的反应通道101进行清洗,非常的方便。
进一步的,在上述任意方案的基础上,针对试剂缓冲区102的形状,本发明提出了一示例,如图11a所示,所述试剂缓冲区102呈半圆形,试剂缓冲区102具有圆弧边与直线边,所述缓冲区102的直线边位于靠近所述反应通道101的一侧。通过此种结构的设计,当将多通道测序反应小室竖直安装于测序装置上后,如图11a所示,在往试剂缓冲区102注入试剂的过程中,由于试剂缓冲区102设计为半圆形,图11a所示的A点、B点和C点的流速更为均匀,使得试剂缓冲区102中任意位置的流速更为均匀,从而保证了每一个反应通道101流速的均匀性以及扩散性的均匀一致;使多个反应通道101内的测序反应同时进行。需要说明的是,上述的方案并不 对试剂缓冲区102的结构构成任何限制,试剂缓冲区102的大小和形状和根据实际需要进行设计,例如试剂缓冲区102可以采用正方形或长方形,图11a所示的方案仅为一较佳的示例。如图11b所示,为试剂缓冲区102的另一示例,该示例中,所述试剂缓冲区102呈三角形,通过往试剂缓冲区102注入试剂的过程中,通过三角形结构的设计,保证每一个反应通道101流速的均匀性以及扩散性的均匀一致;使多个反应通道101内的测序反应同时进行。
(三)关于试剂入口和试剂出口
对于试剂入口103和试剂出口104的位置,除了在上述实施例中试剂入口103和试剂出口104均设置在第一玻片10上的情况外,本发明还提供了一示例,如图12a所示,多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,第一玻片10用于与第二玻片20形成多条中空的反应通道,所述反应通道的两端分别设有用于容纳试剂的试剂缓冲区;本示例中,上述示例中的反应通道和试剂缓冲区均能够在本示例中适用,因此对于反应通道和试剂缓冲区,在本示例中则不进行详细的描述;所述试剂入口103设置在第一玻片10的上表面,所述试剂出口104设置在第二玻片20的下表面,试剂从第一玻片10上试剂入口103通入,流经反应通道,并从第二玻片20上的试剂出口104流出。
对于试剂入口和试剂出口的位置,如图12b所示,本发明还提出了一示例,多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,对于多通道测序反应小室具有的反应通道和试剂缓冲区,上述示例中的反应通道和试剂缓冲区均能够在本示例中适用,因此对于反应通道和试剂缓冲区在本示例中则不进行详细的描述;本示例中,所述试剂入口103设置在第二玻片20的下表面,试剂出口104设置于第一玻片10的上表面,通过往第二玻片20的试剂入口通入试剂,试剂在流经反应通道后,从第二玻片20上的试剂出口103流出。
如图12c所示,对于试剂入口103和试剂出口104的位置,本发明还提出了一示例,多通道测序反应小室包括相贴合的第一玻片10和第二玻片20,同样的,在本实施例中,对于多通道测序反应小室具有的反应通道和试剂缓冲区不作详细的描述,所述试剂入口103和试剂出口104均设置在第二玻片20的底面上,进行测序反应时,试剂从第二玻片20上的试剂入口103通入,试剂流经反应通道,从第二玻片104的试剂出口处流出。对于试剂入口和试剂出口的位置的设置,可以根据实际情况而定,本发明不对试剂入口103和试剂出口104的位置进行任何的限定。在图12a、图12b所述的示例中,由于试剂入口103设置在第二玻片20的下表面,在进行测序反应,多通道测序反应小室处于水平放置状态时,通过试剂入口103向反应通道内注入试剂,试剂汇集在试剂缓冲区,不会直接进入反应通道中,因此,试剂入口设置在第二玻片下表面时,适用于需要将多通道测序反应小室水平放置进行测序反应的情况。
对于试剂入口103和试剂出口104的形状,在上述任意的方案中,均为设置在第一玻片10或第二玻片20上的通孔,另外,针对于试剂入口103和试剂出口104的形状,本发明还提出了一示例,如图13a所示,本示例中,当设置于第一玻片10上的试剂入口103和试剂出口104的形状与所述试剂缓冲区102的形状相同时,所述的试剂入口103和试剂出口104也就等同于所述的试剂缓冲区102。为了对此种技术方案进行说明,如图13a所示,该方案是在图1所示的方案的基础上进行的扩展,但需要说明的是,本方案中并不对反应通道101进行任何限定。与图1所示的方案不同的是,该方案中,设置于第一玻片10上的试剂入口103和试剂出口104的形状与试剂缓冲区102的形状相同。一般的,多通道测序反应小室需要竖直放置于测序仪器中,并从下方通入试剂,有助于排空多通道测序反应小室内的空气。当进行测序反应时,通过注入试剂的管道向试剂入口103处(即试剂缓冲区102)注入试剂时,由于试剂入口103(试剂缓冲区102)所占的区域相对较大,因此试剂不会直接进入反应通道101内,首先试剂会充满试剂缓冲区102,继续注入试剂后,试剂同时进入多个反应通道101中,与反应通道101内的待测样品进行测序反应。同样的,对于试剂入口103和试剂出口104的位置,在该方案中并无具体的限定,例如,当试剂入口103设置于第二玻片20的下表面,而试剂出口104设置于第一玻片20的上表面时,如图13b所示,试剂入口103和试剂出口104的形状与试剂缓冲区102的形状相同,在此方案中,所述的多通道测序反应小室可以直接水平放置,通过往试剂入口103(即试剂缓冲区102)通入试剂,由于试剂入口103朝下,因此试剂首先充盈试剂缓冲区102(即试剂入口103),试剂不会直接进入反应通道103内,并且这种结构有助于排出多通道测序反应小室内部的空气;持续注入试剂后,试剂同时进入多个反应通道101中,与反应通道101内的待测样品进行测序反应。
另外,在上述任意方案的基础上,对所述第一玻片10和第二玻片20的材质不进行限定,第二玻片10和第二玻片20的材质可以是玻璃、PMMA、PC、PE其中任意一种。其中第二玻片20不仅能够牢牢的固定住样品,防止反应时样品脱落而降低通量,而且光线能够顺利通过第二玻片20,使得进行采图的采图组件能够拍摄到清晰的测序图像,从而为通量的提高提供了有力的保障。进一步的,当所述第一玻片10由盖玻片30和导液片40构成,第二玻片为载玻片时,或者第一玻片为盖玻片,第二玻片由导液片和载玻片构成时,对所述盖玻片30、导液片40以及载玻片50的材质不进行限定,盖玻片30、导液片40和载玻片50的材质可以是玻璃、PMMA、PC、PE或其他材料,另外,导液片40还可以采用不锈钢片或硅胶片。
在上述的多通道反应小室的任意方案中,多通道测序反应小室上还可以设置有用于图像重合定位的Mark点,并且该Mark点的形状并不仅限于十字形状,只要清晰便于识别即可。Mark 点设置,便于了采图装置进行采图后的加工合成,提高图像质量。
本发明还提出了第二实施例,本实施例中提出了一种多通道测序反应装置,用于实现多个样本同时进行测序反应。如图14所示,所述的多通道测序反应装置由小室上部组件60、小室下部组件70以及多通道测序反应小室80构成,本实施例中的多通道测序反应小室即为上述任意方案中的多通道测序反应小室,因此在本实施例中,则不会对多通道测序反应小室进行说明。所述小室上部组件60包括进液通道601和出液通道602;所述小室下部组件70包括小室上盖701和小室底座702,所述小室底座702用于放置所述的多通道测序反应小室80,所述小室上盖701安装在小室底座702上;所述小室上部组件60用于安装在小室下部组件70上,且所述小室上部组件60的进液通道601与所述多通道测序反应小室80的试剂入口103连通,所述小室上部组件60的出液通道602与所述多通道测序反应小室80的试剂出口104连通。本实施例中,如图14所示,将小室上盖701安装在小室底座702上,小室上盖701上设置有便于进液通道601与多通道测序反应小室80试剂入口103连通,以及出液通道602与多通道测序反应小室80试剂出口104连通的结构,该结构可以为设置在小室上盖701上的通孔,当小室上部组件60安装在小室下部组件70上进行测序反应时,进液通道601直接穿过通孔连接在多通道测序反应小室80的试剂入口103,出液通道602通过直接穿过通孔连接在多通道测序反应小室80的试剂出口104。由于小室上部组件60和小室下部组件70可以进行组合与拆分,即所述的多通道测序反应装置是采用分体式结构设计,便于其实现自动换样。
在第二实施例的基础上,如图15所示,对于所述的多通道测序反应装置,本发明还提出了一示例,在本示例中,多通道测序反应装置由小室上部组件60、小室下部组件70以及多通道测序反应小室80构成,所述小室上部组件60包括进液通道601和出液通道602;所述小室下部组件70包括小室上盖701和小室底座702,所述小室底座702用于放置所述的多通道测序反应小室80,所述小室上盖701安装在小室底座702上;所述小室上部组件60用于安装在小室下部组件70上,且所述小室上部组件60的进液通道601与所述多通道测序反应小室80的试剂入口103连通,所述小室上部组件60的出液通道602与所述多通道测序反应小室80的试剂出口104连通。本示例中,如图15所示,所述小室上部组件60还包括底板603、隔热板604、制冷片605以及导热板606;其中,所述隔热板604固定在底板603下方,隔热板604的中部具有通孔,所述制冷片605设置于隔热板604的通孔内;所述导热板606固定在隔热板604和制冷片605的下方;所述进液通道601和出液通道602分别为贯穿于所述底板603、隔热板604和导热板606的通孔。当小室上部组件60安装在小室下部组件70上时,进液通道601与多通道测序反应小室80的试剂入口103连通,出液通道602与多通道测序反应小室80的试剂出口104连通,由于多通道 测序反应小室80在测序反应时需要提升或降低温度,因此所述的小室上部组件60中的导热板606与多通道测序反应小室80相接触,以达到最佳的升温或降温的效果。如图15所示,制冷片605的下表面紧贴在导热板606的上表面,制冷片605升温或者降温时,通过导热板606的传递作用,升高或降低多通道测序应小室80的温度,从而达到所需的温度。
另外,所述小室上部组件60还包括一温度传感器,当制冷片605对多通道测序反应小室进行升温或降温时,温度传感器用于检测所述的多通道测序反应小室的温度,防止多通道测序反应小室的温度过高或过低。本示例中,所述导热板606的上表面上具有一凹槽,所述温度传感器607设置于凹槽内,且温度传感器607位于所述制冷片605的下方。需要说明的是,对于温度传感器607的位置设定,上述仅为一种较佳的实施方案,所述的温度传感器607还可以直接设置在多通道测序反应小室上,直接对多通道测序反应小室的温度进行测量。在本示例中,所述制冷片605为半导体制冷片,所述温度传感器607为K型热电偶,但是,所述制冷片605并不仅限于半导体制冷片,温度传感器607并不局限于K型热电偶。
更进一步的,在图15所述的示例的基础上,对于多通道测序反应装置的小室上部组件60和小室下部组件70,本发明还提出了一示例,如图16所示,所述小室上盖701的中部具有通孔,所述小室上部组件60安装在小室下部组件70上时,所述小室上部组件60的隔热板604和导热板606伸入小室上盖701的通孔内,所述导热板606紧贴于多通道测序反应小室80上,且所述进液通道601与多通道测序反应小室80的试剂入口103连通,所述出液通道602与多通道测序反应小室80的试剂出口104连通。小室上部组件60的主要作用是通过制冷片605对多通道测序反应小室80进行升温或者降温,而多通道测序反应装置的此种结构,将多通道测序反应小室80的加热和制冷的部分集中在小室上部组件60上,便于小室上部组件60和小室下部组件70的分离,这种分体式结构的设计,便于实现自动换样;小室下部组件70主要用于固定多通道测序反应小室80,同时小室下部组件70还用于自动点样,通过移液枪头对准多通道测序反应小室80的反应通道101,匀速点样,往每条反应通道101中注入被测样本。
如图17所示,对于多通道测序反应装置,本发明还提出了第三实施例中,在本实施例中,多通道测序反应装置由小室上部组件60、小室下部组件70以及上述的多通道测序反应小室80构成;其中,所述小室上部组件60包括进液通道601和出液通道602;所述小室下部组件70包括小室上盖701和小室底座702,所述小室底座702用于放置所述的多通道测序反应小室80,所述小室上盖701安装在小室底座702上。小室上部组件60还包括底板603、隔热板604、制冷片605、导热板606以及温度传感器607;其中,所述隔热板604固定在底板603下方,隔热板604的中部具有通孔,所述制冷片605设置于隔热板604的通孔内,所述导热板606固定在隔热板604 和制冷片605的下方,所述导热板606的上表面上具有一凹槽,所述温度传感器607设置于凹槽内,且温度传感器607位于所述制冷片605的下方。进一步的,小室上盖701的中部具有通孔,所述小室上部组件60安装在小室下部组件70上时,所述小室上部组件60的隔热板604和导热板606伸入小室上盖701的通孔内,所述导热板606紧贴于多通道测序反应小室80上。
在本示例中,所述小室上部组件60还包括顶板608和散热板609,所述顶板608设置在底板603上方,所述散热板609位于顶板608与底板603之间并固定于所述底板603上,所述散热板609具有若干个散热鳍片,并且,所述底板603和隔热板604通过螺钉连接,所述螺钉中间设置有钢管,该钢管即为进液通道601和出液通道602。另外,所述小室上盖701的下方弹性连接有压块,所述压块压在多通道测序反应小室80上,所述小室上盖701上设置有卡扣,所述卡扣用于卡在所述的小室底座702上,通过卡扣的作用,将小室上盖701扣合在所述的小室底座702上,同时由于小室上盖701的压块的作用,将多通道测序反应小室80的四周压紧,防止漏液以及点样时样品相互污染。
当所述的制冷片605对多通道测序反应小室80进行加热时,制冷片605的下表面即为热面,制冷片605的上表面即为冷面,将所述制冷片605设置在隔热板604的通孔内,通过隔热板604的作用将冷面与热面分隔开,同样的,当制冷片605对多通道测序反应小室80进行制冷时,制冷片605的下表面即为冷片,制冷片605的上表面即为热面,隔热板将冷面与热面分隔开,提高了制冷片进行加热或制冷的效率。另外,为了提高密封性能,在所述导热板606上还设置有密封胶垫90,并且该密封胶垫90设置在进液通道601的出口处以及出液通道602的入口处,该密封胶垫90也贴合在多通道测序反应小室80的盖玻片30上,同时进液通道601的出口与试剂缓冲区102连通,出液通道602的入口与试剂缓冲区102连通。在小室上部组件60中的顶板608、散热板609、底板603、隔热板604以及导热板606上可以设置两个通孔,两个通孔即为视窗,通过两个视窗拍摄明场图,用于看清楚磁珠分布是否均匀。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种多通道测序反应小室,其特征在于:包括相贴合的第一玻片和第二玻片,所述第一玻片用于与第二玻片形成多条中空的反应通道,所述反应通道的两端分别设有用于容纳试剂的试剂缓冲区,所述第一玻片或第二玻片上设置有与试剂缓冲区连通的试剂入口,所述第一玻片或第二玻片上还设置有与试剂缓冲区连通的试剂出口。
  2. 根据权利要求1所述的多通道测序反应小室,其特征在于:所述第一玻片位于第二玻片上方,所述反应通道和试剂缓冲区均设置在第一玻片的下表面,所述试剂入口为设置于第一玻片或第二玻片上的通孔,所述试剂出口为设置于第一玻片或第二玻片上的通孔。
  3. 根据权利要求1所述的多通道测序反应小室,其特征在于:所述第一玻片位于第二玻片上方,所述反应通道和试剂缓冲区均设置在第二玻片的上表面,所述试剂入口为设置于第一玻片或第二玻片上的通孔,所述试剂出口为设置于第一玻片或第二玻片上的通孔。
  4. 根据权利要求1所述的多通道测序反应小室,其特征在于:所述第一玻片由盖玻片和导液片紧密贴合而成,所述第二玻片为载玻片,所述导液片位于盖玻片与载玻片之间,所述导液片上设置有长条形的通孔,所述反应通道由盖玻片、长条形的通孔以及载玻片围合而成;或者
    所述第一玻片为盖玻片,所述第二玻片由导液片和载玻片紧密贴合而成,所述导液片上设置有长条形的通孔,所述反应通道由盖玻片、长条形的通孔以及载玻片围合而成。
  5. 根据权利要求4所述的多通道测序反应小室,其特征在于:所述试剂缓冲区为设置在导液片上的通孔或为设置在盖玻片上的通孔。
  6. 根据权利要求1-5任一权利要求所述多通道测序反应小室,其特征在于:所述试剂缓冲区呈半圆形,试剂缓冲区具有圆弧边与直线边,且所述缓冲区的直线边位于靠近所述反应通道的一侧。
  7. 一种具有权利要求1所述的多通道测序反应小室的多通道测序反应装置,其特征在于:它由多通道测序反应小室、小室上部组件以及小室下部组件构成,其中:
    所述小室上部组件包括进液通道和出液通道;
    所述小室下部组件包括小室上盖和小室底座,所述小室底座用于放置所述的多通道测序反应小室,所述小室上盖安装在小室底座上;
    所述小室上部组件用于安装在小室下部组件上,且所述小室上部组件的进液通道与所述多通道测序反应小室的试剂入口连通,所述小室上部组件的出液通道与所述多通道测序反应小室的试剂出口连通。
  8. 根据权利要求7所述的多通道测序反应装置,其特征在于:所述小室上部组件还包括 底板、隔热板、制冷片、导热板以及温度传感器;其中
    所述隔热板固定在底板的下方,所述隔热板的中部具有通孔,所述制冷片设置于隔热板的通孔内,且所述制冷片的上表面与底板的下表面相接触;
    所述导热板固定在制冷片的下方,导热板的上表面与制冷片的下表面相接触,当小室上部组件安装在小室下部组件上时,所述导热板的下表面与多通道测序反应小室相接触;
    所述温度传感器用于检测所述的多通道测序反应小室的温度;
    所述进液通道和出液通道分别为贯穿于所述底板、隔热板和导热板的通孔。
  9. 根据权利要求8所述的多通道测序反应装置,其特征在于:所述小室上盖的中部具有通孔,所述小室上部组件安装在小室下部组件上时,所述小室上部组件的隔热板和导热板伸入小室上盖的通孔内,所述导热板紧贴于多通道测序反应小室上,且所述进液通道与多通道测序反应小室的试剂入口连通,所述出液通道与多通道测序反应小室的试剂出口连通。
  10. 根据权利要求8所述的多通道测序反应装置,其特征在于:所述小室上部组件还包括顶板和散热板,所述顶板设置在底板上方,所述散热板位于顶板与底板之间并固定于所述底板上,所述散热板具有若干个散热鳍片。
  11. 根据权利要求8所述的多通道测序反应装置,其特征在于:所述底板和隔热板通过螺钉连接,所述螺钉中间设置有钢管,该钢管即为进液通道和出液通道。
  12. 根据权利要求7所述的多通道测序反应装置,其特征在于:所述小室上盖的下方弹性连接有压块,所述压块压在多通道测序反应小室上。
  13. 根据权利要求7所述的多通道测序反应装置,其特征在于:所述小室上盖上设置有卡扣,所述卡扣用于卡在所述的小室底座上。
PCT/CN2016/086877 2015-11-03 2016-06-23 多通道测序反应小室及多通道测序反应装置 WO2017076013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510733672.8A CN106635772B (zh) 2015-11-03 2015-11-03 多通道测序反应小室及多通道测序反应装置
CN201510733672.8 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017076013A1 true WO2017076013A1 (zh) 2017-05-11

Family

ID=58663171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086877 WO2017076013A1 (zh) 2015-11-03 2016-06-23 多通道测序反应小室及多通道测序反应装置

Country Status (2)

Country Link
CN (1) CN106635772B (zh)
WO (1) WO2017076013A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693011A (zh) * 2018-05-14 2018-10-23 柳州市妇幼保健院 一种染色体n显带盒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949939B (zh) * 2017-05-26 2023-04-25 深圳市真迈生物科技有限公司 对序列测定反应进行控制的方法、装置和系统
CN109401940A (zh) * 2018-10-22 2019-03-01 深圳华因康基因科技有限公司 基因测序反应小室
CN113933227B (zh) * 2021-12-17 2022-03-18 睿克环境科技(中国)有限公司 一种多通道显微观测计数框及具有该计数框的装夹装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017467A1 (en) * 2000-02-18 2003-01-23 Aclara Biosciences, Inc. Multiple-site sample-handling apparatus and method
CN101091115A (zh) * 2004-10-28 2007-12-19 平台诊断有限公司 分析系统
CN101368206A (zh) * 2008-07-16 2009-02-18 深圳华因康基因科技有限公司 测序反应小室、基因测序反应台及基因测序系统
CN102517196A (zh) * 2011-12-31 2012-06-27 盛司潼 一种多通道测序反应小室及基因测序仪
CN102604826A (zh) * 2012-03-16 2012-07-25 盛司潼 一种基因测序设备
CN103087905A (zh) * 2012-09-14 2013-05-08 盛司潼 一种测序反应台及核酸序列检测设备
CN103087909A (zh) * 2012-09-14 2013-05-08 盛司潼 一种核酸检测反应台及核酸检测系统
US20130210646A1 (en) * 2012-02-09 2013-08-15 California Institute Of Technology Hemomosaic: high-throughput technique for rare cell detection in liquid samples by massively multiplexed pcr in a photolithographic matrix

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533914B1 (en) * 1999-07-08 2003-03-18 Shaorong Liu Microfabricated injector and capillary array assembly for high-resolution and high throughput separation
CN101225436A (zh) * 2007-01-19 2008-07-23 深圳大学 一种合成的固体侧向纳米孔
CN101948741B (zh) * 2010-09-21 2014-02-05 东南大学 一种用于核酸测序的微流体基因芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030017467A1 (en) * 2000-02-18 2003-01-23 Aclara Biosciences, Inc. Multiple-site sample-handling apparatus and method
CN101091115A (zh) * 2004-10-28 2007-12-19 平台诊断有限公司 分析系统
CN101368206A (zh) * 2008-07-16 2009-02-18 深圳华因康基因科技有限公司 测序反应小室、基因测序反应台及基因测序系统
CN102517196A (zh) * 2011-12-31 2012-06-27 盛司潼 一种多通道测序反应小室及基因测序仪
US20130210646A1 (en) * 2012-02-09 2013-08-15 California Institute Of Technology Hemomosaic: high-throughput technique for rare cell detection in liquid samples by massively multiplexed pcr in a photolithographic matrix
CN102604826A (zh) * 2012-03-16 2012-07-25 盛司潼 一种基因测序设备
CN103087905A (zh) * 2012-09-14 2013-05-08 盛司潼 一种测序反应台及核酸序列检测设备
CN103087909A (zh) * 2012-09-14 2013-05-08 盛司潼 一种核酸检测反应台及核酸检测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693011A (zh) * 2018-05-14 2018-10-23 柳州市妇幼保健院 一种染色体n显带盒

Also Published As

Publication number Publication date
CN106635772A (zh) 2017-05-10
CN106635772B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2017076013A1 (zh) 多通道测序反应小室及多通道测序反应装置
US8900854B2 (en) Liquid reflux high-speed gene amplification device
US20220205018A1 (en) Microfluidic chip assembly for rapidly performing digital polymerase chain reaction (pcr), and use thereof
CN102046291B (zh) 用于化学和生化反应的热控系统和方法
JP5297651B2 (ja) 熱サイクル装置
US20070116444A1 (en) Heat blocks and heating
TW200938841A (en) Reaction chip and reaction method, temperature adjustment mechanism for gene processing device and gene processing device
TW201348440A (zh) 聚合酶連鎖反應裝置
TW201809284A (zh) 緊湊型熱循環裝置和包含此熱循環裝置的系統
CN107400628B (zh) 测序反应小室、测序反应夹具以及测序反应设备
CN110658250A (zh) 用于la-icp-ms的可精确控温的冷热剥蚀池装置
US20220097055A1 (en) Nucleic acid detection kit and nucleic acid detection device
CN114350506B (zh) 可分区温控的生化反应单元和生化反应装置
CN102539839A (zh) 原子力显微镜样品变温装置
CN103374510B (zh) 一种基于低熔点金属液滴的pcr反应装置及其实施方法
KR102012735B1 (ko) 웰 플레이트 수납블록
CN109642199A (zh) 用于电穿孔的设备及方法
CN215856127U (zh) 一种pcr扩增平台的热循环结构
US9505003B2 (en) Portable real-time heating and detection device
CN211586711U (zh) 多模块化学反应加热装置
EP3978128A1 (en) Nucleic acid detection kit and nucleic acid detection device
EP3056277B1 (en) Tempering clamp
CN114887676B (zh) 一种风冷式的多通道体声波微流控分选器件
KR102002425B1 (ko) 웰 플레이트 수납블록
CN215668013U (zh) 一次性pcr试剂载板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861283

Country of ref document: EP

Kind code of ref document: A1