WO2017076002A1 - 采用直线压缩机的冰箱及其控制方法 - Google Patents

采用直线压缩机的冰箱及其控制方法 Download PDF

Info

Publication number
WO2017076002A1
WO2017076002A1 PCT/CN2016/086167 CN2016086167W WO2017076002A1 WO 2017076002 A1 WO2017076002 A1 WO 2017076002A1 CN 2016086167 W CN2016086167 W CN 2016086167W WO 2017076002 A1 WO2017076002 A1 WO 2017076002A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerator
evaporator
refrigerating
linear compressor
Prior art date
Application number
PCT/CN2016/086167
Other languages
English (en)
French (fr)
Inventor
姬立胜
刘建如
朱小兵
戚斐斐
张书锋
赵彩云
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to EP16861272.9A priority Critical patent/EP3372932B1/en
Priority to US15/770,203 priority patent/US10969150B2/en
Publication of WO2017076002A1 publication Critical patent/WO2017076002A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the invention relates to the technical field of refrigerator noise reduction, in particular to a refrigerator using a linear compressor and a control method thereof.
  • Linear compressors are increasingly used in the refrigerator manufacturing industry due to their small size, self-lubrication and high precision.
  • the refrigerator relies on a linear compressor to do the compression of the refrigerant.
  • the linear compressor generates working noise, especially when the refrigerator has a large thermal load, such as the initial stage of the refrigerator or the refrigerator chamber. High-temperature items or refrigerators open for a long time, and the noise of linear compressors is particularly obvious.
  • the linear compressor When the heat load of the refrigerator is large, the linear compressor operates at a high noise, which is determined by the working characteristics of the linear compressor.
  • the heat load of the refrigerator When the heat load of the refrigerator is large, the temperature of the evaporator in the linear compressor refrigeration circuit is high, and the suction of the linear compressor is high.
  • the gas pressure is also large, and the suction pressure of the linear compressor is proportional to the vibration frequency of the linear compressor. Therefore, as the heat load of the refrigerator increases, the vibration frequency of the linear compressor will also become larger, which is easy to be compared with the refrigerator.
  • the cabinet resonates and generates loud noise.
  • the linear compressor has the characteristics of self-lubrication and does not need to connect the lubricating oil circuit. Therefore, in order to maximize the volume of the freezer compartment at the bottom of the refrigerator, the linear compressor is often arranged on the back of the refrigerator compartment at the top of the refrigerator, and the top position of the refrigerator is closer to the person. The position of the ear when standing, so the noise of the linear compressor is particularly obvious, and a refrigerator using a linear compressor and a control method thereof are urgently needed to reduce the noise of the refrigerator.
  • a refrigerator control method using a linear compressor comprising:
  • the noise reduction mode is invoked to actively reduce the heat exchange amount between the evaporator and the refrigerator compartment until the current temperature of the refrigerator evaporator is less than or equal to the preset second temperature threshold.
  • the cooling mode is invoked to restore normal heat exchange between the evaporator and the inter-fridge compartment, wherein the first temperature threshold is higher than the second temperature threshold.
  • the noise reduction mode specifically includes:
  • the method further includes:
  • the linear compressor In the noise reduction mode, the linear compressor is started and stopped according to the indoor temperature of the refrigerator, and the external ambient temperature is divided into a plurality of continuous sections, and the operating parameters of the linear compressor are set for each section, and the linear compressor is operated according to the corresponding operating parameters.
  • a refrigerator control method using a linear compressor comprising:
  • the refrigerating noise reduction mode is invoked to actively reduce the amount of heat exchange between the refrigerating evaporator and the refrigerating compartment until the current temperature of the refrigerating evaporator is less than or equal to a preset
  • the second refrigerating temperature threshold is called when refrigerating a cold mode to restore normal heat exchange between the refrigerated evaporator and the refrigerating compartment, wherein the first refrigerating temperature threshold is higher than the second refrigerating temperature threshold;
  • the freezing noise reduction mode is invoked to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment until the current temperature of the freezing evaporator is less than or equal to the preset
  • the second freezing temperature threshold is invoked to resume normal cooling of the freezing evaporator and the freezing compartment, wherein the first freezing temperature threshold is higher than the second freezing temperature threshold.
  • the refrigerating noise reduction mode specifically includes:
  • the freezing noise reduction mode specifically includes:
  • the method further includes:
  • the linear compressor In the refrigeration and noise reduction mode, the linear compressor is started and stopped according to the temperature of the refrigerating compartment, and the external ambient temperature is divided into a plurality of continuous sections, and the operating parameters of the linear compressor are set for each section, and the linear compressor is operated according to the corresponding operating parameters. ;
  • the linear compressor In the freezing noise reduction mode, the linear compressor is started and stopped according to the temperature in the freezing chamber, and the external ambient temperature can be divided into a plurality of continuous intervals, and the operating parameters of the linear compressor are set corresponding to each interval, and the linear compressor is operated according to the corresponding operating parameters. run.
  • a refrigerator using a linear compressor comprising:
  • An evaporator temperature sensor for monitoring the evaporator evaporator temperature
  • a computer board for controlling the working mode of the refrigerator
  • the noise reduction mode is invoked to actively reduce the heat exchange amount between the evaporator and the refrigerator compartment until the current temperature of the refrigerator evaporator is less than or equal to the preset second temperature threshold.
  • the cooling mode is invoked to restore normal heat exchange between the evaporator and the inter-fridge compartment, wherein the first temperature threshold is higher than the second temperature threshold.
  • the noise reduction mode specifically includes:
  • the method further includes:
  • An outdoor ambient temperature sensor for the refrigerator to collect the external ambient temperature
  • the linear compressor In the noise reduction mode, the linear compressor is started and stopped according to the indoor temperature of the refrigerator, and the external ambient temperature is divided into a plurality of continuous sections, and the operating parameters of the linear compressor are set for each section, and the linear compressor is operated according to the corresponding operating parameters.
  • a refrigerator using a linear compressor comprising:
  • Refrigerated evaporator temperature sensor for monitoring the temperature of the refrigerator refrigerated evaporator
  • a freezer evaporator temperature sensor for monitoring the freezer evaporator temperature
  • a computer board for controlling the working mode of the refrigerator; if the current temperature of the refrigerator refrigerating evaporator is greater than or equal to the preset first refrigerating temperature threshold, the refrigerating noise reduction mode is invoked to actively reduce the amount of heat exchange between the refrigerating evaporator and the refrigerating compartment until The refrigerating and cooling mode is invoked when the current temperature of the refrigerating evaporator is less than or equal to the preset second refrigerating temperature threshold, and normal heat exchange between the refrigerating evaporator and the refrigerating compartment is resumed, wherein the first refrigerating temperature threshold is higher than the second refrigerating Temperature threshold
  • the freezing noise reduction mode is invoked to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment until the current temperature of the freezing evaporator is less than or equal to the preset
  • the second freezing temperature threshold is invoked to resume normal cooling of the freezing evaporator and the freezing compartment, wherein the first freezing temperature threshold is higher than the second freezing temperature threshold.
  • the chilling noise reduction mode specifically includes:
  • the freezing noise reduction mode specifically includes:
  • the method further includes:
  • a refrigerating compartment temperature sensor for collecting the temperature in the refrigerating compartment
  • a freezer compartment temperature sensor for collecting the temperature in the freezer compartment
  • An outdoor ambient temperature sensor for the refrigerator to collect the external ambient temperature
  • the linear compressor In the refrigeration and noise reduction mode, the linear compressor is started and stopped according to the temperature of the refrigerating compartment, and the external ambient temperature is divided into a plurality of continuous sections, and the operating parameters of the linear compressor are set for each section, and the linear compressor is operated according to the corresponding operating parameters. ;
  • the linear compressor In the freezing noise reduction mode, the linear compressor is started and stopped according to the temperature in the freezing chamber, and the external ambient temperature can be divided into a plurality of continuous intervals, and the operating parameters of the linear compressor are set corresponding to each interval, and the linear compressor is operated according to the corresponding operating parameters. run.
  • the invention relates to a refrigerator using a linear compressor and a control method thereof, which closes an evaporator damper and/or a fan when a heat load is large, so that a heat exchange rate of the evaporator is lowered, and an evaporator temperature is rapidly lowered, a linear compressor The suction and exhaust pressures are reduced, and finally the vibration frequency of the linear compressor is reduced, which is not easy to resonate with the refrigerator cabinet, and has the advantage of low running noise.
  • Embodiment 1 is a schematic flow chart of a control method of a refrigerator using a linear compressor in Embodiment 1;
  • Figure 2 is a block diagram showing the refrigerator of the first embodiment using a linear compressor
  • FIG. 3 is a schematic flow chart of a control method of a refrigerator using a linear compressor in Embodiment 2;
  • Fig. 4 is a block diagram showing the refrigerator using the linear compressor in the second embodiment.
  • the single-system refrigerator has only one refrigeration circuit.
  • the refrigerator compartment (refrigerator compartment, freezer compartment) shares an evaporator, and the air in the refrigerator compartment is forced through the evaporator by the fan. After cooling, it returns to the refrigerator compartment to form a refrigerator compartment. Forced circulation of air.
  • the present invention discloses a refrigerator control method using a linear compressor, the method comprising:
  • the noise reduction mode is invoked to actively reduce the amount of heat exchange between the evaporator and the refrigerator compartment. Further, in the noise reduction mode, the fan of the refrigerator is turned off and/or Or the damper of the compartment to reduce the amount of heat exchange between the evaporator and the refrigerator compartment.
  • the cooling mode is called when the current temperature of the refrigerator evaporator is less than or equal to the preset second temperature threshold, and the normal heat exchange between the evaporator and the refrigerator compartment is resumed. Further, in the cooling mode, the fan is controlled according to the indoor temperature of the refrigerator and the external ambient temperature. The damper is running.
  • the indoor temperature of the refrigerator can be used to control the start and stop of the fan and the opening and closing of the compartment damper
  • the external ambient temperature can be divided into a plurality of continuous sections, and the operating speed of the fan is set corresponding to each temperature interval, for example, the external ambient temperature.
  • the temperature is 10-20 degrees
  • the running speed of the fan is 500 rpm
  • the external ambient temperature is 20-30 degrees
  • the running speed of the fan is 700 rpm
  • the current temperature of the refrigerator evaporator is less than or equal to the preset second.
  • the fan and the compartment damper operate according to the corresponding operating parameters.
  • the first temperature threshold is higher than the second temperature threshold. Specifically, the vibration spectrum of the refrigerator is scanned and the temperature of the evaporator when the refrigerator resonates is recorded. The temperature is the first temperature threshold and the second temperature. The threshold is slightly less than the first temperature threshold for preventing the refrigerator from frequently switching between the noise reduction mode and the cooling mode.
  • the method further includes:
  • the linear compressor operation is controlled according to the indoor temperature of the refrigerator and the external environment temperature.
  • the indoor temperature of the refrigerator can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into a plurality of consecutive intervals.
  • the operating parameters of the linear compressor are set for each interval. For example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and when the external ambient temperature is 20-30 degrees, the linear compressor input power is 120W.
  • the linear compressor operates according to the corresponding operating parameter when the current temperature of the refrigerator evaporator is greater than or equal to the preset first temperature threshold.
  • the running state of the linear compressor is related to the operating state of the fan and the compartment damper. It can be understood that if the fan and/or the compartment damper are closed in the noise reduction mode, the linear compression is performed.
  • the machine stroke (the stroke is proportional to the input power) gradually decreases, and the evaporator temperature decline trend is slowed down. Therefore, in the noise reduction mode, the linear compressor operation is preferably controlled according to the indoor temperature of the refrigerator and the external ambient temperature to ensure the evaporator. The temperature can drop faster.
  • the present invention also discloses a refrigerator using a linear compressor, comprising:
  • the indoor temperature sensor 300 of the refrigerator is used for collecting the indoor temperature of the refrigerator
  • An outdoor ambient temperature sensor 400 for the refrigerator is used to collect the external ambient temperature.
  • the noise reduction mode is invoked to actively reduce the amount of heat exchange between the evaporator and the refrigerator compartment. Further, in the noise reduction mode, the fan of the refrigerator is turned off and/or Or the damper of the compartment to reduce the amount of heat exchange between the evaporator and the refrigerator compartment.
  • the cooling mode is called when the current temperature of the refrigerator evaporator is less than or equal to the preset second temperature threshold, and the normal heat exchange between the evaporator and the refrigerator compartment is resumed. Further, in the cooling mode, the fan is controlled according to the indoor temperature of the refrigerator and the external ambient temperature. The damper is running.
  • the indoor temperature of the refrigerator can be used to control the start and stop of the fan and the opening and closing of the compartment damper
  • the external ambient temperature can be divided into a plurality of continuous sections, and the operating speed of the fan is set corresponding to each temperature interval, for example, the external ambient temperature.
  • the temperature is 10-20 degrees
  • the running speed of the fan is 500 rpm
  • the external ambient temperature is 20-30 degrees
  • the running speed of the fan is 700 rpm
  • the current temperature of the refrigerator evaporator is less than or equal to the preset second.
  • the fan and the compartment damper operate according to the corresponding operating parameters.
  • the first temperature threshold is higher than the second temperature threshold. Specifically, the vibration spectrum of the refrigerator is scanned and the temperature of the evaporator when the refrigerator resonates is recorded. The temperature is the first temperature threshold and the second temperature. The threshold is slightly less than the first temperature threshold for preventing the refrigerator from frequently switching between the noise reduction mode and the cooling mode.
  • the linear compressor operation is controlled according to the indoor temperature of the refrigerator and the external environment temperature.
  • the indoor temperature of the refrigerator can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into a plurality of consecutive intervals.
  • the operating parameters of the linear compressor are set for each interval. For example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and when the external ambient temperature is 20-30 degrees, the linear compressor input power is 120W.
  • the linear compressor operates according to the corresponding operating parameter when the current temperature of the refrigerator evaporator is greater than or equal to the preset first temperature threshold.
  • the running state of the linear compressor is related to the operating state of the fan and the compartment damper. It can be understood that if the fan and/or the compartment damper are closed in the noise reduction mode, the linear compression is performed.
  • the machine stroke (the stroke is proportional to the input power) gradually decreases, and the evaporator temperature decline trend is slowed down. Therefore, in the noise reduction mode, the linear compressor operation is preferably controlled according to the indoor temperature of the refrigerator and the external ambient temperature to ensure the evaporator. The temperature can drop faster.
  • the evaporator damper and/or the fan are closed, the heat exchange rate of the evaporator is lowered, the evaporator temperature is rapidly lowered, and the suction pressure of the linear compressor is decreased, eventually making the linear compressor complete.
  • the vibration frequency is lowered, it is not easy to resonate with the refrigerator cabinet, and has the advantage of low running noise.
  • the multi-system refrigerator has a refrigerating compartment refrigeration circuit and a freezer compartment refrigeration circuit, and the refrigerating compartment and the freezing compartment have corresponding evaporators and fans.
  • the refrigerant enters the refrigerating circuit
  • the air in the refrigerating chamber is forcibly passed through the refrigerating evaporator by the fan of the refrigerating chamber, and after cooling, it is returned to the refrigerating chamber to form a forced circulation of the cold air in the refrigerating room, and accordingly, when the refrigerant passes through the freezing circuit, the refrigerant is utilized.
  • the freezer fan forces the air in the freezing chamber to pass through the freezing evaporator, and after cooling, returns to the freezing chamber to form a forced circulation of the cold air in the freezing chamber.
  • the present invention discloses a refrigerator control method using a linear compressor, the method comprising:
  • the refrigerating noise reduction mode is invoked to actively reduce the amount of heat exchange between the refrigerating evaporator and the refrigerating compartment, and further, by closing in the refrigerating noise reduction mode.
  • Refrigerator chamber fans and/or refrigerator compartment dampers to reduce the amount of heat exchange between the refrigerated evaporator and the refrigerating compartment.
  • the freezing noise reduction mode is invoked to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment, and further, by closing in the freezing noise reduction mode. Freezer fans and/or freezer dampers to reduce the amount of heat exchange between the freezer evaporator and the freezer.
  • the refrigerating and cooling mode is called to restore the normal heat exchange between the refrigerating evaporator and the refrigerating chamber, and further, according to the refrigerating room temperature and the external environment temperature in the refrigerating and cooling mode.
  • the refrigerating compartment fan and the refrigerating compartment damper operate.
  • the temperature in the refrigerating compartment can be used to control the opening and closing of the fan of the refrigerating compartment and the opening and closing of the damper of the refrigerating compartment.
  • the external ambient temperature can be divided into a plurality of consecutive sections, and the operating speed of the refrigerating compartment fan is set corresponding to each temperature interval, for example, When the external ambient temperature is 10-20 degrees, the operating speed of the refrigerator chamber fan is 500 rpm, and when the external ambient temperature is 20-30 degrees, the operating speed of the refrigerator chamber fan is 700 rpm, when the current temperature of the refrigerating evaporator
  • the refrigerator compartment fan and the refrigerating compartment damper are operated according to corresponding operating parameters when less than or equal to the preset second refrigerating temperature threshold.
  • the freezing and cooling mode is called when the current temperature of the freezing evaporator is less than or equal to the preset second freezing temperature threshold, and the normal heat exchange between the freezing evaporator and the freezing chamber is resumed. Further, in the freezing and cooling mode, the temperature in the freezing chamber and the external environment temperature are controlled. Freezer fan and freezer damper operation.
  • the freezing room temperature can be used to control the start and stop of the freezer fan and the opening and closing of the freezer damper.
  • the external ambient temperature can be divided into a plurality of continuous intervals, and the operating speed of the freezer fan is set corresponding to each temperature interval, for example, When the external ambient temperature is 10-20 degrees, the operating speed of the freezer fan is 500 rpm, and when the external ambient temperature is 20-30 degrees, the operating speed of the freezer fan is 700 rpm, when the current temperature of the freezing evaporator
  • the freezing chamber fan and the freezing chamber damper are operated according to corresponding operating parameters when less than or equal to the preset second freezing temperature threshold.
  • the first refrigerating temperature threshold is higher than the second refrigerating temperature threshold
  • the first freezing temperature threshold is higher than the second freezing temperature threshold, specifically, when the refrigerant is separately scanned from the refrigerating circuit and the refrigerating circuit a vibration spectrum of the refrigerator and recording the temperature of the refrigerating evaporator and the freezing evaporator when the refrigerator resonates, wherein the temperature is a first refrigerating temperature threshold, a first freezing temperature threshold, and the second refrigerating temperature threshold is slightly smaller than the first refrigerating temperature threshold
  • the utility model is used for preventing the refrigerator from frequently switching between the refrigerating noise reduction mode and the refrigerating and cooling mode
  • the second freezing temperature threshold is slightly smaller than the first freezing temperature threshold for preventing the refrigerator from frequently switching between the freezing noise reduction mode and the refrigerating cooling mode.
  • the method further includes:
  • the linear compressor operation is controlled according to the temperature of the refrigerating room and the external environment temperature.
  • the temperature of the refrigerating chamber can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into Multiple continuous intervals, corresponding to the operating parameters of the linear compressor for each interval, for example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and the external ambient temperature is 20-30 degrees, linear compression The input power of the machine is 120W, and when the current temperature of the refrigerating evaporator is greater than or equal to the preset first refrigerating temperature threshold, the linear compressor operates according to the corresponding operating parameter;
  • the linear compressor operation is controlled according to the freezing chamber temperature and the external environment temperature.
  • the freezing chamber temperature can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into Multiple continuous intervals, corresponding to the operating parameters of the linear compressor for each interval, for example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and the external ambient temperature is 20-30 degrees, linear compression The input power of the machine is 120W.
  • the linear compressor operates according to the corresponding operating parameters.
  • the operating state of the linear compressor is related to the operating state of the refrigerating compartment fan, the freezing compartment fan, the refrigerating compartment damper, and the freezing compartment damper.
  • the linear compressor stroke stroke is proportional to the input power
  • the linear compressor operation is controlled according to the temperature in the refrigerating compartment and the external ambient temperature to ensure that the temperature of the refrigerating evaporator can be lowered more rapidly; if the damper of the freezing compartment and/or the damper of the freezing compartment is closed in the freezing and noise reduction mode
  • the linear compressor stroke (the stroke is proportional to the input power) gradually decreases, and the freezing evaporator temperature decreasing tendency is slowed down. Therefore, in the freezing noise
  • the present invention also discloses a refrigerator using a linear compressor, comprising:
  • a refrigerated evaporator temperature sensor 201 for monitoring the temperature of the refrigerated evaporator
  • a freezing evaporator temperature sensor 202 for monitoring the temperature of the freezing evaporator
  • a refrigerating compartment temperature sensor 301 for collecting the temperature in the refrigerating compartment
  • a freezing compartment temperature sensor 302 for collecting the temperature in the freezing compartment
  • An outdoor ambient temperature sensor 400 for the refrigerator is used to collect the external ambient temperature.
  • the refrigerating noise reduction mode is invoked to actively reduce the amount of heat exchange between the refrigerating evaporator and the refrigerating compartment, and further, by closing in the refrigerating noise reduction mode.
  • Refrigerator chamber fans and/or refrigerator compartment dampers to reduce the amount of heat exchange between the refrigerated evaporator and the refrigerating compartment.
  • the freezing noise reduction mode is invoked to actively reduce the heat exchange amount between the freezing evaporator and the freezing compartment, and further, by closing in the freezing noise reduction mode. Freezer fans and/or freezer dampers to reduce the amount of heat exchange between the freezer evaporator and the freezer.
  • the refrigerating and cooling mode is called to restore the normal heat exchange between the refrigerating evaporator and the refrigerating chamber, and further, according to the refrigerating room temperature and the external environment temperature in the refrigerating and cooling mode.
  • the refrigerating compartment fan and the refrigerating compartment damper operate.
  • the temperature in the refrigerating compartment can be used to control the opening and closing of the fan of the refrigerating compartment and the opening and closing of the damper of the refrigerating compartment.
  • the external ambient temperature can be divided into a plurality of consecutive sections, and the operating speed of the refrigerating compartment fan is set corresponding to each temperature interval, for example, When the external ambient temperature is 10-20 degrees, the operating speed of the refrigerator chamber fan is 500 rpm, and when the external ambient temperature is 20-30 degrees, the operating speed of the refrigerator chamber fan is 700 rpm, when the current temperature of the refrigerating evaporator
  • the refrigerator compartment fan and the refrigerating compartment damper are operated according to corresponding operating parameters when less than or equal to the preset second refrigerating temperature threshold.
  • the freezing and cooling mode is called when the current temperature of the freezing evaporator is less than or equal to the preset second freezing temperature threshold, and the normal heat exchange between the freezing evaporator and the freezing chamber is resumed. Further, in the freezing and cooling mode, the temperature in the freezing chamber and the external environment temperature are controlled. Freezer fan and freezer damper operation.
  • the freezing room temperature can be used to control the start and stop of the freezer fan and the opening and closing of the freezer damper.
  • the external ambient temperature can be divided into a plurality of continuous intervals, and the operating speed of the freezer fan is set corresponding to each temperature interval, for example, When the external ambient temperature is 10-20 degrees, the operating speed of the freezer fan is 500 rpm, and when the external ambient temperature is 20-30 degrees, the operating speed of the freezer fan is 700 rpm.
  • the freezer fan and the freezer damper operate in accordance with respective operating parameters when the current temperature of the freezing evaporator is less than or equal to the preset second freezing temperature threshold.
  • the first refrigerating temperature threshold is higher than the second refrigerating temperature threshold
  • the first freezing temperature threshold is higher than the second freezing temperature threshold, specifically, when the refrigerant is separately scanned from the refrigerating circuit and the refrigerating circuit a vibration spectrum of the refrigerator and recording the temperature of the refrigerating evaporator and the freezing evaporator when the refrigerator resonates, wherein the temperature is a first refrigerating temperature threshold, a first freezing temperature threshold, and the second refrigerating temperature threshold is slightly smaller than the first refrigerating temperature threshold
  • the utility model is used for preventing the refrigerator from frequently switching between the refrigerating noise reduction mode and the refrigerating and cooling mode
  • the second freezing temperature threshold is slightly smaller than the first freezing temperature threshold for preventing the refrigerator from frequently switching between the freezing noise reduction mode and the refrigerating cooling mode.
  • the linear compressor operation is controlled according to the temperature of the refrigerating room and the external environment temperature.
  • the temperature of the refrigerating chamber can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into Multiple continuous intervals, corresponding to the operating parameters of the linear compressor for each interval, for example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and the external ambient temperature is 20-30 degrees, linear compression The input power of the machine is 120W, and when the current temperature of the refrigerating evaporator is greater than or equal to the preset first refrigerating temperature threshold, the linear compressor operates according to the corresponding operating parameter;
  • the linear compressor operation is controlled according to the freezing chamber temperature and the external environment temperature.
  • the freezing chamber temperature can be used to control the start and stop of the linear compressor, and the external ambient temperature can be divided into Multiple continuous intervals, corresponding to the operating parameters of the linear compressor for each interval, for example, when the external ambient temperature is 10-20 degrees, the linear compressor input power is 100W, and the external ambient temperature is 20-30 degrees, linear compression The input power of the machine is 120W.
  • the linear compressor operates according to the corresponding operating parameters.
  • the operating state of the linear compressor is related to the operating state of the refrigerating compartment fan, the freezing compartment fan, the refrigerating compartment damper, and the freezing compartment damper. It can be understood that if the refrigerating noise reduction mode is followed The refrigerating compartment fan and/or the refrigerating compartment damper are closed, the linear compressor stroke (stroke is proportional to the input power) is gradually decreased, and the refrigerating evaporator temperature decreasing tendency is slowed down, so in the refrigerating noise reduction mode, it is preferably based on the refrigerating compartment temperature and the outside.
  • the ambient temperature controls the linear compressor operation to ensure that the refrigerated evaporator temperature can be lowered more quickly; if the freezer fan and/or the freezer damper are closed in the freeze noise reduction mode, the linear compressor stroke (stroke and input power) In proportion to the gradual decline, the freezing evaporator temperature decline trend is slowed down, so in the freezing noise reduction mode, it is preferred to control the linear compressor operation according to the freezing chamber temperature and the external ambient temperature to ensure that the freezing evaporator temperature can be lowered more quickly. .
  • the refrigerator damper and/or the refrigerating compartment fan are turned off, the heat exchange rate of the refrigerating evaporator is lowered, the refrigerating evaporator temperature is rapidly lowered, and the freezing compartment damper is closed when the freezing compartment has a large thermal load and / or freezer fan, so that the heat exchange rate of the freezing evaporator is reduced, the temperature of the freezing evaporator is rapidly reduced, and the suction and exhaust pressure of the linear compressor is decreased, eventually causing the vibration frequency of the linear compressor to decrease, which is not easy to
  • the refrigerator cabinet resonates and has the advantage of low running noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

提供了一种采用直线压缩机的冰箱及其控制方法。控制方法包括:监控冰箱蒸发器温度;若冰箱蒸发器当前温度大于或等于第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,直至冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,其中,第一温度阈值高于第二温度阈值。该控制方法在热负荷大的时候关闭蒸发器风门和/或风机,使蒸发器的热交换速率下降,蒸发器温度得以快速降低,直线压缩机的吸排气压力随之下降,最终使得直线压缩机振动频率下降,不容易与冰箱箱体发生共振,因此,具有运行噪音低的优点。

Description

采用直线压缩机的冰箱及其控制方法 技术领域
本发明涉及冰箱降噪技术领域,特别涉及一种采用直线压缩机的冰箱及其控制方法。
背景技术
直线压缩机以其体积小、自润滑、精度高等优势,越来越多的应用在冰箱制造行业。
冰箱是依靠直线压缩机做功压缩制冷剂制冷的,在此过程中,直线压缩机会产生工作噪音,特别是在冰箱热负荷大的时候,例如冰箱上电初期或者冰箱腔室中放入了大量的高温物品或者冰箱长时间开门,直线压缩机工作噪音尤为明显。
冰箱热负荷大的时候直线压缩机工作噪音大,是由直线压缩机的工作特性决定的,当冰箱热负荷大的时候直线压缩机制冷回路中蒸发器的温度较高,直线压缩机的吸排气压力也较大,而直线压缩机吸排气压力与直线压缩机整机振动频率成正比,所以随着冰箱热负荷增大,直线压缩机工作时的振动频率也会变大,容易与冰箱箱体发生共振,产生较大的噪音。
尤其是直线压缩机具有自润滑的特点,不需要连通润滑油回路,因此为了尽量扩大冰箱底部冷冻室的容积,常常选择将直线压缩机设置在冰箱顶部冷藏室的背面,冰箱顶部位置更加靠近人站立时耳部的位置,所以直线压缩机工作时的噪音尤为明显,迫切需要一种采用直线压缩机的冰箱及其控制方法,用以降低冰箱的噪音。
发明内容
本发明的目的在于提供一种采用直线压缩机的冰箱及其控制方法。
为实现上述发明目的,本发明采用如下技术方案:
一种采用直线压缩机的冰箱控制方法,所述方法包括:
监控冰箱蒸发器温度;
若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,直至冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,其中,所述第一温度阈值高于所述第二温度阈值。
作为本发明进一步改进的技术方案,所述降噪模式具体包括:
关闭冰箱的风机和/或间室的风门。
作为本发明进一步改进的技术方案,所述方法还包括:
降噪模式下根据冰箱间室内温度控制直线压缩机启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
一种采用直线压缩机的冰箱控制方法,所述方法包括:
监控冰箱冷藏蒸发器温度和冷冻蒸发器温度;
若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,直至冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制 冷模式,恢复冷藏蒸发器和冷藏间室的正常热交换,其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值;
若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式,主动减少冷冻蒸发器和冷冻间室的热交换量,直至冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻间室的正常热交换,其中,所述第一冷冻温度阈值高于所述第二冷冻温度阈值。
作为本发明进一步改进的技术方案,所述冷藏降噪模式具体包括:
关闭冷藏室风机和/或冷藏室风门;
所述冷冻降噪模式具体包括:
关闭冷冻室风机和/或冷冻室风门。
作为本发明进一步改进的技术方案,所述方法还包括:
冷藏降噪模式下根据冷藏室温度控制直线压缩机的启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行;
冷冻降噪模式下根据冷冻室内温度控制直线压缩机的启停,并将外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
一种采用直线压缩机的冰箱,包括:
蒸发器温度传感器,用于监控冰箱蒸发器温度;
电脑板,用于控制冰箱工作模式;
若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,直至冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,其中,所述第一温度阈值高于所述第二温度阈值。
作为本发明进一步改进的技术方案,
所述降噪模式具体包括:
关闭冰箱的风机和/或间室的风门。
作为本发明进一步改进的技术方案,还包括:
冰箱间室内温度传感器,用于采集冰箱间室内温度;
冰箱间室外环境温度传感器,用于采集外部环境温度;
降噪模式下根据冰箱间室内温度控制直线压缩机启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
一种采用直线压缩机的冰箱,包括:
冷藏蒸发器温度传感器,用于监控冰箱冷藏蒸发器温度;
冷冻蒸发器温度传感器,用于监控冰箱冷冻蒸发器温度;
电脑板,用于控制冰箱工作模式;若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,直至冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制冷模式,恢复冷藏蒸发器和冷藏间室的正常热交换,其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值;
若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式,主动减少冷冻蒸发器和冷冻间室的热交换量,直至冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻间室的正常热交换,其中,所述第一冷冻温度阈值高于所述第二冷冻温度阈值。
作为本发明进一步改进的技术方案,
所述冷藏降噪模式具体包括:
关闭冷藏室风机和/或冷藏室风门;
所述冷冻降噪模式具体包括:
关闭冷冻室风机和/或冷冻室风门。
作为本发明进一步改进的技术方案,还包括:
冷藏室温度传感器,用于采集冷藏室内温度;
冷冻室温度传感器,用于采集冷冻室内温度;
冰箱间室外环境温度传感器,用于采集外部环境温度;
冷藏降噪模式下根据冷藏室温度控制直线压缩机的启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行;
冷冻降噪模式下根据冷冻室内温度控制直线压缩机的启停,并将外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
相对于现有技术,本发明的技术效果在于:
本发明的一种采用直线压缩机的冰箱及其控制方法,在热负荷大的时候关闭蒸发器风门和/或风机,使蒸发器的热交换速率下降,蒸发器温度得以快速降低,直线压缩机的吸排气压力随之下降,最终使得直线压缩机整机振动频率下降,不容易与冰箱箱体发生共振,具有运行噪音低的优点。
附图说明
图1是实施例1中采用直线压缩机的冰箱控制方法的流程示意图;
图2是实施例1中采用直线压缩机的冰箱的框图示意图;
图3是实施例2中采用直线压缩机的冰箱控制方法的流程示意图;
图4是实施例2中采用直线压缩机的冰箱的框图示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
各实施例中相同或相近部件采用了相同标号。
实施例1
单系统冰箱只有一条制冷回路,冰箱间室(冷藏室、冷冻室)共用一个蒸发器,利用风机使冰箱间室内的空气强制通过蒸发器,经冷却后再返回冰箱间室内,形成冰箱间室内冷空气的强制循环。
参见图1,针对单系统风冷冰箱,本发明公开了一种采用直线压缩机的冰箱控制方法,所述方法包括:
监控冰箱蒸发器温度;
若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,进一步的,在降噪模式下通过关闭冰箱的风机和/或间室的风门来减少蒸发器和冰箱间室的热交换量。
可以理解的,当风机和/或间室的风门关闭时,阻断了冰箱间室内空气与蒸发器的强制对流,蒸发器的冷量损耗变小,温度可以快速降低,直线压缩机吸排气压力减小,运行噪声降低。
冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,进一步的,在制冷模式下根据冰箱间室内温度和外部环境温度控制风机和风门运行。
具体的,冰箱间室内温度可用于控制风机的启停和间室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置风机的运行转速,例如,外部环境温度为10-20度时,风机的运行转速为每分钟500转,外部环境温度为20-30度时,风机的运行转速为每分钟700转,当冰箱蒸发器当前温度小于或等于预设第二温度阈值时风机和间室风门按照相应运行参数运行。
其中,所述第一温度阈值高于所述第二温度阈值,具体的,扫描冰箱工作时的振动频谱并记录冰箱发生共振时蒸发器的温度,该温度即是第一温度阈值,第二温度阈值略小于第一温度阈值,用于防止冰箱在降噪模式和制冷模式之间频繁切换。
进一步的,所述方法还包括:
降噪模式下根据冰箱间室内温度和外部环境温度控制所述直线压缩机运行,具体的,冰箱间室内温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冰箱蒸发器当前温度大于或等于预设第一温度阈值时直线压缩机按照相应运行参数运行。
在风冷冰箱常规控制逻辑中,直线压缩机的运行状态和风机、间室风门的运行状态相互关联,可以理解的,若在降噪模式下随着风机和/或间室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则蒸发器温度下降趋势减缓,所以在降噪模式下优选为根据冰箱间室内温度和外部环境温度控制所述直线压缩机运行,以保证蒸发器温度可以更快下降。
参见图2,本发明还公开了一种采用直线压缩机的冰箱,包括:
蒸发器温度传感器200,用于监控冰箱蒸发器温度;
电脑板100,用于控制冰箱工作模式;
冰箱间室内温度传感器300,用于采集冰箱间室内温度;
冰箱间室外环境温度传感器400,用于采集外部环境温度。
若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,进一步的,在降噪模式下通过关闭冰箱的风机和/或间室的风门来减少蒸发器和冰箱间室的热交换量。
可以理解的,当风机和/或间室的风门关闭时,阻断了冰箱间室内空气与蒸发器的强制对流,蒸发器的冷量损耗变小,温度可以快速降低,直线压缩机吸排气压力减小,运行噪声降低。
冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,进一步的,在制冷模式下根据冰箱间室内温度和外部环境温度控制风机和风门运行。
具体的,冰箱间室内温度可用于控制风机的启停和间室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置风机的运行转速,例如,外部环境温度为10-20度时,风机的运行转速为每分钟500转,外部环境温度为20-30度时,风机的运行转速为每分钟700转,当冰箱蒸发器当前温度小于或等于预设第二温度阈值时风机和间室风门按照相应运行参数运行。
其中,所述第一温度阈值高于所述第二温度阈值,具体的,扫描冰箱工作时的振动频谱并记录冰箱发生共振时蒸发器的温度,该温度即是第一温度阈值,第二温度阈值略小于第一温度阈值,用于防止冰箱在降噪模式和制冷模式之间频繁切换。
降噪模式下根据冰箱间室内温度和外部环境温度控制所述直线压缩机运行,具体的,冰箱间室内温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冰箱蒸发器当前温度大于或等于预设第一温度阈值时直线压缩机按照相应运行参数运行。
在风冷冰箱常规控制逻辑中,直线压缩机的运行状态和风机、间室风门的运行状态相互关联,可以理解的,若在降噪模式下随着风机和/或间室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则蒸发器温度下降趋势减缓,所以在降噪模式下优选为根据冰箱间室内温度和外部环境温度控制所述直线压缩机运行,以保证蒸发器温度可以更快下降。
在热负荷大的时候关闭蒸发器风门和/或风机,使蒸发器的热交换速率下降,蒸发器温度得以快速降低,直线压缩机的吸排气压力随之下降,最终使得直线压缩机整机振动频率下降,不容易与冰箱箱体发生共振,具有运行噪音低的优点。
实施例2
多系统冰箱具有冷藏室制冷回路和冷冻室制冷回路,冷藏室、冷冻室都有相应的蒸发器和风机。制冷剂走冷藏回路时,利用冷藏室风机使冷藏室内的空气强制通过冷藏蒸发器,经冷却后再返回冷藏室内,形成冷藏室内冷空气的强制循环,相应的,制冷剂走冷冻回路时,利用冷冻室风机使冷冻室内的空气强制通过冷冻蒸发器,经冷却后再返回冷冻室内,形成冷冻室内冷空气的强制循环。
参见图3,针对多系统风冷冰箱,本发明公开了一种采用直线压缩机的冰箱控制方法,所述方法包括:
监控冰箱冷藏蒸发器温度和冷冻蒸发器温度;
若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,进一步的,在冷藏降噪模式下通过关闭冷藏室风机和/或冷藏室风门来减少冷藏蒸发器和冷藏室的热交换量。
若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式,主动减少冷冻蒸发器和冷冻间室的热交换量,进一步的,在冷冻降噪模式下通过关闭冷冻室风机和/或冷冻室风门来减少冷冻蒸发器和冷冻室的热交换量。
可以理解的,当冷藏室风机和/或冷藏室风门关闭时,阻断了冷藏室内空气与冷藏蒸发器的强制对流,冷藏蒸发器的冷量损耗变小,温度可以快速降低,制冷剂走冷藏回路时直线压缩机吸排气压力减小,运行噪声降低;当冷冻室风机和/或冷冻室风门关闭时,阻断了冷冻室内空气与冷冻蒸发器的强制对流,冷冻蒸发器的冷量损耗变小,温度可以快速降低,制冷剂走冷冻回路时直线压缩机吸排气压力减小,运行噪声降 低。
冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制冷模式,恢复冷藏蒸发器和冷藏室的正常热交换,进一步的,在冷藏制冷模式下根据冷藏室内温度和外部环境温度控制冷藏室风机和冷藏室风门运行。
具体的,冷藏室内温度可用于控制冷藏室风机的启停和冷藏室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置冷藏室风机的运行转速,例如,外部环境温度为10-20度时,冷藏室风机的运行转速为每分钟500转,外部环境温度为20-30度时,冷藏室风机的运行转速为每分钟700转,当冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时冷藏室风机和冷藏室风门按照相应运行参数运行。
冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻室的正常热交换,进一步的,在冷冻制冷模式下根据冷冻室内温度和外部环境温度控制冷冻室风机和冷冻室风门运行。
具体的,冷冻室内温度可用于控制冷冻室风机的启停和冷冻室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置冷冻室风机的运行转速,例如,外部环境温度为10-20度时,冷冻室风机的运行转速为每分钟500转,外部环境温度为20-30度时,冷冻室风机的运行转速为每分钟700转,当冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时冷冻室风机和冷冻室风门按照相应运行参数运行。
其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值,所述第一冷冻温度阈值高于所述第二冷冻温度阈值,具体的,分别扫描制冷剂走冷藏回路和冷冻回路时冰箱的振动频谱并记录冰箱发生共振时冷藏蒸发器和冷冻蒸发器的温度,上述温度即分别是第一冷藏温度阈值、第一冷冻温度阈值,第二冷藏温度阈值略小于第一冷藏温度阈值,用于防止冰箱在冷藏降噪模式和冷藏制冷模式之间频繁切换,第二冷冻温度阈值略小于第一冷冻温度阈值,用于防止冰箱在冷冻降噪模式和冷冻制冷模式之间频繁切换。
进一步的,所述方法还包括:
冷藏降噪模式下根据冷藏室内温度和外部环境温度控制所述直线压缩机运行,具体的,制冷剂走冷藏回路时,冷藏室温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值时直线压缩机按照相应运行参数运行;
冷冻降噪模式下根据冷冻室内温度和外部环境温度控制所述直线压缩机运行,具体的,制冷剂走冷冻回路时,冷冻室温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值时直线压缩机按照相应运行参数运行。
在风冷冰箱常规控制逻辑中,直线压缩机的运行状态和冷藏室风机、冷冻室风机、冷藏室风门、冷冻室风门的运行状态相互关联,可以理解的,若在冷藏降噪模式下随着冷藏室风机和/或冷藏室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则冷藏蒸发器温度下降趋势减缓,所以在冷藏降噪模 式下优选为根据冷藏室内温度和外部环境温度控制所述直线压缩机运行,以保证冷藏蒸发器温度可以更快下降;若在冷冻降噪模式下随着冷冻室风机和/或冷冻室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则冷冻蒸发器温度下降趋势减缓,所以在冷冻降噪模式下优选为根据冷冻室内温度和外部环境温度控制所述直线压缩机运行,以保证冷冻蒸发器温度可以更快下降。
参见图4,本发明还公开了一种采用直线压缩机的冰箱,包括:
冷藏蒸发器温度传感器201,用于监控冷藏蒸发器温度;
冷冻蒸发器温度传感器202,用于监控冷冻蒸发器温度;
电脑板100,用于控制冰箱工作模式;
冷藏室温度传感器301,用于采集冷藏室内温度;
冷冻室温度传感器302,用于采集冷冻室内温度;
冰箱间室外环境温度传感器400,用于采集外部环境温度。
若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,进一步的,在冷藏降噪模式下通过关闭冷藏室风机和/或冷藏室风门来减少冷藏蒸发器和冷藏室的热交换量。
若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式,主动减少冷冻蒸发器和冷冻间室的热交换量,进一步的,在冷冻降噪模式下通过关闭冷冻室风机和/或冷冻室风门来减少冷冻蒸发器和冷冻室的热交换量。
可以理解的,当冷藏室风机和/或冷藏室风门关闭时,阻断了冷藏室内空气与冷藏蒸发器的强制对流,冷藏蒸发器的冷量损耗变小,温度可以快速降低,制冷剂走冷藏回路时直线压缩机吸排气压力减小,运行噪声降低;当冷冻室风机和/或冷冻室风门关闭时,阻断了冷冻室内空气与冷冻蒸发器的强制对流,冷冻蒸发器的冷量损耗变小,温度可以快速降低,制冷剂走冷冻回路时直线压缩机吸排气压力减小,运行噪声降低。
冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制冷模式,恢复冷藏蒸发器和冷藏室的正常热交换,进一步的,在冷藏制冷模式下根据冷藏室内温度和外部环境温度控制冷藏室风机和冷藏室风门运行。
具体的,冷藏室内温度可用于控制冷藏室风机的启停和冷藏室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置冷藏室风机的运行转速,例如,外部环境温度为10-20度时,冷藏室风机的运行转速为每分钟500转,外部环境温度为20-30度时,冷藏室风机的运行转速为每分钟700转,当冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时冷藏室风机和冷藏室风门按照相应运行参数运行。
冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻室的正常热交换,进一步的,在冷冻制冷模式下根据冷冻室内温度和外部环境温度控制冷冻室风机和冷冻室风门运行。
具体的,冷冻室内温度可用于控制冷冻室风机的启停和冷冻室风门的开闭,外部环境温度可分为多个连续的区间,对应每个温度区间设置冷冻室风机的运行转速,例如,外部环境温度为10-20度时,冷冻室风机的运行转速为每分钟500转,外部环境温度为20-30度时,冷冻室风机的运行转速为每分钟700转, 当冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时冷冻室风机和冷冻室风门按照相应运行参数运行。
其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值,所述第一冷冻温度阈值高于所述第二冷冻温度阈值,具体的,分别扫描制冷剂走冷藏回路和冷冻回路时冰箱的振动频谱并记录冰箱发生共振时冷藏蒸发器和冷冻蒸发器的温度,上述温度即分别是第一冷藏温度阈值、第一冷冻温度阈值,第二冷藏温度阈值略小于第一冷藏温度阈值,用于防止冰箱在冷藏降噪模式和冷藏制冷模式之间频繁切换,第二冷冻温度阈值略小于第一冷冻温度阈值,用于防止冰箱在冷冻降噪模式和冷冻制冷模式之间频繁切换。
冷藏降噪模式下根据冷藏室内温度和外部环境温度控制所述直线压缩机运行,具体的,制冷剂走冷藏回路时,冷藏室温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值时直线压缩机按照相应运行参数运行;
冷冻降噪模式下根据冷冻室内温度和外部环境温度控制所述直线压缩机运行,具体的,制冷剂走冷冻回路时,冷冻室温度可用于控制直线压缩机的启停,外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,例如,外部环境温度为10-20度时,直线压缩机输入功率为100W,外部环境温度为20-30度时,直线压缩机输入功率为120W,当冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值时直线压缩机按照相应运行参数运行。
在风冷冰箱常规控制逻辑中,直线压缩机的运行状态和冷藏室风机、冷冻室风机、冷藏室风门、冷冻室风门的运行状态相互关联,可以理解的,若在冷藏降噪模式下随着冷藏室风机和/或冷藏室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则冷藏蒸发器温度下降趋势减缓,所以在冷藏降噪模式下优选为根据冷藏室内温度和外部环境温度控制所述直线压缩机运行,以保证冷藏蒸发器温度可以更快下降;若在冷冻降噪模式下随着冷冻室风机和/或冷冻室风门关闭,直线压缩机行程(行程与输入功率成正比)逐渐下降,则冷冻蒸发器温度下降趋势减缓,所以在冷冻降噪模式下优选为根据冷冻室内温度和外部环境温度控制所述直线压缩机运行,以保证冷冻蒸发器温度可以更快下降。
在冷藏室热负荷大的时候关闭冷藏室风门和/或冷藏室风机,使冷藏蒸发器的热交换速率下降,冷藏蒸发器温度得以快速降低,在冷冻室热负荷大的时候关闭冷冻室风门和/或冷冻室风机,使冷冻蒸发器的热交换速率下降,冷冻蒸发器温度得以快速降低,直线压缩机的吸排气压力随之下降,最终使得直线压缩机整机振动频率下降,不容易与冰箱箱体发生共振,具有运行噪音低的优点。
最后应说明的是:以上实施方式仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施方式技术方案的精神和范围。

Claims (12)

  1. 一种采用直线压缩机的冰箱控制方法,其特征在于,所述方法包括:
    监控冰箱蒸发器温度;
    若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,直至冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,其中,所述第一温度阈值高于所述第二温度阈值。
  2. 根据权利要求1所述的采用直线压缩机的冰箱控制方法,其特征在于,所述降噪模式具体包括:
    关闭冰箱的风机和/或间室的风门。
  3. 根据权利要求1所述的采用直线压缩机的冰箱控制方法,其特征在于,所述方法还包括:
    降噪模式下根据冰箱间室内温度控制直线压缩机启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
  4. 一种采用直线压缩机的冰箱控制方法,其特征在于,所述方法包括:
    监控冰箱冷藏蒸发器温度和冷冻蒸发器温度;
    若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,直至冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制冷模式,恢复冷藏蒸发器和冷藏间室的正常热交换,其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值;
    若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式,主动减少冷冻蒸发器和冷冻间室的热交换量,直至冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻间室的正常热交换,其中,所述第一冷冻温度阈值高于所述第二冷冻温度阈值。
  5. 根据权利要求4所述的采用直线压缩机的冰箱控制方法,其特征在于,所述冷藏降噪模式具体包括:
    关闭冷藏室风机和/或冷藏室风门;
    所述冷冻降噪模式具体包括:
    关闭冷冻室风机和/或冷冻室风门。
  6. 根据权利要求4所述的采用直线压缩机的冰箱控制方法,其特征在于,所述方法还包括:
    冷藏降噪模式下根据冷藏室温度控制直线压缩机的启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行;
    冷冻降噪模式下根据冷冻室内温度控制直线压缩机的启停,并将外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
  7. 一种采用直线压缩机的冰箱,其特征在于,包括:
    蒸发器温度传感器,用于监控冰箱蒸发器温度;
    电脑板,用于控制冰箱工作模式;
    若冰箱蒸发器当前温度大于或等于预设第一温度阈值,则调用降噪模式,主动减少蒸发器和冰箱间室的热交换量,直至冰箱蒸发器当前温度小于或等于预设第二温度阈值时调用制冷模式,恢复蒸发器和冰箱间室的正常热交换,其中,所述第一温度阈值高于所述第二温度阈值。
  8. 根据权利要求7所述的采用直线压缩机的冰箱,其特征在于,
    所述降噪模式具体包括:
    关闭冰箱的风机和/或间室的风门。
  9. 根据权利要求7所述的采用直线压缩机的冰箱,其特征在于,还包括:
    冰箱间室内温度传感器,用于采集冰箱间室内温度;
    冰箱间室外环境温度传感器,用于采集外部环境温度;
    降噪模式下根据冰箱间室内温度控制直线压缩机启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
  10. 一种采用直线压缩机的冰箱,其特征在于,包括:
    冷藏蒸发器温度传感器,用于监控冰箱冷藏蒸发器温度;
    冷冻蒸发器温度传感器,用于监控冰箱冷冻蒸发器温度;
    电脑板,用于控制冰箱工作模式;若冰箱冷藏蒸发器当前温度大于或等于预设第一冷藏温度阈值,则调用冷藏降噪模式,主动减少冷藏蒸发器和冷藏间室的热交换量,直至冷藏蒸发器当前温度小于或等于预设第二冷藏温度阈值时调用冷藏制冷模式,恢复冷藏蒸发器和冷藏间室的正常热交换,其中,所述第一冷藏温度阈值高于所述第二冷藏温度阈值;
    若冰箱冷冻蒸发器当前温度大于或等于预设第一冷冻温度阈值,则调用冷冻降噪模式, 主动减少冷冻蒸发器和冷冻间室的热交换量,直至冷冻蒸发器当前温度小于或等于预设第二冷冻温度阈值时调用冷冻制冷模式,恢复冷冻蒸发器和冷冻间室的正常热交换,其中,所述第一冷冻温度阈值高于所述第二冷冻温度阈值。
  11. 根据权利要求10所述的采用直线压缩机的冰箱,其特征在于,
    所述冷藏降噪模式具体包括:
    关闭冷藏室风机和/或冷藏室风门;
    所述冷冻降噪模式具体包括:
    关闭冷冻室风机和/或冷冻室风门。
  12. 根据权利要求10所述的采用直线压缩机的冰箱,其特征在于,还包括:
    冷藏室温度传感器,用于采集冷藏室内温度;
    冷冻室温度传感器,用于采集冷冻室内温度;
    冰箱间室外环境温度传感器,用于采集外部环境温度;
    冷藏降噪模式下根据冷藏室温度控制直线压缩机的启停,并将外部环境温度分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行;
    冷冻降噪模式下根据冷冻室内温度控制直线压缩机的启停,并将外部环境温度可分为多个连续的区间,对应每个区间设置直线压缩机的运行参数,直线压缩机按照相应运行参数运行。
PCT/CN2016/086167 2015-11-05 2016-06-17 采用直线压缩机的冰箱及其控制方法 WO2017076002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16861272.9A EP3372932B1 (en) 2015-11-05 2016-06-17 Refrigerator adopting linear compressor and control method thereof
US15/770,203 US10969150B2 (en) 2015-11-05 2016-06-17 Refrigerator adopting linear compressor and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510751457.0 2015-11-05
CN201510751457.0A CN105258449B (zh) 2015-11-05 2015-11-05 采用直线压缩机的冰箱及其控制方法

Publications (1)

Publication Number Publication Date
WO2017076002A1 true WO2017076002A1 (zh) 2017-05-11

Family

ID=55098239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086167 WO2017076002A1 (zh) 2015-11-05 2016-06-17 采用直线压缩机的冰箱及其控制方法

Country Status (4)

Country Link
US (1) US10969150B2 (zh)
EP (1) EP3372932B1 (zh)
CN (1) CN105258449B (zh)
WO (1) WO2017076002A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532017A (zh) * 2021-07-19 2021-10-22 长虹美菱股份有限公司 一种变频冰箱的噪声控制方法
CN113758116A (zh) * 2021-09-30 2021-12-07 珠海格力电器股份有限公司 冰箱化霜后的制冷控制方法、装置、控制器和冰箱

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559920A (en) * 2015-10-16 2018-08-22 Wal Mart Stores Inc Sensor data analytics and alarm management
CN105258449B (zh) * 2015-11-05 2018-04-20 青岛海尔股份有限公司 采用直线压缩机的冰箱及其控制方法
CN106524663A (zh) * 2016-12-14 2017-03-22 青岛海尔股份有限公司 提高直线压缩机稳定性的冰箱及其控制方法
CN106813455A (zh) * 2016-12-14 2017-06-09 青岛海尔股份有限公司 提高直线压缩机稳定性的冰箱及其控制方法
CN107477973A (zh) * 2017-08-28 2017-12-15 合肥华凌股份有限公司 风机控制方法、系统及冰箱
CN109708423B (zh) * 2018-11-22 2021-10-29 海尔智家股份有限公司 冰箱,该冰箱的控制方法及控制系统
US20200227021A1 (en) * 2019-01-11 2020-07-16 Haier Us Appliance Solutions, Inc. Consumer appliances having one or more noise cancellation features
CN110173952B (zh) * 2019-05-29 2021-04-23 合肥美的电冰箱有限公司 制冷设备及其控制方法、控制装置、电子设备及存储介质
CN111189296B (zh) * 2020-01-14 2021-04-20 合肥美的电冰箱有限公司 制冷系统的控制方法、制冷系统、制冷设备和存储介质
JP2022085483A (ja) * 2020-11-27 2022-06-08 富士電機株式会社 冷媒回路装置
CN113932556B (zh) * 2021-03-19 2023-04-07 海信冰箱有限公司 酒柜及其控制方法、装置
CN113654298B (zh) * 2021-08-23 2022-05-20 珠海格力电器股份有限公司 制冷设备控制方法、存储介质、电子设备以及制冷设备
CN113915912A (zh) * 2021-10-25 2022-01-11 海信(山东)冰箱有限公司 一种冰箱和冰箱降噪方法
CN114608261B (zh) * 2022-03-08 2024-05-28 长虹美菱股份有限公司 一种冰箱压缩机开停机优化控制方法
CN116242081B (zh) * 2023-03-22 2024-09-13 海信冰箱有限公司 一种冰箱及获取冰箱低噪音转速的试验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185395A (ja) * 1996-12-26 1998-07-14 Matsushita Refrig Co Ltd 冷凍冷蔵庫
CN1215145A (zh) * 1997-08-26 1999-04-28 大宇电子株式会社 降低冰箱运行噪声的方法
CN103080676A (zh) * 2010-08-06 2013-05-01 Lg电子株式会社 用于控制冰箱运行的方法
KR20140144020A (ko) * 2013-06-10 2014-12-18 주식회사 대유위니아 냉장고의 모터 제어 방법 및 장치
CN105258449A (zh) * 2015-11-05 2016-01-20 青岛海尔股份有限公司 采用直线压缩机的冰箱及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462156B2 (ja) * 1999-11-30 2003-11-05 株式会社東芝 冷蔵庫
CN101413748A (zh) * 2007-10-17 2009-04-22 开利公司 整机展示柜系统
EP2339266B1 (en) * 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
ITTO20131094A1 (it) * 2013-12-31 2015-07-01 Indesit Co Spa Metodo e dispositivo di controllo di una fase di surgelamento in un apparecchio frigorifero del tipo combinato mono regolazione, e relativo apparecchio frigorifero
ITTO20131093A1 (it) * 2013-12-31 2015-07-01 Indesit Co Spa Metodo e dispositivo di controllo di una fase di surgelamento in un apparecchio frigorifero del tipo combinato mono regolazione, e relativo apparecchio frigorifero
US9704329B2 (en) * 2014-05-01 2017-07-11 Elkay Manufacturing Company System and method for dispensing consumable liquids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185395A (ja) * 1996-12-26 1998-07-14 Matsushita Refrig Co Ltd 冷凍冷蔵庫
CN1215145A (zh) * 1997-08-26 1999-04-28 大宇电子株式会社 降低冰箱运行噪声的方法
CN103080676A (zh) * 2010-08-06 2013-05-01 Lg电子株式会社 用于控制冰箱运行的方法
KR20140144020A (ko) * 2013-06-10 2014-12-18 주식회사 대유위니아 냉장고의 모터 제어 방법 및 장치
CN105258449A (zh) * 2015-11-05 2016-01-20 青岛海尔股份有限公司 采用直线压缩机的冰箱及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3372932A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532017A (zh) * 2021-07-19 2021-10-22 长虹美菱股份有限公司 一种变频冰箱的噪声控制方法
CN113758116A (zh) * 2021-09-30 2021-12-07 珠海格力电器股份有限公司 冰箱化霜后的制冷控制方法、装置、控制器和冰箱

Also Published As

Publication number Publication date
CN105258449A (zh) 2016-01-20
CN105258449B (zh) 2018-04-20
US10969150B2 (en) 2021-04-06
EP3372932A4 (en) 2019-06-26
EP3372932A1 (en) 2018-09-12
US20180306477A1 (en) 2018-10-25
EP3372932B1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2017076002A1 (zh) 采用直线压缩机的冰箱及其控制方法
WO2017076098A1 (zh) 采用直线压缩机的冰箱控制方法及控制系统
WO2018121593A1 (zh) 冰箱节能制冷系统及具有该系统的冰箱运行方法
US10145608B2 (en) Refrigerator and method of controlling the same
JP2004061100A (ja) 冷蔵庫の運転制御方法
CN106016964A (zh) 一种多风门风冷冰箱的控制系统、控制方法及冰箱
CN106610173B (zh) 风冷冰箱及其运行控制方法
JP4178646B2 (ja) 冷蔵庫
JP2018021696A (ja) 冷却装置および制御装置
JP5856435B2 (ja) 冷蔵庫
JP2010071480A (ja) 冷蔵庫
JP5113776B2 (ja) 冷凍装置
JP6120367B2 (ja) 冷蔵庫
WO2018108117A1 (zh) 提高直线压缩机稳定性的冰箱及其控制方法
WO2018108118A1 (zh) 提高直线压缩机稳定性的冰箱及其控制方法
CN106687757A (zh) 具有可选的噪声发射的冷却设备
JP2012202590A (ja) 冷凍装置
CN113048716B (zh) 控制方法和冰箱
JP2006125843A (ja) 冷却サイクル及び冷蔵庫
CN107624154A (zh) 具有制冷剂压缩机的制冷器具
JP2012078077A (ja) 冷凍装置
JP5261106B2 (ja) 冷却システム
JP5165358B2 (ja) 冷凍装置
KR20150019206A (ko) 냉장고 운전 제어방법
CN113048717B (zh) 制冷控制方法和冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016861272

Country of ref document: EP