WO2017075955A1 - 节能供汽锅炉系统 - Google Patents

节能供汽锅炉系统 Download PDF

Info

Publication number
WO2017075955A1
WO2017075955A1 PCT/CN2016/081849 CN2016081849W WO2017075955A1 WO 2017075955 A1 WO2017075955 A1 WO 2017075955A1 CN 2016081849 W CN2016081849 W CN 2016081849W WO 2017075955 A1 WO2017075955 A1 WO 2017075955A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
flue gas
ejector
outlet
pressure steam
Prior art date
Application number
PCT/CN2016/081849
Other languages
English (en)
French (fr)
Inventor
刘效洲
苏晓键
刘文星
张宇
栾殿利
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US15/746,276 priority Critical patent/US10883713B2/en
Publication of WO2017075955A1 publication Critical patent/WO2017075955A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/14Combinations of low and high pressure boilers
    • F22B33/16Combinations of low and high pressure boilers of forced-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/14Combinations of low and high pressure boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/24Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters
    • F01K3/245Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters delivering steam at different pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to a boiler device, in particular to a steam boiler.
  • a steam boiler is an industrial boiler that heats water into high temperature steam.
  • the steam boiler can be divided into three types: electric steam boiler, fuel steam boiler and gas steam boiler; according to the structure, it can be divided into vertical steam boiler and horizontal steam boiler; according to the scale, it can be divided into large, medium and small steam boilers.
  • a pressure steam generator system disclosed in Chinese Patent Publication No. 204005894U comprising a steam generator body, a heat preservation water tank, and a system control box for controlling the overall operation of the steam generator body and the heat preservation water tank, and a lower portion of the steam generator body There is a burner, and the water generator body is further provided with a water level controller.
  • the top of the steam generator body is connected with a process steam line, and the process steam line is also connected with a heating line, and the other end of the heating line
  • the water heater body is connected with a water supply pipe, and the other end of the water supply pipe is connected with the heat preservation water tank, and a water supply pipe is also connected in parallel to the water supply pipe.
  • the steam pressure generated by the pressure steam generator system cannot be adjusted according to the needs of the user.
  • Another example is an intelligent high-temperature low-pressure controllable steam boiler disclosed in Chinese Patent Publication No. 101749694A, which comprises a boiler body, a liquid phase heating device and a vapor phase heating device.
  • the peripheral body of the boiler body can control the temperature and pressure control of the steam boiler.
  • the system and the control system comprise a temperature sensor and a pressure sensor arranged on the boiler body, wherein the temperature sensor and the pressure sensor are respectively electrically connected with the amplifying circuit, the A/D analog-to-digital conversion circuit and the computer input end, and the output end of the computer is D/A.
  • the digital-to-analog conversion and switching circuit are respectively electrically connected with a safety solenoid valve, a steam supply solenoid valve, a vapor phase heat conduction component heating power source, and a liquid phase heat conduction component heating power source.
  • a safety solenoid valve a steam supply solenoid valve
  • a vapor phase heat conduction component heating power source a vapor phase heat conduction component heating power source
  • a liquid phase heat conduction component heating power source a liquid phase heat conduction component heating power source.
  • the intelligent high-temperature and low-pressure controllable steam boiler achieves the target steam supply pressure by adopting complex temperature and pressure control loops, and adopts a large number of precision control components, which not only has high cost, but also Failure of one component will result in the entire system not functioning properly.
  • an energy-saving steam supply boiler system comprising: a steam boiler and a flue gas duct.
  • the steam boiler includes a boiler body, a burner disposed at one end wall of the boiler body, a flue gas outlet disposed at the other end wall of the boiler body, and a water inlet and a high pressure steam outlet disposed at the top of the boiler body.
  • the flue gas duct connects the flue gas outlet of the boiler body to the chimney.
  • the energy-saving steam supply boiler system further includes: a heat exchanger, a steam generator, and an ejector.
  • the heat exchanger is disposed in the flue gas pipeline, and the heat exchanger comprises a high temperature flue gas inlet, a medium temperature flue gas outlet, a cold water inlet and a hot water outlet, and the cold water enters the heat exchanger via the cold water inlet and becomes heat after being exchanged with the flue gas.
  • the steam generator comprises a generator body, a hot water inlet disposed at the bottom of the generator body, and a low pressure steam outlet disposed at the top of the generator body, the hot water inlet being in communication with the hot water outlet of the heat exchanger through the pipeline to be inside the heat exchanger The hot water is delivered to the generator body.
  • the ejector includes a housing, a high pressure steam inlet disposed at one end wall of the housing, a mixed steam outlet disposed at the other end wall of the housing, a low pressure steam inlet disposed at a sidewall of the housing, and a high pressure steam inlet through the pipeline
  • the high pressure steam outlet of the steam boiler is in communication to deliver high pressure steam to the ejector
  • the low pressure steam inlet is in communication with the low pressure steam outlet of the steam generator to deliver low pressure steam to the ejector.
  • the ejector further comprises an ejector tube extending from the high pressure steam inlet to the interior of the ejector such that a low pressure is applied from the low pressure steam outlet of the steam generator under the negative pressure created by the high pressure steam flowing into the ejector at a high velocity Steam is drawn into the ejector.
  • the ejector tube is tapered such that the hot water in the steam generator is boiled under low pressure at a high velocity into the ejector to produce low pressure steam and then sucked into the ejector.
  • an impeller adjacent to the mixed steam outlet within the ejector is further provided for rotational mixing of the steam.
  • the distance between the end of the ejector tube and the end wall is greater than the distance between the low pressure steam inlet and the end wall.
  • the energy efficient steam supply boiler system further includes a mixer in communication with the mixed steam outlet of the ejector to further mix the mixed steam from the ejector and deliver it to the user via a pipeline.
  • the mass ratio of the high pressure steam entering the ejector from the high pressure steam inlet per unit time to the low pressure steam entering the ejector from the low pressure steam inlet per unit time is set to 2 to 5:1.
  • the energy-saving steam supply boiler system further comprises an air preheater disposed in the flue gas duct downstream of the heat exchanger in a flow direction of the flue gas, the air preheater comprising a cold air inlet, and a heat
  • the air outlet, the medium temperature flue gas inlet and the low temperature flue gas outlet, the flue gas of about 150-250 degrees Celsius from the medium temperature flue gas outlet of the heat exchanger enters the air preheater through the medium temperature flue gas inlet, and the flue gas will come from the cold air inlet.
  • the cold air becomes about 60-120 degrees Celsius and is discharged to the chimney through the low-temperature flue gas outlet.
  • the air is preheated into hot air of about 80-150 degrees Celsius and then sent to the hot air outlet through the pipeline to the chimney.
  • the burner supports combustion.
  • the pressure of the high pressure steam produced by the steam boiler is set to about 1.0 to 1.5 MPa, and the pressure of the low pressure steam generated by the steam generator is set to be about 0.04 to 0.06 MPa.
  • the steam boiler comprises a boiler body, a combustion chamber disposed at a lower portion of the boiler body, a drum for holding water above the combustion chamber, and an end wall of the boiler body for injecting fuel into the combustion chamber for combustion to radiate a burner for heating the drum, a flue gas outlet disposed at the other end wall of the boiler body, a pyrotechnic tube connecting the combustion chamber and the flue gas outlet for exchanging heat between the flue gas and the water in the drum, and a drum The top of the inlet and the high pressure steam outlet.
  • the steam boiler may be any type of steam boiler commercially available, preferably a large horizontal steam boiler.
  • the heat exchanger comprises a flue gas flow path and a fluid flow path
  • the cold water of about 20 degrees Celsius enters the heat exchanger via the cold water inlet of the fluid flow path and exchanges with the flue gas flowing through the flue gas flow path to become about 80
  • the hot water of ⁇ 95 degrees Celsius flows out from the hot water outlet of the fluid flow path, and the high temperature flue gas of about 250-350 degrees Celsius from the flue gas outlet of the steam boiler becomes heat exchanged by the heat exchanger and becomes a medium temperature smoke of about 150-250 degrees Celsius. gas.
  • the heat exchanger further includes an outer casing, a middle partition partitioning the inner space of the outer casing into a reverse parallel smoke flow path and a fluid flow path, and a plurality of heat pipes penetrating the middle partition, wherein the heat pipe is evaporated The end extends in the flue gas flow path, and the condensation end of the heat pipe extends in the fluid flow path.
  • the working medium in the heat pipe of the heat exchanger is a working medium such as naphthalene suitable for working conditions of about 300 degrees Celsius.
  • the air preheater comprises an outer casing, an intermediate partition separating the inner space of the outer casing into a reverse parallel smoke flow path and an air flow path, and a plurality of heat pipes disposed in the middle partition, wherein the heat pipe is evaporated
  • the end extends in the flue gas flow path, and the condensation end of the heat pipe extends in the air flow path.
  • the working fluid in the heat pipe of the air preheater is a working medium such as water or ammonia suitable for working conditions of about 150 degrees Celsius.
  • the heat exchanger or the air preheater may also be a surface heat exchanger, that is, two fluids having different temperatures flow in a space separated by a wall surface, heat conduction through the wall surface and convection of the fluid on the wall surface, The heat exchange between the fluids.
  • a heat exchange coil disposed in the flue the fluid exchanges heat with the flue gas in the flue gas in the heat exchange coil.
  • an electric heater may be used to heat the hot water in the steam generator to low pressure steam and then to the ejector to mix with the high pressure steam.
  • the fuel of the burner may be natural gas, coal gas, liquefied petroleum gas or the like.
  • the steam provided by the boiler system has the functions of disinfection, drying, cooking, heating, etc., and is suitable for public baths, schools, hospitals, restaurants, food processing plants and chemical processing plants.
  • the beneficial effects of the invention are as follows: (1) using a method in which high-pressure steam generated in a steam boiler is mixed with low-pressure steam generated in a steam generator, and can be adjusted according to a user's demand to obtain a desired pressure steam; (2) The way of mixing high-pressure steam with low-pressure steam, the steam boiler can be operated at full load, which changes the situation that large steam boilers need low-load operation to meet the customer's target steam pressure and cause waste of resources; (3) the negative pressure formed by the ejector, The hot water in the steam generator is boiled at a low pressure to generate low-pressure steam, and the ejector is directly sucked into the high-pressure steam, which does not require additional low-pressure steam heating equipment, thereby saving system operating cost; (4) the system according to the present invention, It is not necessary to modify the existing steam boiler to realize the on-demand adjustment of the supply pressure under the premise of fully utilizing the steam boiler performance; (5) using the flue gas heat generated by the steam boiler to heat the water to prepare low-pressure steam And
  • Fig. 1 is a schematic view showing the construction of an energy-saving steam supply boiler system of the present invention.
  • Fig. 2 is a view showing the internal configuration of the ejector of the present invention.
  • an energy-saving steam supply boiler system includes a steam boiler 100, a heat exchanger 300, a steam generator 400, and an ejector 500, in accordance with an embodiment of the present invention.
  • the steam boiler 100 includes a boiler body 110, a burner 120 disposed at one end wall of the boiler body 110, a flue gas outlet 130 disposed at the other end wall of the boiler body 110, and a water inlet 140 provided at the top of the boiler body 110. And a high pressure steam outlet 150.
  • a flue gas duct (not numbered) connects the flue gas outlet 130 of the boiler body 110 to a chimney (not shown).
  • steam boiler 100 employs a large horizontal steam boiler with a high pressure steam pressure of about 1.3 MPa.
  • the temperature of the high temperature flue gas discharged from the flue gas outlet 130 of the boiler body 110 is about 300 degrees Celsius.
  • the heat exchanger 300 is disposed in the flue gas duct, and the heat exchanger 300 includes a high temperature flue gas inlet 310, a medium temperature flue gas outlet 320, a cold water inlet 330, and a hot water outlet 340.
  • the cold water of about 20 degrees Celsius enters through the cold water inlet 330.
  • the heat exchanger 300 is heated to the flue gas and becomes hot water of about 90 degrees Celsius and flows out from the hot water outlet 340.
  • the temperature of the medium temperature flue gas discharged from the intermediate temperature flue gas outlet 320 of the heat exchanger 300 is about 220 degrees Celsius.
  • the steam generator 400 includes a generator body 410, a hot water inlet 420 disposed at the bottom of the generator body 410, and a low pressure steam outlet 430 disposed at the top of the generator body 410.
  • the hot water inlet 420 passes through the pipeline and the heat exchanger 300.
  • the hot water outlet 340 is in communication to deliver hot water within the heat exchanger 300 into the generator body 410.
  • the pressure of the low pressure steam produced by steam generator 400 is set to about 0.05 MPa.
  • the ejector 500 includes a housing 510, a high-pressure steam inlet 520 provided at one end wall 511 of the housing, and another housing provided in the housing. a mixed steam outlet 530 at one end, a low pressure steam inlet 540 provided at a side wall of the casing,
  • the high pressure steam inlet 520 is in communication with the high pressure steam outlet 150 of the steam boiler 100 to deliver high pressure steam to the ejector 500
  • the low pressure steam inlet 540 is in communication with the low pressure steam outlet 430 of the steam generator 400 to deliver low pressure steam.
  • the ejector 500 further includes an ejector tube 550 extending from the high pressure steam inlet to the inside of the ejector 500 such that the low pressure from the steam generator 400 is generated by the negative pressure generated by the high pressure steam flowing into the ejector 500 at a high speed.
  • the steam outlet 430 draws low pressure steam into the ejector 500.
  • the adjacent mixed steam outlet 530 in the ejector 500 is further provided with an impeller 560 for rotationally mixing the steam.
  • the ejector tube 550 is tapered such that the hot water in the steam generator 400 is boiled under low pressure generated by high pressure steam flowing into the ejector 500 at high speed to generate low pressure steam. After inhalation into the ejector 500.
  • the distance between the end of the ejector tube 550 of the ejector 500 and the end wall 511 is greater than the distance between the low pressure steam inlet 540 and the end wall 511.
  • the steam boiler 100 includes a combustion chamber disposed at a lower portion of the boiler body 110, a drum for holding water above the combustion chamber, and a connecting combustion chamber 120 and a flue gas outlet 130 for making A pyrotechnic tube that exchanges heat between the flue gas and the water in the drum.
  • the burner 120 is disposed at one end wall of the boiler body 110 for injecting fuel combustion into the combustion chamber to radiate the heating drum, and the water inlet 140 and the high pressure steam outlet 150 are disposed at the top of the drum.
  • the heat exchanger 300 includes an outer casing, a middle partition partitioning the inner space of the outer casing into a reverse parallel smoke flow path and a fluid flow path, and a plurality of heat pipes disposed in the middle partition. Wherein, the evaporation end of the heat pipe extends in the smoke flow path, and the condensation end of the heat pipe extends in the fluid flow path.
  • the working fluid in the heat pipe of the heat exchanger 300 is naphthalene suitable for working conditions of about 300 degrees Celsius.
  • the boiler system further includes a mixer 600 that communicates with the mixed steam outlet 530 of the ejector 500 to further thoroughly mix the mixed steam from the ejector 500 and deliver it to the user via a pipeline.
  • the boiler system further includes an air preheater 700 disposed in the flue gas duct downstream of the heat exchanger 300 in the direction of flue gas flow, the air preheater 700 including cold The air inlet 710, the hot air outlet 720, the intermediate temperature flue gas inlet 730, and the low temperature flue gas outlet 740, the flue gas from the intermediate temperature flue gas outlet 320 of the heat exchanger 300 enters the air preheater 700 via the medium temperature flue gas inlet 730, the flue gas The cold air from the cold air inlet 710 is preheated to become a low temperature flue gas of about 120 degrees Celsius via the low temperature flue gas outlet 740 Discharge to the chimney, the air is preheated to about 110 degrees Celsius and then delivered to the combustor 120 via the hot air outlet 720 to assist combustion.
  • the air preheater 700 including cold The air inlet 710, the hot air outlet 720, the intermediate temperature flue gas inlet 730, and the low temperature flue gas outlet 740, the flue
  • the air preheater 700 includes an outer casing, an intermediate partition that partitions the inner space of the outer casing into a reverse parallel smoke flow path and an air flow path, and a plurality of heat pipes that are disposed in the intermediate partition. Wherein, the evaporation end of the heat pipe extends in the smoke flow path, and the condensation end of the heat pipe extends in the air flow path.
  • the working fluid in the heat pipe of the air preheater 700 is ammonia suitable for use in conditions of about 150 degrees Celsius.
  • the flue gas of the steam boiler 100 heats the cold water to about 90 degrees of hot water through the heat exchanger 300, and the 90 degree hot water is sent to the steam generator 400 through the pipeline.
  • Approximately 13 kg of high pressure water vapor produced by the steam boiler is delivered to the high pressure steam inlet 520 of the ejector 500 via a line.
  • the low pressure steam outlet 430 of the steam generator 400 is in communication with the low pressure steam inlet 540 of the ejector 500. Due to the ejector action of the high pressure water vapor, a negative pressure is generated in the steam generator 400 communicating with the ejector 500, so that about 90 degrees of hot water boiling produces about 0.5 kg of low pressure water vapor, and 0.5 kg due to negative pressure.
  • the low pressure water vapor is introduced into the ejector 500 and into the mixer 600 connected to the ejector 500.
  • the high pressure water vapor and the low pressure water vapor are thoroughly mixed in the mixer 600 to supply about 6 kilograms of medium pressure water vapor directly to the user.
  • the mass ratio of the high pressure steam entering the ejector 500 from the high pressure steam inlet 520 per unit time to the low pressure steam entering the ejector 500 from the low pressure steam inlet 540 per unit time is set to 3:1.
  • the energy-saving steam supply boiler system of the present invention can fully utilize the performance of the steam boiler, and avoids the problem of wasting efficiency in the prior art to ensure the user's medium and low pressure water vapor demand, and does not add additional cost.
  • the mass ratio of the high pressure steam entering the ejector per unit time to the low pressure steam entering the ejector per unit time may be adjusted according to the use conditions, or the boiler system may not include the heat exchanger, and the steam may be generated by other means.
  • the hot water in the unit is heated to low pressure steam, or the number of burners is adjusted according to the pressure of the required high pressure steam.
  • parameters such as temperature or pressure throughout the system may be appropriately selected within the scope of the present disclosure depending on the specific use conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

一种节能供汽锅炉系统,包括:蒸汽锅炉(100)、烟气管道、换热器(300)、蒸汽发生器(400)以及引射器(500)。蒸汽锅炉(100)包括锅炉本体(110)、燃烧器(120)、烟气出口(130)、进水口(140)和高压蒸汽出口(150)。换热器(300)包括高温烟气入口(310)、中温烟气出口(320)、冷水入口(330)以及热水出口(340),冷水经由冷水入口(330)进入换热器(300)与烟气换热后变成热水从热水出口(340)流出。蒸汽发生器(400)包括发生器本体(410)、热水入口(420)以及低压蒸汽出口(430)。热水入口(420)通过管线与热水出口(340)连通以将换热器(300)内的热水输送至发生器本体(410)内。引射器(500)包括壳体(510)、高压蒸汽入口(520)、混合蒸汽出口(530)及低压蒸汽入口(540),高压蒸汽入口(520)与蒸汽锅炉(100)连通以将高压蒸汽输送至引射器(500)内,低压蒸汽入口(540)与蒸汽发生器(400)连通以将低压蒸汽输送至引射器(500)内。

Description

节能供汽锅炉系统 技术领域
本发明涉及一种锅炉设备,特别涉及一种蒸汽锅炉。
背景技术
蒸汽锅炉是将水加热成高温蒸汽的工业锅炉。蒸汽锅炉按照燃料可以分为电蒸汽锅炉、燃油蒸汽锅炉、燃气蒸汽锅炉三种;按照构造可以分为立式蒸汽锅炉和卧式蒸汽锅炉;按照规模可以分为大、中、小型蒸汽锅炉。
大型蒸汽锅炉通常采用三回程的卧式结构,如果全负荷运行可产生1.3MPa大气压的蒸汽。然而,用户往往只需要0.6MPa大气压的蒸汽。因此,大型蒸汽锅炉通常都在低负荷状态下运行,这造成了资源的浪费。
如中国专利公开第204005894U号揭示的一种压力蒸汽发生器系统,包括蒸汽发生器本体、保温水箱以及用来控制蒸汽发生器本体和保温水箱整体运行的系统控制箱,蒸汽发生器本体的下部设置有燃烧机,蒸汽发生器本体上还设置有水位控制器,蒸汽发生器本体的顶部连通有一条工艺用汽管路,工艺用汽管路上还连通有一条加热管路,加热管路的另一端与保温水箱相连通,蒸汽发生器本体的下部还连通有一条给水管路,给水管路的另一端与保温水箱相连通,给水管路上还并联连通有一条补水管路。然而,该压力蒸汽发生器系统产生的蒸汽压力不能根据用户的需求进行调节。
又如中国专利公开第101749694A号揭示的一种智能型高温低压可控式蒸汽锅炉,包括锅炉本体、液相加热装置和汽相加热装置,锅炉本体上外设可调控蒸汽锅炉温度、压力的控制系统,控制系统包括设在锅炉本体上的温度传感器和压力传感器,温度传感器和压力传感器分别依次与放大电路、A/D模数转换电路和计算机输入端电联接,计算机的输出端经D/A数模转换及开关电路分别与安全电磁阀、供汽电磁阀、汽相导热组件供热电源和液相导热组件供热电源电联接。然而,该智能型高温低压可控式蒸汽锅炉通过采用复杂的温度和压力控制回路来实现目标供汽压力,采用了大量精密控制元器件,不但成本较高,而且一旦某 一元件出现故障将导致整个系统不能正常运行。
因此,提供一种能够提高锅炉使用效率并且能够简便地调节供汽压力的蒸汽锅炉成为业内急需解决的问题。
发明内容
本发明的目的是提供一种节能供汽锅炉系统,其能够使蒸汽锅炉满负荷运行,同时能够在不对蒸汽锅炉本体进行改造的情况下实现供汽压力调节。
根据本发明的方案,提供一种节能供汽锅炉系统,包括:蒸汽锅炉和烟气管道。蒸汽锅炉包括锅炉本体、设于锅炉本体的一端壁的燃烧器、设于锅炉本体的另一端壁的烟气出口、以及设于锅炉本体的顶部的进水口和高压蒸汽出口。烟气管道将锅炉本体的烟气出口连通至烟囱。节能供汽锅炉系统进一步包括:换热器、蒸汽发生器以及引射器。其中,换热器设置于烟气管道中,换热器包括高温烟气入口、中温烟气出口、冷水入口以及热水出口,冷水经由冷水入口进入换热器与烟气换热后变成热水从热水出口流出。蒸汽发生器包括发生器本体、设于发生器本体底部的热水入口以及设于发生器本体顶部的低压蒸汽出口,热水入口通过管线与换热器的热水出口连通以将换热器内的热水输送至发生器本体内。引射器包括壳体、设于壳体的一端壁的高压蒸汽入口、设于壳体的另一端壁的混合蒸汽出口、设于壳体的侧壁的低压蒸汽入口,高压蒸汽入口通过管线与蒸汽锅炉的高压蒸汽出口连通以将高压蒸汽输送至引射器内,低压蒸汽入口通过管线与蒸汽发生器的低压蒸汽出口连通以将低压蒸汽输送至引射器内。
优选地,引射器进一步包括自高压蒸汽入口向引射器内部延伸的引射管,使得在高速流入引射器内的高压蒸汽形成的负压作用下从蒸汽发生器的低压蒸汽出口将低压蒸汽吸入引射器内。
更优选地,引射管呈渐缩状,使得在高速流入引射器内的高压蒸汽形成的负压作用下使蒸汽发生器内的热水低压沸腾生成低压蒸汽后吸入引射器内。
可选择地,引射器内邻近混合蒸汽出口进一步设有用于使蒸汽旋转混合的叶轮。
优选地,引射器的引射管的末端与一端壁之间的距离大于低压蒸汽入口与一端壁之间的距离。
可选择地,该节能供汽锅炉系统进一步包括混合器,混合器与引射器的混合蒸汽出口连通以将来自引射器的混合蒸汽进一步充分混合后通过管线输送至用户。
可选择地,单位时间内由高压蒸汽入口进入引射器的高压蒸汽与单位时间内由低压蒸汽入口进入引射器的低压蒸汽的质量比设为2~5 :1。从而,通过对引射器构造的简单改变能够方便地实现供汽压力的按需调节。
可选择地,该节能供汽锅炉系统进一步包括空气预热器,空气预热器在烟气流动方向上于换热器的下游设置于烟气管道中,空气预热器包括冷空气入口、热空气出口、中温烟气入口以及低温烟气出口,来自换热器的中温烟气出口的约150~250摄氏度的烟气经由中温烟气入口进入空气预热器,烟气将来自冷空气入口的约20摄氏度的冷空气预热后变成约60~120摄氏度的低温烟气经由低温烟气出口排出至烟囱,空气预热成约80~150摄氏度的热空气后经由热空气出口通过管线输送至燃烧器助燃。
优选地,蒸汽锅炉产生的高压蒸汽的压力设定为约1.0~1.5兆帕,蒸汽发生器产生的低压蒸汽的压力设定为约0.04~0.06兆帕。
可选择地,蒸汽锅炉包括锅炉本体、设于锅炉本体下部的燃烧室、设于燃烧室上方的用于盛水的锅筒、设于锅炉本体的一端壁用于向燃烧室内喷射燃料燃烧以辐射加热锅筒的燃烧器、设于锅炉本体的另一端壁的烟气出口、连接燃烧室与烟气出口用于使烟气与锅筒内的水进行热交换的烟火管、以及设于锅筒的顶部的进水口和高压蒸汽出口。
可选择地,蒸汽锅炉可以为市场上可以购买的任意型号的蒸汽锅炉,优选的是大型卧式蒸汽锅炉。
可选择地,换热器包括烟气流路和流体流路,约20摄氏度的冷水经由流体流路的冷水入口进入换热器与流经烟气流路的烟气换热后变成约80~95摄氏度的热水从流体流路的热水出口流出,来自蒸汽锅炉的烟气出口的约250~350摄氏度的高温烟气经由换热器换热后变成约150~250摄氏度的中温烟气。
可选择地,换热器还包括外壳、将外壳内部空间分隔为逆向平行的烟气流路和流体流路的中隔板、以及穿设在中隔板中的若干热管,其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于流体流路中。
优选地,换热器的热管内的工质为适用于300摄氏度左右工况的萘等工质。
可选择地,空气预热器包括外壳、将外壳内部空间分隔为逆向平行的烟气流路和空气流路的中隔板、以及穿设在中隔板中的若干热管,其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于空气流路中。
优选地,空气预热器的热管内的工质为适用于150摄氏度左右工况的水或氨等工质。
可选择地,换热器或空气预热器还可以为表面式换热器,即,温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。比如采用设置于烟道中的换热盘管,流体在换热盘管内与烟道内的烟气进行热交换。
可替代地,可以采用电加热器将蒸汽发生器内的热水加热成低压蒸汽后输送至引射器内与高压蒸汽混合。
其中,燃烧器的燃料可以为天然气、煤气、液化石油气等。
其中,该锅炉系统提供的蒸汽具有消毒、烘干、蒸煮、取暖等功能,适用于公共洗浴、学校、医院、饭店、食品加工厂及化学加工厂等。
本发明的有益效果是:(1)、采用蒸汽锅炉中产生的高压蒸汽与蒸汽发生器中产生的低压蒸汽混合的方式,能够根据用户的需求进行调节得到所需压力蒸汽;(2)、采用高压蒸汽与低压蒸汽混合的方式,蒸汽锅炉可以全负荷运行,改变了大型蒸汽锅炉需低负荷运行满足客户目标蒸汽压力造成资源浪费的情况;(3)、通过引射器形成的负压作用,使蒸汽发生器内的热水低压沸腾生成低压蒸汽,并直接吸入引射器与高压蒸汽混合,不需要额外增加低压蒸汽加热设备,节约了系统运行成本;(4)、根据本发明的系统,无需对现有的蒸汽锅炉进行改造,即可实现在充分发挥蒸汽锅炉效能的前提下,对供气压力进行按需调节;(5)、利用蒸汽锅炉产生的烟气热量加热水以制备低压蒸汽,并利用蒸汽锅炉产生的烟气热量预热空气用于助燃,充分利用了蒸汽锅炉产生的烟气热 量,节约了锅炉系统运转所需能源;(6)、对蒸汽锅炉产生的高温烟气通过换热器和空气预热器二次降温,降低了锅炉系统排出的烟气温度,减少对环境的污染。
附图说明
图1示出了本发明节能供汽锅炉系统的构造示意图。
图2示出了本发明引射器的内部构造示意图。
具体实施方式
请参照图1,根据本发明的一种实施方式,节能供汽锅炉系统包括:蒸汽锅炉100、换热器300、蒸汽发生器400以及引射器500。
其中,蒸汽锅炉100包括锅炉本体110、设于锅炉本体110的一端壁的燃烧器120、设于锅炉本体110的另一端壁的烟气出口130、以及设于锅炉本体110的顶部的进水口140和高压蒸汽出口150。烟气管道(未标号)将锅炉本体110的烟气出口130连通至烟囱(图未示)。在该非限制性实施方式中,蒸汽锅炉100采用的是大型卧式蒸汽锅炉,蒸汽锅炉100产生的高压蒸汽的压力设定为约1.3兆帕。从锅炉本体110的烟气出口130排出的高温烟气温度约为300摄氏度。
其中,换热器300设置于烟气管道中,换热器300包括高温烟气入口310、中温烟气出口320、冷水入口330以及热水出口340,约20摄氏度的冷水经由冷水入口330进入换热器300与烟气换热后变成约90摄氏度的热水从热水出口340流出。从换热器300的中温烟气出口320排出的中温烟气温度约为220摄氏度。
其中,蒸汽发生器400包括发生器本体410、设于发生器本体410底部的热水入口420以及设于发生器本体410顶部的低压蒸汽出口430,热水入口420通过管线与换热器300的热水出口340连通以将换热器300内的热水输送至发生器本体410内。在该非限制性实施方式中,蒸汽发生器400产生的低压蒸汽的压力设定为约0.05兆帕。
图2示出了本发明引射器的内部构造示意图,如图2所示,引射器500包括壳体510、设于壳体的一端壁511的高压蒸汽入口520、设于壳体的另一端的混合蒸汽出口530、设于壳体的侧壁的低压蒸汽入口540, 高压蒸汽入口520通过管线与蒸汽锅炉100的高压蒸汽出口150连通以将高压蒸汽输送至引射器500内,低压蒸汽入口540通过管线与蒸汽发生器400的低压蒸汽出口430连通以将低压蒸汽输送至引射器500内。
其中,引射器500进一步包括自高压蒸汽入口向引射器500内部延伸的引射管550,使得在高速流入引射器500内的高压蒸汽形成的负压作用下从蒸汽发生器400的低压蒸汽出口430将低压蒸汽吸入引射器500内。其中,引射器500内邻近混合蒸汽出口530进一步设有用于使蒸汽旋转混合的叶轮560。在该非限制性实施方式中,引射管550呈渐缩状,使得在高速流入引射器500内的高压蒸汽形成的负压作用下使蒸汽发生器400内的热水低压沸腾生成低压蒸汽后吸入引射器500内。引射器500的引射管550的末端与一端壁511之间的距离大于低压蒸汽入口540与一端壁511之间的距离。
作为一种非限制性实施方式,蒸汽锅炉100包括设于锅炉本体110下部的燃烧室、设于燃烧室上方的用于盛水的锅筒、以及连接燃烧室120与烟气出口130用于使烟气与锅筒内的水进行热交换的烟火管。其中,燃烧器120设于锅炉本体110的一端壁用于向燃烧室内喷射燃料燃烧以辐射加热锅筒,进水口140和高压蒸汽出口150设于锅筒的顶部。
作为一种非限制性实施方式,换热器300包括外壳、将外壳内部空间分隔为逆向平行的烟气流路和流体流路的中隔板、以及穿设在中隔板中的若干热管,其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于流体流路中。换热器300的热管内的工质为适用于300摄氏度左右工况的萘。
作为一种可替代实施方式,锅炉系统进一步包括混合器600,混合器600与引射器500的混合蒸汽出口530连通以将来自引射器500的混合蒸汽进一步充分混合后通过管线输送至用户。
作为另一种可替代实施方式,锅炉系统进一步包括空气预热器700,空气预热器在烟气流动方向上于换热器300的下游设置于烟气管道中,空气预热器700包括冷空气入口710、热空气出口720、中温烟气入口730以及低温烟气出口740,来自换热器300的中温烟气出口320的烟气经由中温烟气入口730进入空气预热器700,烟气将来自冷空气入口710的冷空气预热后变成约120摄氏度低温烟气经由低温烟气出口740 排出至烟囱,空气预热到约110摄氏度后经由热空气出口720通过管线输送至燃烧器120助燃。
其中,空气预热器700包括外壳、将外壳内部空间分隔为逆向平行的烟气流路和空气流路的中隔板、以及穿设在中隔板中的若干热管。其中,热管的蒸发端延伸于烟气流路中,热管的冷凝端延伸于空气流路中。在该非限制性实施方式中,空气预热器700的热管内的工质为适用于150摄氏度左右工况的氨。
运行过程中,蒸汽锅炉100的烟气通过换热器300将冷水加热成约90度热水,90度热水通过管线输送至蒸汽发生器400。蒸汽锅炉产生的约13公斤高压水蒸汽通过管线输送至引射器500的高压蒸汽入口520。蒸汽发生器400的低压蒸汽出口430与引射器500的低压蒸汽入口540连通。由于高压水蒸汽的引射作用,导致与引射器500连通的蒸汽发生器400内形成负压,从而使得约90度热水沸腾产生约0.5公斤低压水蒸汽,并且由于负压作用将0.5公斤低压水蒸汽引入引射器500内并进入与引射器500相连的混合器600,高压水蒸汽与低压水蒸汽在混合器600内充分混合成约6公斤中压水蒸汽直接供给至用户。其中,单位时间内由高压蒸汽入口520进入引射器500的高压蒸汽与单位时间内由低压蒸汽入口540进入引射器500的低压蒸汽的质量比设为3:1。
此外,冷空气经空气预热器700与烟气换热后进入燃烧器120助燃提高燃烧效率。本发明的节能供汽锅炉系统能够充分利用蒸汽锅炉的效能,而避免了现有技术中为保证用户的中低压水蒸汽需求而浪费效能的问题,并且不会额外增加成本。
尽管在此已详细描述本发明的优选实施方式,但要理解的是本发明并不局限于这里详细描述和示出的具体结构,在不偏离本发明的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。例如,可以根据使用条件调节单位时间内进入引射器的高压蒸汽与单位时间内进入引射器的低压蒸汽的质量比,或者,该锅炉系统可以不包括换热器,采用其他方式将蒸汽发生器内的热水加热成低压蒸汽,或者,根据所需高压蒸汽的压力调节燃烧器的数量。此外,系统各处的温度或压力等参数可以根据具体使用条件在本发明所公开的范围内适当选取。

Claims (10)

  1. 一种节能供汽锅炉系统,包括:
    蒸汽锅炉,所述蒸汽锅炉包括锅炉本体、设于所述锅炉本体的一端壁的燃烧器、设于所述锅炉本体的另一端壁的烟气出口、以及设于所述锅炉本体的顶部的进水口和高压蒸汽出口;以及
    烟气管道,所述烟气管道将所述锅炉本体的所述烟气出口连通至烟囱;
    其特征在于,所述节能供汽锅炉系统进一步包括:
    换热器,所述换热器设置于所述烟气管道中,所述换热器包括高温烟气入口、中温烟气出口、冷水入口以及热水出口,冷水经由所述冷水入口进入所述换热器与烟气换热后变成热水从所述热水出口流出;
    蒸汽发生器,所述蒸汽发生器包括发生器本体、设于所述发生器本体底部的热水入口以及设于所述发生器本体顶部的低压蒸汽出口,所述热水入口通过管线与所述换热器的所述热水出口连通以将所述换热器内的热水输送至所述发生器本体内;以及
    引射器,所述引射器包括壳体、设于所述壳体的一端壁的高压蒸汽入口、设于所述壳体的另一端壁的混合蒸汽出口、设于所述壳体的侧壁的低压蒸汽入口,所述高压蒸汽入口通过管线与所述蒸汽锅炉的所述高压蒸汽出口连通以将高压蒸汽输送至所述引射器内,所述低压蒸汽入口通过管线与所述蒸汽发生器的所述低压蒸汽出口连通以将低压蒸汽输送至所述引射器内。
  2. 如权利要求1所述的节能供汽锅炉系统,其特征在于,所述引射器进一步包括自所述高压蒸汽入口向所述引射器内部延伸的引射管,使得在高速流入所述引射器内的高压蒸汽形成的负压作用下从所述蒸汽发生器的所述低压蒸汽出口将低压蒸汽吸入所述引射器内。
  3. 如权利要求2所述的节能供汽锅炉系统,其特征在于,所述引射管呈渐缩状,使得在高速流入所述引射器内的高压蒸汽形成的负压作用下使所述蒸汽发生器内的热水低压沸腾生成低压蒸汽后吸入所述引射器内。
  4. 如权利要求3所述的节能供汽锅炉系统,其特征在于,所述引射 器内邻近所述混合蒸汽出口进一步设有用于使蒸汽旋转混合的叶轮。
  5. 如权利要求3所述的节能供汽锅炉系统,其特征在于,所述引射器的所述引射管的末端与所述一端壁之间的距离大于所述低压蒸汽入口与所述一端壁之间的距离。
  6. 如权利要求3所述的节能供汽锅炉系统,其特征在于,进一步包括混合器,所述混合器与所述引射器的所述混合蒸汽出口连通以将来自所述引射器的混合蒸汽进一步充分混合后通过管线输送至用户。
  7. 如权利要求3所述的节能供汽锅炉系统,其特征在于,单位时间内由所述高压蒸汽入口进入所述引射器的高压蒸汽与单位时间内由所述低压蒸汽入口进入所述引射器的低压蒸汽的质量比设为2~5:1。
  8. 如权利要求1~7中任一项所述的节能供汽锅炉系统,其特征在于,进一步包括空气预热器,所述空气预热器在烟气流动方向上于所述换热器的下游设置于所述烟气管道中,所述空气预热器包括冷空气入口、热空气出口、中温烟气入口以及低温烟气出口,来自所述换热器的所述中温烟气出口的烟气经由所述中温烟气入口进入所述空气预热器,烟气将来自所述冷空气入口的冷空气预热后经由所述低温烟气出口排出至烟囱,空气预热后经由所述热空气出口通过管线输送至所述燃烧器助燃。
  9. 如权利要求1~7中任一项所述的节能供汽锅炉系统,其特征在于,所述蒸汽锅炉产生的高压蒸汽的压力设定为约1.0~1.5兆帕,所述蒸汽发生器产生的低压蒸汽的压力设定为约0.04~0.06兆帕。
  10. 如权利要求1~7中任一项所述的节能供汽锅炉系统,其特征在于,所述蒸汽锅炉进一步包括设于所述锅炉本体下部的燃烧室、设于所述燃烧室上方的用于盛水的锅筒、以及连接所述燃烧室与所述烟气出口用于使烟气与所述锅筒内的水进行热交换的烟火管,其中,所述燃烧器设于所述锅炉本体的所述一端壁用于向所述燃烧室内喷射燃料燃烧以辐射加热所述锅筒,所述进水口和所述高压蒸汽出口设于所述锅筒的顶部。
PCT/CN2016/081849 2015-11-08 2016-05-12 节能供汽锅炉系统 WO2017075955A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/746,276 US10883713B2 (en) 2015-11-08 2016-05-12 Energy saving boiler system of steam supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510760806.5 2015-11-08
CN201510760806.5A CN105423271B (zh) 2015-11-08 2015-11-08 节能供汽锅炉系统

Publications (1)

Publication Number Publication Date
WO2017075955A1 true WO2017075955A1 (zh) 2017-05-11

Family

ID=55501670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081849 WO2017075955A1 (zh) 2015-11-08 2016-05-12 节能供汽锅炉系统

Country Status (3)

Country Link
US (1) US10883713B2 (zh)
CN (1) CN105423271B (zh)
WO (1) WO2017075955A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166350A (zh) * 2017-05-24 2017-09-15 东华工程科技股份有限公司 一种控制立式水冷壁余热锅炉产汽量的工艺方法
US20180209638A1 (en) * 2015-11-08 2018-07-26 Guangdong University Of Technology Energy saving boiler system of steam supply
CN110906758A (zh) * 2019-12-18 2020-03-24 中冶焦耐(大连)工程技术有限公司 卧式管内流潜热蒸发式空气冷却器及冷却工艺
CN110986633A (zh) * 2019-12-23 2020-04-10 中冶焦耐(大连)工程技术有限公司 立式管外流潜热蒸发式空气冷却器及工艺

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108798813A (zh) * 2018-09-10 2018-11-13 技新(浙江)节能技术有限公司 一种钢厂烟气余热发电装置
CN109737367B (zh) * 2019-01-23 2020-06-16 临沂市欧科节能技术有限公司 一种高效天然气锅炉系统及其工作方法
CN110616086B (zh) * 2019-10-29 2024-03-29 河南心连心化学工业集团股份有限公司 一种气化炉用多功能开工抽引器及方法
CN110925851A (zh) * 2020-01-02 2020-03-27 北京京诚科林环保科技有限公司 一种间歇性饱和蒸汽长输供热系统
CN112413563B (zh) * 2020-11-20 2023-05-02 高阳 一种可回收余热增产增效的蒸汽锅炉换热机组
CN112555788A (zh) * 2020-12-08 2021-03-26 山东大学 一种燃气蒸汽锅炉余热利用装置及方法
CN112556186B (zh) * 2020-12-08 2022-02-08 山东大学 一种深度回收燃气供暖锅炉余热的装置及方法
CN112696655B (zh) * 2021-02-03 2022-11-22 重庆卓旺科技有限公司 一种电蒸汽发生装置用蒸汽储气装置
CN113958486B (zh) * 2021-08-27 2023-09-12 浙江镕达永能压缩机有限公司 蒸汽压缩机和蒸汽引射器复合增压系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163370A (zh) * 1997-04-15 1997-10-29 首钢总公司 全烧高炉煤气的高温高压电站锅炉
US5793831A (en) * 1994-05-25 1998-08-11 Battelle Memorial Institute Method and apparatus for improving the performance of a steam driven power system by steam mixing
CN103206699A (zh) * 2013-04-10 2013-07-17 无锡华光锅炉股份有限公司 一种亚临界燃贫煤煤粉锅炉
CN103398591A (zh) * 2013-08-18 2013-11-20 佛山市广旭节能自动化科技有限公司 熔铝炉余热利用系统
CN104696938A (zh) * 2013-12-06 2015-06-10 中国石油化工股份有限公司 基于废水综合利用的机械热力复合式蒸汽压缩系统
CN105423271A (zh) * 2015-11-08 2016-03-23 广东工业大学 节能供汽锅炉系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB680057A (en) * 1950-03-03 1952-10-01 Jose Antonio Perez Martinez An injector device for promoting water circulation in steam boilers
JPS60122802A (ja) * 1983-12-07 1985-07-01 三菱重工業株式会社 ボイラ水の薬注制御方法
JPH08261403A (ja) * 1995-03-20 1996-10-11 Juki Corp ボイラー
CN101255983B (zh) * 2008-03-18 2010-11-10 西安交通大学 超低温排烟供热锅炉
CN103629652B (zh) * 2012-02-29 2014-12-24 中北大学 一种斯列普活化炉尾气中水蒸汽潜热回收方法
CN103511010A (zh) * 2012-06-26 2014-01-15 吴健忠 海水淡化凝汽动力系统
US9702542B2 (en) * 2014-10-22 2017-07-11 Uop Llc Methods and apparatus for power recovery in fluid catalytic cracking systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793831A (en) * 1994-05-25 1998-08-11 Battelle Memorial Institute Method and apparatus for improving the performance of a steam driven power system by steam mixing
CN1163370A (zh) * 1997-04-15 1997-10-29 首钢总公司 全烧高炉煤气的高温高压电站锅炉
CN103206699A (zh) * 2013-04-10 2013-07-17 无锡华光锅炉股份有限公司 一种亚临界燃贫煤煤粉锅炉
CN103398591A (zh) * 2013-08-18 2013-11-20 佛山市广旭节能自动化科技有限公司 熔铝炉余热利用系统
CN104696938A (zh) * 2013-12-06 2015-06-10 中国石油化工股份有限公司 基于废水综合利用的机械热力复合式蒸汽压缩系统
CN105423271A (zh) * 2015-11-08 2016-03-23 广东工业大学 节能供汽锅炉系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180209638A1 (en) * 2015-11-08 2018-07-26 Guangdong University Of Technology Energy saving boiler system of steam supply
US10883713B2 (en) * 2015-11-08 2021-01-05 Guangdong University Of Technology Energy saving boiler system of steam supply
CN107166350A (zh) * 2017-05-24 2017-09-15 东华工程科技股份有限公司 一种控制立式水冷壁余热锅炉产汽量的工艺方法
CN107166350B (zh) * 2017-05-24 2018-10-26 东华工程科技股份有限公司 一种控制立式水冷壁余热锅炉产汽量的工艺方法
CN110906758A (zh) * 2019-12-18 2020-03-24 中冶焦耐(大连)工程技术有限公司 卧式管内流潜热蒸发式空气冷却器及冷却工艺
CN110986633A (zh) * 2019-12-23 2020-04-10 中冶焦耐(大连)工程技术有限公司 立式管外流潜热蒸发式空气冷却器及工艺

Also Published As

Publication number Publication date
US10883713B2 (en) 2021-01-05
CN105423271A (zh) 2016-03-23
US20180209638A1 (en) 2018-07-26
CN105423271B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2017075955A1 (zh) 节能供汽锅炉系统
CN109855457A (zh) 带过热蒸汽换热装置的固体储热系统
CN105793653A (zh) 用于供暖锅炉的换热器
KR100597429B1 (ko) 관류 보일러
CN205825411U (zh) 一种带供暖功能的燃气热水器
CN102559432A (zh) 节能蒸煮系统
CN209484840U (zh) 管道气加热系统
CN209197545U (zh) 带过热蒸汽换热装置的固体储热系统
CN104501198B (zh) 导热油锅炉余热发电系统
CN103697451B (zh) 一种高温常压蒸汽发生器
CN106765011B (zh) 一种管状模块组式燃气或燃油产蒸汽或饱和水循环加热装置
CN206439894U (zh) 一种集成式蒸汽供给系统
CN109140489A (zh) 一种蒸汽燃料燃烧设备及其方法
CN207599995U (zh) 一种导热油加热式热风炉
CN204880061U (zh) 卧式燃气锅炉
CN205747483U (zh) 壁挂炉
CN205458062U (zh) 一种燃气蒸柜
CN212274277U (zh) 液体燃料燃烧装置及使用该液体燃料装置的热水器
CN203586546U (zh) 一种导热油加热热水器
CN207635306U (zh) 一种余热回收燃气蒸炉
CN203656892U (zh) 一种节能高温常压蒸汽灭菌锅
EP4170239A1 (en) Gas fired cooking oven
CN202328496U (zh) 自动加湿分体式燃气水暖汀
RU121346U1 (ru) Устройство подготовки и подачи элементов топливовоздушной смеси в горелки нагревательных агрегатов
CN102384522A (zh) 自动加湿分体式燃气水暖汀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15746276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861228

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16861228

Country of ref document: EP

Kind code of ref document: A1