WO2017075523A2 - Articulation pour un soubassement de carrosserie d'un véhicule automobile - Google Patents

Articulation pour un soubassement de carrosserie d'un véhicule automobile Download PDF

Info

Publication number
WO2017075523A2
WO2017075523A2 PCT/US2016/059564 US2016059564W WO2017075523A2 WO 2017075523 A2 WO2017075523 A2 WO 2017075523A2 US 2016059564 W US2016059564 W US 2016059564W WO 2017075523 A2 WO2017075523 A2 WO 2017075523A2
Authority
WO
WIPO (PCT)
Prior art keywords
scalable
joint
vehicle
coupled
mounting
Prior art date
Application number
PCT/US2016/059564
Other languages
English (en)
Other versions
WO2017075523A3 (fr
Inventor
Umran ASHRAF
Ye Jin
Rene Johan VELTMAN
Gregory Scott ZINKEL
John Michael COLT
Cory Denis BORGHI
Original Assignee
Faraday&Future Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2015/064506 external-priority patent/WO2017003503A1/fr
Priority claimed from US15/078,871 external-priority patent/US10300948B2/en
Priority claimed from US15/240,976 external-priority patent/US10131381B2/en
Application filed by Faraday&Future Inc. filed Critical Faraday&Future Inc.
Priority to CN201680063568.5A priority Critical patent/CN108349540B/zh
Publication of WO2017075523A2 publication Critical patent/WO2017075523A2/fr
Publication of WO2017075523A3 publication Critical patent/WO2017075523A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/07Understructures, i.e. chassis frame on which a vehicle body may be mounted wide-hipped frame type, i.e. a wide box-shaped mid portion with narrower sections extending from said mid portion in both fore and aft directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/157Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body for side impacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D24/00Connections between vehicle body and vehicle frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2018Floors or bottom sub-units in connection with other superstructure subunits the subunits being front structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2027Floors or bottom sub-units in connection with other superstructure subunits the subunits being rear structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2036Floors or bottom sub-units in connection with other superstructure subunits the subunits being side panels, sills or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/023Assembly of structural joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/025Modular vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/01Reducing damages in case of crash, e.g. by improving battery protection

Definitions

  • the present disclosure relates generally to an automobile frame and, more particularly, but not by way of limitation, to a joint of an underbody frame for electric and other motor vehicles.
  • Vehicles such as cars, vans, trucks and buses can be constructed on a supporting structure known as a frame, chassis or underbody.
  • a frame In a body-on-frame design, the frame is separate from the body of the vehicle and components of the vehicle such as the engine, drivetrain and body are coupled to the frame.
  • the body and frame are at least partially integrated with one another in uni-body construction.
  • the frame can comprise a plurality of rails, beams, tubes and other structural members coupled together to form a load bearing structure.
  • the present disclosure can be directed to a joint for a vehicle.
  • An exemplary joint can comprise a body member coupled to a vehicle underbody at a first mounting point and at a second mounting point. Each of the first and second mounting points can further comprise a pivot point for the body member.
  • a vehicle rail can be couple to the body member at one or more locations other than the first and second mounting points.
  • the body member can be pivotable at one of the first and second mounting points when a force is applied to the body member. The pivoting movement of the body member can at least partially transfer the force to the vehicle rail.
  • the present disclosure can be directed to a joint for a vehicle.
  • An exemplary joint can comprise a body member having a longitudinal axis.
  • the body member can comprise a first mounting hole and a second mounting hole disposed on one side of the longitudinal axis.
  • a first connecting device can be positioned within the first mounting hole and can be operative to couple the body member to the vehicle frame.
  • the first mounting hole and the first connecting device can form a first pivot point.
  • a second connecting device can be positioned within the second mounting hole and can be operative to couple the body member to the vehicle frame.
  • the second mounting hole and the second connecting device can form a second pivot point.
  • the body member can pivot at one of the first or second pivot points when a force is applied in a first direction to the body member such that the force is redirected in a second direction different than the first direction.
  • an underbody for a vehicle can comprise a cross member, a center frame section, and a webbing member.
  • the cross member and the center frame section can be coupled to the webbing member such that the cross member, the center frame section, and the webing member at least partially define a passenger compartment.
  • a joint can be coupled to the webbing member.
  • the joint can comprise a body member having two pivot points at which the body member is pivotable in relation to the webbing member.
  • a vehicle rail can be coupled to the joint such that the vehicle rail is essentially parallel to and spaced apart from the center frame section.
  • the body member can be pivot at one of the two pivot points when a force is applied to the joint, thereby transferring at least a portion of the force to the vehicle rail and away from the passenger compartment.
  • FIG. 1 is a perspective view of an underbody structure for the present disclosure according to an exemplary embodiment.
  • FIG. 2 is a top plan view of the underbody structure of FIG. 1.
  • FIG. 3 is an exploded perspective view of the underbody structure, in combination with a battery sub-assembly.
  • FIG. 4 is a cross sectional view of a front bumper of the underbody structure.
  • FIG. 5 is a cross sectional view of a front end rail of the underbody structure.
  • FIG. 6 is a bottom view of a front end of the underbody structure.
  • FIG. 7 is a bottom view of the underbody structure illustrating mounting rails of an exemplary upper body attached.
  • FIG. 8A is a side view of the underbody structure.
  • FIG. 8B is a side view of the underbody structure with exemplary upper body mounting rails attached.
  • FIG. 9A is a perspective view of an exemplary battery sub-assembly.
  • FIG. 9B is a perspective view of a body of the exemplary battery subassembly.
  • FIG. 9C is a perspective view of a cover of the exemplary battery subassembly.
  • FIG. 10 is an exploded perspective view of the exemplary battery subassembly.
  • FIG. 11 is a perspective view of a portion of an exemplary battery module.
  • FIG. 12 is a bottom view of a rear end of the exemplary underbody structure.
  • FIG. 13 is a top view of the exemplary underbody structure that illustrates various size configurable portions of the underbody structure that allow the underbody structure to be configured to accommodate various sizes of upper bodies of motor vehicles (with mounting rails of an exemplary upper body, that would attach to the underbody structure, also shown in this example).
  • FIG. 14 is a perspective view of an exemplary webbing device for use with vehicle underbodies.
  • FIG. 15 is a perspective view of the exemplary webbing device in combination with an underbody of a vehicle.
  • FIG. 16 is a close-up perspective view of the exemplary webbing device in combination with an underbody of a vehicle.
  • FIG. 17 is a side elevation view of the exemplary webbing device in combination with an underbody of a vehicle.
  • FIG. 18 is a schematic diagram of a joint with two pivot points.
  • FIG. 19 is a schematic diagram of a joint pivoting at one of two pivot points when a force is applied to the joint.
  • FIG. 20 is a schematic diagram of a joint pivoting at one of two pivot points when a force is applied to the joint.
  • FIG. 21 is a top view of a joint coupled to a webbing device.
  • FIG. 22 is a front view of a joint coupled to a webbing device.
  • FIG. 23 is a rear view of a joint coupled to a webbing device.
  • FIG. 24 is a side view of a joint coupled to a webbing device.
  • FIG. 25 is a bottom view of a joint coupled to a webbing device.
  • FIG. 26 is a front perspective view of a joint coupled to a vehicle
  • underbody and a frame rail coupled to the joint.
  • FIG. 27 is close up front perspective view of the joint, vehicle underbody, and frame rail of FIG. 26.
  • FIG. 28 is a close up bottom perspective view of the joint, vehicle underbody, and frame rail of FIG. 26.
  • FIG. 29 is a close up bottom view of the joint, vehicle underbody, and frame rail of FIG. 26.
  • FIG. 30 is a perspective view of a front end rail of an exemplary
  • underbody structure that comprises apertures for receiving fasteners for securing a bumper to the front end rail, according to various embodiments.
  • FIG. 31 is a perspective view of the front end rail joined with a bumper, the bumper comprising apertures that provide access to fasteners that secure a sidewall of the bumper to the front end rail, according to various embodiments.
  • FIG. 32 is a perspective view of an underbody assembly of a vehicle with a bumper installed using recessed fasteners, according to various embodiments.
  • FIG. 33 is a side elevation view of the assembly of FIG. 31.
  • the present disclosure provides exemplary underbody structures for motor vehicles.
  • the underbody structure is also referred to as an underbody, a skateboard, or a chassis herein.
  • the underbody can form a hybrid uni-body with the upper body of the motor vehicle.
  • Exemplary underbodies can provide an adaptable platform for accommodating different motor vehicle sizes and different vehicle upperbodies.
  • the underbody of the present disclosure can enhance overall vehicle safety, for example, by having the battery pack centralized in the vehicle in various embodiments, resulting in greater crumple zone performance around the battery pack compared to existing vehicle designs.
  • various embodiments of the underbody can, for example, provide for scalability to readily adapt to new vehicle platforms and provide for improved vehicle handling (yaw acceleration).
  • an underbody for a motor vehicle can be an electric vehicle, however, the present invention is not limited to use in electric vehicles.
  • the underbody can be configured to form a hybrid uni-body with the upper body and/or configured for use in multiple vehicle product lines, accommodating vehicles of various sizes having various upper bodies.
  • a length of the adaptable platform can vary by adjusting (e.g., increasing or reducing) the length of certain structures between the front rails and the rear rails of the underbody.
  • the width of the adaptable platform can vary by adjusting (e.g., increasing or reducing) the width of certain structures between the left side and right side that meets with an upper body of the vehicle.
  • the size of the battery can be selectively modifiable by virtue of a modular battery design.
  • the underbody can enhance overall vehicle safety, for example, due to having the battery being centralized in the vehicle, allowing for greater crumple zones around the battery compared to existing vehicle designs.
  • An upper portion (e.g., cover) of the battery enclosure can form all or part of a floor portion (assembly) of a passenger compartment of the motor vehicle.
  • the floor portion can be separate from the upper portion.
  • An exemplary floor portion can extend longitudinally between a front section and a rear section of the battery cover.
  • an additional plate or panel can be included in the underbody that can separately, or together with the upper portion, form the floor portion of the passenger compartment. Additional cross members can be included to provide additional structural support.
  • the underbody can function as the floor portion of the passenger compartment, the passenger compartment is not required to be completely separated from the underbody.
  • FIGS. 1 and 2 collectively illustrate an example underbody 100.
  • FIG. 1 is a perspective view of the example underbody 100 that is constructed in accordance with the present disclosure.
  • the underbody 100 can include a front end 102, a rear end 104, a battery sub-assembly 106 (see FIG. 3), as well as other additional or fewer components as will be described in greater detail herein.
  • the front end 102 and rear end 104 can be spaced apart from one another by a middle section 116.
  • the middle section 116 can include a left center frame section 142 and a right center frame section 144.
  • the underbody 100 in some embodiments, can be constructed from various materials or a single material. The material(s) utilized in the underbody 100 will be described with reference to each of the components or sub-assemblies of the underbody 100. [0057] In general, the underbody 100 can be configured to cooperate with an upper body, as will be described in greater detail below.
  • a known design for vehicles involves the use of body-on-frame technology, where a frame is coupled with the engine, drivetrain, portions of the vehicle's suspension system, and wheels of the vehicle. The remaining portions of the vehicle, referred to as the upper body, are joined to the frame. Safety, comfort, and aesthetic components of the vehicle are found in the upper body, such as seats. Having the seats mounted to the frame can increase the safety of the vehicle by providing the seats with a more substantial and connected relationship with the underbody of the vehicle. Indirect mechanical connections between the seat, the body, and ultimately the frame serve to reduce these features.
  • the frame comprises a skeleton of tubular frame members, where the drivetrain (e.g., drive shaft) traverses/extends the length of the frame, which necessitates having a frame that is typically divided into a right handed section and a left handed section. These sections are then joined through the use of cross members.
  • the drivetrain e.g., drive shaft
  • the present disclosure provides an underbody 100 with a middle portion 116 that can be continuous from a right hand side of a frame to a left hand side of the frame, which can increase a resistance of the underbody 100 to twisting during impact.
  • the underbody designs of the present disclosure can benefit from the strength and stability of the monocoque (i.e., vehicle structure in which the chassis is integral with the body) design, but provide greater flexibility by allowing various body components to be placed onto the underbody 100, such as the outer panels of the upper body.
  • the monocoque i.e., vehicle structure in which the chassis is integral with the body
  • FIG. 3 is an exploded view of the underbody 100 that includes an outer peripheral frame 110 that illustrates a battery cover 172 and a body 174 (see FIGS. 9A-C) that holds the battery pack (see 190 in FIG. 10).
  • the underbody 100 can comprise a front bumper 118.
  • the front bumper 118 can be constructed from a cold rolled metal such as aluminum or an aluminum alloy in some embodiments, but any structurally strong material could be used including steel, titanium, composite materials, thermoplastic polymers, carbon fiber, and other structural materials known in the art. As illustrated in FIG.
  • the front bumper 118 can comprise a divider web 118 A that separates the front bumper 118 into two sections, an upper section 117 and a lower section 119.
  • the front bumper 118 can have a substantially tubular cross sectional area. In one embodiment, the front bumper 118 can have a substantially arcuate shape.
  • the front bumper 118 can be coupled with a pair of rails, such as first rail 120 and second rail 122. Connecting the front bumper 118 with the pair of rails can be the first crush can 124 and the second crush can 126.
  • Each of the rail crush cans 124 and 126 can be constructed similarly to one another and can be constructed from a sheet metal such as aluminum.
  • the crush cans 124, 126 can be made by casting or hydroforming.
  • the first rail crush can 124 can have a substantially conical shape with flat outer face panel sections. Terminating one end of the first rail crush can 124 can be a mounting plate 128 that has an arcuate shape that conforms to an arcuate curvature of the front bumper 118.
  • the second rail crush can 126 can be constructed to form a complimentary mount for the second rail 122. It should be understood that other suitable mechanisms for coupling the front bumper 118 with the rails 120, 122 can also be adopted in other embodiments.
  • the first rail 120 and second rail 122 can be constructed similarly (e.g., as mirror images of each other) to one another and thus the second rail 122 will be described in greater detail with reference to FIG. 5.
  • the second rail 122 can be a substantially tubular length of an extruded metal such as aluminum.
  • the second rail 122 can have various angled surfaces, such as angled surface 130, which can be altered according to design requirements such as desired crumple strength and motor sizing, for example.
  • the second rail 122 can have a divider web 132 that provides structural support and divides the second rail 122 into an upper section 134 and lower section 136.
  • the underbody 100 can comprise frame transition sections, such as first transition section 138 and second transition section 140.
  • the first and second transition sections 138 and 140 can be complementary (e.g., right handed, left handed) components.
  • the first and second transition sections 138 and 140 can provide a narrowing connection between the left center frame section 142 and the right center frame section 144 (also illustrated in FIGS. 1 and 2).
  • the first transition section 138 can comprise a lower segment 146 and an upper segment 148.
  • the lower segment 146 can be manufactured from a high pressure die cast metal, such as aluminum.
  • the lower segment 146 can be a high strength component that provides a compression point upon which the first and second rails 120 and 122 can crumple against.
  • the first transition section 138 can have a substantially T-shaped configuration with a rail coupling portion 141 and a frame section coupling portion 150.
  • a transition tie section 152 can provide a mounting position for a front cross member, which is described below.
  • the second transition section 140 can have a similar, but complementary shape to first transition section 138.
  • the upper segment 148 of the first transition section 138 can cooperate with the lower segment 146 and include an opening 154 that receives a first front cross member 156 that ties the first transition section 138 and the second transition section 140 together, providing structural rigidity and stability to the underbody 100.
  • the transition sections of the underbody 100 can be referred to as frame nodes. These frame nodes can provide structural rigidity and anchoring for the rails of the underbody 100.
  • a second front cross member 158 can extend between the first transition section 138 and the second transition section 140 for additional structural support.
  • the upper segment 148 can include one or more sections and be configured to receive a front panel 160 that extends between the first transition section 138 and the second transition section 140 and the first and second front cross members 156 and 158.
  • the front panel 160 can be manufactured from structurally rigid foam such as aluminum foam sandwich material.
  • the left center frame section 142 and the right center frame section 144 can extend between the front end 102 and the rear end 104. Extending between the left center frame section 142 and the right center frame section 144 can be a middle panel 162.
  • the middle panel 162 can be manufactured from a structurally rigid foam such as aluminum foam sandwich material.
  • the vehicle's passenger compartment is not required to be completely separated from the underbody 100 according to various embodiments.
  • the cover 172 of the battery sub-assembly 106 can be the middle panel 162, such that the cover 172 can form a floor section extending longitudinally along the middle section 116.
  • the cover 172 of the battery sub-assembly 106 can be coupled, from below, to a separate middle panel 162, the combination forming a floor section of the vehicle.
  • the underbody 100 can also comprise one or more support members, such as middle support members 147 and 149 (see FIG. 13). These middle support members 147 and 149 can extend between the left center frame section 142 and the right center frame section 144 and provide yet additional structural rigidity to the underbody 100.
  • Each of the members 147, 149 can comprise mounting brackets that join the member 147, 149 to the upper body sills 153. As illustrated in FIG. 7, in some embodiments, each of the mounting brackets can comprise joints 159 that couple the middle support members 147 and 149 with upper body rails, which are described in greater detail below.
  • Various embodiments can provide structural stability to the underbody 100 reducing frame twisting and bending, which can occur during impact events. For example, if the underbody 100 is impacted at a the rear right corner, the impact force can apply a twisting or torque force onto the underbody 100 as the wheels on the front end 102 tend to remain in contact with the road.
  • disposed along the left center frame section 142 and the right center frame section 144 can be a plurality of joints 159 that allow any upper body to be coupled with the underbody 100.
  • Examples of the joints 159, for anchoring the upper body (not shown) to the underbody 100, are also shown in FIG. 7.
  • upper body sills such as upper body sill 153
  • upper body sill 153 can be joined to the left center frame section 142 and the right center frame section 144 (sections 142 illustrated in FIG. 3).
  • upper body sill 153 can be joined to right center frame section 144.
  • the upper body sill 153 can couple the upper body (not shown) to the underbody 100 in some embodiments.
  • the first transition section 138 and the second transition section 140 can cooperate with the left center frame section 142 and the right center frame section 144, as well as a third transition section (node) 166 and a fourth transition section (node) 168 of the rear end 104 to form a sidewall creating a cavity for receiving a portion of the battery sub-assembly 106 therein.
  • FIGS. 9A-C An example battery sub-assembly 106 is illustrated in FIGS. 9A-C. An assembled version of the battery sub-assembly 106 is provided in FIG. 9A. A cover 172 is illustrated in combination with a body 174.
  • FIG. 9B illustrates the exemplary battery sub-assembly 106 with the cover 172 removed.
  • the body 174 can be defined by a sidewall 176 that forms a cavity 178 with a lower portion 180 of the body 174.
  • the sidewall 176 can include corner braces 175A-D, which can be manufactured using a casting process, whereas the remainder of the sidewall 176 can be manufactured from extruded metal sections.
  • Extending between left and right sections of the sidewall 176 can be support ribs, such as support rib 182.
  • the support ribs 182 can lie transversely across the lower portion 180.
  • the body 174 can be provided with a flange or step 184 that allows the battery sub-assembly 106 to be coupled with the outer peripheral frame (see for example FIGS. 3 and 7).
  • the battery subassembly 106 can be installed into the opening of the outer peripheral frame (see for example FIGS. 3 and 7).
  • the cover 172 of the battery sub-assembly 106 can also be provided with support ribs such as support rib 186. These support ribs 186 can form seals sealing the individual battery strings from each other when positioned against the support ribs 182 of the lower portion 180 of the body 174. Optionally, the support ribs 186 can also provide structural support to the cover 172.
  • the support ribs 182 of the body 174 and the support ribs 186 of the cover 172 can cooperate to form battery channels, such as battery channel 188.
  • the battery channel 188 can be configured to receive a battery cell stack which can be a stack or string of individual battery modules, as will be described in greater detail below.
  • a battery pack 190 can include an array of battery strings or segments, such as battery cell stack 192 (also referred to as battery cell string or battery string).
  • the battery cell stack 192 can include a string of battery modules (see exemplary module in FIG. 11).
  • the size of the battery pack 190 can be selectively controlled by removing or adding battery segments 192.
  • the configuration of the underbody 100 can change.
  • the lengths of the left center frame section 142 and the right center frame section 144 can be lengthened or shortened according to design requirements.
  • the arrow 195 illustrated in the example in FIG. 10 references the removal of a battery cell stack 192 to compress the size of the battery pack 190.
  • Arrows 191 and 193 reference the removal of a battery channel 178 to compress the size of the body of the battery subassembly accordingly.
  • FIG. 11 illustrates a module 92 of the exemplary battery cell stack 192 (see FIG. 10).
  • the rear end 104 of the underbody 100 is illustrated as comprising a rear structural panel 194, the third transition section 166, the fourth transition section 168, as well as a pair of rear bumper rails 196A and 196B, and a rear bumper 198.
  • the rear structural panel 194 can be manufactured from an aluminum foam sandwich material or a rolled panel of metal.
  • the rear structural panel 194 can be bounded by the third transition section 166 and the fourth transition section 168, as well as a first rear cross member 200 and a second rear cross member 202.
  • FIG. 12 illustrates an upward view of the bottom of the rear end 104, which illustrates the rear structural panel 194, which can be configured to accommodate a rear drive assembly 204. Additional details regarding rear and front drive assemblies 204 and 206 will be described with reference to FIGS. 6 and 12 in greater detail below.
  • the rear bumper rails 196A and 196B can be constructed similarly to the first and second rails 120 and 122 of the front end 102 and cooperatively engage the rear bumper 198.
  • the rear bumper 198 can comprise an arcuate configuration and can be tubular in its cross section, similarly to the front bumper 118 of the front end 102.
  • FIG. 13 is a top plan view illustrating various features of an exemplary adaptable platform that includes an exemplary underbody structure that can be selectively adjusted in size to accommodate upper bodies of differing sizes.
  • FIG. 13 also shows sills 151 and 153 which are part of an exemplary upper body.
  • the adaptable platform can provide adaptability of the underbody 100 for use in the assembly of multiple vehicle product lines.
  • the adaptable platform (also referred as a "skateboard" platform) can accommodate vehicles of various sizes having various upper bodies.
  • the length of the adaptable platform can vary by adjusting certain structures between the front and rear rail.
  • the first and second rails 120 and 122 can be selectively lengthened or shortened, as well as the rear bumper rails 196A and 196B.
  • the size of the middle section 116 of the underbody 100 can be shortened or lengthened as needed.
  • the width of the adaptable platform can vary by adjusting (e.g., increasing or reducing) the width of certain structures.
  • the size of the battery sub-assembly 106 can be changed, along with other underbody structures for accommodating different motor vehicle sizes and different vehicle upper bodies.
  • the change in size to the battery sub-assembly 106 can require removing or adding one or more battery channels, such as battery channel 188 of FIGS. 9A-C, and corresponding change in the configuration of the battery pack 190. To be sure, these components can be sized independently from one another depending on design requirements.
  • the front end 102 can be configured to receive the front drive assembly, which in some embodiments can include a subframe 208 that can be mechanically coupled to the first and second rails 120 and 122, as well as the first and second transition sections 138 and 140, respectively.
  • Wheels 210 and 212 can be supported on the front end 102 with a suspension assembly that comprises suspension sub-assembly 214 and 216, which couple wheels 210 and 212,
  • the wheels 210 and 212 of the vehicle can be coupled to a front power plant 218 that can comprise an electric motor 220.
  • FIG. 12 illustrates the rear drive assembly 204 comprising a rear suspension assembly having rear suspension sub-assemblies 222 and 224, which are coupled to the wheels 226 and 228, respectively, with the underbody 100.
  • the rear drive assembly 204 can comprise a rear power plant 230, which can also comprise one or more electric motors 231.
  • the underbody 100 can comprise a webbing device 300, as illustrated in FIG. 14.
  • the webbing device 300 can comprise a body panel 302 shaped to comprise a front end rail channel 304, a front cross member channel 306, and a center frame section channel 308.
  • the cross member channel 306 can be oriented essentially
  • the webbing device 300 can be manufactured from aluminum or an aluminum alloy in some embodiments, but any structurally strong material could be used including steel, titanium, composite materials, thermoplastic polymers, carbon fiber, as well as from other materials that would be deemed suitable to one of ordinary skill in the art with the present disclosure before them.
  • the webbing device 300 can be manufactured as a single piece (or multiple pieces) using die casting, injection molding, hydroforming, extrusion, welding, or other well-known methods of manufacturing a structural material. In some embodiments, these formed, webbing devices 300 can be integrated into vehicle underbodies that distribute load vectors away from crash points. Stated otherwise, the webbing device 300, according to various embodiments, is designed to
  • the webbing device 300 can provide both structural strength and force load transfer in order to allow a light weight element to provide the same strength as a solid and much heavier piece.
  • Each of the front end rail channel 304, the front cross member channel 306, and the center frame section channel 308 can comprise one or more anchor points such as anchor point 307 that can allow the webbing device 300 to be secured to various components of the underbody 100.
  • the webbing device 300 can be formed so as to create a recess 310.
  • Support webbing 312 can be disposed within the recess 310 to provide a predetermined amount of structural rigidity (e.g., crush resistance).
  • the support webbing 312 comprises ribs such as rib 314 that extend linearly in rows. The rows of ribs 314 can be parallel to one another.
  • Members, such as member 316 can extend between the ribs 314 and can be oriented non-perpendicular to the ribs 314.
  • the ribs 314 and members 316 can at least partially form the mounting channels 304, 306, 308 for other structural components of the underbody 100.
  • the front end rail channel 304 can be at least partially formed from at least one member 316.
  • the cross member channel 306 can be at least partially formed from at least one rib 314.
  • the center frame section channel 308 can be at least partially formed from at least one of the ribs 314 and at least one of the members 316.
  • the members 316 can be arranged to form
  • triangular cavities or cells The exact shape and dimensions of the cells can be selectively adjusted based on design requirements, such as desired stiffness, desired load vectors, and crumple force.
  • the crumple resistance of the webbing device 300 can be selectively adjusted by adjusting a space between the rows of ribs 314 and a number of the members 316 extending between the rows of ribs 314. The more closely spaced the rows and more numerous the ribs 314, the more crumple resistant the webbing device 300 can be, although additional webbing 312 components will add weight.
  • Some embodiments can feature designed crumple zones. Such crumple zones can be formed by selectively adjusting the spacing of the rows and/or number of ribs 314 of the support webbing 312. It will be understood, that by creating areas of greater and lesser rigidity along a chosen axis of the support webbing 312, the webbing device 300 can be designed to crumple at the area of lesser rigidity. Using similar techniques, such crumple zones can also be configured to transfer load forces along vectors directed away from the passenger and/or battery compartments.
  • the webbing device 300 can comprise a mounting bracket (flange) 318 that can receive at least a portion of an upper body of a vehicle (not shown).
  • some embodiments of the webbing device 300 provide architectural flexibility for selectively adjusting a size or configuration of the vehicle. While a single webbing device 300 associated with a corner of an underbody 330 is illustrated, it will be understood that each of the four corners of the underbody 330 can each comprise a corresponding webbing device 300 such that two webbing devices 300 can be associated with a front end 332 of the underbody 330 and two webbing devices 300 can be associated with a rear end 334 of the underbody 330, and provide a transition from a central underbody section 336 to the front end 332 or the rear end 334 of the underbody 330. In some embodiments, the front end 332 and the rear end 334 pairs of webbing devices 300 can be mirror images of one another, providing for left and right handed configurations.
  • elements around this webbing device 300 structure can be changed to lengthen or shorten without significantly altering the structural integrity and/or crash worthiness of the vehicle.
  • this example webbing device 300 can function as a crumple node within the underbody 330 that can absorb and direct force loads irrespective of the size of the body structures attached to the webbing device 300.
  • the webbing device 300 can be designed to allow a variety of body shells to be mounted thereto using the flange 318.
  • FIGS. 16 and 17 collectively illustrate the integration, in various exemplary embodiments, of the webbing device 300 into a part of the suspension and sub-frame (referred to herein collectively as the "underbody” and identified as 330 in the examples in FIGS. 16 and 17).
  • the front cross member 322 is illustrated as abutting one of the ribs 314 of the webbing 312, the front end rail 320 abuts one of the members 316, and the center frame section 324 abuts both a rib 314 and a member 316.
  • the webbing devices 300 can orient the left center frame section 142 and the right center frame section 144 in a first plane, while orienting the front end rails 320 is a second plane different than the first plane.
  • the webbing devices 300 can orient the rear end rails 196A, 196B in a third plane different than the first plane.
  • the second and third planes can be the same.
  • the webbing devices 300 can orient the end rails 320 or 196A, 196B such that a first spaced apart distance between the end rails 320 or 196A, 196B is less than a second spaced apart distance between the left center frame rail 142 and the right center frame rail 144.
  • the webbing devices 300 can be positioned at the corners of the central underbody section 336 as illustrated in FIG. 15.
  • the flange 318 of the webbing device 300 can receive at least a portion of an upper body of a vehicle. Given the position of the webbing device 300 on the underbody 330, the webbing device 300 can be subjected to intense forces if the vehicle is involved in an impact with another object. If the upper body is rigidly coupled to the webbing device 300, then these forces can be transmitted to the passenger compartment and the battery compartment within the underbody 330.
  • the webbing device 300 can be designed with crumple zones formed by selectively adjusting the spacing of the rows and/or number of the ribs 314 as described previously. In addition to these crumple zones, a connector coupling the upper body to the flange 318 can also serve to redirect crash forces away from the passenger and battery compartments.
  • FIG. 18 schematically illustrates a joint 400, which can be a heel-toe joint 400, to couple the upper body to the flange 318 according to various embodiments.
  • the joint 400 can have a longitudinal axis LAj generally oriented towards the front end 332 and the rear end 334 of the underbody 330.
  • the joint 400 can further comprise a first pivot point Pi and a second pivot point P2.
  • the first and second pivots points Pi, P2 can be positioned on one side of the longitudinal axis LAj.
  • the joint 400 can be subjected to a variety of forces in a crash, for example force Fi in a frontal impact and F2 in a side impact.
  • the joint 400 can be subjected to the force Fi which can cause the joint 400 to pivot at pivot point P2.
  • This pivoting movement can redirect the impact force Fi as a resultant force FR which can be directed in a different direction than the force Fi.
  • the direction of the resultant force FR can be away from the passenger and battery compartments.
  • FIG. 20 illustrates the side impact force F2 causing the joint 400 to pivot at the second pivot point P2 and redirecting the side impact force F2 as the resultant force FR.
  • FIGS. 19 and 20 illustrate the joint 400 pivoting at the second pivot point P2
  • the joint 400 can also pivot at the first pivot point Pi depending upon where the impact force Fi, F2 acts on the joint 400.
  • FIG. 21 illustrates a top view of the webbing device 300 with the joint 400 positioned on the flange 318.
  • the joint 400 can comprise a central body member 415.
  • the central body member 415 can further comprise first mounting hole 405 and second mounting hole 410 corresponding to the first pivot point Pi and the second pivot point P2, respectively.
  • the first and second mounting holes 405, 410 can align with similar holes in the flange 318 (see FIG. 14).
  • FIG. 21 illustrates an impact force Fi acting on the joint 400.
  • the force Fi can cause the joint 400 to pivot at the second mounting hole 410 (second pivot point P2) as indicated by the curved arrow in FIG. 21.
  • the pivoting movement of the joint 400 can redirect the impact force Fi as the resultant force FR.
  • the joint 400 can be manufactured from any structurally strong material including iron, steel, titanium, aluminum or an aluminum alloy, composite materials, thermoplastic polymers, carbon fiber, as well as from other materials that would be deemed suitable to one of ordinary skill in the art with the present disclosure before them.
  • joint 400 can be coupled to an outer vehicle rail (e.g., rails 151/153 in FIG. 13 and 26) that extends along the length of the vehicle underbody; as such, joint 400 can couple the outer vehicle rail to flange 318.
  • joint 400 can be coupled to an outer vehicle rail (not illustrated) that extends from joint 400 towards the bottom of the page (e.g., along the direction of FR).
  • flange 318 can be coupled to an inner vehicle rail (e.g., rails 142/144 in FIGS. 3 and 7) that also extends along the length of the vehicle underbody, and that can be substantially parallel to the outer vehicle rail mentioned above.
  • an outer vehicle rail e.g., rails 151/153 in FIG. 13 and 26
  • flange 318 can be coupled to an inner vehicle rail (e.g., rails 142/144 in FIGS. 3 and 7) that also extends along the length of the vehicle underbody, and that can be substantially parallel to the outer vehicle rail mentioned above.
  • flange 318 can be coupled, via center frame section channel 308 of webbing device 300, to an inner vehicle rail (not illustrated) that extends from center frame section channel 308 towards the bottom of the page (e.g., along the direction of FR), substantially parallel to the outer vehicle rail (not illustrated) described above.
  • Flange 318 can also be coupled to one or more cross members (e.g., cross members 156/158 in FIG. 3) that extend along the width of the vehicle underbody, and that can be substantially perpendicular to the inner and outer vehicle rails mentioned above. For example, in FIG.
  • flange 318 can be coupled, via cross member channel 306 of webbing device 300, to a cross member (not illustrated) that extends from cross member channel 306 towards the left side of the page, substantially perpendicular to the inner and outer vehicle rails (not illustrated) described above.
  • joint 400, flange 318, webbing device 300, the inner and outer vehicle rails and the cross member can describe the configuration of one corner of the vehicle frame of this disclosure (e.g., the front-left corner of the vehicle frame).
  • the configuration of other corners of the vehicle frame e.g., front-right, rear-left and rear-right corners
  • the inner vehicle rails on either side of the vehicle frame, and the cross members at the front and back of the vehicle frame, can surround a battery sub-assembly used in the vehicle (e.g., as illustrated in FIG. 3).
  • joint 400 In light of the joint 400, flange 318, webbing device 300, inner vehicle rail, outer vehicle rail and cross member configuration described above, the pivoting and force transfer capabilities of joint 400 described with reference to FIGS. 18-21 can transfer a force incident on the flange 318/joint 400 structure (e.g., due to a vehicle collision) away from the inner vehicle rail, and towards the outer vehicle rail, depending on the direction and/or location of the force.
  • joint 400 can transfer a force incident on the flange 318/joint 400 structure (e.g., due to a vehicle collision) away from the inner vehicle rail, and towards a cross member of the vehicle underbody depending on the direction and/or location of the force.
  • joint 400 and/or flange 318 can be configured to transfer forces away from and around (e.g., to the outer vehicle rails, to the cross members, etc.) the battery subassembly of the vehicle, which can reduce the likelihood of battery failure and danger caused by such failure in a vehicle collision. Additionally, joint 400 and/or flange 318 can be configured to perform this function substantially independently of the length or width of the vehicle underbody (e.g., defined by the lengths of the inner and outer vehicle rails and cross members), therefore decoupling the force transfer capabilities of the vehicle underbody from the size of the vehicle underbody, and allowing substantial flexibility in selecting the size of the scalable vehicle frame of this disclosure.
  • this force-transfer design of the vehicle underbody can also allow crumple zones (e.g., formed at the front and rear of the vehicle, as described in this disclosure) to be designed independently of the length or width of the vehicle underbody, adding further flexibility to selecting the size of the scalable vehicle frame of this disclosure.
  • crumple zones e.g., formed at the front and rear of the vehicle, as described in this disclosure
  • FIGS. 22 and 23 illustrate front and rear views, respectively, of the webbing device 300 and the joint 400 to more clearly show the joint 400 positioned on the flange 318.
  • FIG. 24 is a side view of the webbing device 300 and the joint 400 to illustrate the alignment of the joint 400 relative to the webbing device 300.
  • FIG. 25 is a bottom view of the webbing device 300 and the joint 400 and illustrates the alignment of the first and second mounting holes 405, 410 of the joint 400 with similar holes in the flange 318.
  • FIGS 26 through 29, the webbing device 300 is shown coupled to the vehicle underbody 330 according to various embodiments.
  • the joint 400 can be coupled to the flange 318 of the webbing device 300, and the vehicle rail (sill) 151 can be coupled to the joint 400 by one or more bolts 420 according to various embodiments.
  • the vehicle rail 151 can comprise a portion of an upper body of the vehicle.
  • FIG. 27 is a detail view of the coupled webbing device 300, the flange 318, the joint 400, and the vehicle rail 151.
  • a coupling device such as a bolt 425, can be positioned in each of the first and second mounting holes 405, 410 to couple the joint 400 to the flange 318.
  • the bolts 425 can comprise a cylindrical shaft that can provide an axis upon which the joint 400 can rotate.
  • the bolts 425 can be
  • the force Fi can cause the joint 400 to rotate and redistribute and redirect the force Fi as the resultant force FR.
  • the resultant force FR can be redirected along the vehicle rail 151, thereby distributing the resultant force FR over a larger portion of the underbody 330 through the middle support members 147, 149 and other underbody 330 structural components (see for example FIG. 13), and generally away from the passenger and battery compartments.
  • the joint 400 can fail in the proximity of where the force Fi is applied.
  • the failure in this example can be a fracture of the joint 400 so that it separates from the bolt 425 in the first mounting hole 405.
  • the joint 400 can remain intact and instead the bolt 425 in the first mounting hole 405 can fail.
  • the joint is now rigidly coupled to the flange 318 only at the second mounting hole 410, which now acts as a pivot point for the pivoting movement of the joint 400.
  • the failure of the joint 400 can instead occur in proximity to the second mounting hole 410, thereby allowing the joint 400 to pivot using the first mounting hole 405 as the pivot point.
  • the longitudinal axis LAj of the joint 400 can be oriented towards the front end 332 and the rear end 334 of the underbody 330.
  • This arrangement places the longitudinal axis LAj of the joint 400 essentially parallel to a longitudinal axis LAF of the frame 110 of the underbody 330.
  • a longitudinal axis LAR of the vehicle rail 151 is also parallel to the longitudinal axis LAF of the frame 110. This geometric relationship assists with the redistribution of the force Fi when the joint 400 pivots and redirects the force Fi longitudinally along the vehicle rail 151.
  • FIG. 30 illustrates a perspective view of a front end rail 320 of the underbody structure, according to various embodiments.
  • the front end rail 320 has a shape that is similar to the embodiment of FIG. 5.
  • the front end rail 320 can have a cap or end covering 301 that can comprise an upper cup 305 defined by a sidewall 311 and a plate 331.
  • the cap (or end covering) 301 can be integrally formed with the rest of the front end rail 320.
  • the front end rail 320 can include a tubular body 303 that can be selectively lengthened or shortened for accommodating upper bodies of differing lengths or sizes.
  • a lower cup 321 is positioned below the upper cup 305 and is defined by a sidewall 325 and plate 331.
  • the upper cavity may comprise one or more anchor points, such as anchor points 335 and 340.
  • the anchor points 335 and 340 can be threaded or otherwise configured to receive a fastener therein. To be sure, the configuration of the anchor points 335 and 340 may be selected based upon the type of fastener that will be used to attach a bumper to the front end rail 320.
  • the shape of the sidewall 311 is defined, at least partly, by the position of the anchor points 335 and 340.
  • the lower cup 321 can comprise an anchor point 345 that also is configured to receive a fastener therein. It will be understood that there can be additional or fewer anchor points than those illustrated. Furthermore, the exact location/position of the anchor points 335, 340, and 345 on the front end rail 320 can be selectively adjusted according to design requirements.
  • the front end rail 320 is cut to a desired length and the cap or end covering 301 is installed onto an open terminal end of the front end rail 320 (illustrated in FIG. 5).
  • the front end rail 320 and end covering 301 can both be manufactured from an aluminum or aluminum alloy, as well as from other materials that would be deemed suitable to one of ordinary skill in the art with the present disclosure before them.
  • FIG. 31 illustrates a perspective view of an exemplary bumper 350 installed onto the front end rail 320, according to various embodiments.
  • the bumper 350 can have any desired shape or size, for example, the bumper 350 can be of a similar size and shape to front bumper 118 shown in FIGS. 3-6.
  • an open terminal end 355 of the bumper 350 provides a view of an inner sidewall 360 of the bumper 350.
  • an outer sidewall 365 is manufactured with apertures, such as apertures 370A-C.
  • the apertures 370A-C can align with the anchor points 335, 340, and 345.
  • the inner sidewall 360 can also comprise apertures 375A-C that are aligned with the apertures 370A-C of the outer sidewall 365.
  • cooperative alignment of the apertures 370 A-C of the outer sidewall 365, the apertures 375 A-C (note that 375B is obscured in this view) of the inner sidewall 360, and the anchor points 335, 340, and 345 can allow an installer to insert fasteners into the apertures 370A-C of the outer sidewall 365 and through the apertures 375 A-C of the inner sidewall 360 for engagement with the anchor points 335, 340, and 345.
  • Fasteners can join the bumper 350 to the front end rail 320 using the inner sidewall 360 rather than engaging with the outer sidewall 365.
  • the outer sidewall 365 of the front end rail 320 is smooth.
  • the configuration of various embodiments can allow the upper body to be loaded along the Z axis (dotted line of FIG. 30).
  • upper body parts are loaded along the Y axis (from the side), which requires new tooling for each upper body style, so traditionally, the upper body cannot be dropped easily onto the underbody frame.
  • the same tooling can be used to load different types of upper body panels onto the underbody.
  • the same manufacturing tooling can be utilized to make many different car styles.
  • FIG. 32 illustrates a perspective, top down view of the bumper 350 installed onto two front end rails 321 attached to the underbody 100, according to various embodiments.
  • the second front end rail illustrated in the example in FIG. 32 can be mirror image of the front end rail 320 of FIGS. 30 and 31. In some
  • the bumper 350 can abut the pair of end rails, extending transversely across the terminal ends of the pair of end rails.
  • FIG. 33 illustrates a side elevation view of the 350 installed onto the front end rail 320, which is attached to the underbody 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

La présente invention concerne une articulation pour un véhicule qui peut diriger des forces loin de l'intérieur du véhicule et le long d'un rail de châssis. Une articulation selon la présente invention peut pivoter lorsqu'elle est soumise à une force élevée, et l'action de pivotement peut rediriger et redistribuer la force loin d'un habitacle. Une articulation selon la présente invention peut comprendre une pluralité de points de pivotement.
PCT/US2016/059564 2015-10-30 2016-10-28 Articulation pour un soubassement de carrosserie d'un véhicule automobile WO2017075523A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680063568.5A CN108349540B (zh) 2015-10-30 2016-10-28 用于机动车辆的车身底部的接头

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201562248959P 2015-10-30 2015-10-30
US201562248999P 2015-10-30 2015-10-30
US62/248,959 2015-10-30
US62/248,999 2015-10-30
PCT/US2015/064506 WO2017003503A1 (fr) 2015-06-30 2015-12-08 Soubassement de carrosserie pour véhicule à moteur
USPCT/US2015/064506 2015-12-08
US15/078,871 2016-03-23
US15/078,871 US10300948B2 (en) 2015-10-30 2016-03-23 Webbing devices for an underbody of a motor vehicle
US15/240,976 2016-08-18
US15/240,976 US10131381B2 (en) 2015-06-30 2016-08-18 Joint for an underbody of a motor vehicle

Publications (2)

Publication Number Publication Date
WO2017075523A2 true WO2017075523A2 (fr) 2017-05-04
WO2017075523A3 WO2017075523A3 (fr) 2017-06-08

Family

ID=58630903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/059564 WO2017075523A2 (fr) 2015-10-30 2016-10-28 Articulation pour un soubassement de carrosserie d'un véhicule automobile

Country Status (1)

Country Link
WO (1) WO2017075523A2 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112563B2 (en) 2015-06-30 2018-10-30 Faraday & Future Inc. Tapered crush can
US10131381B2 (en) 2015-06-30 2018-11-20 Faraday & Future Inc. Joint for an underbody of a motor vehicle
CN108909840A (zh) * 2018-08-10 2018-11-30 深圳市德塔防爆电动汽车有限公司 适应薄层作业的电动汽车
FR3078048A1 (fr) * 2018-02-22 2019-08-23 Psa Automobiles Sa Dispositif de protection de batterie en cas de choc lateral et vehicule equipe d’un tel dispositif
CN110182034A (zh) * 2018-02-19 2019-08-30 德韧营运有限责任公司 具有滚压成形构件的汽车电池托盘
CN111108015A (zh) * 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
CN113015671A (zh) * 2018-11-19 2021-06-22 本田技研工业株式会社 车身结构
CN113276951A (zh) * 2021-07-01 2021-08-20 奇瑞商用车(安徽)有限公司 车身前部吸能结构及新能源汽车
CN113525091A (zh) * 2020-04-22 2021-10-22 现代自动车株式会社 用于车辆的载荷吸收结构
DE102020212682A1 (de) 2020-10-07 2022-04-07 Volkswagen Aktiengesellschaft Hochvoltbatterie für ein elektrisch betriebenes Fahrzeug
DE102021111245A1 (de) 2021-04-30 2022-11-03 Bayerische Motoren Werke Aktiengesellschaft Verkleidungsteil, Verkleidungsanordnung und Kraftfahrzeug
US11518206B2 (en) 2021-04-28 2022-12-06 Ford Global Technologies, Llc Configurable vehicle frames and associated methods
SE2150957A1 (en) * 2021-07-16 2023-01-17 Nat Electric Vehicle Sweden Ab Structural Rechargeable Electric Energy Storage System
US11565579B2 (en) 2019-05-09 2023-01-31 Dr. Ing. H. C. F. Porsche Ag Electric vehicle having a battery in an underfloor arrangement
US11702162B2 (en) 2021-04-28 2023-07-18 Ford Global Technologies, Llc Configurable vehicle chassis and associated methods
US11807302B2 (en) 2021-04-28 2023-11-07 Ford Global Technologies, Llc Methods and apparatus for scalable vehicle platforms
US11858571B2 (en) 2021-04-28 2024-01-02 Ford Global Technologies, Llc Vehicle chassis with interchangeable performance packages and related methods
US11866095B2 (en) 2021-04-28 2024-01-09 Ford Global Technologies, Llc Multi-position wheel assembly mounts
US11938802B2 (en) 2021-04-28 2024-03-26 Ford Global Technologies, Llc Electric motorized wheel assemblies
EP4077058A4 (fr) * 2019-12-17 2024-05-29 Zoox, Inc. Structure de collision à impact latéral

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702161B2 (en) * 2010-12-22 2014-04-22 Tesla Motors, Inc. System for absorbing and distributing side impact energy utilizing an integrated battery pack and side sill assembly
US8585131B2 (en) * 2011-01-05 2013-11-19 Tesla Motors, Inc. Rear vehicle torque box
US8567856B2 (en) * 2011-01-07 2013-10-29 Tesla Motors, Inc. Swept front torque box
FR2972169B1 (fr) * 2011-03-01 2013-11-08 Courb Chassis modulaire a longerons cintres pour vehicule electrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10131381B2 (en) 2015-06-30 2018-11-20 Faraday & Future Inc. Joint for an underbody of a motor vehicle
US10112563B2 (en) 2015-06-30 2018-10-30 Faraday & Future Inc. Tapered crush can
EP3681753A4 (fr) * 2017-09-13 2021-04-21 Shape Corp. Plateau de batterie de véhicule à paroi périphérique tubulaire
CN111108015A (zh) * 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
CN110182034A (zh) * 2018-02-19 2019-08-30 德韧营运有限责任公司 具有滚压成形构件的汽车电池托盘
FR3078048A1 (fr) * 2018-02-22 2019-08-23 Psa Automobiles Sa Dispositif de protection de batterie en cas de choc lateral et vehicule equipe d’un tel dispositif
WO2019162583A1 (fr) * 2018-02-22 2019-08-29 Psa Automobiles Sa Dispositif de protection de batterie en cas de choc lateral et vehicule equipe d'un tel dispositif
CN108909840A (zh) * 2018-08-10 2018-11-30 深圳市德塔防爆电动汽车有限公司 适应薄层作业的电动汽车
CN113015671A (zh) * 2018-11-19 2021-06-22 本田技研工业株式会社 车身结构
CN113015671B (zh) * 2018-11-19 2022-11-22 本田技研工业株式会社 车身结构
US11565579B2 (en) 2019-05-09 2023-01-31 Dr. Ing. H. C. F. Porsche Ag Electric vehicle having a battery in an underfloor arrangement
EP4077058A4 (fr) * 2019-12-17 2024-05-29 Zoox, Inc. Structure de collision à impact latéral
CN113525091A (zh) * 2020-04-22 2021-10-22 现代自动车株式会社 用于车辆的载荷吸收结构
CN113525091B (zh) * 2020-04-22 2024-03-15 现代自动车株式会社 用于车辆的载荷吸收结构
DE102020212682A1 (de) 2020-10-07 2022-04-07 Volkswagen Aktiengesellschaft Hochvoltbatterie für ein elektrisch betriebenes Fahrzeug
US11702162B2 (en) 2021-04-28 2023-07-18 Ford Global Technologies, Llc Configurable vehicle chassis and associated methods
US11518206B2 (en) 2021-04-28 2022-12-06 Ford Global Technologies, Llc Configurable vehicle frames and associated methods
US11807302B2 (en) 2021-04-28 2023-11-07 Ford Global Technologies, Llc Methods and apparatus for scalable vehicle platforms
US11858571B2 (en) 2021-04-28 2024-01-02 Ford Global Technologies, Llc Vehicle chassis with interchangeable performance packages and related methods
US11866095B2 (en) 2021-04-28 2024-01-09 Ford Global Technologies, Llc Multi-position wheel assembly mounts
US11938802B2 (en) 2021-04-28 2024-03-26 Ford Global Technologies, Llc Electric motorized wheel assemblies
US12011962B2 (en) 2021-04-28 2024-06-18 Ford Global Technologies, Llc Configurable vehicle frames and associated methods
DE102021111245A1 (de) 2021-04-30 2022-11-03 Bayerische Motoren Werke Aktiengesellschaft Verkleidungsteil, Verkleidungsanordnung und Kraftfahrzeug
CN113276951A (zh) * 2021-07-01 2021-08-20 奇瑞商用车(安徽)有限公司 车身前部吸能结构及新能源汽车
WO2023287341A1 (fr) * 2021-07-16 2023-01-19 National Electric Vehicle Sweden Ab Système de stockage électrique rechargeable structural
SE2150957A1 (en) * 2021-07-16 2023-01-17 Nat Electric Vehicle Sweden Ab Structural Rechargeable Electric Energy Storage System

Also Published As

Publication number Publication date
WO2017075523A3 (fr) 2017-06-08

Similar Documents

Publication Publication Date Title
US10131381B2 (en) Joint for an underbody of a motor vehicle
US10300948B2 (en) Webbing devices for an underbody of a motor vehicle
WO2017075523A2 (fr) Articulation pour un soubassement de carrosserie d'un véhicule automobile
US20170001507A1 (en) Underbody for a Motor Vehicle
US11292326B2 (en) Electric vehicle platform
US10112563B2 (en) Tapered crush can
CN108349540B (zh) 用于机动车辆的车身底部的接头
US11447188B2 (en) Vehicle body platform for an automobile and automobile comprising such a vehicle body platform
US8449024B2 (en) Car frame featuring rtm-technology modules of compsite material
CN109070822B (zh) 用于车辆的渐缩抗压罐
US9381954B2 (en) Body supporting structure for a vehicle body
WO2020109498A1 (fr) Système de châssis et procédé d'assemblage associé
US20040245033A1 (en) Vehicle body structure
US20060061080A1 (en) Vehicle lower frame structure
CN114144350A (zh) 防撞装置
CN104290822A (zh) 汽车的底板结构
US11001304B2 (en) Vehicle structure for side impact load path management
CN115107874A (zh) 电动车辆的车架
US20210016835A1 (en) Four rail front crush structure with load dissemination into eight element support structure
WO1997011873A2 (fr) Structure orthographique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791794

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16791794

Country of ref document: EP

Kind code of ref document: A2