WO2017073766A1 - Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode - Google Patents

Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode Download PDF

Info

Publication number
WO2017073766A1
WO2017073766A1 PCT/JP2016/082163 JP2016082163W WO2017073766A1 WO 2017073766 A1 WO2017073766 A1 WO 2017073766A1 JP 2016082163 W JP2016082163 W JP 2016082163W WO 2017073766 A1 WO2017073766 A1 WO 2017073766A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
active material
storage element
solution
polyimide
Prior art date
Application number
PCT/JP2016/082163
Other languages
French (fr)
Japanese (ja)
Inventor
健太 柴田
耕 竹内
文子 吉野
睦 松下
山田 宗紀
朗 繁田
良彰 越後
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2017547913A priority Critical patent/JPWO2017073766A1/en
Priority to CN201680062963.1A priority patent/CN108352500A/en
Priority to KR1020187011921A priority patent/KR20180075520A/en
Publication of WO2017073766A1 publication Critical patent/WO2017073766A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode used for a power storage element such as a lithium secondary battery, a lithium ion capacitor, a capacitor, or a capacitor.
  • the surface of the electrode active material layer is made porous by applying a solution of polyimide having heat resistance and a polyimide such as polyamideimide (hereinafter sometimes abbreviated as “PI”).
  • PI polyamideimide
  • a method for providing a porous PI insulating coating (hereinafter sometimes abbreviated as “porous PI coating”) has been proposed. In such a method, an electrode provided with a PI insulating coating is used as a storage element electrode by filling the pores with an electrolytic solution to develop ionic conductivity.
  • Patent Document 1 a PI solution is used to form a coating film for forming a film on the surface of the active material layer, and before drying, the film is immersed in a coagulation bath containing a poor solvent for phase separation of the coating film. It has been proposed to cause it to form a porous coating.
  • Patent Document 2 proposes a method of forming a porous film using a coating liquid in which fine particles such as iron oxide, silica, and alumina are used as fillers in a PI solution.
  • the laminated electrode obtained using these coating liquids has low adhesiveness between the active material layer and the porous coating, the effect of preventing short circuit is not always sufficient, and the viewpoint of ensuring the safety of the battery There was a point that should be improved.
  • Such an electrode does not have sufficient stress relaxation associated with a change in the volume of the active material, and therefore the improvement of the cycle characteristics of the electrode is not always sufficient.
  • a laminated electrode obtained by a method of causing phase separation using a coagulation bath containing a poor solvent such as water and / or alcohol since the entire active material layer is in contact with the coagulation bath, the poor solvent is inherent to the active material layer. There was a case in which the characteristics of were impaired. Furthermore, since a waste liquid containing a poor solvent is generated from the coagulation bath, this method has a problem as a manufacturing method from the viewpoint of environmental compatibility.
  • Patent Document 3 discloses that a specific solution containing PI is used, applied to the surface of the electrode active material layer to form a coating film, and then dried. In addition, a method for obtaining a porous PI coating by causing phase separation in the coating has been proposed.
  • the porous PI coating described in Patent Document 3 does not have sufficient affinity with the electrolyte, the ionic resistivity of the PI coating when the electrolyte is filled in the pores may not be sufficiently low. It was.
  • the average pore diameter of the porous coating is slightly larger than 2000 nm, when a lithium foil or a lithium aluminum alloy foil is used as the negative electrode active material layer, dendrite is generated due to insertion and desorption of lithium ions. It was difficult to stop enough. Furthermore, it was difficult to use this coating as a polymer electrolyte.
  • the present invention solves the above-described problem, and has a fine phase separation structure and a PI solution capable of forming a PI film having a sufficiently reduced ionic resistivity, and an electricity storage provided with the film
  • An object of the present invention is to provide a device electrode and a manufacturing method thereof.
  • the present inventors solved the problem by using a PI solution having a specific chemical structure and PI solution of PI and forming a PI film having a phase separation structure obtained therefrom on the electrode active material layer. As a result, the present invention has been completed.
  • the present invention has the following purpose.
  • PI solution containing a good solvent and a poor solvent for PI wherein the PI contains an oxyalkylene unit and / or a siloxane unit in the main chain.
  • PI solution for a storage element electrode according to ⁇ 1> wherein the PI solution further contains a lithium salt.
  • a method for producing a storage element electrode comprising a step of forming a PI film having a phase separation structure by applying the PI solution according to ⁇ 1> or ⁇ 2> to the surface of the active material layer and then drying.
  • PI solution according to ⁇ 1> or ⁇ 2> is applied to a substrate and then dried to form a PI coating having a phase separation structure
  • the PI coating is thermocompression bonded to the active material surface.
  • a method for producing a storage element electrode including a step of peeling the substrate.
  • the PI film having a phase separation structure has at least two phases, one phase is PI, and at least one of the other phases is a phase containing an electrolyte, according to ⁇ 3> or ⁇ 4>
  • a method for producing a storage element electrode ⁇ 7> An electrode in which a PI film having a phase separation structure is laminated and integrated on the surface of an active material layer, wherein the PI contains an oxyalkylene unit and / or a siloxane unit in the main chain.
  • the PI coating having a phase separation structure obtained by applying and drying the PI solution of the present invention on the surface of the electricity storage element active material layer can sufficiently reduce the ionic resistivity of the coating and is excellent in safety. It can be suitably used as a storage element electrode.
  • the PI solution of the present invention can also be used as a solution for forming a polymer electrolyte by previously containing a lithium salt.
  • an electrode having a PI film formed using the PI solution of the present invention is excellent in charge / discharge characteristics.
  • 10 is a cross-sectional SEM image of an electrode “A-1” obtained in Example 9.
  • 10 is a cross-sectional SEM image of a porous PI coating portion of an electrode “A-1” obtained in Example 9.
  • FIG. 10 is a cross-sectional SEM image of a porous PI coating portion of an electrode “A-1” obtained in Example 9.
  • PI is a heat-resistant polymer having an imide bond in the main chain or a precursor thereof, and is usually a polycondensation of a diamine component, which is a monomer component, with a tetracarboxylic acid component and / or a tricarboxylic acid component. Is obtained.
  • These PIs include, in addition to normal PI (soluble polyimide, thermoplastic polyimide, non-thermoplastic polyimide, etc.), polyamide imide (hereinafter sometimes abbreviated as “PAI”), polyester imide, And PI precursors, and the like, and PI precursors and PAI are preferably used.
  • PAI polyamide imide
  • These PIs are copolymer PIs containing oxyalkylene units and / or siloxane units in the main chain and using monomers containing oxyalkylene units and / or siloxane units as copolymerization components.
  • the PI precursor is one that generates an imide bond by heating at a temperature of 100 ° C. or higher.
  • polyamic acid hereinafter sometimes abbreviated as “PAA”
  • PAA polyamic acid
  • PAA is obtained by reacting tetracarboxylic dianhydride and diamine in a solvent. PAA may be partially imidized.
  • PIs such as PI precursors (for example PAA) and PAI contain oxyalkylene units and / or siloxane units in the main chain.
  • PAA solution containing an oxyalkylene unit in the main chain for example, a PI solution as disclosed in Japanese Patent No. 5944613 can be used.
  • the patent gazette has the following ⁇ 1> and ⁇ 2>, and a PI solution containing an oxyalkylene unit described in detail here can also be used in the present invention. That is, in the present invention, the entire text of the patent publication is referred to and incorporated.
  • a porous PI film comprising PI containing an oxyalkylene unit, having a porosity of 45% to 95% by volume, and an average pore size of 10 nm to 1000 nm.
  • a solution comprising PI containing an oxyalkylene unit and a mixed solvent containing the good solvent and the poor solvent, wherein the poor solvent ratio in the mixed solvent is 65% by mass or more and 95% by mass or less.
  • a method for producing a porous PI film characterized by drying at a temperature of less than 350 ° C. after coating on the top.
  • the PAA containing an oxyalkylene unit and / or a siloxane unit contains an oxyalkylene unit and / or a siloxane unit as a tetracarboxylic dianhydride in the reaction of tetracarboxylic dianhydride and diamine in an approximately equimolar amount.
  • a tetracarboxylic dianhydride or diamine containing an oxyalkylene unit and / or a siloxane unit is “monomer A”
  • a tetracarboxylic dianhydride or diamine containing neither an oxyalkylene unit nor a siloxane unit is “monomer B”.
  • a tetracarboxylic dianhydride containing neither an oxyalkylene unit nor a siloxane unit may be abbreviated as “TA”
  • a diamine containing neither an oxyalkylene unit nor a siloxane unit may be abbreviated as “DA”.
  • monomer A usually contains one of oxyalkylene units or siloxane units in one molecule.
  • monomer A-1 for example, a tetracarboxylic dianhydride containing an oxyalkylene unit (hereinafter referred to as “TA”). -1 ”) and diamines containing oxyalkylene units (hereinafter sometimes abbreviated as“ DA-1 ”).
  • monomer A-2 for example, a tetracarboxylic dianhydride containing a siloxane unit (hereinafter referred to as “TA-2”). And a diamine containing a siloxane unit (hereinafter sometimes abbreviated as “DA-2”).
  • monomer A one or both of monomer A-1 and monomer A-2 may be used, and usually one of them is used.
  • the PAA containing an oxyalkylene unit and / or a siloxane unit is a monomer component comprising one or more monomers selected from the group consisting of TA-1, DA-1, TA-2 and DA-2. You may contain as.
  • a PAA containing a preferred oxyalkylene unit and / or siloxane unit contains one or more monomers selected from the group consisting of DA-1 and DA-2 as the monomer component.
  • the PAA containing an oxyalkylene unit is, for example, a copolymerized PAA obtained by copolymerizing TA-1 and / or DA-1 with TA and / or DA (hereinafter abbreviated as “PAA-1”). There are things).
  • PAA containing a siloxane unit is, for example, a copolymerized PAA obtained by copolymerizing TA-2 and / or DA-2 with TA and / or DA (hereinafter abbreviated as “PAA-2”). Is).
  • PAA-1 and PAA-2 can be used in combination.
  • the PAA solution contains a mixed solvent obtained by mixing a good solvent that dissolves the solute PAA and a solute that is a poor solvent.
  • the good solvent refers to a solvent having a solubility in PAA of 1% by mass or more at 25 ° C.
  • the poor solvent refers to a solvent having a solubility in PAA of less than 1% by mass at 25 ° C.
  • the poor solvent preferably has a higher boiling point than the good solvent.
  • the boiling point difference is preferably 5 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 50 ° C. or higher.
  • an amide solvent or a urea solvent is preferably used.
  • the amide solvent include N-methyl-2-pyrrolidone (NMP boiling point: 202 ° C.), N, N-dimethylformamide (DMF boiling point: 153 ° C.), N, N-dimethylacetamide (DMAc boiling point: 166 ° C.).
  • DMAc boiling point: 166 ° C. N-dimethylacetamide
  • urea solvents include tetramethylurea (TMU boiling point: 177 ° C) and dimethylethyleneurea (boiling point: 220 ° C). These good solvents may be used alone or in combination of two or more.
  • an ether solvent is preferably used as the poor solvent.
  • ether solvents include diethylene glycol dimethyl ether (boiling point: 162 ° C), triethylene glycol dimethyl ether (boiling point: 216 ° C), tetraethylene glycol dimethyl ether (boiling point: 275 ° C), diethylene glycol (boiling point: 244 ° C), triethylene glycol.
  • the blending amount of the poor solvent in the mixed solvent is preferably 15 to 95% by mass, and more preferably 60 to 90% by mass with respect to the mass of the mixed solvent.
  • PAA-1 solution monomers such as tetracarboxylic dianhydride (a mixture of TA-1 and TA, or only TA) and diamine (a mixture of DA-1 and DA, or DA only) are approximately equimolar.
  • a solution obtained by blending and polymerizing the mixture in the mixed solvent at a temperature of 10 to 70 ° C. can be used.
  • TA-1 is a tetracarboxylic dianhydride containing an oxyalkylene unit.
  • Specific examples of TA-1 include ethylene glycol bisanhydro trimellitate (TMEG), diethylene glycol bis anhydro trimellitate, triethylene glycol bis anhydro trimellitate, tetraethylene glycol bis anhydro trimellitate, polyethylene Glycol bisanhydro trimellitate, propylene glycol bis anhydro trimellitate, dipropylene glycol bis anhydro trimellitate, tripropylene glycol bis anhydro trimellitate, tetrapropylene glycol bis anhydro trimellitate, polypropylene glycol bis In addition to anhydrotrimellitate, etc., any of the compounds described below, “diamine containing oxyalkylene unit” (DA-1), and trimellitic anhydride And Doo acid is obtained by amide-forming reaction, the tetracarboxylic dianhydride having two amide bonds. These may be used alone or in combination
  • TA is not particularly limited as long as it is a tetracarboxylic dianhydride containing neither an oxyalkylene unit nor a siloxane unit.
  • Specific examples of TA include, for example, pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, and 3,3 ′, 4,4′-diphenylsulfonetetra
  • carboxylic dianhydrides These may be used alone or in combination of two or more. Of these, one or more compounds selected from the group consisting of PMDA and BPDA are preferred. These compounds can use a commercial item and can also manufacture it by a well-known method.
  • DA-1 is a diamine containing oxyalkylene units.
  • Specific examples of DA-1 include ethylene glycol bis (2-aminoethyl) ether, diethylene glycol bis (2-aminoethyl) ether, triethylene glycol bis (2-aminoethyl) ether, tetraethylene glycol bis (2-amino).
  • Ethyl) ether polyethylene glycol bis (2-aminoethyl) ether, propylene glycol bis (2-aminoethyl) ether, dipropylene glycol bis (2-aminoethyl) ether, tripropylene glycol bis (2-aminoethyl) ether, Examples thereof include tetrapropylene glycol bis (2-aminoethyl) ether and polypropylene glycol bis (2-aminoethyl) ether (PPGME). These may be used alone or in combination of two or more. Of these, PPGME is preferred. These compounds can use a commercial item and can also manufacture it by a well-known method. For example, PPGME is available as Jeffamine D2000 (number average molecular weight 2000: manufactured by Huntsman).
  • DA is not particularly limited as long as it is a diamine containing neither an oxyalkylene unit nor a siloxane unit.
  • Specific examples of DA include, for example, 4,4′-diaminodiphenyl ether (DADE), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane (BAPP), 4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, p-phenylenediamine, m-phenylenediamine, 2,4-diamino Toluene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,
  • PAA-2 solution a monomer tetracarboxylic dianhydride (a mixture of TA-2 and TA, or only TA) and a diamine (a mixture of DA-2 and DA, or only DA) are approximately equimolar.
  • a solution obtained by blending and polymerizing the mixture in the mixed solvent at a temperature of 10 to 70 ° C. can be used.
  • TA-2 is a tetracarboxylic dianhydride containing siloxane units.
  • Specific examples of TA-2 include 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, 1,3-bis (3,4- Dicarboxyphenyl) -1,1,3,3-tetraethylsiloxane dianhydride, bis (3,4-dicarboxyphenyl) dimethylpolysiloxane dianhydride, bis (3,4-dicarboxyphenyl) diethylpolysiloxane An anhydride etc. are mentioned. These may be used alone or in combination of two or more. These compounds can use a commercial item and can also manufacture it by a well-known method.
  • DA-2 is a diamine containing siloxane units.
  • Specific examples of DA-2 include 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-bis (4-aminobutyl) -1,1, Examples include 3,3-tetramethyldisiloxane, 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane, and a compound represented by the following general formula (1). . These may be used alone or in combination of two or more.
  • DA-2 in the following general formula (1), R 1 and R 2 are trimethylene groups, R 3 , R 4 , R 5 and R 6 are methyl groups, n is 3 to 100, and compounds thereof A mixture (hereinafter sometimes abbreviated as “DASM”) is preferred, and among these, compounds having a number average molecular weight of 300 to 5000 and mixtures thereof are more preferred.
  • DA-2 can be a commercially available product or can be produced by a known method.
  • DASM is available as KF-8010 (number average molecular weight 860: manufactured by Shin-Etsu Chemical Co., Ltd.).
  • n represents an integer of 1 or more.
  • R 1 and R 2 are the same or different and each represents a lower alkylene group or a phenylene group
  • R 3, R 4, R 5 And R 6 each represents the same or different lower alkyl group, phenyl group or phenoxy group.
  • TA-1 or DA-1 when one of TA-1 or DA-1 is used as the monomer A-1 containing an oxyalkylene unit in a PAA containing only an oxyalkylene unit among oxyalkylene units or siloxane units, TA-1 or The amount of DA-1 used (copolymerization ratio) is preferably 0.5 to 20 mol%, more preferably 1 to 10 mol%.
  • the mol% indicating the copolymerization ratio refers to a value calculated according to the following formula.
  • the amount used (copolymerization ratio) is preferably 0.5 to 20 mol%, and preferably 1 to 10 mol%. Is more preferable.
  • TA-2 or DA-2 when one of TA-2 or DA-2 is used as a monomer A-2 containing a siloxane unit in a PAA containing only a siloxane unit among oxyalkylene units or siloxane units, TA-2 or DA-
  • the amount of 2 used (copolymerization ratio) is preferably 0.5 to 20 mol%, more preferably 1 to 10 mol%.
  • the mol% indicating the copolymerization ratio refers to a value calculated according to the following formula.
  • the amount used (copolymerization ratio) is preferably 0.5 to 20 mol%, and preferably 1 to 10 mol%. Is more preferable.
  • the amount of TA-1, TA-2, DA-1 and DA-2 used is 0.5 to 20 mol%, respectively. It is preferably 1 to 10 mol%, more preferably.
  • the copolymerization ratio of monomers containing oxyalkylene units or siloxane units is preferably 0.5 to 20 mol% based on the above formula, More preferably, it is 1 to 10 mol%. That is, in PAA containing an oxyalkylene unit and / or a siloxane unit, among the used amounts (copolymerization ratios) of TA-1, DA-1, TA-2 and DA-2 defined by the above formula, It is preferable that at least one use amount (copolymerization ratio) is within the above range.
  • PAA PAA
  • PAI soluble PI and / or PAI
  • PAI solution a PAI solution as disclosed in JP-A-2016-145300 can be used.
  • the gazette has the gist of ⁇ 1> and ⁇ 2> below, and a PAI solution containing an oxyalkylene unit described in detail here can also be used in the present invention. That is, in the present invention, the entire text of the publication is referred to and incorporated.
  • ⁇ 1> A porous PAI obtained by a dry porosification process, comprising a PAI containing an oxyalkylene unit, having a porosity of 20% by volume to 95% by volume and an average pore size of 10 nm to 1000 nm.
  • a porous PAI film characterized by being.
  • a method for producing a porous PAI film wherein a solution containing an oxyalkylene unit and a good solvent and a poor solvent is applied on a substrate and then dried at a temperature of 200 ° C. or lower.
  • PAI containing a siloxane unit can also be used.
  • the PI solution is obtained by polymerizing in a good solvent to obtain a solution, and then adding a poor solvent thereto, obtaining a suspension by polymerizing in the poor solvent and then adding a good solvent thereto, etc. Can also be obtained.
  • the concentration of PI in the PI solution is preferably 3 to 45% by mass, more preferably 5 to 40% by mass.
  • the viscosity of the PI solution at 30 ° C. is preferably in the range of 0.01 to 100 Pa ⁇ s, more preferably 0.1 to 50 Pa ⁇ s.
  • PI solution if necessary, known additives such as various surfactants and / or silane coupling agents may be added as long as the effects of the present invention are not impaired. Moreover, you may add other polymers other than PI to the PI solution in the range which does not impair the effect of this invention as needed.
  • a PI solution is applied to the surface of the electrode active material layer and dried to induce phase separation to form the porous PI coating. What is necessary is just to form.
  • a PI solution is applied onto a substrate (for example, a release film such as a polyester film) and dried to induce phase separation to form a porous PI coating, which is used as an electrode active material layer.
  • the substrate release film
  • an adhesive may be applied to the surface of the porous PI coating in the form of dots and then thermocompression bonded to the electrode active material layer.
  • methods disclosed in Japanese Patent Application Laid-Open Nos. 2003-151638, 2014/014118, and 2016-42454 can be used.
  • a method of applying the PI solution to the electrode active material layer a method of applying continuously by roll-to-roll or a method of applying in a sheet form can be adopted, and any method may be used.
  • the coating apparatus a known method using a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater or the like can be used.
  • the drying step includes inducing the phase separation by volatilizing the solvent contained in the coating film to form a porous PAA coating and the porous coating. And Step 2 in which the PAA coating is thermally imidized to form a porous PI coating.
  • the temperature in step 1 is preferably about 100 to 200 ° C., and the temperature in step 2 is preferably less than 350 ° C., for example, 200 to 320 ° C.
  • the step 2 is not necessary.
  • the copolymerized PAA does not need to be 100% imidized, and a copolymerized PAA component that is not imidized may remain.
  • the imidization ratio can be adjusted by selecting drying conditions, thermal imidization conditions, and the like.
  • the PI used in the present invention preferably has a Tg of 150 ° C. or higher, more preferably 200 ° C. or higher. By doing in this way, favorable heat resistance is securable.
  • the value measured by DSC can be used for Tg.
  • the average pore diameter of the porous PI coating is 10 nm or more and 2000 nm or less, preferably 20 nm or more and 1300 nm or less, and more preferably 20 nm or more and 1000 nm or less.
  • the average pore diameter was obtained by obtaining a SEM (scanning electron microscope) image of the cross section of the porous PI coating at a magnification of 5000 to 20000, and separating it into a pore portion and a PI portion using commercially available image processing software. This can be confirmed.
  • the porosity of the porous PI coating is preferably 30 to 90% by volume, more preferably 40 to 80% by volume, and still more preferably 45 to 80% by volume. By setting the porosity in this way, good mechanical properties and good cushioning properties for stress relaxation accompanying the volume change of the active material can be ensured at the same time. For this reason, the electrode which is excellent in safety
  • the porosity of the porous PI coating is a value calculated from the apparent density of the porous PI coating and the true density (specific gravity) of PI constituting the coating. Specifically, the porosity (volume%) is calculated by the following formula when the apparent density of the PI coating is A (g / cm 3 ) and the true density of PI is B (g / cm 3 ).
  • the porous PI coating is firmly bonded to the active material layer. That is, from the viewpoint of improving battery safety, the adhesive strength between the electrode active material layer and the porous PI coating is preferably higher than the strength of the electrode active material layer. Whether or not the adhesive strength is higher than the strength of the electrode active material layer can be determined by whether cohesive failure or interface peeling occurs at the interface when the electrode active material layer is peeled from the PI coating. . When cohesive failure occurs, it is determined that the strength of the adhesive interface is higher than the strength of the electrode active material layer. A cohesive failure is determined when a piece of the active material layer adheres to a part of the surface of the PI coating after peeling (adhesion surface with the electrode active material layer). In the electrode of the present invention, such high adhesive strength greatly contributes to the improvement of battery safety.
  • the thickness of the porous PI coating is preferably 0.5 to 100 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the porous PI coating may be either insulating or conductive.
  • this layer is advantageous because it also has a function as a separator that prevents electrical contact between the positive electrode and the negative electrode of a storage element (for example, a lithium secondary battery).
  • a storage element for example, a lithium secondary battery.
  • the porous PI coating conductive, for example, 5 to 50% by mass of conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles are porous. What is necessary is just to mix
  • the porous PI coating formed on the electrode surface is used as a power storage element electrode
  • a known electrolytic solution in a solvent such as ethylene carbonate and dimethyl carbonate, A solution in which a lithium salt such as LiPF 6 is dissolved.
  • the storage element electrode on which the porous PI film is formed may be a film having ionic conductivity at the time of cell preparation.
  • a conductive film (this PI film may be abbreviated as “polymer electrolyte PI film”) may be used.
  • the porous PI film may be impregnated with a solution containing an electrolyte and filled in the pores.
  • a solution containing an electrolyte may contain a “gelling polymer” as described in, for example, JP-A-2006-289985.
  • PI-L solution a solution containing an electrolyte such as a lithium salt in a PI solution for forming a porous film
  • a PI coating consisting of a phase (solid or liquid) in which at least one of the other phases contains an electrolyte can be obtained.
  • lithium salt in the PI-L solution examples include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . These may be used alone or in combination of two or more. Among these, LiPF 6 and LiN (CF 3 SO 2 ) 2 are preferable.
  • the lithium salt content is preferably 5 to 200% by mass and more preferably 20 to 150% by mass with respect to the mass of the poor solvent in the PI solution.
  • a polymer electrolyte PI coating is obtained by applying a solution having such a composition to the surface of the electrode active material layer and drying. In this polymer electrolyte PI coating, a part of the solvent (good solvent and poor solvent) in the PI-L solution may remain in the polymer electrolyte PI coating in a form solvated with the lithium salt.
  • Porous PI film (as electrolytic solution is filled in the pores) and polymer electrolyte PI film, it ionic resistivity becomes ion conductivity indicators, it is preferably 5Omucm 2 or less, 4Omucm 2 or less Is more preferably 3 ⁇ cm 2 or less.
  • the ionic resistivity (Rs-PI) of these PI coatings can be calculated using, for example, the following method.
  • Rs-1 the ionic resistivity of only the active material layer filled with the electrolytic solution formed on the current collector
  • Rs-2 the ionic resistivity of the laminate having the PI film formed on the surface thereof
  • Rs-PI is calculated by subtracting Rs-1 from Rs-2.
  • Rs-1 and Rs-2 are determined by configuring a measurement cell using a lithium foil and the current collector as an electrode, using a commercially available separator as necessary, and measuring impedance at 25 ° C. and 100 KHz. can do.
  • the electrode active material layer on which the PI film having a phase separation structure is laminated is a layer formed on the current collector of the storage element (for example, lithium secondary battery) electrode of the present invention, and the positive electrode active material layer and the negative electrode A general term for active material layers.
  • a metal foil such as a copper foil, a stainless steel foil, a nickel foil, or an aluminum foil can be used.
  • Aluminum foil is preferably used for the positive electrode, and copper foil is used for the negative electrode.
  • the thickness of these metal foils is preferably 5 to 50 ⁇ m, more preferably 9 to 18 ⁇ m.
  • the surface of these metal foils may be subjected to a surface roughening treatment and / or a rust prevention treatment for improving the adhesion to the active material layer.
  • the positive electrode active material layer is, for example, a layer obtained by binding positive electrode active material particles with a resin binder.
  • the material used as the positive electrode active material particles is preferably a material capable of occluding and storing lithium ions.
  • an oxide system LiCoO 2 , LiNiO 2 etc.
  • an iron phosphate system LiFePO 4 etc.
  • a polymer compound system Active material particles such as polyaniline and polythiophene.
  • LiCoO 2 , LiNiO 2 , and LiFePO 4 are preferable.
  • conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles are contained in an amount of about 1 to 30% by mass. It may be blended.
  • the negative electrode active material layer is, for example, a layer obtained by binding negative electrode active material particles with a resin binder.
  • the material used as the negative electrode active material particles is preferably a material capable of occluding and storing lithium ions. Examples thereof include graphite, amorphous carbon, silicon-based, and tin-based active material particles. Among these, graphite particles and silicon-based particles are preferable.
  • the silicon-based particles include particles of silicon alone, a silicon alloy, a silicon / silicon dioxide composite, and the like. Among these silicon-based particles, particles of silicon alone are preferable. Silicon alone means crystalline or amorphous silicon having a purity of 95% by mass or more.
  • the negative electrode active material layer contains about 1 to 30% by mass of conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles in order to reduce the internal resistance. It may be blended. Moreover, lithium foil and lithium alloy foil can be used as the negative electrode active material layer.
  • the particle diameters of the active material particles and the conductive particles are preferably 50 ⁇ m or less for both the positive electrode and the negative electrode, and more preferably 10 ⁇ m or less. Even if the particle diameter is too small, binding with a resin binder becomes difficult, so it is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more.
  • the porosity of the electrode active material layer is preferably 5 to 50% by volume for both the positive electrode and the negative electrode, and more preferably 10 to 40% by volume.
  • the layer thickness of the electrode active material layer is usually about 20 to 200 ⁇ m.
  • PVDF polyvinylidene fluoride
  • SBR butadiene copolymer rubber
  • PVDF polytetrafluoroethylene
  • SBR butadiene copolymer rubber
  • PI polytetrafluoroethylene
  • the laminate in which the active material layer is formed on the current collector as described above can use a commercially available product.
  • a commercially available product For example, it can be manufactured by a known method such as the following, but a commercially available product is used. You can also.
  • a dispersion containing the above-mentioned binder, active material particles, and solvent (hereinafter sometimes abbreviated as “active material dispersion”) is applied to the surface of a metal foil as a current collector and dried to obtain a metal.
  • An electrode active material layer can be formed on the foil.
  • the electrode active material layers for positive electrode and negative electrode formed on the current collector used in the following Examples and Comparative Examples were obtained as follows.
  • (Positive electrode active material layer) 86 parts by mass of LiFePO 4 particles (average particle size 0.5 ⁇ m) as a positive electrode active material, 8 parts by mass of carbon black (acetylene black) as a conductive additive, and 6 parts by mass of PVDF as a binder resin are uniformly in NMP.
  • a positive electrode active material dispersion This dispersion was applied to a positive electrode current collector 15 ⁇ m thick aluminum foil, and the resulting coating film was dried at 130 ° C. for 10 minutes and then hot pressed to obtain a positive electrode active material layer having a thickness of 50 ⁇ m. .
  • Niobide active material layer-1 85 parts by mass of graphite particles (average particle size 8 ⁇ m) as a negative electrode active material, 5 parts by mass of carbon black (acetylene black) as a conductive auxiliary agent, and 10 parts by mass of PI as a binder resin are uniformly dispersed in NMP.
  • a negative electrode active material dispersion having a solid content concentration of 25% by mass was obtained.
  • This dispersion was applied to a negative electrode current collector 18 ⁇ m thick copper foil, and the resulting coating film was dried at 120 ° C. for 10 minutes, heat-treated at 300 ° C. for 60 minutes, and hot-pressed to have a thickness of 50 ⁇ m.
  • the negative electrode active material layer was obtained.
  • As the PI “Uimide varnish CR” manufactured by Unitika Ltd. was used.
  • Niobium electrode active material layer-2 98 parts by mass of graphite particles (average particle size: 8 ⁇ m) as a negative electrode active material, 1 part by mass of carboxymethylcellulose, and 1 part by mass of SBR as a binder resin are uniformly dispersed in water, and a negative electrode having a solid content concentration of 25% by mass An active material dispersion was obtained. This dispersion was applied to a 10 ⁇ m-thick copper foil as a negative electrode current collector, and the obtained coating film was dried at 120 ° C. for 10 minutes and then hot pressed to obtain a negative electrode active material layer having a thickness of 40 ⁇ m. .
  • Electrode evaluation method The characteristics of the electrodes obtained in the following examples and comparative examples were evaluated by the following methods.
  • the electrode was punched into a circle having a diameter of 16 mm, and a separator made of a polyethylene porous film and a lithium foil were sequentially laminated on the porous PI coating surface side, and this was stored in a stainless steel coin-type outer container.
  • An electrolytic solution (1M LiPF 6 solution using a solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1) as a solvent is injected into the outer container, and the outer container is made of stainless steel via a packing.
  • the cap was covered and fixed, the battery can was sealed, and the cell for evaluation was obtained.
  • the ion resistivity (Rs-PI) was calculated by measuring the impedance at 100 KHz by the method described above. In addition, discharge capacity and cycle characteristics were evaluated using this cell.
  • Example 1 In a glass reaction vessel, under a nitrogen atmosphere, DADE: 0.97 mol, PPGME: 0.03 mol (number average molecular weight 2000: Jeffamine D2000 manufactured by Huntsman), DMAc and tetraethylene glycol dimethyl ether mixed solvent (DMAc / The mixing ratio of tetraethylene glycol dimethyl ether was 2/8) in mass ratio and stirred to dissolve the diamine component. While this solution was cooled to 30 ° C. or lower with a jacket, PMDA: 1.01 mol was gradually added, followed by polymerization at 40 ° C. for 5 hours to obtain a copolymerized PAA solution (P-1: The solid content concentration was 15% by mass).
  • Example 2 A copolymer PAA solution (P-2) was obtained in the same manner as in Example 1 except that “DADE: 0.97 mol” was changed to “DADE: 0.8 mol and BAPP: 0.17 mol”. .
  • Example 3 A copolymer PAA solution (P-3) was obtained in the same manner as in Example 1 except that “PMDA: 1.01 mol” was changed to “PMDA: 0.81 mol and BPDA: 0.20 mol”. .
  • Example 4 A copolymer PAA solution (P-4) was obtained in the same manner as in Example 1 except that “PMDA: 1.01 mol” was changed to “BPDA: 1.01 mol”.
  • Example 5 A copolymer PAA solution (in the same manner as in Example 1 except that “DADE: 0.97 mol, PPGME: 0.03 mol” was changed to “DADE: 0.94 mol, PPGME: 0.06 mol”. P-5) was obtained.
  • Example 6 Copolymerization was carried out in the same manner as in Example 1 except that the mixing ratio of the mixed solvent (DMAc / tetraethylene glycol dimethyl ether) was 1/9 by mass and the solid content concentration of the copolymerized PAA solution was 10% by mass. A PAA solution (P-6) was obtained.
  • Example 7 Copolymerization was carried out in the same manner as in Example 2, except that the mixing ratio of the mixed solvent (DMAc / tetraethylene glycol dimethyl ether) was 1/9 by mass and the solid content concentration of the copolymerized PAA solution was 10% by mass. A PAA solution (P-7) was obtained.
  • Example 8> In a glass reaction vessel, under a nitrogen atmosphere, DADE: 0.97 mol, DASM: 0.03 mol (number average molecular weight: about 860: KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd.), a mixed solvent consisting of DMAc and tetraethylene glycol dimethyl ether ( The mixing ratio of DMAc / tetraethylene glycol dimethyl ether was 3/7) by mass and stirred. To this solution, PMDA: 1.03 mol was gradually added at room temperature, and then a polymerization reaction was carried out at 60 ° C. for 5 hours to give a copolymer PAA solution into which a siloxane unit was introduced (P-8: solid content concentration was 16% by mass) )
  • Example 9 P-1 obtained in Example 1 was applied to the surface of the negative electrode active material layer-1, dried at 130 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere to obtain a porous film having a thickness of 15 ⁇ m.
  • the SEM image of the negative electrode “A-1” cross section and the SEM image of the cross section of the PI coating part are shown in FIGS. When the pore portion and the PI portion were separated and analyzed by image processing software, the average pore diameter of the porous PI coating was 450 nm. The porosity was 65% by volume.
  • the Rs-PI of this porous PI coating was 2.8 ⁇ cm 2 .
  • a charge / discharge cycle was performed in which the battery was charged to 2.5 V at 30 ° C. with a constant current of 0.1 C and discharged to 0.03 V.
  • the negative electrode “A-1” had an initial discharge capacity of 310 [mAh / g-active material], a discharge capacity after 10 cycles of 232 [mAh / g-active material], a high initial discharge capacity and a good cycle. The characteristics were confirmed.
  • the voltage represents a voltage with respect to the ionization potential of lithium.
  • Example 10 P-2 obtained in Example 2 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-2” in which a porous PI coating having a thickness of 10 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of the negative electrode “A-2” was 360 nm, and Rs-PI was 2.6 ⁇ cm 2 .
  • Example 11 P-3 obtained in Example 3 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-3” in which a porous PI coating having a thickness of 8 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of the negative electrode “A-3” was 560 nm, and Rs-PI was 2.9 ⁇ cm 2 .
  • Example 12 P-4 obtained in Example 4 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-4” in which a porous PI coating having a thickness of 8 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of negative electrode “A-4” was 880 nm, and Rs-PI was 2.5 ⁇ cm 2 .
  • Example 13 P-5 obtained in Example 5 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-5” in which a porous PI coating having a thickness of 10 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of the negative electrode “A-5” was 670 nm, and Rs-PI was 2.9 ⁇ cm 2 .
  • Example 14 P-6 obtained in Example 6 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-6” in which a porous PI coating having a thickness of 4 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of the negative electrode “A-6” was 270 nm, and Rs-PI was 2.1 ⁇ cm 2 .
  • Example 15 P-7 obtained in Example 7 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-7” in which a porous PI coating having a thickness of 4 ⁇ m was formed on the surface of the negative electrode active material layer. It was.
  • the average pore diameter of the porous PI coating of the negative electrode “A-7” was 310 nm, and Rs-PI was 2.4 ⁇ cm 2 .
  • Example 16> P-1 obtained in Example 1 was applied to the surface of an aluminum foil with a release layer, dried at 130 ° C. for 10 minutes, heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and porous having a thickness of 7 ⁇ m.
  • a laminate having a PI coating formed on the surface of an aluminum foil was obtained.
  • the porous PI coating and the negative electrode active material layer-2 were thermocompression bonded at 200 ° C., and then the aluminum foil was peeled off to adhere the porous PI coating to the surface of the negative electrode active material layer-2.
  • Electrode (negative electrode) “A-8” was obtained.
  • the average pore diameter of the porous PI coating of the negative electrode “A-8” was 370 nm, and Rs-PI was 2.7 ⁇ cm 2 .
  • Example 17 P-1 obtained in Example 1 was applied to the surface of the positive electrode active material layer, dried at 130 ° C. for 10 minutes, and heat-treated at 200 ° C. for 60 minutes in a nitrogen atmosphere to obtain a porous PI having a thickness of 12 ⁇ m.
  • the average pore diameter of the PI coating of the positive electrode “A-9” was 920 nm.
  • a cell was prepared by the above-described method using the positive electrode “A-9”, and the ionic resistivity was measured. As a result, the Rs-PI of this PI film was 3.0 ⁇ cm 2 .
  • a charge / discharge cycle was performed at 30 ° C. with a constant current of 0.1 C to 4.5 V, and with a constant current of 0.1 C, discharging to 3.0 V.
  • the initial discharge capacity of the positive electrode “A-9” was 146 [mAh / g-active material]
  • the discharge capacity after 10 cycles was 159 [mAh / g-active material]
  • the high initial discharge capacity and good cycle were obtained. The characteristics were confirmed.
  • the voltage represents a voltage with respect to the ionization potential of lithium.
  • Example 18 P-1 obtained in Example 1 was applied to the surface of the positive electrode active material layer and dried at 150 ° C. for 10 minutes to form a porous PI coating having a thickness of 4 ⁇ m on the surface of the positive electrode active material layer. Electrode (positive electrode) “A-10” was obtained. The average pore diameter of the PI coating of the positive electrode “A-10” was 540 nm, and Rs-PI was 1.8 ⁇ cm 2 .
  • Example 19 P-8 obtained in Example 8 was applied to the surface of the negative electrode active material layer-1, dried at 150 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and having a thickness of 3 ⁇ m.
  • the average pore diameter of the PI coating of the negative electrode “A-11” was 1200 nm, and Rs-PI was 2.5 ⁇ cm 2 .
  • a PAI solution was obtained according to the method described in JP-A-2016-145300 and Example 1. That is, in a glass reaction vessel, trimellitic anhydride (TMA): 0.96 mol, 4,4′-diphenylmethane diisocyanate (MDI): 1 mol, polytetramethylene glycol (molecular weight 1000): 0 in a nitrogen atmosphere. 0.04 mol of NMP was added and stirred. The obtained solution was heated to 200 ° C., reacted for 7 hours, and then cooled to obtain a PAI solution into which oxytetramethylene units were introduced. Tetraethylene glycol dimethyl ether was added to this, and oxyalkylene was added.
  • TMA trimellitic anhydride
  • MDI 4,4′-diphenylmethane diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • NMP 0.04 mol
  • the obtained solution was heated to 200 ° C., reacted for
  • a copolymerized PAI solution (P-9: 11% by mass) into which units were introduced was obtained.
  • the mass ratio of tetraethylene glycol dimethyl ether in this solution was 70% by mass with respect to the mixed solvent (NMP and tetraethylene glycol dimethyl ether).
  • Example 21 P-9 obtained in Example 20 was applied to the surface of the negative electrode active material layer-1, dried at 150 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and having a thickness of 3 ⁇ m.
  • the average pore diameter of the PI coating of the negative electrode “A-12” was 1800 nm, and Rs-PI was 2.8 ⁇ cm 2 .
  • the storage element electrode of the present invention such as a lithium secondary battery, has an average pore diameter and an oxyalkylene unit or siloxane unit having a high affinity for the electrolyte.
  • the ionic resistivity of the formed porous PI coating is low. Therefore, it can be suitably used as a storage element electrode of a lithium secondary battery, a lithium ion capacitor or the like having excellent safety and high discharge capacity and good cycle characteristics.
  • the PI solution of the present invention is useful for the production of electrodes used for power storage elements such as lithium secondary batteries, lithium ion capacitors, capacitors, and capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The purpose of the present invention is to provide a PI solution which is capable of forming a PI coating film that has a fine phase separation structure, while having a sufficiently decreased ionic resistivity. The present invention relates to a polyimide solution for electricity storage element electrodes, which contains a good solvent and a poor solvent for a polyimide, and which is characterized in that the polyimide contains an oxyalkylene unit and/or a siloxane unit in the main chain.

Description

蓄電素子電極用ポリイミド溶液、蓄電素子電極の製造方法および蓄電素子電極Storage device electrode polyimide solution, storage device electrode manufacturing method, and storage device electrode
 本発明は、リチウム二次電池、リチウムイオンキャパシタ、キャパシタ、コンデンサ等の蓄電素子に用いられる電極に関する。 The present invention relates to an electrode used for a power storage element such as a lithium secondary battery, a lithium ion capacitor, a capacitor, or a capacitor.
 リチウム二次電池等の蓄電素子に用いられる電極において、過充電等により、熱暴走が起こった場合、電極表面の傷および/または凹凸が原因となって、電極に接しているセパレータの電気絶縁性が破壊され、電気的な内部短絡が発生することがある。 In the case of thermal runaway due to overcharging or the like in an electrode used for a storage element such as a lithium secondary battery, the electrical insulation of the separator in contact with the electrode due to scratches and / or irregularities on the electrode surface May be destroyed and an electrical internal short circuit may occur.
 このような内部短絡を防止するため、電極活物質層表面に、耐熱性を有するポリイミドおよびポリアミドイミド等のポリイミド(以下、「PI」と略記することがある)の溶液を塗布することにより、多孔性のPI絶縁被膜(以下、「多孔質PI被膜」と略記することがある)を設ける方法が提案されている。このような方法において、PI絶縁被膜を設けた電極は、気孔中に電解液を充填してイオン伝導性を発現させることにより、蓄電素子電極として使用される。例えば、特許文献1には、PI溶液を用い、被膜形成用の塗膜を活物質層表面に形成した後、その乾燥前に、貧溶剤を含む凝固浴に浸漬して塗膜の相分離を起こさせて多孔質被膜を形成させることが提案されている。また、特許文献2には、酸化鉄、シリカ、アルミナ等の微粒子をフィラとしてPI溶液等に配合した塗液を用い、多孔質膜とする方法が提案されている。しかしながら、これらの塗液を用いて得られる積層電極は、活物質層と多孔質被膜との接着性が低いため、短絡に対する防止効果は、必ずしも充分なものではなく、電池の安全性確保の観点から改善すべき点があった。また、このような電極は、活物質の体積変化にともなう応力緩和も充分ではなく、したがって電極のサイクル特性の改善は必ずしも充分ではなかった。また、水および/またはアルコール等の貧溶媒を含む凝固浴を用いて相分離を起こさせる方法で得られる積層電極は、活物質層全体が凝固浴と接するので、その貧溶媒が活物質層本来の特性を損なうことがあった。さらに、この方法については、凝固浴から貧溶媒を含む廃液が発生するので、環境適合性の観点から、製造方法としても問題があった。 In order to prevent such an internal short circuit, the surface of the electrode active material layer is made porous by applying a solution of polyimide having heat resistance and a polyimide such as polyamideimide (hereinafter sometimes abbreviated as “PI”). A method for providing a porous PI insulating coating (hereinafter sometimes abbreviated as “porous PI coating”) has been proposed. In such a method, an electrode provided with a PI insulating coating is used as a storage element electrode by filling the pores with an electrolytic solution to develop ionic conductivity. For example, in Patent Document 1, a PI solution is used to form a coating film for forming a film on the surface of the active material layer, and before drying, the film is immersed in a coagulation bath containing a poor solvent for phase separation of the coating film. It has been proposed to cause it to form a porous coating. Patent Document 2 proposes a method of forming a porous film using a coating liquid in which fine particles such as iron oxide, silica, and alumina are used as fillers in a PI solution. However, since the laminated electrode obtained using these coating liquids has low adhesiveness between the active material layer and the porous coating, the effect of preventing short circuit is not always sufficient, and the viewpoint of ensuring the safety of the battery There was a point that should be improved. Further, such an electrode does not have sufficient stress relaxation associated with a change in the volume of the active material, and therefore the improvement of the cycle characteristics of the electrode is not always sufficient. In addition, in a laminated electrode obtained by a method of causing phase separation using a coagulation bath containing a poor solvent such as water and / or alcohol, since the entire active material layer is in contact with the coagulation bath, the poor solvent is inherent to the active material layer. There was a case in which the characteristics of were impaired. Furthermore, since a waste liquid containing a poor solvent is generated from the coagulation bath, this method has a problem as a manufacturing method from the viewpoint of environmental compatibility.
 これらの問題点を解決する方法として、特許文献3には、PIを含む特定の溶液を用い、これを電極活物質層表面に塗布して塗膜を形成した後、この塗膜を乾燥する際に、塗膜中で相分離を起こさせて多孔質PI被膜を得る方法が提案されている。 As a method for solving these problems, Patent Document 3 discloses that a specific solution containing PI is used, applied to the surface of the electrode active material layer to form a coating film, and then dried. In addition, a method for obtaining a porous PI coating by causing phase separation in the coating has been proposed.
 特許文献3に記載された多孔質PI被膜は、電解液との親和性が充分ではないため、その気孔中に電解液を充填した際のPI被膜のイオン抵抗率が充分に低くならないことがあった。また、多孔質被膜の平均気孔径が2000nm超とやや大きいために、負極活物質層として、リチウム箔またはリチウムアルミ合金箔等を用いた場合、リチウムイオンの挿入、脱離にともなうデンドライトの発生を充分に阻止することが難しかった。さらに、この被膜をポリマ電解質として使用することも難しかった。 Since the porous PI coating described in Patent Document 3 does not have sufficient affinity with the electrolyte, the ionic resistivity of the PI coating when the electrolyte is filled in the pores may not be sufficiently low. It was. In addition, since the average pore diameter of the porous coating is slightly larger than 2000 nm, when a lithium foil or a lithium aluminum alloy foil is used as the negative electrode active material layer, dendrite is generated due to insertion and desorption of lithium ions. It was difficult to stop enough. Furthermore, it was difficult to use this coating as a polymer electrolyte.
特開平11-185731号公報Japanese Patent Laid-Open No. 11-185731 特開2011-233349号公報JP 2011-233349 A 国際公開2014/106954号International Publication No. 2014/106954
 そこで本発明は、前記課題を解決するものであって、微細な相分離構造を有し、かつイオン抵抗率が充分に低減されたPI被膜を形成できるPI溶液、およびこの被膜が形成された蓄電素子電極とその製造方法の提供を目的とする。 Therefore, the present invention solves the above-described problem, and has a fine phase separation structure and a PI solution capable of forming a PI film having a sufficiently reduced ionic resistivity, and an electricity storage provided with the film An object of the present invention is to provide a device electrode and a manufacturing method thereof.
 本発明者らは、PIの化学構造とPI溶液を特定のものとしたPI溶液を用い、これから得られる相分離構造を有するPI被膜を電極活物質層上に形成させることにより、前記課題が解決されることを見出し、本発明の完成に至った。 The present inventors solved the problem by using a PI solution having a specific chemical structure and PI solution of PI and forming a PI film having a phase separation structure obtained therefrom on the electrode active material layer. As a result, the present invention has been completed.
 本発明は下記を趣旨とするものである。 The present invention has the following purpose.
<1> PIに対する良溶媒と貧溶媒とを含有するPI溶液であって、前記PIが、主鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含有することを特徴とする蓄電素子電極用PI溶液。
<2> PI溶液がさらにリチウム塩を含有することを特徴とする<1>記載の蓄電素子電極用PI溶液。
<3> <1>または<2>に記載のPI溶液を、活物質層表面に塗布後、乾燥することにより相分離構造を有するPI被膜を形成する工程を含む蓄電素子電極の製造方法。
<4> <1>または<2>に記載のPI溶液を、基材に塗布後、乾燥することにより相分離構造を有するPI被膜を形成した後、前記PI被膜を活物質表面に熱圧着し、しかる後、基材を剥離する工程を含む蓄電素子電極の製造方法。
<5> 相分離構造を有するPI被膜が、多孔質PI被膜である<3>または<4>に記載の蓄電素子電極の製造方法。
<6> 相分離構造を有するPI被膜が少なくとも2相を有し、一方の相がPIであり、他方の相の少なくとも1相が電解質を含む相である<3>または<4>に記載の蓄電素子電極の製造方法。
<7> 活物質層表面に相分離構造を有するPI被膜が積層一体化されている電極であって、前記PIは、その主鎖中に、オキシアルキレンユニットおよび/またはシロキサンユニットを含有することを特徴とする蓄電素子電極。
<1> A PI solution containing a good solvent and a poor solvent for PI, wherein the PI contains an oxyalkylene unit and / or a siloxane unit in the main chain. .
<2> The PI solution for a storage element electrode according to <1>, wherein the PI solution further contains a lithium salt.
<3> A method for producing a storage element electrode comprising a step of forming a PI film having a phase separation structure by applying the PI solution according to <1> or <2> to the surface of the active material layer and then drying.
<4> After the PI solution according to <1> or <2> is applied to a substrate and then dried to form a PI coating having a phase separation structure, the PI coating is thermocompression bonded to the active material surface. Then, after that, a method for producing a storage element electrode including a step of peeling the substrate.
<5> The method for producing a storage element electrode according to <3> or <4>, wherein the PI coating having a phase separation structure is a porous PI coating.
<6> The PI film having a phase separation structure has at least two phases, one phase is PI, and at least one of the other phases is a phase containing an electrolyte, according to <3> or <4> A method for producing a storage element electrode.
<7> An electrode in which a PI film having a phase separation structure is laminated and integrated on the surface of an active material layer, wherein the PI contains an oxyalkylene unit and / or a siloxane unit in the main chain. A storage element electrode.
 本発明のPI溶液を蓄電素子活物質層の表面に塗布、乾燥することにより得られる相分離構造を有するPI被膜は、被膜のイオン抵抗率を充分に低くすることができ、安全性に優れた蓄電素子電極として好適に用いることができる。また、本発明のPI溶液には、あらかじめ、リチウム塩を含有させることにより、ポリマ電解質を形成させる溶液としても用いることができる。また、本発明のPI溶液を用いて形成されたPI被膜を有する電極は充放電特性に優れている。 The PI coating having a phase separation structure obtained by applying and drying the PI solution of the present invention on the surface of the electricity storage element active material layer can sufficiently reduce the ionic resistivity of the coating and is excellent in safety. It can be suitably used as a storage element electrode. The PI solution of the present invention can also be used as a solution for forming a polymer electrolyte by previously containing a lithium salt. In addition, an electrode having a PI film formed using the PI solution of the present invention is excellent in charge / discharge characteristics.
実施例9で得られた電極「A-1」の断面SEM像である。10 is a cross-sectional SEM image of an electrode “A-1” obtained in Example 9. 実施例9で得られた電極「A-1」の多孔質PI被膜部分の断面SEM像である。10 is a cross-sectional SEM image of a porous PI coating portion of an electrode “A-1” obtained in Example 9. FIG.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明では、PI溶液を用いる。ここで、PIは、主鎖にイミド結合を有する耐熱性高分子またはその前駆体であり、通常、モノマ成分であるジアミン成分と、テトラカルボン酸成分および/またはトリカルボン酸成分とを重縮合することにより得られる。これらのPIには、通常のPI(可溶性ポリイミド、熱可塑性ポリイミド、非熱可塑性ポリイミド等)以外に、PI変性体であるポリアミドイミド(以下、「PAI」と略記することがある)、ポリエステルイミド、およびPI前駆体等が含まれ、PI前駆体およびPAIが好ましく用いられる。これらのPIは、主鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含有するものであり、オキシアルキレンユニットおよび/またはシロキサンユニットを含有するモノマを共重合成分として用いた共重合PIである。 In the present invention, a PI solution is used. Here, PI is a heat-resistant polymer having an imide bond in the main chain or a precursor thereof, and is usually a polycondensation of a diamine component, which is a monomer component, with a tetracarboxylic acid component and / or a tricarboxylic acid component. Is obtained. These PIs include, in addition to normal PI (soluble polyimide, thermoplastic polyimide, non-thermoplastic polyimide, etc.), polyamide imide (hereinafter sometimes abbreviated as “PAI”), polyester imide, And PI precursors, and the like, and PI precursors and PAI are preferably used. These PIs are copolymer PIs containing oxyalkylene units and / or siloxane units in the main chain and using monomers containing oxyalkylene units and / or siloxane units as copolymerization components.
 PI前駆体とは、100℃以上の温度で加熱することによりイミド結合を生成するものであり、本発明においては、ポリアミック酸(以下、「PAA」と略記することがある)が好ましく用いられる。PAAは、溶媒中でテトラカルボン酸二無水物とジアミンとを反応させて得られる。なお、PAAは、部分的にイミド化されていてもよい。 The PI precursor is one that generates an imide bond by heating at a temperature of 100 ° C. or higher. In the present invention, polyamic acid (hereinafter sometimes abbreviated as “PAA”) is preferably used. PAA is obtained by reacting tetracarboxylic dianhydride and diamine in a solvent. PAA may be partially imidized.
 PI前駆体(例えばPAA)、PAI等のPIは、主鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含有する。主鎖中にオキシアルキレンユニットを含有するPAA溶液については、例えば、特許第5944613号に開示されているようなPI溶液を用いることができる。当該特許公報は、下記<1>および<2>を趣旨とするものであり、ここで詳しく述べられているオキシアルキレンユニットを含有するPI溶液を、本発明においても用いることができる。すなわち、本発明においては、当該特許公報の全文が参照され、組み入れられる。
<1> オキシアルキレンユニットを含有するPIからなり、気孔率が45体積%以上、95体積%以下であり、平均気孔径が10nm以上、1000nm以下であることを特徴とする多孔質PIフィルム。
<2> オキシアルキレンユニットを含有するPIと、その良溶媒および貧溶媒を含む混合溶媒とからなり、前記混合溶媒中の貧溶媒比率が65質量%以上、95質量%以下である溶液を基材上に塗布後、350℃未満の温度で乾燥することを特徴とする多孔質PIフィルムの製造方法。
PIs such as PI precursors (for example PAA) and PAI contain oxyalkylene units and / or siloxane units in the main chain. For a PAA solution containing an oxyalkylene unit in the main chain, for example, a PI solution as disclosed in Japanese Patent No. 5944613 can be used. The patent gazette has the following <1> and <2>, and a PI solution containing an oxyalkylene unit described in detail here can also be used in the present invention. That is, in the present invention, the entire text of the patent publication is referred to and incorporated.
<1> A porous PI film comprising PI containing an oxyalkylene unit, having a porosity of 45% to 95% by volume, and an average pore size of 10 nm to 1000 nm.
<2> A solution comprising PI containing an oxyalkylene unit and a mixed solvent containing the good solvent and the poor solvent, wherein the poor solvent ratio in the mixed solvent is 65% by mass or more and 95% by mass or less. A method for producing a porous PI film, characterized by drying at a temperature of less than 350 ° C. after coating on the top.
 オキシアルキレンユニットおよび/またはシロキサンユニットを含有するPAAは、テトラカルボン酸二無水物とジアミンとの略等モルでの反応において、テトラカルボン酸二無水物としてオキシアルキレンユニットおよび/またはシロキサンユニットを含有するテトラカルボン酸二無水物とオキシアルキレンユニットもシロキサンユニットも含有しないテトラカルボン酸二無水物とを用いて共重合するか、もしくはジアミンとしてオキシアルキレンユニットおよび/またはシロキサンユニットを含有するジアミンとオキシアルキレンユニットもシロキサンユニットも含有しないジアミンを用いて共重合するか、もしくは前記したテトラカルボン酸二無水物と前記したジアミンの両方を用いて共重合することにより得られるPAAである。ここで、オキシアルキレンユニットおよび/またはシロキサンユニットを含有するテトラカルボン酸二無水物またはジアミンを「モノマA」、オキシアルキレンユニットもシロキサンユニットも含有しないテトラカルボン酸二無水物またはジアミンを「モノマB」と、それぞれ略記することがある。オキシアルキレンユニットもシロキサンユニットも含有しないテトラカルボン酸二無水物を「TA」、オキシアルキレンユニットもシロキサンユニットも含有しないジアミンを「DA」と、それぞれ略記することがある。 The PAA containing an oxyalkylene unit and / or a siloxane unit contains an oxyalkylene unit and / or a siloxane unit as a tetracarboxylic dianhydride in the reaction of tetracarboxylic dianhydride and diamine in an approximately equimolar amount. Copolymerization using tetracarboxylic dianhydride and tetracarboxylic dianhydride containing neither oxyalkylene unit nor siloxane unit, or diamine and oxyalkylene unit containing oxyalkylene unit and / or siloxane unit as diamine It is a PAA obtained by copolymerization using a diamine that does not contain any siloxane unit or by copolymerization using both the above-described tetracarboxylic dianhydride and the above-described diamine. Here, a tetracarboxylic dianhydride or diamine containing an oxyalkylene unit and / or a siloxane unit is “monomer A”, and a tetracarboxylic dianhydride or diamine containing neither an oxyalkylene unit nor a siloxane unit is “monomer B”. And may be abbreviated respectively. A tetracarboxylic dianhydride containing neither an oxyalkylene unit nor a siloxane unit may be abbreviated as “TA”, and a diamine containing neither an oxyalkylene unit nor a siloxane unit may be abbreviated as “DA”.
 本発明は、モノマAが一分子中、オキシアルキレンユニットおよびシロキサンユニットの両方を含有することを妨げるものではないが、モノマAは通常、一分子中、オキシアルキレンユニットまたはシロキサンユニットの一方を含有する。モノマAのうち、オキシアルキレンユニットを含有するモノマA(以下、「モノマA-1」と略記することがある)として、例えば、オキシアルキレンユニットを含有するテトラカルボン酸二無水物(以下、「TA-1」と略記することがある)およびオキシアルキレンユニットを含有するジアミン(以下、「DA-1」と略記することがある)が挙げられる。モノマAのうち、シロキサンユニットを含有するモノマA(以下、「モノマA-2」と略記することがある)として、例えば、シロキサンユニットを含有するテトラカルボン酸二無水物(以下、「TA-2」と略記することがある)およびシロキサンユニットを含有するジアミン(以下、「DA-2」と略記することがある)が挙げられる。モノマAとしてはモノマA-1またはモノマA-2の一方または両方を使用してもよく、通常は一方を使用する。 Although the present invention does not prevent monomer A from containing both oxyalkylene units and siloxane units in one molecule, monomer A usually contains one of oxyalkylene units or siloxane units in one molecule. . Among the monomers A, as the monomer A containing an oxyalkylene unit (hereinafter sometimes abbreviated as “monomer A-1”), for example, a tetracarboxylic dianhydride containing an oxyalkylene unit (hereinafter referred to as “TA”). -1 ”) and diamines containing oxyalkylene units (hereinafter sometimes abbreviated as“ DA-1 ”). Among the monomers A, as the monomer A containing a siloxane unit (hereinafter sometimes abbreviated as “monomer A-2”), for example, a tetracarboxylic dianhydride containing a siloxane unit (hereinafter referred to as “TA-2”). And a diamine containing a siloxane unit (hereinafter sometimes abbreviated as “DA-2”). As monomer A, one or both of monomer A-1 and monomer A-2 may be used, and usually one of them is used.
 オキシアルキレンユニットおよび/またはシロキサンユニットを含有するPAAは、換言すると、TA-1、DA-1、TA-2およびDA-2からなる群から選択される1種または2種以上のモノマをモノマ成分として含有してもよい。好ましいオキシアルキレンユニットおよび/またはシロキサンユニットを含有するPAAはDA-1およびDA-2からなる群から選択される1種または2種以上のモノマをモノマ成分として含有する。 In other words, the PAA containing an oxyalkylene unit and / or a siloxane unit is a monomer component comprising one or more monomers selected from the group consisting of TA-1, DA-1, TA-2 and DA-2. You may contain as. A PAA containing a preferred oxyalkylene unit and / or siloxane unit contains one or more monomers selected from the group consisting of DA-1 and DA-2 as the monomer component.
 オキシアルキレンユニットを含有するPAAは、例えば、TA-1および/またはDA-1と、TAおよび/またはDAとを共重合させることにより得られる共重合PAA(以下、「PAA-1」と略記することがある)である。 The PAA containing an oxyalkylene unit is, for example, a copolymerized PAA obtained by copolymerizing TA-1 and / or DA-1 with TA and / or DA (hereinafter abbreviated as “PAA-1”). There are things).
 シロキサンユニットを含有するPAAは、例えば、TA-2および/またはDA-2と、TAおよび/またはDAとを共重合させることにより得られる共重合PAA(以下、「PAA-2」と略記することがある)である。 PAA containing a siloxane unit is, for example, a copolymerized PAA obtained by copolymerizing TA-2 and / or DA-2 with TA and / or DA (hereinafter abbreviated as “PAA-2”). Is).
 PAA-1とPAA-2とは、混合して用いることもできる。 PAA-1 and PAA-2 can be used in combination.
 PAA溶液には、溶質であるPAAを溶解する良溶媒と、溶質には貧溶媒となる溶媒とを混合した混合溶媒が含有されている。ここで、良溶媒とは、25℃において、PAAに対する溶解度が1質量%以上の溶媒をいい、貧溶媒とは、25℃において、PAAに対する溶解度が1質量%未満の溶媒をいう。貧溶媒は、良溶媒よりも高沸点であることが好ましい。また、その沸点差は、5℃以上が好ましく、20℃以上がより好ましく、50℃以上がさらに好ましい。 The PAA solution contains a mixed solvent obtained by mixing a good solvent that dissolves the solute PAA and a solute that is a poor solvent. Here, the good solvent refers to a solvent having a solubility in PAA of 1% by mass or more at 25 ° C., and the poor solvent refers to a solvent having a solubility in PAA of less than 1% by mass at 25 ° C. The poor solvent preferably has a higher boiling point than the good solvent. Moreover, the boiling point difference is preferably 5 ° C. or higher, more preferably 20 ° C. or higher, and further preferably 50 ° C. or higher.
 良溶媒としては、アミド系溶媒または尿素系溶媒が好ましく用いられる。アミド系溶媒としては、例えば、N-メチル-2-ピロリドン(NMP 沸点:202℃)、N,N-ジメチルホルムアミド(DMF 沸点:153℃)、N,N-ジメチルアセトアミド(DMAc 沸点:166℃)が挙げられる。また、尿素系溶媒としては、例えば、テトラメチル尿素(TMU 沸点:177℃)、ジメチルエチレン尿素(沸点:220℃)が挙げられる。これらの良溶媒は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the good solvent, an amide solvent or a urea solvent is preferably used. Examples of the amide solvent include N-methyl-2-pyrrolidone (NMP boiling point: 202 ° C.), N, N-dimethylformamide (DMF boiling point: 153 ° C.), N, N-dimethylacetamide (DMAc boiling point: 166 ° C.). Is mentioned. Examples of urea solvents include tetramethylurea (TMU boiling point: 177 ° C) and dimethylethyleneurea (boiling point: 220 ° C). These good solvents may be used alone or in combination of two or more.
 貧溶媒としては、エーテル系溶媒が好ましく用いられる。エーテル系溶媒としては、例えば、ジエチレングリコールジメチルエーテル(沸点:162℃)、トリエチレングリコールジメチルエーテル(沸点:216℃)、テトラエチレングリコールジメチルエーテル(沸点:275℃)、ジエチレングリコール(沸点:244℃)、トリエチレングリコール(沸点:287℃)、トリプロピレングリコール(沸点:273℃)、ジエチレングルコールモノメチルエーテル(沸点:194℃)、トリプロピレングリコールモノメチルエーテル(沸点:242℃)、トリエチレングルコールモノメチルエーテル(沸点:249℃)、等の溶媒を挙げることができる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the poor solvent, an ether solvent is preferably used. Examples of ether solvents include diethylene glycol dimethyl ether (boiling point: 162 ° C), triethylene glycol dimethyl ether (boiling point: 216 ° C), tetraethylene glycol dimethyl ether (boiling point: 275 ° C), diethylene glycol (boiling point: 244 ° C), triethylene glycol. (Boiling point: 287 ° C.), tripropylene glycol (boiling point: 273 ° C.), diethylene glycol monomethyl ether (boiling point: 194 ° C.), tripropylene glycol monomethyl ether (boiling point: 242 ° C.), triethylene glycol monomethyl ether (boiling point: 249 ° C.), and the like. These may be used alone or in combination of two or more.
 混合溶媒中における貧溶媒の配合量としては、混合溶媒質量に対し、15~95質量%とすることが好ましく、60~90質量%とすることがより好ましい。このようにすることにより、基材への塗布後の乾燥工程において、効率よく相分離が起こる。 The blending amount of the poor solvent in the mixed solvent is preferably 15 to 95% by mass, and more preferably 60 to 90% by mass with respect to the mass of the mixed solvent. By doing in this way, phase separation occurs efficiently in the drying process after application to the substrate.
 PAA-1溶液としては、モノマであるテトラカルボン酸二無水物(TA-1およびTAの混合物、またはTAのみ)とジアミン(DA-1およびDAの混合物、またはDAのみ)とを略等モルで配合し、それを前記混合溶媒中、10~70℃の温度で重合反応させて得られる溶液を用いることができる。 As the PAA-1 solution, monomers such as tetracarboxylic dianhydride (a mixture of TA-1 and TA, or only TA) and diamine (a mixture of DA-1 and DA, or DA only) are approximately equimolar. A solution obtained by blending and polymerizing the mixture in the mixed solvent at a temperature of 10 to 70 ° C. can be used.
 TA-1はオキシアルキレンユニットを含有するテトラカルボン酸二無水物である。TA-1の具体例としては、エチレングリコールビスアンヒドロトリメリテート(TMEG)、ジエチレングリコールビスアンヒドロトリメリテート、トリエチレングリコールビスアンヒドロトリメリテート、テトラエチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、ジプロピレングリコールビスアンヒドロトリメリテート、トリプロピレングリコールビスアンヒドロトリメリテート、テトラプロピレングリコールビスアンヒドロトリメリテート、ポリプロピレングリコールビスアンヒドロトリメリテート等のほか、後述する「オキシアルキレンユニットを含有するジアミン」(DA-1)のいずれかの化合物と無水トリメリット酸とがアミド形成反応して得られる、2個のアミド結合を有するテトラカルボン酸二無水物が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、TMEGが好ましい。これらの化合物は市販品を利用することができるし、公知の方法により製造することもできる。 TA-1 is a tetracarboxylic dianhydride containing an oxyalkylene unit. Specific examples of TA-1 include ethylene glycol bisanhydro trimellitate (TMEG), diethylene glycol bis anhydro trimellitate, triethylene glycol bis anhydro trimellitate, tetraethylene glycol bis anhydro trimellitate, polyethylene Glycol bisanhydro trimellitate, propylene glycol bis anhydro trimellitate, dipropylene glycol bis anhydro trimellitate, tripropylene glycol bis anhydro trimellitate, tetrapropylene glycol bis anhydro trimellitate, polypropylene glycol bis In addition to anhydrotrimellitate, etc., any of the compounds described below, “diamine containing oxyalkylene unit” (DA-1), and trimellitic anhydride And Doo acid is obtained by amide-forming reaction, the tetracarboxylic dianhydride having two amide bonds. These may be used alone or in combination of two or more. Of these, TMEG is preferred. These compounds can use a commercial item and can also manufacture it by a well-known method.
 TAは、オキシアルキレンユニットもシロキサンユニットも含有しないテトラカルボン酸二無水物であれば特に限定されない。TAの具体例としては、例えば、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、および3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、PMDAおよびBPDAからなる群から選択される1種以上の化合物が好ましい。これらの化合物は市販品を利用することができるし、公知の方法により製造することもできる。 TA is not particularly limited as long as it is a tetracarboxylic dianhydride containing neither an oxyalkylene unit nor a siloxane unit. Specific examples of TA include, for example, pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, and 3,3 ′, 4,4′-diphenylsulfonetetra Examples thereof include carboxylic dianhydrides. These may be used alone or in combination of two or more. Of these, one or more compounds selected from the group consisting of PMDA and BPDA are preferred. These compounds can use a commercial item and can also manufacture it by a well-known method.
 DA-1はオキシアルキレンユニットを含有するジアミンである。DA-1の具体例としては、エチレングリコールビス(2-アミノエチル)エーテル、ジエチレングリコールビス(2-アミノエチル)エーテル、トリエチレングリコールビス(2-アミノエチル)エーテル、テトラエチレングリコールビス(2-アミノエチル)エーテル、ポリエチレングリコールビス(2-アミノエチル)エーテル、プロピレングリコールビス(2-アミノエチル)エーテル、ジプロピレングリコールビス(2-アミノエチル)エーテル、トリプロピレングリコールビス(2-アミノエチル)エーテル、テトラプロピレングリコールビス(2-アミノエチル)エーテル、ポリプロピレングリコールビス(2-アミノエチル)エーテル(PPGME)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、PPGMEが好ましい。これらの化合物は市販品を利用することができるし、公知の方法により製造することもできる。例えば、PPGMEはジェファーミンD2000(数平均分子量2000:ハンツマン社製)として入手可能である。 DA-1 is a diamine containing oxyalkylene units. Specific examples of DA-1 include ethylene glycol bis (2-aminoethyl) ether, diethylene glycol bis (2-aminoethyl) ether, triethylene glycol bis (2-aminoethyl) ether, tetraethylene glycol bis (2-amino). Ethyl) ether, polyethylene glycol bis (2-aminoethyl) ether, propylene glycol bis (2-aminoethyl) ether, dipropylene glycol bis (2-aminoethyl) ether, tripropylene glycol bis (2-aminoethyl) ether, Examples thereof include tetrapropylene glycol bis (2-aminoethyl) ether and polypropylene glycol bis (2-aminoethyl) ether (PPGME). These may be used alone or in combination of two or more. Of these, PPGME is preferred. These compounds can use a commercial item and can also manufacture it by a well-known method. For example, PPGME is available as Jeffamine D2000 (number average molecular weight 2000: manufactured by Huntsman).
 DAは、オキシアルキレンユニットもシロキサンユニットも含有しないジアミンであれば特に限定されない。DAの具体例としては、例えば、4,4’-ジアミノジフェニルエーテル(DADE)、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,3’-ジアミノジフェニルスルフォン、4,4’-ジアミノジフェニルスルフォン、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、および4,4’-ジアミノジフェニルスルフィド等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、DADEおよびBAPPからなる群から選択される1種以上の化合物が好ましい。これらの化合物は市販品を利用することができるし、公知の方法により製造することもできる。 DA is not particularly limited as long as it is a diamine containing neither an oxyalkylene unit nor a siloxane unit. Specific examples of DA include, for example, 4,4′-diaminodiphenyl ether (DADE), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane (BAPP), 4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, p-phenylenediamine, m-phenylenediamine, 2,4-diamino Toluene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-diaminobiphenyl, 4 , 4'-Diamino-2,2'-bis (trifluoromethyl) biphenyl, 4,4'-bis 4-aminophenoxy) biphenyl, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl Sulfone, 4,4′-diaminodiphenyl sulfide, and the like. These may be used alone or in combination of two or more. Of these, one or more compounds selected from the group consisting of DADE and BAPP are preferred. These compounds can use a commercial item and can also manufacture it by a well-known method.
 PAA-2溶液としては、モノマであるテトラカルボン酸二無水物(TA-2およびTAの混合物、またはTAのみ)とジアミン(DA-2およびDAの混合物、またはDAのみ)とを略等モルで配合し、それを前記混合溶媒中、10~70℃の温度で重合反応させて得られる溶液を用いることができる。 As the PAA-2 solution, a monomer tetracarboxylic dianhydride (a mixture of TA-2 and TA, or only TA) and a diamine (a mixture of DA-2 and DA, or only DA) are approximately equimolar. A solution obtained by blending and polymerizing the mixture in the mixed solvent at a temperature of 10 to 70 ° C. can be used.
 TA-2はシロキサンユニットを含有するテトラカルボン酸二無水物である。TA-2の具体例としては、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラエチルシロキサン二無水物、ビス(3,4-ジカルボキシフェニル)ジメチルポリシロキサン二無水物、ビス(3,4-ジカルボキシフェニル)ジエチルポリシロキサン二無水物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの化合物は市販品を利用することができるし、公知の方法により製造することもできる。 TA-2 is a tetracarboxylic dianhydride containing siloxane units. Specific examples of TA-2 include 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, 1,3-bis (3,4- Dicarboxyphenyl) -1,1,3,3-tetraethylsiloxane dianhydride, bis (3,4-dicarboxyphenyl) dimethylpolysiloxane dianhydride, bis (3,4-dicarboxyphenyl) diethylpolysiloxane An anhydride etc. are mentioned. These may be used alone or in combination of two or more. These compounds can use a commercial item and can also manufacture it by a well-known method.
 DA-2はシロキサンユニットを含有するジアミンである。DA-2の具体例としては、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)-1,1,3,3-テトラメチルジシロキサン、1,3-ビス(4-アミノフェノキシ)-1,1,3,3-テトラメチルジシロキサン、および下記一般式(1)で表される化合物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。DA-2の中で、下記一般式(1)において、RおよびRがトリメチレン基、R、R、RおよびRがメチル基、nが3~100である化合物およびそれらの混合物(以下、「DASM」と略記することがある)が好ましく、これらの中で、数平均分子量が300~5000の化合物およびそれらの混合物がより好ましい。なお、DA-2は、市販品を用いることができるし、公知の方法により製造することもできる。例えば、DASMはKF-8010(数平均分子量860:信越化学社製)として入手可能である。 DA-2 is a diamine containing siloxane units. Specific examples of DA-2 include 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, 1,3-bis (4-aminobutyl) -1,1, Examples include 3,3-tetramethyldisiloxane, 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane, and a compound represented by the following general formula (1). . These may be used alone or in combination of two or more. In DA-2, in the following general formula (1), R 1 and R 2 are trimethylene groups, R 3 , R 4 , R 5 and R 6 are methyl groups, n is 3 to 100, and compounds thereof A mixture (hereinafter sometimes abbreviated as “DASM”) is preferred, and among these, compounds having a number average molecular weight of 300 to 5000 and mixtures thereof are more preferred. DA-2 can be a commercially available product or can be produced by a known method. For example, DASM is available as KF-8010 (number average molecular weight 860: manufactured by Shin-Etsu Chemical Co., Ltd.).
Figure JPOXMLDOC01-appb-C000001
(ただし、式(1)中、nは1以上の整数を示す。また、RおよびRは、それぞれ同一または異なって、低級アルキレン基またはフェニレン基を示し、R、R、RおよびRは、それぞれ同一または異なった、低級アルキル基、フェニル基またはフェノキシ基を示す。)
Figure JPOXMLDOC01-appb-C000001
(However, in formula (1), n represents an integer of 1 or more. Further, R 1 and R 2 are the same or different and each represents a lower alkylene group or a phenylene group, R 3, R 4, R 5 And R 6 each represents the same or different lower alkyl group, phenyl group or phenoxy group.
 特にオキシアルキレンユニットまたはシロキサンユニットのうち、オキシアルキレンユニットのみを含有するPAAにおいて、オキシアルキレンユニットを含有するモノマA-1として、TA-1またはDA-1の一方を使用する場合、TA-1またはDA-1の使用量(共重合比率)は0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。共重合比率を示す前記モル%は、以下の式に従って算出された値をいう。また、TA-1およびDA-1の両方を使用する場合も、その使用量(共重合比率)は、それぞれ、0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。 In particular, when one of TA-1 or DA-1 is used as the monomer A-1 containing an oxyalkylene unit in a PAA containing only an oxyalkylene unit among oxyalkylene units or siloxane units, TA-1 or The amount of DA-1 used (copolymerization ratio) is preferably 0.5 to 20 mol%, more preferably 1 to 10 mol%. The mol% indicating the copolymerization ratio refers to a value calculated according to the following formula. When both TA-1 and DA-1 are used, the amount used (copolymerization ratio) is preferably 0.5 to 20 mol%, and preferably 1 to 10 mol%. Is more preferable.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 またオキシアルキレンユニットまたはシロキサンユニットのうち、シロキサンユニットのみを含有するPAAにおいて、シロキサンユニットを含有するモノマA-2として、TA-2またはDA-2の一方を使用する場合、TA-2またはDA-2の使用量(共重合比率)は0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。共重合比率を示す前記モル%は、以下の式に従って算出された値をいう。また、TA-2およびDA-2の両方を使用する場合も、その使用量(共重合比率)は、それぞれ、0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。 In addition, when one of TA-2 or DA-2 is used as a monomer A-2 containing a siloxane unit in a PAA containing only a siloxane unit among oxyalkylene units or siloxane units, TA-2 or DA- The amount of 2 used (copolymerization ratio) is preferably 0.5 to 20 mol%, more preferably 1 to 10 mol%. The mol% indicating the copolymerization ratio refers to a value calculated according to the following formula. When both TA-2 and DA-2 are used, the amount used (copolymerization ratio) is preferably 0.5 to 20 mol%, and preferably 1 to 10 mol%. Is more preferable.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 オキシアルキレンユニットおよびシロキサンユニットの両方を含有するPAAにおいて、TA-1、TA-2、DA-1、DA-2の使用量(共重合比率)は、それぞれ、0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。 In PAA containing both oxyalkylene units and siloxane units, the amount of TA-1, TA-2, DA-1 and DA-2 used (copolymerization ratio) is 0.5 to 20 mol%, respectively. It is preferably 1 to 10 mol%, more preferably.
 以上、述べたように共重合PAAにおいては、オキシアルキレンユニットまたはシロキサンユニットを含有するモノマの共重合比率は、前記した式に基づいて、それぞれ、0.5~20モル%とすることが好ましく、1~10モル%とすることがより好ましい。すなわち、オキシアルキレンユニットおよび/またはシロキサンユニットを含有するPAAにおいては、前記した式で規定したTA-1、DA-1、TA-2およびDA-2それぞれの使用量(共重合比率)のうち、少なくとも1つの使用量(共重合比率)が前記範囲内であることが好ましい。 As described above, in the copolymerized PAA, the copolymerization ratio of monomers containing oxyalkylene units or siloxane units is preferably 0.5 to 20 mol% based on the above formula, More preferably, it is 1 to 10 mol%. That is, in PAA containing an oxyalkylene unit and / or a siloxane unit, among the used amounts (copolymerization ratios) of TA-1, DA-1, TA-2 and DA-2 defined by the above formula, It is preferable that at least one use amount (copolymerization ratio) is within the above range.
 以上、PAAの例について述べたが、PAA以外のPI、例えば可溶性PIおよび/またはPAI等についても、PAAと同様の方法を用いることができる。また、オキシアルキレンユニットまたはシロキサンユニットを含有するモノマの好ましい使用量(共重合比率)についても同様である。 In the above, examples of PAA have been described, but for PIs other than PAA, such as soluble PI and / or PAI, the same method as PAA can be used. The same applies to the preferred use amount (copolymerization ratio) of monomers containing oxyalkylene units or siloxane units.
 例えば、PAI溶液については、特開2016-145300号公報に開示されているようなPAI溶液を用いることができる。当該公開公報は、下記<1>および<2>を趣旨とするものであり、ここで詳しく述べられているオキシアルキレンユニットを含有するPAI溶液を、本発明においても用いることができる。すなわち、本発明においては、当該公開公報の全文が参照され、組み入れられる。
<1> 乾式多孔化プロセスで得られる多孔質PAIであって、オキシアルキレンユニットを含有するPAIからなり、気孔率が20体積%以上、95体積%以下、平均気孔径が10nm以上、1000nm以下であることを特徴とする多孔質PAIフィルム。
<2> オキシアルキレンユニットと、その良溶媒と貧溶媒とを含む溶液を基材上に塗布後、200℃以下の温度で乾燥することを特徴とする多孔質PAIフィルムの製造方法。
For example, as the PAI solution, a PAI solution as disclosed in JP-A-2016-145300 can be used. The gazette has the gist of <1> and <2> below, and a PAI solution containing an oxyalkylene unit described in detail here can also be used in the present invention. That is, in the present invention, the entire text of the publication is referred to and incorporated.
<1> A porous PAI obtained by a dry porosification process, comprising a PAI containing an oxyalkylene unit, having a porosity of 20% by volume to 95% by volume and an average pore size of 10 nm to 1000 nm. A porous PAI film characterized by being.
<2> A method for producing a porous PAI film, wherein a solution containing an oxyalkylene unit and a good solvent and a poor solvent is applied on a substrate and then dried at a temperature of 200 ° C. or lower.
 なお、本発明では、シロキサンユニットを含有するPAIも用いることができる。これは、トリカルボン酸成分、前記DA-2および前記DAを共重合させることにより得られる共重合PAIである。 In the present invention, PAI containing a siloxane unit can also be used. This is a copolymerized PAI obtained by copolymerizing the tricarboxylic acid component, the DA-2 and the DA.
 PI溶液は、良溶媒中で重合反応して溶液を得た後、これに貧溶媒を加える方法、貧溶媒中で重合反応して懸濁液を得た後、これに良溶媒を加える方法等で得ることもできる。 The PI solution is obtained by polymerizing in a good solvent to obtain a solution, and then adding a poor solvent thereto, obtaining a suspension by polymerizing in the poor solvent and then adding a good solvent thereto, etc. Can also be obtained.
 PI溶液におけるPIの濃度は、3~45質量%が好ましく、5~40質量%がより好ましい。 The concentration of PI in the PI solution is preferably 3 to 45% by mass, more preferably 5 to 40% by mass.
 PI溶液の30℃における粘度は0.01~100Pa・sの範囲が好ましく、0.1~50Pa・sがより好ましい。 The viscosity of the PI solution at 30 ° C. is preferably in the range of 0.01 to 100 Pa · s, more preferably 0.1 to 50 Pa · s.
 PI溶液には、必要に応じて、各種界面活性剤および/またはシランカップリング剤のような公知の添加物を、本発明の効果を損なわない範囲で添加してもよい。また、必要に応じて、PI溶液に、PI以外の他の高分子を、本発明の効果を損なわない範囲で添加してもよい。 In the PI solution, if necessary, known additives such as various surfactants and / or silane coupling agents may be added as long as the effects of the present invention are not impaired. Moreover, you may add other polymers other than PI to the PI solution in the range which does not impair the effect of this invention as needed.
 電極活物質層と多孔質PI被膜とを積層一体化するには、例えば、PI溶液を電極活物質層の表面に塗布し、乾燥を行うことにより、相分離を誘起させて多孔質PI被膜を形成させればよい。また、PI溶液を基材(例えば、ポリエステルフィルム等の離型フィルム等)上に塗布し、乾燥を行うことにより、相分離を誘起させて多孔質PI被膜を形成させ、これを電極活物資層と熱圧着後、基材(離型フィルム)を剥離することにより、積層一体化することもできる。熱圧着に際しては、多孔質PI被膜表面に接着剤を点状に塗布した後、電極活物質層と熱圧着すればよい。なお、接着剤の点状塗布については、例えば、特開2003-151638号公報、国際公開2014/014118号、特開2016-42454号公報等に開示されているような方法を用いることができる。 In order to laminate and integrate the electrode active material layer and the porous PI coating, for example, a PI solution is applied to the surface of the electrode active material layer and dried to induce phase separation to form the porous PI coating. What is necessary is just to form. Also, a PI solution is applied onto a substrate (for example, a release film such as a polyester film) and dried to induce phase separation to form a porous PI coating, which is used as an electrode active material layer. After thermocompression bonding, the substrate (release film) can be peeled off to be laminated and integrated. In thermocompression bonding, an adhesive may be applied to the surface of the porous PI coating in the form of dots and then thermocompression bonded to the electrode active material layer. For the point application of the adhesive, for example, methods disclosed in Japanese Patent Application Laid-Open Nos. 2003-151638, 2014/014118, and 2016-42454 can be used.
 電極活物質層へのPI溶液の塗布方法としては、ロールツーロールにより連続的に塗布する方法、枚様で塗布する方法が採用でき、いずれの方法でもよい。塗布装置としては、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ等を用いる公知の方法で行うことができる。 As a method of applying the PI solution to the electrode active material layer, a method of applying continuously by roll-to-roll or a method of applying in a sheet form can be adopted, and any method may be used. As the coating apparatus, a known method using a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater or the like can be used.
 PI溶液として、PI前駆体溶液を用いた場合は、前記乾燥工程には、塗膜に含まれる溶媒を揮発させることにより相分離を誘起させて多孔質PAA被膜を形成させる工程1と前記多孔質PAA被膜を熱イミド化して多孔質PI被膜とする工程2とが含まれる。工程1の温度としては、100~200℃程度が好ましく、工程2の温度としては、350℃未満の温度、例えば200~320℃で行うことが好ましい。なお、可溶性ポリイミド、PAI等、PI前駆体以外のPIを用いた場合は、前記工程2は不要となる。また、前記工程2において、共重合PAAは100%イミド化されている必要はなく、イミド化されていない共重合PAA成分が残留していてもよい。ここで、イミド化比率は、乾燥条件、熱イミド化条件等を選ぶことによって、調整することができる。 In the case where a PI precursor solution is used as the PI solution, the drying step includes inducing the phase separation by volatilizing the solvent contained in the coating film to form a porous PAA coating and the porous coating. And Step 2 in which the PAA coating is thermally imidized to form a porous PI coating. The temperature in step 1 is preferably about 100 to 200 ° C., and the temperature in step 2 is preferably less than 350 ° C., for example, 200 to 320 ° C. In addition, when PI other than PI precursors, such as soluble polyimide and PAI, is used, the step 2 is not necessary. In Step 2, the copolymerized PAA does not need to be 100% imidized, and a copolymerized PAA component that is not imidized may remain. Here, the imidization ratio can be adjusted by selecting drying conditions, thermal imidization conditions, and the like.
 本発明で用いられるPIは、Tgが150℃以上であることが好ましく、200℃以上がより好ましい。このようにすることにより、良好な耐熱性を確保することができる。なお、Tgは、DSC(示差熱分析)で測定した値を用いることができる。 The PI used in the present invention preferably has a Tg of 150 ° C. or higher, more preferably 200 ° C. or higher. By doing in this way, favorable heat resistance is securable. In addition, the value measured by DSC (differential thermal analysis) can be used for Tg.
 多孔質PI被膜の平均気孔径は、10nm以上、2000nm以下であり、20nm以上、1300nm以下が好ましく、20nm以上、1000nm以下がより好ましい。平均気孔径をこのようにすることにより、PI被膜のイオン抵抗率を充分に低くすることができるとともに、このPI被膜をポリマ電解液として使用することが可能となる。なお、平均気孔径は、多孔質PI被膜の断面のSEM(走査型電子顕微鏡)像を倍率5000~20000倍で取得し、市販の画像処理ソフトにより、気孔部とPI部分とに分離して解析することにより確認することができる。 The average pore diameter of the porous PI coating is 10 nm or more and 2000 nm or less, preferably 20 nm or more and 1300 nm or less, and more preferably 20 nm or more and 1000 nm or less. By making the average pore diameter in this way, the ionic resistivity of the PI coating can be made sufficiently low, and this PI coating can be used as a polymer electrolyte. The average pore diameter was obtained by obtaining a SEM (scanning electron microscope) image of the cross section of the porous PI coating at a magnification of 5000 to 20000, and separating it into a pore portion and a PI portion using commercially available image processing software. This can be confirmed.
 多孔質PI被膜の気孔率は、30~90体積%であることが好ましく、40~80体積%であることがより好ましく、45~80体積%であることがさらに好ましい。気孔率をこのように設定することにより、良好な力学的特性と、活物質の体積変化に伴う応力緩和のための良好なクッション性とが同時に確保される。このため、安全性に優れ、かつ良好なサイクル特性を有する電極を得ることができる。多孔質PI被膜の気孔率は、多孔質PI被膜の見掛け密度と、被膜を構成するPIの真密度(比重)とから算出される値である。詳細には、気孔率(体積%)は、PI被膜の見掛け密度がA(g/cm)、PIの真密度がB(g/cm)の場合、次式により算出される。 The porosity of the porous PI coating is preferably 30 to 90% by volume, more preferably 40 to 80% by volume, and still more preferably 45 to 80% by volume. By setting the porosity in this way, good mechanical properties and good cushioning properties for stress relaxation accompanying the volume change of the active material can be ensured at the same time. For this reason, the electrode which is excellent in safety | security and has a favorable cycling characteristic can be obtained. The porosity of the porous PI coating is a value calculated from the apparent density of the porous PI coating and the true density (specific gravity) of PI constituting the coating. Specifically, the porosity (volume%) is calculated by the following formula when the apparent density of the PI coating is A (g / cm 3 ) and the true density of PI is B (g / cm 3 ).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 多孔質PI被膜は活物質層と強固に接着していることが好ましい。すなわち、電池の安全性向上の観点から、電極活物質層と多孔質PI被膜の接着強度が、電極活物質層の強度よりも高いことが好ましい。接着強度が、電極活物質層の強度よりも高いかどうかは、電極活物質層をPI被膜から剥離した時、その界面で、凝集破壊が起こるか、界面剥離が起こるかで判定することができる。凝集破壊が起こったときに、接着界面の強度が、電極活物質層の強度よりも高いと判定される。剥離後のPI被膜の表面(電極活物質層との接着面)の一部に活物質層の断片が付着している場合に凝集破壊と判定される。本発明の電極では、このような高い接着力が電池の安全性の向上に大きく寄与する。 It is preferable that the porous PI coating is firmly bonded to the active material layer. That is, from the viewpoint of improving battery safety, the adhesive strength between the electrode active material layer and the porous PI coating is preferably higher than the strength of the electrode active material layer. Whether or not the adhesive strength is higher than the strength of the electrode active material layer can be determined by whether cohesive failure or interface peeling occurs at the interface when the electrode active material layer is peeled from the PI coating. . When cohesive failure occurs, it is determined that the strength of the adhesive interface is higher than the strength of the electrode active material layer. A cohesive failure is determined when a piece of the active material layer adheres to a part of the surface of the PI coating after peeling (adhesion surface with the electrode active material layer). In the electrode of the present invention, such high adhesive strength greatly contributes to the improvement of battery safety.
 多孔質PI被膜の厚さは0.5~100μmが好ましく、1~20μmがより好ましい。 The thickness of the porous PI coating is preferably 0.5 to 100 μm, more preferably 1 to 20 μm.
 多孔質PI被膜は、絶縁性であっても導電性であってもどちらでもよい。多孔質PI被膜が絶縁性である場合は、この層が蓄電素子(例えばリチウム二次電池)の正極と負極の電気的な接触を防ぐセパレータとしての機能も有するので好都合である。多孔質PI被膜を導電性とする場合は、例えば、カーボン(黒鉛、カーボンブラック等)粒子および/または金属(銀、銅、ニッケル等)粒子等の導電性粒子を、5~50質量%程度多孔質PI被膜に配合すればよい。多孔質PI被膜のクッション性と接着性を確保する観点から、これら導電性粒子の配合量は、20質量%以下であることが好ましい。 The porous PI coating may be either insulating or conductive. When the porous PI coating is insulative, this layer is advantageous because it also has a function as a separator that prevents electrical contact between the positive electrode and the negative electrode of a storage element (for example, a lithium secondary battery). When making the porous PI coating conductive, for example, 5 to 50% by mass of conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles are porous. What is necessary is just to mix | blend with quality PI film. From the viewpoint of ensuring cushioning properties and adhesion of the porous PI coating, the amount of these conductive particles is preferably 20% by mass or less.
 電極表面に形成された多孔質PI被膜は、蓄電素子電極として使用する際は、蓄電素子のセルを作成する際に、この気孔部分に公知の電解液(エチレンカーボネートおよびジメチルカーボネート等の溶媒に、LiPF等のリチウム塩を溶解させた溶液)が充填される。これにより、イオン伝導性が発現し、蓄電素子電極として用いることができる。このように、多孔質PI被膜を形成した蓄電素子電極を、セル作成の際、イオン伝導性を有する被膜としてもよいが、あらかじめ、この気孔部分の一部または全部に電解質を含有させて、イオン伝導性を有する被膜(このPI被膜を「ポリマ電解質PI被膜」と略記することがある)としておいてもよい。このようにするためには、電解質を含む溶液を、多孔質PI被膜に含浸して、気孔中に充填すればよい。このような手法は公知であり、例えば、Electrochimica Acta 45 (2000) 1347-1360、Electrochimica Acta 204(2016) 176-182に記載されているような方法を用いることができる。電解質を含む溶液には、例えば、特開2006-289985号公報に記載されているような「ゲル化性高分子」が含まれていてもよい。また、多孔質被膜形成用のPI溶液に、リチウム塩等の電解質を含有させた溶液(この溶液を、「PI-L溶液」と略記することがある)を用いることにより、被膜形成と同時に、ポリマ電解質PI被膜を得ることもできる。すなわち、PI-L溶液を電極活物質層表面に塗布および乾燥することにより、相分離構造を有し、かつ少なくとも2相を有するPI被膜であって、PI被膜の一方の相がPIであり、他方の相の少なくとも1相が電解質を含む相(固体または液体)からなるPI被膜を得ることができる。 When the porous PI coating formed on the electrode surface is used as a power storage element electrode, when creating a cell of the power storage element, a known electrolytic solution (in a solvent such as ethylene carbonate and dimethyl carbonate, A solution in which a lithium salt such as LiPF 6 is dissolved). Thereby, ion conductivity develops and it can be used as a storage element electrode. As described above, the storage element electrode on which the porous PI film is formed may be a film having ionic conductivity at the time of cell preparation. A conductive film (this PI film may be abbreviated as “polymer electrolyte PI film”) may be used. In order to do this, the porous PI film may be impregnated with a solution containing an electrolyte and filled in the pores. Such a technique is publicly known, and for example, a method as described in Electrochimica Acta 45 (2000) 1347-1360 and Electrochimica Acta 204 (2016) 176-182 can be used. The solution containing the electrolyte may contain a “gelling polymer” as described in, for example, JP-A-2006-289985. Further, by using a solution containing an electrolyte such as a lithium salt in a PI solution for forming a porous film (this solution may be abbreviated as “PI-L solution”), A polymer electrolyte PI coating can also be obtained. That is, by applying and drying the PI-L solution on the surface of the electrode active material layer, a PI coating having a phase separation structure and having at least two phases, wherein one phase of the PI coating is PI, A PI coating consisting of a phase (solid or liquid) in which at least one of the other phases contains an electrolyte can be obtained.
 PI-L溶液におけるリチウム塩の具体例としては、LiCl、LiBr、LiI、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSOが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、LiPFおよびLiN(CFSOが好ましい。リチウム塩の含有量としては、PI溶液中の貧溶媒質量に対し、5~200質量%とすることが好ましく、20~150質量%とすることがより好ましい。このような組成とした溶液を電極活物質層表面に塗布、乾燥することにより、ポリマ電解質PI被膜が得られる。なお、このポリマ電解質PI被膜においては、PI―L溶液中の溶媒(良溶媒および貧溶媒)の一部は、リチウム塩と溶媒和した形で、ポリマ電解質PI被膜中に残留してもよい。 Specific examples of the lithium salt in the PI-L solution include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 . These may be used alone or in combination of two or more. Among these, LiPF 6 and LiN (CF 3 SO 2 ) 2 are preferable. The lithium salt content is preferably 5 to 200% by mass and more preferably 20 to 150% by mass with respect to the mass of the poor solvent in the PI solution. A polymer electrolyte PI coating is obtained by applying a solution having such a composition to the surface of the electrode active material layer and drying. In this polymer electrolyte PI coating, a part of the solvent (good solvent and poor solvent) in the PI-L solution may remain in the polymer electrolyte PI coating in a form solvated with the lithium salt.
 多孔質PI被膜(気孔中に電解液が充填されたもの)およびポリマ電解質PI被膜は、イオン伝導性の指標となるイオン抵抗率が、5Ωcm以下であることが好ましく、4Ωcm以下であることがより好ましく、3Ωcm以下であることがさらに好ましい。イオン抵抗率が、前記範囲であると、本発明の電極を用いたリチウム二次電池の良好な充放電特性を確保することができる。これらのPI被膜のイオン抵抗率(Rs-PI)は、例えば、以下のような方法を用いて、算出することができる。すなわち、集電体上に形成された電解液が充填された活物質層のみのイオン抵抗率をRs-1、その表面にPI被膜が形成された積層体のイオン抵抗率をRs-2とすると、Rs-PIは、Rs-2からRs-1を減じることにより算出する。Rs-1およびRs-2は、必要に応じ市販セパレータを用いて、リチウム箔および前記集電体を電極とした測定用セルを構成し、25℃で、100KHzでのインピーダンスを測定することにより決定することができる。 Porous PI film (as electrolytic solution is filled in the pores) and polymer electrolyte PI film, it ionic resistivity becomes ion conductivity indicators, it is preferably 5Omucm 2 or less, 4Omucm 2 or less Is more preferably 3 Ωcm 2 or less. When the ionic resistivity is within the above range, good charge / discharge characteristics of the lithium secondary battery using the electrode of the present invention can be ensured. The ionic resistivity (Rs-PI) of these PI coatings can be calculated using, for example, the following method. That is, assuming that the ionic resistivity of only the active material layer filled with the electrolytic solution formed on the current collector is Rs-1, and the ionic resistivity of the laminate having the PI film formed on the surface thereof is Rs-2. , Rs-PI is calculated by subtracting Rs-1 from Rs-2. Rs-1 and Rs-2 are determined by configuring a measurement cell using a lithium foil and the current collector as an electrode, using a commercially available separator as necessary, and measuring impedance at 25 ° C. and 100 KHz. can do.
 相分離構造を有するPI被膜が積層される電極活物質層とは、本発明の蓄電素子(例えばリチウム二次電池)電極の集電体上に形成された層であり、正極活物質層と負極活物質層の総称である。 The electrode active material layer on which the PI film having a phase separation structure is laminated is a layer formed on the current collector of the storage element (for example, lithium secondary battery) electrode of the present invention, and the positive electrode active material layer and the negative electrode A general term for active material layers.
 集電体としては、銅箔、ステンレス箔、ニッケル箔、アルミ箔等の金属箔を使用することができる。正極にはアルミ箔が、負極には銅箔が好ましく用いられる。これらの金属箔の厚みは5~50μmが好ましく、9~18μmがより好ましい。これらの金属箔の表面は、活物質層との接着性を向上させるための粗面化処理および/または防錆処理がされていてもよい。 As the current collector, a metal foil such as a copper foil, a stainless steel foil, a nickel foil, or an aluminum foil can be used. Aluminum foil is preferably used for the positive electrode, and copper foil is used for the negative electrode. The thickness of these metal foils is preferably 5 to 50 μm, more preferably 9 to 18 μm. The surface of these metal foils may be subjected to a surface roughening treatment and / or a rust prevention treatment for improving the adhesion to the active material layer.
 正極活物質層は、例えば、正極活物質粒子を樹脂バインダで結着して得られる層である。正極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、例えば、酸化物系(LiCoO、LiNiO等)、リン酸鉄系(LiFePO等)、高分子化合物系(ポリアニリン、ポリチオフェン等)等の活物質粒子を挙げることができる。この中でも、LiCoO、LiNiO、LiFePOが好ましい。正極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子および/または金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1~30質量%程度配合されていてもよい。 The positive electrode active material layer is, for example, a layer obtained by binding positive electrode active material particles with a resin binder. The material used as the positive electrode active material particles is preferably a material capable of occluding and storing lithium ions. For example, an oxide system (LiCoO 2 , LiNiO 2 etc.), an iron phosphate system (LiFePO 4 etc.), a polymer compound system ( Active material particles such as polyaniline and polythiophene). Among these, LiCoO 2 , LiNiO 2 , and LiFePO 4 are preferable. In order to reduce the internal resistance of the positive electrode active material layer, conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles are contained in an amount of about 1 to 30% by mass. It may be blended.
 負極活物質層は、例えば、負極活物質粒子を樹脂バインダで結着して得られる層である。負極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、例えば黒鉛、アモルファスカーボン、シリコン系、錫系等の活物質粒子を挙げることができる。この中でも黒鉛粒子、シリコン系粒子が好ましい。シリコン系粒子としては、例えば、シリコン単体、シリコン合金、シリコン・二酸化珪素複合体等の粒子を挙げることができる。これらシリコン系粒子の中でも、シリコン単体の粒子が好ましい。シリコン単体とは、純度が95質量%以上の結晶質または非晶質のシリコンをいう。負極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子および/または金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1~30質量%程度配合されていてもよい。また、負極活物質層として、リチウム箔およびリチウム合金箔を用いることができる。 The negative electrode active material layer is, for example, a layer obtained by binding negative electrode active material particles with a resin binder. The material used as the negative electrode active material particles is preferably a material capable of occluding and storing lithium ions. Examples thereof include graphite, amorphous carbon, silicon-based, and tin-based active material particles. Among these, graphite particles and silicon-based particles are preferable. Examples of the silicon-based particles include particles of silicon alone, a silicon alloy, a silicon / silicon dioxide composite, and the like. Among these silicon-based particles, particles of silicon alone are preferable. Silicon alone means crystalline or amorphous silicon having a purity of 95% by mass or more. The negative electrode active material layer contains about 1 to 30% by mass of conductive particles such as carbon (graphite, carbon black, etc.) particles and / or metal (silver, copper, nickel, etc.) particles in order to reduce the internal resistance. It may be blended. Moreover, lithium foil and lithium alloy foil can be used as the negative electrode active material layer.
 活物質粒子および導電性粒子の粒子径は、正極、負極いずれも50μm以下が好ましく、10μm以下がより好ましい。粒子径は、小さすぎても樹脂バインダによる結着が難しくなるので、通常0.1μm以上、好ましくは0.5μm以上である。 The particle diameters of the active material particles and the conductive particles are preferably 50 μm or less for both the positive electrode and the negative electrode, and more preferably 10 μm or less. Even if the particle diameter is too small, binding with a resin binder becomes difficult, so it is usually 0.1 μm or more, preferably 0.5 μm or more.
 電極活物質層の気孔率は、正極、負極いずれも5~50体積%が好ましく、10~40体積%がより好ましい。 The porosity of the electrode active material layer is preferably 5 to 50% by volume for both the positive electrode and the negative electrode, and more preferably 10 to 40% by volume.
 電極活物質層の層厚は、通常20~200μm程度である。 The layer thickness of the electrode active material layer is usually about 20 to 200 μm.
 前述の、活物質粒子を結着させるための樹脂バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、PI等を挙げることができる。この中でも、PVDF、SBR、PIが好ましい。 As the above-mentioned resin binder for binding the active material particles, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene Examples thereof include butadiene copolymer rubber (SBR), polytetrafluoroethylene, polypropylene, polyethylene, and PI. Among these, PVDF, SBR, and PI are preferable.
 前記したような集電体上に活物質層が形成された積層体は市販品を利用することもできるが、例えば以下のような公知の方法で製造することができるが、市販品を利用することもできる。 The laminate in which the active material layer is formed on the current collector as described above can use a commercially available product. For example, it can be manufactured by a known method such as the following, but a commercially available product is used. You can also.
 すなわち、集電体である金属箔の表面に、前述のバインダと活物質粒子と溶媒とを含む分散体(以下、「活物質分散体」と略記することがある)を塗布、乾燥して金属箔上に電極活物質層を形成させることができる。 That is, a dispersion containing the above-mentioned binder, active material particles, and solvent (hereinafter sometimes abbreviated as “active material dispersion”) is applied to the surface of a metal foil as a current collector and dried to obtain a metal. An electrode active material layer can be formed on the foil.
 以下に、実施例を挙げて、本発明をさらに詳細に説明する。なお本発明は実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples.
 下記の実施例および比較例で使用した、集電体上に形成された電極活物質層(正極用および負極用)を以下のようにして得た。 The electrode active material layers (for positive electrode and negative electrode) formed on the current collector used in the following Examples and Comparative Examples were obtained as follows.
(正極活物質層)
 正極活物質であるLiFePO粒子(平均粒径0.5μm)86質量部と、導電助剤のカーボンブラック(アセチレンブラック)8質量部と、バインダ樹脂であるPVDF6質量部とを、NMP中に均一に分散して、正極活物質分散体を得た。この分散体を正極集電体である厚さ15μmのアルミ箔に塗布し、得られた塗膜を130℃で10分乾燥後、熱プレスして、厚みが50μmの正極活物質層を得た。
(Positive electrode active material layer)
86 parts by mass of LiFePO 4 particles (average particle size 0.5 μm) as a positive electrode active material, 8 parts by mass of carbon black (acetylene black) as a conductive additive, and 6 parts by mass of PVDF as a binder resin are uniformly in NMP. To obtain a positive electrode active material dispersion. This dispersion was applied to a positive electrode current collector 15 μm thick aluminum foil, and the resulting coating film was dried at 130 ° C. for 10 minutes and then hot pressed to obtain a positive electrode active material layer having a thickness of 50 μm. .
(負極活物質層-1)
 負極活物質である黒鉛粒子(平均粒径8μm)85質量部と、導電助剤のカーボンブラック(アセチレンブラック)5質量部と、バインダ樹脂であるPI10質量部とを、NMP中に均一に分散して、固形分濃度25質量%の負極活物質分散体を得た。この分散体を負極集電体である厚さ18μmの銅箔に塗布し、得られた塗膜を120℃で10分乾燥後、300℃で60分熱処理後、熱プレスして、厚みが50μmの負極活物質層を得た。なお、前記PIとしては、ユニチカ社製「UイミドワニスCR」を用いた。
(Negative electrode active material layer-1)
85 parts by mass of graphite particles (average particle size 8 μm) as a negative electrode active material, 5 parts by mass of carbon black (acetylene black) as a conductive auxiliary agent, and 10 parts by mass of PI as a binder resin are uniformly dispersed in NMP. Thus, a negative electrode active material dispersion having a solid content concentration of 25% by mass was obtained. This dispersion was applied to a negative electrode current collector 18 μm thick copper foil, and the resulting coating film was dried at 120 ° C. for 10 minutes, heat-treated at 300 ° C. for 60 minutes, and hot-pressed to have a thickness of 50 μm. The negative electrode active material layer was obtained. As the PI, “Uimide varnish CR” manufactured by Unitika Ltd. was used.
(負極活物質層-2)
 負極活物質である黒鉛粒子(平均粒径8μm)98質量部と、カルボキシメチルセルロース1質量部、バインダ樹脂であるSBR1質量部とを、水中に均一に分散して、固形分濃度25質量%の負極活物質分散体を得た。この分散体を負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を120℃で10分乾燥後、熱プレスして、厚みが40μmの負極活物質層を得た。
(Negative electrode active material layer-2)
98 parts by mass of graphite particles (average particle size: 8 μm) as a negative electrode active material, 1 part by mass of carboxymethylcellulose, and 1 part by mass of SBR as a binder resin are uniformly dispersed in water, and a negative electrode having a solid content concentration of 25% by mass An active material dispersion was obtained. This dispersion was applied to a 10 μm-thick copper foil as a negative electrode current collector, and the obtained coating film was dried at 120 ° C. for 10 minutes and then hot pressed to obtain a negative electrode active material layer having a thickness of 40 μm. .
(電極の評価方法)
 下記の実施例および比較例において得られた電極の特性は、以下の方法で評価した。
 電極を直径16mmの円形に打ち抜き、その多孔質PI被膜面側に、ポリエチレン製多孔膜からなるセパレータと、リチウム箔とを順に積層し、これをステンレス製のコイン型外装容器中に収納した。この外装容器中に電解液(溶媒としてエチレンカーボネートとジメチルカーボネートとを体積比で1:1の割合で混合した溶媒を用いた1MLiPF溶液)を注入し、外装容器にパッキンを介してステンレス製のキャップをかぶせて固定し、電池缶を封止して、評価用のセルを得た。このセルを用い、前記した方法で、100KHzでのインピーダンスを測定することにより、イオン抵抗率(Rs-PI)を算出した。また、このセルを用い、放電容量およびサイクル特性の評価を行った。
(Electrode evaluation method)
The characteristics of the electrodes obtained in the following examples and comparative examples were evaluated by the following methods.
The electrode was punched into a circle having a diameter of 16 mm, and a separator made of a polyethylene porous film and a lithium foil were sequentially laminated on the porous PI coating surface side, and this was stored in a stainless steel coin-type outer container. An electrolytic solution (1M LiPF 6 solution using a solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1) as a solvent is injected into the outer container, and the outer container is made of stainless steel via a packing. The cap was covered and fixed, the battery can was sealed, and the cell for evaluation was obtained. Using this cell, the ion resistivity (Rs-PI) was calculated by measuring the impedance at 100 KHz by the method described above. In addition, discharge capacity and cycle characteristics were evaluated using this cell.
<実施例1>
 ガラス製反応容器に、窒素雰囲気下、DADE:0.97モル、PPGME:0.03モル (数平均分子量2000:ハンツマン社製ジェファーミンD2000)、DMAcおよびテトラエチレングリコールジメチルエーテルからなる混合溶媒(DMAc/テトラエチレングリコールジメチルエーテルの混合比率は質量比で2/8)を投入して攪拌し、ジアミン成分を溶解した。この溶液をジャケットで30℃以下に冷却しながら、PMDA:1.01モルを徐々に加えた後、40℃で5時間重合反応させ、オキシプロピレンユニットを導入した共重合PAA溶液(P-1:固形分濃度は15質量%)を得た。
<Example 1>
In a glass reaction vessel, under a nitrogen atmosphere, DADE: 0.97 mol, PPGME: 0.03 mol (number average molecular weight 2000: Jeffamine D2000 manufactured by Huntsman), DMAc and tetraethylene glycol dimethyl ether mixed solvent (DMAc / The mixing ratio of tetraethylene glycol dimethyl ether was 2/8) in mass ratio and stirred to dissolve the diamine component. While this solution was cooled to 30 ° C. or lower with a jacket, PMDA: 1.01 mol was gradually added, followed by polymerization at 40 ° C. for 5 hours to obtain a copolymerized PAA solution (P-1: The solid content concentration was 15% by mass).
<実施例2>
 「DADE:0.97モル」を「DADE:0.8モルとBAPP:0.17モル」としたこと以外は、実施例1と同様にして、共重合PAA溶液(P-2)を得た。
<Example 2>
A copolymer PAA solution (P-2) was obtained in the same manner as in Example 1 except that “DADE: 0.97 mol” was changed to “DADE: 0.8 mol and BAPP: 0.17 mol”. .
<実施例3>
 「PMDA:1.01モル」を「PMDA:0.81モルとBPDA:0.20モル」としたこと以外は、実施例1と同様にして、共重合PAA溶液(P-3)を得た。
<Example 3>
A copolymer PAA solution (P-3) was obtained in the same manner as in Example 1 except that “PMDA: 1.01 mol” was changed to “PMDA: 0.81 mol and BPDA: 0.20 mol”. .
<実施例4>
 「PMDA:1.01モル」を「BPDA:1.01モル」としたこと以外は、実施例1と同様にして、共重合PAA溶液(P-4)を得た。
<Example 4>
A copolymer PAA solution (P-4) was obtained in the same manner as in Example 1 except that “PMDA: 1.01 mol” was changed to “BPDA: 1.01 mol”.
<実施例5>
「DADE:0.97モル、PPGME:0.03モル」を「DADE:0.94モル、PPGME:0.06モル」としたこと以外は、実施例1と同様にして、共重合PAA溶液(P-5)を得た。
<Example 5>
A copolymer PAA solution (in the same manner as in Example 1 except that “DADE: 0.97 mol, PPGME: 0.03 mol” was changed to “DADE: 0.94 mol, PPGME: 0.06 mol”. P-5) was obtained.
<実施例6>
 混合溶媒(DMAc/テトラエチレングリコールジメチルエーテル)の混合比率を質量比で1/9とし、共重合PAA溶液の固形分濃度を10質量%としたこと以外は、実施例1と同様にして、共重合PAA溶液(P-6)を得た。
<Example 6>
Copolymerization was carried out in the same manner as in Example 1 except that the mixing ratio of the mixed solvent (DMAc / tetraethylene glycol dimethyl ether) was 1/9 by mass and the solid content concentration of the copolymerized PAA solution was 10% by mass. A PAA solution (P-6) was obtained.
<実施例7>
 混合溶媒(DMAc/テトラエチレングリコールジメチルエーテル)の混合比率を質量比で1/9とし、共重合PAA溶液の固形分濃度を10質量%としたこと以外は、実施例2と同様にして、共重合PAA溶液(P-7)を得た。
<Example 7>
Copolymerization was carried out in the same manner as in Example 2, except that the mixing ratio of the mixed solvent (DMAc / tetraethylene glycol dimethyl ether) was 1/9 by mass and the solid content concentration of the copolymerized PAA solution was 10% by mass. A PAA solution (P-7) was obtained.
<実施例8>
 ガラス製反応容器に、窒素雰囲気下、DADE:0.97モル、DASM:0.03モル(数平均分子量約860:信越化学社製 KF-8010)、DMAcおよびテトラエチレングリコールジメチルエーテルからなる混合溶媒(DMAc/テトラエチレングリコールジメチルエーテルの混合比率は質量比で3/7)を投入して攪拌した。この溶液に、室温で、PMDA:1.03モルを徐々に加えた後、60℃で5時間重合反応させ、シロキサンユニットを導入した共重合PAA溶液(P-8:固形分濃度は16質量%)を得た。
<Example 8>
In a glass reaction vessel, under a nitrogen atmosphere, DADE: 0.97 mol, DASM: 0.03 mol (number average molecular weight: about 860: KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd.), a mixed solvent consisting of DMAc and tetraethylene glycol dimethyl ether ( The mixing ratio of DMAc / tetraethylene glycol dimethyl ether was 3/7) by mass and stirred. To this solution, PMDA: 1.03 mol was gradually added at room temperature, and then a polymerization reaction was carried out at 60 ° C. for 5 hours to give a copolymer PAA solution into which a siloxane unit was introduced (P-8: solid content concentration was 16% by mass) )
<実施例9>
 実施例1で得られたP-1を前記負極活物質層-1の表面に塗布し、130℃で10分乾燥し、窒素雰囲気下、250℃で60分熱処理して、厚みが15μmの多孔質PI被膜が負極活物質層-1の表面に形成された電極(負極)「A-1」を得た。 この多孔質PI被膜は、負極活物質層の表面に強固に接着されていた。負極「A-1」断面のSEM像およびPI被膜部分の断面のSEM像をそれぞれ図1、2に示す。画像処理ソフトにより、気孔部とPI部分とに分離して解析した所、多孔質PI被膜の平均気孔径は450nmであった。また、気孔率は、65体積%であった。
<Example 9>
P-1 obtained in Example 1 was applied to the surface of the negative electrode active material layer-1, dried at 130 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere to obtain a porous film having a thickness of 15 μm. An electrode (negative electrode) “A-1” having a porous PI film formed on the surface of the negative electrode active material layer-1 was obtained. This porous PI film was firmly bonded to the surface of the negative electrode active material layer. The SEM image of the negative electrode “A-1” cross section and the SEM image of the cross section of the PI coating part are shown in FIGS. When the pore portion and the PI portion were separated and analyzed by image processing software, the average pore diameter of the porous PI coating was 450 nm. The porosity was 65% by volume.
 負極「A-1」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、この多孔質PI被膜のRs-PIは、2.8Ωcmであった。このセルを用いて、30℃で0.1Cの定電流で2.5Vまで充電し、0.03Vまで放電する充放電サイクルを行った。その結果、負極「A-1」の初期放電容量は310[mAh/g-活物質]、10サイクル後の放電容量は232[mAh/g-活物質]となり、高い初期放電容量と良好なサイクル特性が確認された。なお、前記電圧は、リチウムのイオン化電位に対する電圧を表す。 When a cell was prepared by the above-described method using the negative electrode “A-1” and the ionic resistivity was measured, the Rs-PI of this porous PI coating was 2.8 Ωcm 2 . Using this cell, a charge / discharge cycle was performed in which the battery was charged to 2.5 V at 30 ° C. with a constant current of 0.1 C and discharged to 0.03 V. As a result, the negative electrode “A-1” had an initial discharge capacity of 310 [mAh / g-active material], a discharge capacity after 10 cycles of 232 [mAh / g-active material], a high initial discharge capacity and a good cycle. The characteristics were confirmed. The voltage represents a voltage with respect to the ionization potential of lithium.
<実施例10>
 実施例2で得られたP-2を、実施例9と同様にして、厚みが10μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-2」を得た。負極「A-2」の多孔質PI被膜の平均気孔径は360nmであり、Rs-PIは、2.6Ωcmであった。
<Example 10>
P-2 obtained in Example 2 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-2” in which a porous PI coating having a thickness of 10 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of the negative electrode “A-2” was 360 nm, and Rs-PI was 2.6 Ωcm 2 .
<実施例11>
 実施例3で得られたP-3を、実施例9と同様にして、厚みが8μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-3」を得た。負極「A-3」の多孔質PI被膜の平均気孔径は、560nmであり、Rs-PIは、2.9Ωcmであった。
<Example 11>
P-3 obtained in Example 3 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-3” in which a porous PI coating having a thickness of 8 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of the negative electrode “A-3” was 560 nm, and Rs-PI was 2.9 Ωcm 2 .
<実施例12>
 実施例4で得られたP-4を、実施例9と同様にして、厚みが8μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-4」を得た。負極「A-4」の多孔質PI被膜の平均気孔径、880nmであり、Rs-PIは、2.5Ωcmであった。
<Example 12>
P-4 obtained in Example 4 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-4” in which a porous PI coating having a thickness of 8 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of negative electrode “A-4” was 880 nm, and Rs-PI was 2.5 Ωcm 2 .
<実施例13>
 実施例5で得られたP-5を、実施例9と同様にして、厚みが10μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-5」を得た。負極「A-5」の多孔質PI被膜の平均気孔径は670nmであり、Rs-PIは、2.9Ωcmであった。
<Example 13>
P-5 obtained in Example 5 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-5” in which a porous PI coating having a thickness of 10 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of the negative electrode “A-5” was 670 nm, and Rs-PI was 2.9 Ωcm 2 .
<実施例14>
 実施例6で得られたP-6を、実施例9と同様にして、厚みが4μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-6」を得た。負極「A-6」の多孔質PI被膜の平均気孔径は、270nmであり、Rs-PIは、2.1Ωcmであった。
<Example 14>
P-6 obtained in Example 6 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-6” in which a porous PI coating having a thickness of 4 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of the negative electrode “A-6” was 270 nm, and Rs-PI was 2.1 Ωcm 2 .
<実施例15>
 実施例7で得られたP-7を、実施例9と同様にして、厚みが4μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-7」を得た。負極「A-7」の多孔質PI被膜の平均気孔径は、310nmであり、Rs-PIは、2.4Ωcmであった。
<Example 15>
P-7 obtained in Example 7 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “A-7” in which a porous PI coating having a thickness of 4 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the porous PI coating of the negative electrode “A-7” was 310 nm, and Rs-PI was 2.4 Ωcm 2 .
<実施例16>
 実施例1で得られたP-1を離型層付アルミ箔の表面に塗布し、130℃で10分乾燥し、窒素雰囲気下、250℃で60分熱処理して、厚みが7μmの多孔質PI被膜がアルミ箔の表面に形成された積層体を得た。この多孔質PI被膜と前記負極活物質層-2とを、200℃で熱圧着した後、アルミ箔を剥離することにより、多孔質PI被膜が、負極活物質層-2の表面に接着された電極(負極)「A-8」を得た。負極「A-8」の多孔質PI被膜の平均気孔径は、370nmであり、Rs-PIは、2.7Ωcmであった。
<Example 16>
P-1 obtained in Example 1 was applied to the surface of an aluminum foil with a release layer, dried at 130 ° C. for 10 minutes, heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and porous having a thickness of 7 μm. A laminate having a PI coating formed on the surface of an aluminum foil was obtained. The porous PI coating and the negative electrode active material layer-2 were thermocompression bonded at 200 ° C., and then the aluminum foil was peeled off to adhere the porous PI coating to the surface of the negative electrode active material layer-2. Electrode (negative electrode) “A-8” was obtained. The average pore diameter of the porous PI coating of the negative electrode “A-8” was 370 nm, and Rs-PI was 2.7 Ωcm 2 .
<実施例17>
 実施例1で得られたP-1を前記正極活物質層の表面に塗布し、130℃で10分乾燥し、窒素雰囲気下、200℃で60分熱処理して、厚みが12μmの多孔質PI被膜が正極活物質層の表面に形成された電極(正極)「A-9」を得た。正極「A-9」のPI被膜の平均気孔径は、920nmであった。
<Example 17>
P-1 obtained in Example 1 was applied to the surface of the positive electrode active material layer, dried at 130 ° C. for 10 minutes, and heat-treated at 200 ° C. for 60 minutes in a nitrogen atmosphere to obtain a porous PI having a thickness of 12 μm. An electrode (positive electrode) “A-9” having a coating formed on the surface of the positive electrode active material layer was obtained. The average pore diameter of the PI coating of the positive electrode “A-9” was 920 nm.
 正極「A-9」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPI被膜のRs-PIは、3.0Ωcmであった。このセルを用いて、30℃で0.1Cの定電流で4.5Vまで充電し、0.1Cの定電流で、3.0Vまで放電する充放電サイクルを行った。その結果、正極「A-9」の初期放電容量は146[mAh/g-活物質]、10サイクル後の放電容量は159[mAh/g-活物質]となり、高い初期放電容量と良好なサイクル特性が確認された。なお、前記電圧は、リチウムのイオン化電位に対する電圧を表す。 A cell was prepared by the above-described method using the positive electrode “A-9”, and the ionic resistivity was measured. As a result, the Rs-PI of this PI film was 3.0 Ωcm 2 . Using this cell, a charge / discharge cycle was performed at 30 ° C. with a constant current of 0.1 C to 4.5 V, and with a constant current of 0.1 C, discharging to 3.0 V. As a result, the initial discharge capacity of the positive electrode “A-9” was 146 [mAh / g-active material], the discharge capacity after 10 cycles was 159 [mAh / g-active material], and the high initial discharge capacity and good cycle were obtained. The characteristics were confirmed. The voltage represents a voltage with respect to the ionization potential of lithium.
<実施例18>
 実施例1で得られたP-1を前記正極活物質層の表面に塗布し、150℃で10分乾燥して、厚みが4μmの多孔質PI被膜が正極活物質層の表面に形成された電極(正極)「A-10」を得た。正極「A-10」のPI被膜の平均気孔径は、540nmであり、Rs-PIは、1.8Ωcmであった。
<Example 18>
P-1 obtained in Example 1 was applied to the surface of the positive electrode active material layer and dried at 150 ° C. for 10 minutes to form a porous PI coating having a thickness of 4 μm on the surface of the positive electrode active material layer. Electrode (positive electrode) “A-10” was obtained. The average pore diameter of the PI coating of the positive electrode “A-10” was 540 nm, and Rs-PI was 1.8 Ωcm 2 .
<実施例19>
 実施例8で得られたP-8を前記負極活物質層-1の表面に塗布し、150℃で10分乾燥し、窒素雰囲気下、250℃で60分熱処理して厚みが3μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-11」を得た。負極「A-11」のPI被膜の平均気孔径は、1200nmであり、Rs-PIは、2.5Ωcmであった。
<Example 19>
P-8 obtained in Example 8 was applied to the surface of the negative electrode active material layer-1, dried at 150 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and having a thickness of 3 μm. An electrode (negative electrode) “A-11” having a PI film formed on the surface of the negative electrode active material layer was obtained. The average pore diameter of the PI coating of the negative electrode “A-11” was 1200 nm, and Rs-PI was 2.5 Ωcm 2 .
<実施例20>
 特開2016-145300号公報、実施例1記載の方法に準拠して、PAI溶液を得た。すなわち、ガラス製反応容器に、窒素雰囲気下、トリメリット酸無水物(TMA):0.96モル、4,4’-ジフェニルメタンジイソシアネート(MDI):1モル、ポリテトラメチレングリコール(分子量1000):0.04モル、NMPを投入して攪拌した。得られた溶液を、200℃に昇温して7時間反応後、冷却することにより、オキシテトラメチレンユニットが導入されたPAI溶液を得た後、これに、テトラエチレングリコールジメチルエーテルを加え、オキシアルキレンユニットを導入した共重合PAI溶液(P-9:11質量%)を得た。この溶液におけるテトラエチレングリコールジメチルエーテルの質量比率は、混合溶媒(NMPとテトラエチレングリコールジメチルエーテル)に対し、70質量%であった。
<Example 20>
A PAI solution was obtained according to the method described in JP-A-2016-145300 and Example 1. That is, in a glass reaction vessel, trimellitic anhydride (TMA): 0.96 mol, 4,4′-diphenylmethane diisocyanate (MDI): 1 mol, polytetramethylene glycol (molecular weight 1000): 0 in a nitrogen atmosphere. 0.04 mol of NMP was added and stirred. The obtained solution was heated to 200 ° C., reacted for 7 hours, and then cooled to obtain a PAI solution into which oxytetramethylene units were introduced. Tetraethylene glycol dimethyl ether was added to this, and oxyalkylene was added. A copolymerized PAI solution (P-9: 11% by mass) into which units were introduced was obtained. The mass ratio of tetraethylene glycol dimethyl ether in this solution was 70% by mass with respect to the mixed solvent (NMP and tetraethylene glycol dimethyl ether).
<実施例21>
 実施例20で得られたP-9を前記負極活物質層-1の表面に塗布し、150℃で10分乾燥し、窒素雰囲気下、250℃で60分熱処理して厚みが3μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「A-12」を得た。負極「A-12」のPI被膜の平均気孔径は、1800nmであり、Rs-PIは、2.8Ωcmであった。
<Example 21>
P-9 obtained in Example 20 was applied to the surface of the negative electrode active material layer-1, dried at 150 ° C. for 10 minutes, and heat-treated at 250 ° C. for 60 minutes in a nitrogen atmosphere, and having a thickness of 3 μm. An electrode (negative electrode) “A-12” having a PI film formed on the surface of the negative electrode active material layer was obtained. The average pore diameter of the PI coating of the negative electrode “A-12” was 1800 nm, and Rs-PI was 2.8 Ωcm 2 .
<比較例1>
 「DADE:0.97モル、PPGME:0.03モル」を、「DADE:1.00モル」としたこと以外は、実施例1と同様にして、PAA溶液(R-1)を得た。
<Comparative Example 1>
A PAA solution (R-1) was obtained in the same manner as in Example 1 except that “DADE: 0.97 mol, PPGME: 0.03 mol” was changed to “DADE: 1.00 mol”.
<比較例2>
 比較例1で得られたR-1を、実施例9と同様にして、厚みが15μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「B-1」を得た。負極「B-1」のPI被膜の平均気孔径は、3200nmであり、Rs-PIは、10Ωcmを超えていた。
<Comparative Example 2>
R-1 obtained in Comparative Example 1 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “B-1” in which a porous PI coating having a thickness of 15 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the PI coating of the negative electrode “B-1” was 3200 nm, and Rs-PI exceeded 10 Ωcm 2 .
<比較例3>
 比較例1で得られたR-1を、実施例9と同様にして、厚みが4μmの多孔質PI被膜が負極活物質層の表面に形成された電極(負極)「B-2」を得た。負極「B-2」のPI被膜の平均気孔径は、3100nmであり、Rs-PIは、10Ωcmを超えていた。
<Comparative Example 3>
R-1 obtained in Comparative Example 1 was used in the same manner as in Example 9 to obtain an electrode (negative electrode) “B-2” in which a porous PI coating having a thickness of 4 μm was formed on the surface of the negative electrode active material layer. It was. The average pore diameter of the PI coating of the negative electrode “B-2” was 3100 nm, and Rs-PI exceeded 10 Ωcm 2 .
 以上、実施例および比較例で示したように、本発明のリチウム二次電池等の蓄電素子電極は、平均気孔径が小さく、かつ電解液に対し親和性の高いオキシアルキレンユニットまたはシロキサンユニットが導入された多孔質PI被膜のイオン抵抗率が低い。従い、安全性に優れ、かつ高い放電容量と良好なサイクル特性を有するリチウム二次電池、リチウムイオンキャパシタ等の蓄電素子電極として好適に用いることができる。 As described above in Examples and Comparative Examples, the storage element electrode of the present invention, such as a lithium secondary battery, has an average pore diameter and an oxyalkylene unit or siloxane unit having a high affinity for the electrolyte. The ionic resistivity of the formed porous PI coating is low. Therefore, it can be suitably used as a storage element electrode of a lithium secondary battery, a lithium ion capacitor or the like having excellent safety and high discharge capacity and good cycle characteristics.
 本発明のPI溶液は、リチウム二次電池、リチウムイオンキャパシタ、キャパシタ、コンデンサ等の蓄電素子に用いられる電極の製造に有用である。 The PI solution of the present invention is useful for the production of electrodes used for power storage elements such as lithium secondary batteries, lithium ion capacitors, capacitors, and capacitors.

Claims (7)

  1.  ポリイミドに対する良溶媒と貧溶媒とを含有するポリイミド溶液であって、前記ポリイミドが、主鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含有することを特徴とする蓄電素子電極用ポリイミド溶液。 A polyimide solution containing a good solvent and a poor solvent for a polyimide, wherein the polyimide contains an oxyalkylene unit and / or a siloxane unit in the main chain.
  2.  ポリイミド溶液がさらにリチウム塩を含有することを特徴とする請求項1記載の蓄電素子電極用ポリイミド溶液。 The polyimide solution for a storage element electrode according to claim 1, wherein the polyimide solution further contains a lithium salt.
  3.  請求項1または2に記載のポリイミド溶液を、活物質層表面に塗布後、乾燥することにより相分離構造を有するポリイミド被膜を形成する工程を含む蓄電素子電極の製造方法。 A method for producing a storage element electrode comprising a step of forming a polyimide film having a phase separation structure by applying the polyimide solution according to claim 1 or 2 to the surface of the active material layer and then drying.
  4.  請求項1または2に記載のポリイミド溶液を、基材に塗布後、乾燥することにより相分離構造を有するポリイミド被膜を形成した後、前記ポリイミド被膜を活物質表面に熱圧着し、しかる後、基材を剥離する工程を含む蓄電素子電極の製造方法。 After the polyimide solution according to claim 1 or 2 is applied to a substrate and then dried to form a polyimide coating having a phase separation structure, the polyimide coating is thermocompression bonded to the active material surface, A method for producing an electricity storage element electrode, comprising a step of peeling a material.
  5.  相分離構造を有するポリイミド被膜が、多孔質ポリイミド被膜である請求項3または4に記載の蓄電素子電極の製造方法。 The method for producing a storage element electrode according to claim 3 or 4, wherein the polyimide coating having a phase separation structure is a porous polyimide coating.
  6.  相分離構造を有するポリイミド被膜が少なくとも2相を有し、一方の相がポリイミドであり、他方の相の少なくとも1相が電解質を含む相である請求項3または4に記載の蓄電素子電極の製造方法。 The production of a storage element electrode according to claim 3 or 4, wherein the polyimide coating having a phase separation structure has at least two phases, one phase is polyimide, and at least one of the other phases is an electrolyte-containing phase. Method.
  7.  活物質層表面に相分離構造を有するポリイミド被膜が積層一体化されている電極であって、前記ポリイミドは、その主鎖中に、オキシアルキレンユニットおよび/またはシロキサンユニットを含有することを特徴とする蓄電素子電極。 An electrode in which a polyimide film having a phase separation structure is laminated and integrated on the surface of an active material layer, wherein the polyimide contains an oxyalkylene unit and / or a siloxane unit in its main chain. Storage element electrode.
PCT/JP2016/082163 2015-10-30 2016-10-28 Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode WO2017073766A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017547913A JPWO2017073766A1 (en) 2015-10-30 2016-10-28 Storage device electrode polyimide solution, storage device electrode manufacturing method, and storage device electrode
CN201680062963.1A CN108352500A (en) 2015-10-30 2016-10-28 Charge storage element electrode polyimide solution, the manufacturing method of charge storage element electrode and charge storage element electrode
KR1020187011921A KR20180075520A (en) 2015-10-30 2016-10-28 Polyimide solution for capacitor electrode, method for manufacturing capacitor electrode and capacitor electrode

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015214426 2015-10-30
JP2015-214426 2015-10-30
JP2016-030325 2016-02-19
JP2016030325 2016-02-19
JP2016055505 2016-03-18
JP2016-055505 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017073766A1 true WO2017073766A1 (en) 2017-05-04

Family

ID=58630373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082163 WO2017073766A1 (en) 2015-10-30 2016-10-28 Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode

Country Status (4)

Country Link
JP (1) JPWO2017073766A1 (en)
KR (1) KR20180075520A (en)
CN (1) CN108352500A (en)
WO (1) WO2017073766A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173422A (en) * 2016-03-22 2017-09-28 ユニチカ株式会社 Polyimide solution for fixing belt, method for manufacturing fixing belt, and fixing belt
JP2019014851A (en) * 2017-07-10 2019-01-31 富士ゼロックス株式会社 Particle dispersion polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2020021731A (en) * 2018-07-24 2020-02-06 ユニチカ株式会社 Coating liquid for lithium secondary battery electrode, method for manufacturing electrode for lithium secondary battery, and electrode for lithium secondary battery
WO2021090656A1 (en) * 2019-11-07 2021-05-14 東レ株式会社 Active material having surface coat layer, electrode comprising same, and electricity storage device
JP2021140962A (en) * 2020-03-06 2021-09-16 トヨタ自動車株式会社 Method for manufacturing separator-integrated electrode
WO2024116091A1 (en) * 2022-11-30 2024-06-06 Tata Steel Limited A composition, an article, methods of preparation and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288741A (en) * 1998-02-05 1999-10-19 Denso Corp Lithium secondary battery and manufacture of electrode for same
JP2002289196A (en) * 2001-03-27 2002-10-04 Shin Etsu Chem Co Ltd Composition for electrode and electrode material
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2011086480A (en) * 2009-10-15 2011-04-28 Toray Ind Inc Binder for lithium ion battery electrode, paste for lithium ion battery electrode using the same, and method of manufacturing lithium ion battery electrode
JP2013069466A (en) * 2011-09-21 2013-04-18 Toray Ind Inc Binder for lithium ion battery positive electrode, paste for lithium ion battery positive electrode containing the same, and method for manufacturing lithium ion battery positive electrode
WO2014106954A1 (en) * 2013-01-07 2014-07-10 ユニチカ株式会社 Lithium secondary battery electrode and method for manufacturing same
WO2015122498A1 (en) * 2014-02-13 2015-08-20 東ソー株式会社 Hydrophilic polymer, production method for same, binder, electrode
WO2015156261A1 (en) * 2014-04-07 2015-10-15 ユニチカ株式会社 Laminated porous film and production method therefor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170935A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film
JPS57170934A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film
JPH10241663A (en) * 1997-02-21 1998-09-11 Japan Storage Battery Co Ltd Battery
JPH10233339A (en) * 1997-02-21 1998-09-02 Japan Storage Battery Co Ltd Electrochemical device
JPH10302749A (en) * 1997-04-25 1998-11-13 Nissan Motor Co Ltd Non-aqueous electrolytic secondary battery
KR100308690B1 (en) * 1998-12-22 2001-11-30 이 병 길 Microporous polymer electrolyte containing absorbent and its manufacturing method
JP2002042882A (en) * 2000-07-28 2002-02-08 Matsushita Electric Ind Co Ltd Method of manufacturing organic electrolyte battery
JP4438953B2 (en) * 2005-03-24 2010-03-24 信越化学工業株式会社 Proton conductive film forming composition, proton conductive film forming method, and proton conductive film
JP5416128B2 (en) * 2008-10-31 2014-02-12 日立マクセル株式会社 Non-aqueous secondary battery
JP2011233349A (en) * 2010-04-27 2011-11-17 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
EP2837049B1 (en) * 2012-04-10 2021-08-18 California Institute of Technology Novel separators for electrochemical systems
TWI502792B (en) * 2012-12-27 2015-10-01 Eternal Materials Co Ltd Membrane electrode and method of preparing same
JP6166575B2 (en) * 2013-04-05 2017-07-19 株式会社ダイセル Electrode integrated separator and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288741A (en) * 1998-02-05 1999-10-19 Denso Corp Lithium secondary battery and manufacture of electrode for same
JP2002289196A (en) * 2001-03-27 2002-10-04 Shin Etsu Chem Co Ltd Composition for electrode and electrode material
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2011086480A (en) * 2009-10-15 2011-04-28 Toray Ind Inc Binder for lithium ion battery electrode, paste for lithium ion battery electrode using the same, and method of manufacturing lithium ion battery electrode
JP2013069466A (en) * 2011-09-21 2013-04-18 Toray Ind Inc Binder for lithium ion battery positive electrode, paste for lithium ion battery positive electrode containing the same, and method for manufacturing lithium ion battery positive electrode
WO2014106954A1 (en) * 2013-01-07 2014-07-10 ユニチカ株式会社 Lithium secondary battery electrode and method for manufacturing same
WO2015122498A1 (en) * 2014-02-13 2015-08-20 東ソー株式会社 Hydrophilic polymer, production method for same, binder, electrode
WO2015156261A1 (en) * 2014-04-07 2015-10-15 ユニチカ株式会社 Laminated porous film and production method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173422A (en) * 2016-03-22 2017-09-28 ユニチカ株式会社 Polyimide solution for fixing belt, method for manufacturing fixing belt, and fixing belt
JP2019014851A (en) * 2017-07-10 2019-01-31 富士ゼロックス株式会社 Particle dispersion polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2020021731A (en) * 2018-07-24 2020-02-06 ユニチカ株式会社 Coating liquid for lithium secondary battery electrode, method for manufacturing electrode for lithium secondary battery, and electrode for lithium secondary battery
JP7349708B2 (en) 2018-07-24 2023-09-25 ユニチカ株式会社 Coating liquid for lithium secondary battery electrodes, method for producing electrodes for lithium secondary batteries, and electrodes for lithium secondary batteries
WO2021090656A1 (en) * 2019-11-07 2021-05-14 東レ株式会社 Active material having surface coat layer, electrode comprising same, and electricity storage device
JP2021140962A (en) * 2020-03-06 2021-09-16 トヨタ自動車株式会社 Method for manufacturing separator-integrated electrode
JP7303987B2 (en) 2020-03-06 2023-07-06 トヨタ自動車株式会社 Separator-integrated electrode manufacturing method
WO2024116091A1 (en) * 2022-11-30 2024-06-06 Tata Steel Limited A composition, an article, methods of preparation and application thereof

Also Published As

Publication number Publication date
JPWO2017073766A1 (en) 2018-09-20
CN108352500A (en) 2018-07-31
KR20180075520A (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP7015578B2 (en) Imid polymer solution
WO2017073766A1 (en) Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode
WO2005080487A1 (en) Porous film, process for producing the same, and lithium-ion secondary cell made with the same
WO2013058368A1 (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
KR102366785B1 (en) Nonaqueous electrolyte secondary battery insulating porous layer
WO2014017506A1 (en) Negative electrode for lithium secondary battery
JP6962548B2 (en) Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes
JP2018163877A (en) Binder solution and coating liquid
JP7349708B2 (en) Coating liquid for lithium secondary battery electrodes, method for producing electrodes for lithium secondary batteries, and electrodes for lithium secondary batteries
JP4892819B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
CN108878743B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
JP7032793B2 (en) Method for forming a porous polyamide-imide film
US20190190074A1 (en) Nonaqueous electrolyte secondary battery
KR102579616B1 (en) Electrode for lithium secondary battery and method of manufacturing same
JP4591011B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP7040743B2 (en) Polyamide-imide coating liquid for forming a porous polyamide-imide film
CN108878753B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
CN108878746B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
US10950838B2 (en) Nonaqueous electrolyte secondary battery
JP6860925B2 (en) Non-crosslinked polymaleimide, its manufacturing method, and binder solution for power storage devices
JP2015135747A (en) Porous separator, method for manufacturing porous separator, and lithium ion secondary battery including the porous separator
JP2017174540A (en) Solution for polymer electrolyte and polymer electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547913

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187011921

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859994

Country of ref document: EP

Kind code of ref document: A1