JP6962548B2 - Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes - Google Patents

Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes Download PDF

Info

Publication number
JP6962548B2
JP6962548B2 JP2017158001A JP2017158001A JP6962548B2 JP 6962548 B2 JP6962548 B2 JP 6962548B2 JP 2017158001 A JP2017158001 A JP 2017158001A JP 2017158001 A JP2017158001 A JP 2017158001A JP 6962548 B2 JP6962548 B2 JP 6962548B2
Authority
JP
Japan
Prior art keywords
pai
active material
material layer
polyamide
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017158001A
Other languages
Japanese (ja)
Other versions
JP2018032627A (en
JP2018032627A5 (en
Inventor
健太 柴田
耕 竹内
宗紀 山田
朗 繁田
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JP2018032627A publication Critical patent/JP2018032627A/en
Publication of JP2018032627A5 publication Critical patent/JP2018032627A5/ja
Application granted granted Critical
Publication of JP6962548B2 publication Critical patent/JP6962548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池、リチウムイオンキャパシタ、キャパシタ、コンデンサ等の蓄電素子に用いられるポリアミドイミド溶液と、これを用いた電極蓄電素子電極の製造方法および蓄電素子電極とに関する。 The present invention relates to a polyamide-imide solution used for a power storage element such as a lithium secondary battery, a lithium ion capacitor, a capacitor, and a capacitor, a method for manufacturing an electrode power storage element electrode using the polyamide-imide solution, and a power storage element electrode.

リチウム二次電池等の蓄電素子において、電極表面の傷や凹凸が原因となって、電極に接しているセパレータの電気絶縁性を破壊することがある。その結果、電気的な内部短絡が発生することがある。 In a power storage element such as a lithium secondary battery, the electrical insulation of the separator in contact with the electrode may be destroyed due to scratches or irregularities on the electrode surface. As a result, an electrical internal short circuit may occur.

この内部短絡を防止するため、電極表面に絶縁性の多孔質膜からなる保護層を設けることが提案されている。保護層となる多孔質膜として、特許文献1〜4には、水溶性高分子(セルロース誘導体、ポリアクリル酸誘導体、ポリビニルアルコール誘導体等)、フッ素系樹脂、ゴム系樹脂等にて形成され、かつ、これらにアルミナ、二酸化珪素、ジルコニアなどの微粒子を大量に配合することにより気孔が形成された多孔質膜が提案されている。 保護層を形成させるための別の方法として、特許文献5、6には、保護層形成用の塗膜を電極表面に形成した後、その乾燥前に、貧溶剤を含む凝固浴に浸漬して塗膜の相分離を起こさせて多孔質保護層を得る方法も提案されている。 一方、シリコン等の高容量の活物質を用いたリチウム二次電池においては、正極と負極とをセパレータを介して渦巻状に巻回した巻回電極体を、角形(角筒形)の外装缶やラミネートフィルム外装体の内部に装填して、電池を構成することが一般的である。その場合に、充放電の繰り返しに伴って容量低下が生じたり、電池の膨れにより厚みが大きく増加したりすることがある。このような問題を改善するために、特許文献7には、電極(負極)の活物質層の外表面に、力学的特性、耐熱性に優れたポリイミド(PI)等のPI系高分子に二酸化珪素、アルミナ等の微粒子を大量に配合した多孔質層を設けることにより、電極の体積変化や変形を緩和する方法が提案されている。しかしながら、前記したような表面に多孔質層が設けられた電極は、活物質層と多孔質層との接着性が低いため、短絡に対する防止効果は、必ずしも充分なものではなかった。 In order to prevent this internal short circuit, it has been proposed to provide a protective layer made of an insulating porous film on the electrode surface. As a porous film to be a protective layer, Patent Documents 1 to 4 are formed of a water-soluble polymer (cellulose derivative, polyacrylic acid derivative, polyvinyl alcohol derivative, etc.), a fluorine-based resin, a rubber-based resin, etc. , A porous film in which pores are formed by blending a large amount of fine particles such as alumina, silicon dioxide, and zirconia into these has been proposed. As another method for forming the protective layer, Patent Documents 5 and 6 describe that a coating film for forming a protective layer is formed on the electrode surface and then immersed in a coagulation bath containing a poor solvent before drying. A method of causing phase separation of the coating film to obtain a porous protective layer has also been proposed. On the other hand, in a lithium secondary battery using a high-capacity active material such as silicon, a wound electrode body in which a positive electrode and a negative electrode are spirally wound via a separator is formed into a square (square tubular) outer can. Or, it is generally loaded inside the outer body of a laminated film to form a battery. In that case, the capacity may decrease due to repeated charging and discharging, or the thickness may increase significantly due to the swelling of the battery. In order to improve such a problem, Patent Document 7 describes that the outer surface of the active material layer of the electrode (negative electrode) is made of a PI polymer such as polyimide (PI) having excellent mechanical properties and heat resistance. A method has been proposed in which a porous layer containing a large amount of fine particles such as silicon and alumina is provided to alleviate the volume change and deformation of the electrode. However, since the electrode provided with the porous layer on the surface as described above has low adhesiveness between the active material layer and the porous layer, the effect of preventing a short circuit is not always sufficient.

このような問題を解決する方法として、特許文献8には、金属箔上に電極活物質層を形成させ、その後に、この電極活物質層の表面に、PI前駆体、ポリアミドイミド(PAI)等のPI系高分子と溶媒とを含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を除去後、必要に応じ、熱イミド化することにより、塗膜内で相分離を起こさせてPI多孔質層を形成せしめることによりリチウム二次電池用電極を製造する方法が提案されている。この方法を用いることにより、耐熱性、力学的特性に優れ、かつ電極活物質層との密着性の高い多孔質PI層を電極活物質層の表面に形成させることができる。 As a method for solving such a problem, Patent Document 8 states that an electrode active material layer is formed on a metal foil, and then a PI precursor, polyamide-imide (PAI), etc. are formed on the surface of the electrode active material layer. A coating liquid containing the PI-based polymer and the solvent is applied to form a coating film, and then the solvent in the coating film is removed and, if necessary, thermally imidized in the coating film. A method for producing an electrode for a lithium secondary battery has been proposed by causing phase separation to form a PI porous layer. By using this method, a porous PI layer having excellent heat resistance and mechanical properties and having high adhesion to the electrode active material layer can be formed on the surface of the electrode active material layer.

国際公開1997/008763号International Publication No. 1997/008763 特許第5071056号公報Japanese Patent No. 5071056 特許第5262323号公報Japanese Patent No. 5262323 特許第5370356号公報Japanese Patent No. 5370356 特許第3371839号公報Japanese Patent No. 3371839 特許第3593345号公報Japanese Patent No. 3593345 特開2011−233349号公報Japanese Unexamined Patent Publication No. 2011-233349 国際公開2014/106954号International Publication No. 2014/106954

しかしながら、特許文献8で開示された方法において、多孔質PI層形成用溶液として、PAI溶液を用いた場合は、この溶液の粘度がやや低い傾向にあり、そのため電極活物質層への塗布した際に、多孔質である活物質層へPAI溶液が浸透して、活物質層の気孔を塞ぐことがあり、そのため、活物質層と多孔質PAI被膜の界面でイオン透過性が低下することがあり、改良すべき点があった。 また、低粘度であることに起因して、塗膜の厚み斑等が起こりやくなることがあり、塗布の際の塗工性にも改良すべき点があった。 However, in the method disclosed in Patent Document 8, when a PAI solution is used as the solution for forming the porous PI layer, the viscosity of this solution tends to be slightly low, and therefore when it is applied to the electrode active material layer, it tends to be slightly low. In addition, the PAI solution may permeate the porous active material layer and block the pores of the active material layer, which may reduce the ion permeability at the interface between the active material layer and the porous PAI film. , There was a point to be improved. Further, due to the low viscosity, the thickness unevenness of the coating film may easily occur, and there is a point that the coatability at the time of coating should be improved.

そこで本発明は、前記課題を解決するものであって、良好なイオン透過性を有する多孔質PAI被膜が形成できる、塗工性の良好なPAI溶液、およびこの被膜が形成された蓄電素子電極とその製造方法の提供を目的とする。 Therefore, the present invention solves the above-mentioned problems, and is a PAI solution having good coatability capable of forming a porous PAI film having good ion permeability, and a storage element electrode on which this film is formed. The purpose is to provide the manufacturing method.

本発明者らは、PAI溶液組成を特定のものとした上で、PAIの化学構造を特定のものとしたPAI溶液を用い、これから得られる多孔質PAI被膜を電極活物質層上に積層一体化することにより、前記課題が解決されることを見出し、本発明の完成に至った。 The present inventors used a PAI solution having a specific PAI solution composition and a specific chemical structure of PAI, and laminated and integrated the resulting porous PAI film on the electrode active material layer. By doing so, it was found that the above-mentioned problems could be solved, and the present invention was completed.

本発明は下記を趣旨とするものである。 The present invention has the following object.

<1>PAIに対する良溶媒と貧溶媒とを含有するPAI溶液であって、前記PAIが、側鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含むことを特徴とする蓄電素子電極用PAI溶液。
<2>前記PAI溶液を、活物質層表面に塗布後、乾燥することにより多孔質PAI被膜を形成する工程を含む蓄電素子電極の製造方法。
<3>活物質層表面に多孔質PAI被膜が積層一体化されている電極であって、以下の特徴を有する蓄電素子電極。
1) 前記PAIの側鎖中に、オキシアルキレンユニットおよび/またはシロキサンユニットを含む。
2) 前記多孔質被膜表面の平均気孔径が10nm以上、5000nm以下である。
<1> A PAI solution containing a good solvent and a poor solvent for PAI, wherein the PAI contains an oxyalkylene unit and / or a siloxane unit in a side chain.
<2> A method for manufacturing a power storage element electrode, which comprises a step of applying the PAI solution to the surface of an active material layer and then drying it to form a porous PAI film.
<3> An electrode in which a porous PAI film is laminated and integrated on the surface of an active material layer, and has the following characteristics.
1) The side chain of the PAI contains an oxyalkylene unit and / or a siloxane unit.
2) The average pore diameter on the surface of the porous coating is 10 nm or more and 5000 nm or less.

本発明のPAI溶液は、溶液粘度が高められているので、電極活物質層へのPAI溶液の浸透が起こりにくく、イオン抵抗率を充分に低くすることができる上、塗布の際の塗工性が良好である。 従い、これを活物質層の表面に塗布後、乾燥することにより得られる多孔質PAI被膜が活物質層表面に積層一体化された電極は、安全性に優れた蓄電素子電極として好適に用いることができる。 Since the PAI solution of the present invention has a high solution viscosity, it is difficult for the PAI solution to permeate into the electrode active material layer, the ionic resistance can be sufficiently lowered, and the coatability at the time of coating can be applied. Is good. Therefore, an electrode in which a porous PAI film obtained by applying this to the surface of the active material layer and then drying it is laminated and integrated on the surface of the active material layer is suitably used as an electrode for a power storage element having excellent safety. Can be done.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明は、PAI溶液を用いる。PAIは、原料であるトリカルボン酸成分とジアミン成分との重縮合物である。 The present invention uses a PAI solution. PAI is a polycondensate of a tricarboxylic acid component and a diamine component, which are raw materials.

PAIのトリカルボン酸成分は、1分子あたり3個のカルボキシル基(その誘導体を含む)を有する有機化合物であって、当該3個のカルボキシル基のうち、少なくとも2個のカルボキシル基が酸無水物形態を形成し得る位置に配置されたものである。 The tricarboxylic acid component of PAI is an organic compound having three carboxyl groups (including derivatives thereof) per molecule, and at least two of the three carboxyl groups have an acid anhydride form. It is arranged at a position where it can be formed.

トリカルボン酸成分として、例えば、ベンゼントリカルボン酸成分、ナフタレントリカルボン酸成分が挙げられる。 Examples of the tricarboxylic acid component include a benzenetricarboxylic acid component and a naphthalene tricarboxylic acid component.

ベンゼントリカルボン酸成分の具体例として、例えば、トリメリット酸、ヘミメリット酸、ならびにこれらの無水物およびそのモノクロライドが挙げられる。 Specific examples of the benzenetricarboxylic acid component include trimellitic acid, hemmellitic acid, and anhydrides thereof and monochrome rides thereof.

ナフタレントリカルボン酸成分の具体例として、例えば、1,2,3−ナフタレントリカルボン酸、1,6,7−ナフタレントリカルボン酸、1,4,5−ナフタレントリカルボン酸、ならびにこれらの無水物およびそのモノクロライドが挙げられる。 Specific examples of the naphthalene tricarboxylic acid component include, for example, 1,2,3-naphthalentricarboxylic acid, 1,6,7-naphthalentricarboxylic acid, 1,4,5-naphthalentricarboxylic acid, their anhydrides and their monoclonalides. Can be mentioned.

トリカルボン酸成分の中では、トリメリット酸および無水トリメリット酸クロライド(TAC)が好ましい。 Among the tricarboxylic acid components, trimellitic acid and trimellitic anhydride chloride (TAC) are preferable.

トリカルボン酸成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The tricarboxylic acid component may be used alone or in combination of two or more.

また、トリカルボン酸成分は、その一部がテレフタル酸、イソフタル酸、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸等の成分で置換されたものを用いてもよい。 In addition, some of the tricarboxylic acid components are terephthalic acid, isophthalic acid, pyromellitic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid. Those substituted with such components may be used.

PAIのジアミン成分は、1分子あたり2個の1級アミノ基(その誘導体を含む)を有する有機化合物である。 The diamine component of PAI is an organic compound having two primary amino groups (including derivatives thereof) per molecule.

ジアミン成分の具体例として、例えば、4,4′−ジアミノジフェニルエーテル(DADE)、m−フェニレンジアミン(MDA)、p−フェニレンジアミン、4,4′−ジフェニルメタンジアミン(DMA)、4,4′−ジフェニルエーテルジアミン、ジフェニルスルホン−4,4′−ジアミン、ジフェニルー4,4′−ジアミン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン、ナフタレンジアミン、ならびにこれらのジイソシアネート誘導体が挙げられる。 Specific examples of the diamine component include, for example, 4,4'-diaminodiphenyl ether (DADE), m-phenylenediamine (MDA), p-phenylenediamine, 4,4'-diphenylmethanediamine (DMA), 4,4'-diphenyl ether. Diamine, diphenylsulfone-4,4'-diamine, diphenyl-4,4'-diamine, o-tridine, 2,4-tolylene diamine, 2,6-tolylene diamine, xylylene diamine, naphthalenediamine, and these. Diamine derivatives can be mentioned.

ジアミン成分の中では、DADE、MDAおよびDMAが好ましい。 Among the diamine components, DADE, MDA and DMA are preferable.

ジアミン成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The diamine component may be used alone or in combination of two or more.

PAIは、通常、200℃以上のガラス転移温度を有する。ガラス転移温度は、DSC(示差熱分析)により測定された値を用いている。 PAI usually has a glass transition temperature of 200 ° C. or higher. The value measured by DSC (Differential Thermal Analysis) is used for the glass transition temperature.

PAIは、熱可塑性であっても非熱可塑性であってもよいが、前記したガラス転移温度を有する芳香族PAIを好ましく用いることができる。 The PAI may be thermoplastic or non-thermoplastic, but the aromatic PAI having the glass transition temperature described above can be preferably used.

本発明のPAIは、側鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含むPAI(以下、これらを「PAI−M」と略記することがある)である。このようにすることにより、PAI溶液の高粘度化を図ることができる。 The PAI of the present invention is a PAI containing an oxyalkylene unit and / or a siloxane unit in the side chain (hereinafter, these may be abbreviated as "PAI-M"). By doing so, it is possible to increase the viscosity of the PAI solution.

オキシアルキレンユニットとしては、具体的には、オキシエチレンユニット、オキシプロピレンユニット、オキシブチレンユニット等が挙げられる。 オキシアルキレンユニットを含むPAIは、例えば、PAIとオキシアルキレンユニットを有するジアミン(以下、「DA−1」と略記することがある)とを、溶媒中で反応させることにより得ることができる。 Specific examples of the oxyalkylene unit include an oxyethylene unit, an oxypropylene unit, and an oxybutylene unit. A PAI containing an oxyalkylene unit can be obtained, for example, by reacting a PAI with a diamine having an oxyalkylene unit (hereinafter, may be abbreviated as "DA-1") in a solvent.

DA−1の具体例としては、エチレングリコールビス(2−アミノエチル)エーテル、ジエチレングリコールビス(2−アミノエチル)エーテル、トリエチレングリコールビス(2−アミノエチル)エーテル、テトラエチレングリコールビス(2−アミノエチル)エーテル、ポリエチレングリコールビス(2−アミノエチル)エーテル(PEGME)、プロピレングリコールビス(2−アミノエチル)エーテル、ジプロピレングリコールビス(2−アミノエチル)エーテル、トリプロピレングリコールビス(2−アミノエチル)エーテル、テトラプロピレングリコールビス(2−アミノエチル)エーテル、ポリプロピレングリコールビス(2−アミノエチル)エーテル(PPGME)等が挙げられる。これらの中で、数平均分子量が、300〜5000のものが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、PEGME、PPGMEが好ましい。これらの化合物は市販品を利用することができる。 Specific examples of DA-1 include ethylene glycol bis (2-aminoethyl) ether, diethylene glycol bis (2-aminoethyl) ether, triethylene glycol bis (2-aminoethyl) ether, and tetraethylene glycol bis (2-amino). Ethyl) ether, polyethylene glycol bis (2-aminoethyl) ether (PEGME), propylene glycol bis (2-aminoethyl) ether, dipropylene glycol bis (2-aminoethyl) ether, tripropylene glycol bis (2-aminoethyl) ) Ether, tetrapropylene glycol bis (2-aminoethyl) ether, polypropylene glycol bis (2-aminoethyl) ether (PPGME) and the like. Among these, those having a number average molecular weight of 300 to 5000 are preferable. These may be used alone or in combination of two or more. Of these, PEGME and PPGME are preferable. Commercially available products can be used for these compounds.

シロキサンユニット含むPAIは、例えば、PAIとシロキサンユニットを有するジアミン(以下、「DA−2」と略記することがある)とを、溶媒中で反応させることにより得ることができる。 The PAI containing a siloxane unit can be obtained, for example, by reacting PAI with a diamine having a siloxane unit (hereinafter, may be abbreviated as "DA-2") in a solvent.

DA−2の具体例としては、1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン、1,3−ビス(4−アミノブチル)−1,1,3,3−テトラメチルジシロキサン、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン等、および下記一般式(1)で表されるものが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかで、下記一般式(1)において、R1およびR2がトリメチレン基、R3、R4、R5およびR6がメチル基、nは3〜100であるもの(以下、「DASM」と略記することがある)が好ましく、これらの中で、数平均分子量が、300〜5000のものがより好ましい。 これらのDASMは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、DASMは市販品を用いることができる。 Specific examples of DA-2 include 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane and 1,3-bis (4-aminobutyl) -1,1,. 3,3-Tetramethyldisiloxane, bis (4-aminophenoxy) dimethylsilane, 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane, etc., and the following general formula ( Those represented by 1) can be mentioned. These may be used alone or in combination of two or more. Among these, in the following general formula (1), R1 and R2 are trimethylene groups, R3, R4, R5 and R6 are methyl groups, and n is 3 to 100 (hereinafter, abbreviated as "DASM"). ) Is preferable, and among these, those having a number average molecular weight of 300 to 5000 are more preferable. These DASMs may be used alone or in combination of two or more. As DASM, a commercially available product can be used.

Figure 0006962548
(ただし、式中nは1以上の整数を示す。また、R1およびR2は、それぞれ同一または異なった、低級アルキレン基またはフェニレン基を示し、R3、R4、R5およびR6は、それぞれ同一または異なった、低級アルキル基、フェニル基またはフェノキシ基を示す。)
Figure 0006962548
(However, n in the formula represents an integer of 1 or more, R1 and R2 represent the same or different lower alkylene group or phenylene group, respectively, and R3, R4, R5 and R6 are the same or different, respectively. , Lower alkyl group, phenyl group or phenoxy group.)

PAI−Mを含むPAI溶液(以下、「PAI−M溶液」と略記することがある)には、溶質であるPAI−Mを溶解する良溶媒と、溶質には貧溶媒となる溶媒とを混合した混合溶媒が含有されている。ここで、良溶媒とは、25℃において、PAI−Mに対する溶解度が1質量%以上の溶媒をいい、貧溶媒とは、25℃において、PAI−Mに対する溶解度が1質量%未満の溶媒をいう。貧溶媒は、良溶媒よりも高沸点であることが好ましい。また、その沸点差は、5℃以上が好ましく、20℃以上がより好ましく、50℃以上がさらに好ましい。 A PAI solution containing PAI-M (hereinafter, may be abbreviated as "PAI-M solution") is a mixture of a good solvent that dissolves PAI-M, which is a solute, and a solvent that is a poor solvent for the solute. Contains the mixed solvent. Here, the good solvent means a solvent having a solubility in PAI-M of 1% by mass or more at 25 ° C., and the poor solvent means a solvent having a solubility in PAI-M of less than 1% by mass at 25 ° C. .. The poor solvent preferably has a higher boiling point than the good solvent. The boiling point difference is preferably 5 ° C. or higher, more preferably 20 ° C. or higher, and even more preferably 50 ° C. or higher.

良溶媒としては、アミド系溶媒または尿素系溶媒が好ましく用いられる。アミド系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP 沸点:202℃)、N,N−ジメチルホルムアミド(DMF 沸点:153℃)、N,N−ジメチルアセトアミド(DMAc 沸点:166℃)が挙げられる。また、尿素系溶媒としては、例えば、テトラメチル尿素(TMU 沸点:177℃)、ジメチルエチレン尿素(沸点:220℃)が挙げられる。これらの良溶媒は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As a good solvent, an amide solvent or a urea solvent is preferably used. Examples of the amide solvent include N-methyl-2-pyrrolidone (NMP boiling point: 202 ° C.), N, N-dimethylformamide (DMF boiling point: 153 ° C.), and N, N-dimethylacetamide (DMAc boiling point: 166 ° C.). Can be mentioned. Examples of the urea solvent include tetramethylurea (TMU boiling point: 177 ° C.) and dimethylethylene urea (boiling point: 220 ° C.). These good solvents may be used alone or in combination of two or more.

貧溶媒としては、エーテル系溶媒が好ましく用いられる。エーテル系溶媒としては、例えば、ジエチレングリコールジメチルエーテル(沸点:162℃)、トリエチレングリコールジメチルエーテル(G3 沸点:216℃)、テトラエチレングリコールジメチルエーテル(G4 沸点:275℃)、ジエチレングリコール(沸点:244℃)、トリエチレングリコール(沸点:287℃) トリプロピレングリコール(沸点:273℃)、ジエチレングルコールモノメチルエーテル(沸点:194℃)、トリプロピレングリコールモノメチルエーテル(沸点:242℃)、トリエチレングルコールモノメチルエーテル(沸点:249℃)等の溶媒を挙げることができる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。貧溶媒の配合量は、全溶媒量に対して15〜95質量%であることが好ましく、60〜90質量%であることがより好ましい。このような溶媒組成とすることにより、活物質層への塗布後の乾燥工程において、効率よく相分離が起こり、高い気孔率を有するイオン透過性の良好な多孔質PAI被膜を得ることができる。 As the poor solvent, an ether solvent is preferably used. Examples of the ether solvent include diethylene glycol dimethyl ether (boiling point: 162 ° C.), triethylene glycol dimethyl ether (G3 boiling point: 216 ° C.), tetraethylene glycol dimethyl ether (G4 boiling point: 275 ° C.), diethylene glycol (boiling point: 244 ° C.), and tri. Ethylene glycol (boiling point: 287 ° C) Tripropylene glycol (boiling point: 273 ° C), diethylene glycol monomethyl ether (boiling point: 194 ° C), tripropylene glycol monomethyl ether (boiling point: 242 ° C), triethylene glycol monomethyl ether (boiling point) : 249 ° C.) and the like. These may be used alone or in combination of two or more. The blending amount of the poor solvent is preferably 15 to 95% by mass, more preferably 60 to 90% by mass, based on the total amount of the solvent. With such a solvent composition, phase separation occurs efficiently in the drying step after coating on the active material layer, and a porous PAI film having a high porosity and good ion permeability can be obtained.

本発明のPAI溶液は、例えば、以下のような製造方法で製造することができる。すなわち、固体状のPAIを前記混合溶媒に溶解せしめてPAI溶液とし、しかる後、この溶液にDA−1および/またはDA−2を加え、60℃〜150℃程度に加熱することにより、PAIの側鎖にオキシアルキレンユニットおよび/またはシロキサンユニットが導入されたPAI−M溶液とすることができる。この反応においては、PAIのイミド環の一部がジアミンのアミノリシスにより開環して、アミド結合を生成するので、溶液状態を維持したまま、PAI溶液の高粘度化を図ることができる。 すなわち、DA−1やDA−2は、アミド結合を介したPAIのリンカとして作用して、高粘度化に寄与するが、完全に架橋ゲル化することはないので、溶液状態を維持することができる。 なお、このような反応が起こっていることは、PAI溶液の粘度上昇によって、確認することができるが、NMRやIR等の分光学的手法を用いて確認することもできる。
DA−1またはDA−2の添加量としては、PAIに対し、5〜40質量%とすることが好ましく、10〜35質量%とすることが好ましい。 また、この反応の際の固形分濃度としては、PAI−Mの固形分濃度として10〜20質量%とすることが好ましい。
The PAI solution of the present invention can be produced, for example, by the following production method. That is, the solid PAI is dissolved in the mixed solvent to prepare a PAI solution, and then DA-1 and / or DA-2 is added to this solution and heated to about 60 ° C. to 150 ° C. to obtain PAI. It can be a PAI-M solution in which an oxyalkylene unit and / or a siloxane unit is introduced into the side chain. In this reaction, a part of the imide ring of PAI is opened by aminolysis of diamine to form an amide bond, so that the viscosity of the PAI solution can be increased while maintaining the solution state. That is, DA-1 and DA-2 act as linkers for PAI via an amide bond and contribute to increasing the viscosity, but they do not completely crosslink and gel, so that the solution state can be maintained. can. It should be noted that such a reaction can be confirmed by increasing the viscosity of the PAI solution, but it can also be confirmed by using a spectroscopic method such as NMR or IR.
The amount of DA-1 or DA-2 added is preferably 5 to 40% by mass, preferably 10 to 35% by mass, based on PAI. The solid content concentration during this reaction is preferably 10 to 20% by mass as the solid content concentration of PAI-M.

PAI−M溶液の粘度(30℃)としては、10〜100Pa・sとすることが好ましく、15〜50Pa・sとすることがより好ましい。 このようにすることにより、塗工性が良好で、かつイオン透過性の良好なPAI被膜が形成可能な溶液とすることができる。 The viscosity (30 ° C.) of the PAI-M solution is preferably 10 to 100 Pa · s, more preferably 15 to 50 Pa · s. By doing so, it is possible to obtain a solution capable of forming a PAI film having good coatability and good ion permeability.

前記固体状のPAIとしては、例えば、市販のPAI粉体(例えば、ソルベイアドバンストポリマーズ株式会社製トーロン4000Tシリーズ、トーロン4000TF、トーロンAI−10シリーズ等)を利用することができる。 As the solid PAI, for example, commercially available PAI powder (for example, Toron 4000T series, Toron 4000TF, Toron AI-10 series manufactured by Solvay Advanced Polymers Co., Ltd.) can be used.

PAI溶液を得るには、前記したような固体状のPAIを用いて製造する方法が好ましいが、原料である前記芳香族トリカルボン酸成分および前記ジアミン成分(各種ジアミンもしくはそのジイソシアネート誘導体)を略等モルで配合し、それを前記混合溶媒中で重合反応させて得られる溶液も用いることができる。また、良溶媒中のみで重合反応して溶液を得た後、これに貧溶媒を加える方法や、貧溶媒中のみで重合反応して懸濁液を得た後、これに良溶媒を加える方法で、PAI溶液を得ることができる。 In order to obtain a PAI solution, a method of producing using the solid PAI as described above is preferable, but the aromatic tricarboxylic acid component and the diamine component (various diamines or diisocyanates derivatives thereof) as raw materials are substantially polymerized. A solution obtained by polymerizing the mixture in the above-mentioned mixed solvent can also be used. Further, a method in which a poor solvent is added to a solution obtained by a polymerization reaction only in a good solvent, or a method in which a good solvent is added thereto after a polymerization reaction is carried out only in a poor solvent to obtain a suspension. The PAI solution can be obtained with.

PAI−M溶液には、フィラを配合することができる。フィラの配合により形成される多孔質構造と、前記貧溶媒の作用により形成される多孔質構造の相乗効果により、多孔質PAI層のイオン透過性をより高めることができる。 Fila can be added to the PAI-M solution. The ion permeability of the porous PAI layer can be further enhanced by the synergistic effect of the porous structure formed by blending the filler and the porous structure formed by the action of the poor solvent.

フィラの種類に制限は無く、有機フィラ、無機フィラおよびその混合物等を用いることができる。有機フィラの具体例としては、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独または2種類以上の共重合体、ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂等の重合体からなる粉体を挙げることができる。有機フィラは、単独または2種以上を混合して用いることができる。無機フィラとしては、例えば、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等の無機物からなる粉体を挙げることができる。具体例としては、アルミナ、ベーマイト(酸化水酸化アルミニウム)、カオリン(ケイ酸アルミニウム)、シリカ、二酸化チタン、硫酸バリウム、または炭酸カルシウム等からなる粉体を挙げることができる。無機フィラは、単独または2種以上を混合して用いることができる。これらの無機フィラの中でも、化学的安定性の観点から、アルミナ粉体、ベーマイト粉体が好ましい。 The type of filler is not limited, and organic filler, inorganic filler and a mixture thereof can be used. Specific examples of the organic filler include styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, methyl acrylate and the like alone or two or more copolymers, polytetrafluoroethylene, and the like. Examples thereof include powders made of a polymer such as a tetrafluorinated ethylene-6 fluoride propylene copolymer, a tetrafluorinated ethylene-ethylene copolymer, and a fluororesin such as polyvinylidene fluoride. The organic filler can be used alone or in combination of two or more. Examples of the inorganic filler include powders made of inorganic substances such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, and sulfates. Specific examples include powders made of alumina, boehmite (aluminum oxide oxide), kaolin (aluminum silicate), silica, titanium dioxide, barium sulfate, calcium carbonate and the like. The inorganic filler can be used alone or in combination of two or more. Among these inorganic fillers, alumina powder and boehmite powder are preferable from the viewpoint of chemical stability.

フィラの形状に制限はなく、略球状、板状、柱状、針状、ウィスカー状、繊維状等の粒子を用いることができ、略球状粒子が好ましい。略球状粒子のアスペクト比(粒子の長径/粒子の短径)は1以上、1.5以下とすることが好ましい。 The shape of the filler is not limited, and particles such as substantially spherical, plate-shaped, columnar, needle-shaped, whisker-shaped, and fibrous can be used, and substantially spherical particles are preferable. The aspect ratio of the substantially spherical particles (major axis of the particles / minor axis of the particles) is preferably 1 or more and 1.5 or less.

フィラの平均粒子径に制限はないが、0.01μm以上、2μm以下であることが好ましい。平均粒子径はレーザ回折散乱法に基づく測定装置により測定することができる。 The average particle size of the filler is not limited, but is preferably 0.01 μm or more and 2 μm or less. The average particle size can be measured by a measuring device based on the laser diffraction / scattering method.

フィラは、その表面が、界面活性剤やシランカップラのような表面処理剤で処理されていてもよい。 The surface of the filler may be treated with a surface treatment agent such as a surfactant or a silane coupler.

フィラ配合量は、PAI−Mの固形分との質量比(PAI−M/フィラ)で、80/20〜10/90とすることが好ましく、70/30〜20/80とすることがより好ましい。 The amount of the filler compounded is preferably 80/20 to 10/90, more preferably 70/30 to 20/80, in terms of the mass ratio (PAI-M / filler) of PAI-M to the solid content. ..

PAI溶液には、必要に応じて、各種界面活性剤や有機シランカップリング剤のような公知の添加物を、本発明の効果を損なわない範囲で添加してもよい。また、必要に応じて、PAI以外の他のポリマーを、本発明の効果を損なわない範囲で添加してもよい。 If necessary, known additives such as various surfactants and organic silane coupling agents may be added to the PAI solution as long as the effects of the present invention are not impaired. If necessary, polymers other than PAI may be added as long as the effects of the present invention are not impaired.

PAI−M溶液を、電極活物質層の表面に塗布し、100〜200℃の温度で乾燥を行うことにより、相分離を誘起させて多孔質PAI被膜を形成させることができ、電極活物質層と、この多孔質PAI被膜とが積層一体化される。 By applying the PAI-M solution to the surface of the electrode active material layer and drying at a temperature of 100 to 200 ° C., phase separation can be induced to form a porous PAI film, and the electrode active material layer can be formed. And this porous PAI coating are laminated and integrated.

電極活物質層へのPAI溶液の塗布方法としては、ロールツーロールにより連続的に塗布する方法、枚様で塗布する方法が採用でき、いずれの方法でもよい。塗布装置としては、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ等を用いる公知の方法で行うことができる。 As a method of applying the PAI solution to the electrode active material layer, a method of continuously applying by roll-to-roll and a method of applying in sheet form can be adopted, and any method may be used. As the coating apparatus, a known method using a die coater, a multi-layer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater, or the like can be used.

多孔質PAI被膜表面の平均気孔径は、10nm以上、5000nm以下であり、20nm以上、3000nm以下がより好ましい。平均気孔径をこのようにすることにより、PAI被膜のイオン抵抗率を充分に低くすることができる。 平均気孔径は、多孔質PAI被膜表面のSEM(走査型電子顕微鏡)像を倍率5000〜20000倍で取得し、市販の画像処理ソフトで解析することにより確認することができる。 The average pore diameter on the surface of the porous PAI coating is 10 nm or more and 5000 nm or less, more preferably 20 nm or more and 3000 nm or less. By setting the average pore diameter in this way, the ion resistivity of the PAI coating can be sufficiently lowered. The average pore diameter can be confirmed by acquiring an SEM (scanning electron microscope) image of the surface of the porous PAI coating at a magnification of 5000 to 20000 and analyzing it with commercially available image processing software.

多孔質PAI被膜の気孔率は、30〜90体積%であることが好ましく、40〜80体積%であることがより好ましく、45〜80体積%であることがさらに好ましい。気孔率をこのように設定することにより、良好な力学的特性と、活物質の体積変化に伴う応力緩和のための良好なクッション性とが同時に確保される。このため、安全性に優れ、かつ良好なサイクル特性を有する電極を得ることができる。多孔質PAI被膜の気孔率は、多孔質PAI被膜の見掛け密度と、被膜を構成するPAIの真密度(比重)とから算出される値である。詳細には、気孔率(体積%)は、PAI被膜の見掛け密度がA(g/cm)、PAIの真密度がB(g/cm)の場合、次式により算出される。
気孔率(体積%) = 100−A*(100/B)
The porosity of the porous PAI coating is preferably 30 to 90% by volume, more preferably 40 to 80% by volume, and even more preferably 45 to 80% by volume. By setting the porosity in this way, good mechanical properties and good cushioning properties for stress relaxation due to the volume change of the active material are ensured at the same time. Therefore, it is possible to obtain an electrode having excellent safety and good cycle characteristics. The porosity of the porous PAI coating is a value calculated from the apparent density of the porous PAI coating and the true density (specific gravity) of the PAI constituting the coating. Specifically, the porosity (% by volume) is calculated by the following equation when the apparent density of the PAI film is A (g / cm 3 ) and the true density of PAI is B (g / cm 3).
Porosity (% by volume) = 100-A * (100 / B)

多孔質PAI被膜は、充分なイオン透過性を有していることが好ましい。 すなわち、そのイオン抵抗率が、2.5Ωcm以下であることが好ましい。イオン抵抗率が、上記範囲であると、本発明の電極を用いたリチウム二次電池の良好な充放電特性を確保することができる。
ここでPAI被膜のイオン抵抗率(Rs−PAI)は、例えば、以下のような方法を用いて、算出することができる。すなわち、集電体上に形成された活物質層のみのイオン抵抗率をRs−1、その表面に多孔質PAI被膜が形成された積層体のイオン抵抗率をRs−2とすると、Rs−PAIは、Rs−2からRs−1を減じることにより算出する。
Rs−1およびRs−2は、これらの表面に、電解液の存在下で、市販セパレータ、対極となるリチウム箔を順次積層して、測定用セルを構成し、前記リチウム箔および前記集電体を電極として、25℃で、100KHzでのインピーダンスを測定することに決定することができる。
The porous PAI coating preferably has sufficient ion permeability. That is, the ion resistivity is preferably 2.5 Ωcm 2 or less. When the ion resistivity is in the above range, good charge / discharge characteristics of the lithium secondary battery using the electrode of the present invention can be ensured.
Here, the ion resistivity (Rs-PAI) of the PAI coating can be calculated by using, for example, the following method. That is, assuming that the ion resistivity of only the active material layer formed on the current collector is Rs-1, and the ion resistivity of the laminate having the porous PAI film formed on the surface thereof is Rs-2, then Rs-PAI Is calculated by subtracting Rs-1 from Rs-2.
Rs-1 and Rs-2 form a measurement cell by sequentially laminating a commercially available separator and a lithium foil as a counter electrode on their surfaces in the presence of an electrolytic solution, and form the lithium foil and the current collector. Can be determined to measure the impedance at 100 KHz at 25 ° C.

多孔質PAI被膜は活物質層と強固に接着していることが好ましい。すなわち、電池の安全性向上の観点から、電極活物質層と多孔質PAI被膜の接着強度が、電極活物質層の強度よりも高いことが好ましい。接着強度が、電極活物質層の強度よりも高いかどうかは、電極活物質層をPAI被膜から剥離した時、その界面で、凝集破壊が起こるか、界面剥離が起こるかで判定することができる。凝集破壊が起こったときに、接着界面の強度が、電極活物質層の強度よりも高いと判定される。剥離後のPAI被膜の表面(電極活物質層との接着面)の一部に活物質層の断片が付着している場合に凝集破壊と判定される。本発明の電極では、このような高い接着力が電池の安全性の向上に大きく寄与する。 The porous PAI coating is preferably firmly adhered to the active material layer. That is, from the viewpoint of improving the safety of the battery, it is preferable that the adhesive strength between the electrode active material layer and the porous PAI coating is higher than the strength of the electrode active material layer. Whether or not the adhesive strength is higher than the strength of the electrode active material layer can be determined by whether cohesive fracture occurs or interface peeling occurs at the interface when the electrode active material layer is peeled from the PAI coating. .. When cohesive fracture occurs, it is determined that the strength of the adhesive interface is higher than the strength of the electrode active material layer. When a fragment of the active material layer adheres to a part of the surface (adhesive surface with the electrode active material layer) of the PAI film after peeling, it is determined to be cohesive fracture. In the electrode of the present invention, such a high adhesive force greatly contributes to the improvement of battery safety.

多孔質PAI被膜の厚さは0.5〜100μmが好ましく、1〜20μmがより好ましい。 The thickness of the porous PAI coating is preferably 0.5 to 100 μm, more preferably 1 to 20 μm.

多孔質PAI被膜が積層される電極活物質層とは、本発明の蓄電素子(例えばリチウム二次電池)電極の集電体上に形成された層であり、正極活物質層と負極活物質層の総称である。 The electrode active material layer on which the porous PAI film is laminated is a layer formed on the current collector of the power storage element (for example, lithium secondary battery) electrode of the present invention, and is a positive electrode active material layer and a negative electrode active material layer. It is a general term for.

集電体としては、銅箔、ステンレス箔、ニッケル箔、アルミ箔等の金属箔を使用することができる。正極にはアルミ箔が、負極には銅箔が好ましく用いられる。これらの金属箔の厚みは5〜50μmが好ましく、9〜18μmがより好ましい。これらの金属箔の表面は、活物質層との接着性を向上させるための粗面化処理や防錆処理がされていてもよい。 As the current collector, a metal foil such as copper foil, stainless steel foil, nickel foil, or aluminum foil can be used. Aluminum foil is preferably used for the positive electrode, and copper foil is preferably used for the negative electrode. The thickness of these metal foils is preferably 5 to 50 μm, more preferably 9 to 18 μm. The surface of these metal foils may be roughened or rust-proofed to improve the adhesiveness with the active material layer.

正極活物質層は、例えば、正極活物質粒子を樹脂バインダで結着して得られる層である。正極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、例えば、酸化物系(LiCoO、LiNiO等)、リン酸鉄系(LiFePO等)、高分子化合物系(ポリアニリン、ポリチオフェン等)等の活物質粒子を挙げることができる。この中でも、LiCoO、LiNiO、LiFePOが好ましい。正極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子や金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1〜30質量%程度配合されていてもよい。 The positive electrode active material layer is, for example, a layer obtained by binding positive electrode active material particles with a resin binder. As the material used as the positive electrode active material particles, those capable of storing and storing lithium ions are preferable, and for example, oxide-based (LiCoO 2 , LiNiO 2, etc.), iron phosphate-based (LiFePO 4, etc.), and polymer compound-based (LiFePO 4, etc.) Active material particles such as polyaniline, polythiophene, etc.) can be mentioned. Of these, LiCoO 2 , LiNiO 2 , and LiFePO 4 are preferable. In order to reduce the internal resistance of the positive electrode active material layer, conductive particles such as carbon (graphite, carbon black, etc.) particles and metal (silver, copper, nickel, etc.) particles are blended in an amount of about 1 to 30% by mass. May be.

負極活物質層は、例えば、負極活物質粒子を樹脂バインダで結着して得られる層である。負極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、例えば黒鉛、アモルファスカーボン、シリコン系、錫系等の活物質粒子を挙げることができる。この中でも黒鉛粒子、シリコン系粒子が好ましい。シリコン系粒子としては、例えば、シリコン単体、シリコン合金、シリコン・二酸化珪素複合体等の粒子を挙げることができる。これらシリコン系粒子の中でも、シリコン単体の粒子が好ましい。シリコン単体とは、純度が95質量%以上の結晶質または非晶質のシリコンをいう。負極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子や金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1〜30質量%程度配合されていてもよい。また、負極活物質層として、リチウム箔やリチウム合金箔を用いることができる。 The negative electrode active material layer is, for example, a layer obtained by binding negative electrode active material particles with a resin binder. As the material used as the negative electrode active material particles, those capable of storing and storing lithium ions are preferable, and examples thereof include active material particles such as graphite, amorphous carbon, silicon-based, and tin-based particles. Of these, graphite particles and silicon-based particles are preferable. Examples of the silicon-based particles include particles such as elemental silicon, a silicon alloy, and a silicon-silicon dioxide composite. Among these silicon-based particles, particles of simple substance silicon are preferable. Elemental silicon refers to crystalline or amorphous silicon having a purity of 95% by mass or more. In order to reduce the internal resistance of the negative electrode active material layer, conductive particles such as carbon (graphite, carbon black, etc.) particles and metal (silver, copper, nickel, etc.) particles are blended in an amount of about 1 to 30% by mass. May be. Further, as the negative electrode active material layer, a lithium foil or a lithium alloy foil can be used.

活物質粒子や導電性粒子の粒子径は、正極、負極いずれも50μm以下が好ましく、10μm以下がさらに好ましい。粒子径は、小さすぎても樹脂バインダによる結着が難しくなるので、通常0.1μm以上、好ましくは0.5μm以上である。 The particle size of the active material particles and the conductive particles is preferably 50 μm or less for both the positive electrode and the negative electrode, and more preferably 10 μm or less. If the particle size is too small, it will be difficult to bind with a resin binder, so the particle size is usually 0.1 μm or more, preferably 0.5 μm or more.

電極活物質層の気孔率は、正極、負極いずれも5〜50体積%が好ましく、10〜40体積%がより好ましい。 The porosity of the electrode active material layer is preferably 5 to 50% by volume, more preferably 10 to 40% by volume for both the positive electrode and the negative electrode.

電極活物質層の層厚は、通常20〜200μm程度である。 The layer thickness of the electrode active material layer is usually about 20 to 200 μm.

前述の、活物質粒子を結着させるための樹脂バインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、PAI等を挙げることができる。この中でも、PVDF、SBR、PAIが好ましい。 Examples of the resin binder for binding the active material particles include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and styrene. Examples thereof include butadiene copolymer rubber (SBR), polytetrafluoroethylene, polypropylene, polyethylene, PAI and the like. Of these, PVDF, SBR and PAI are preferable.

前記したような集電体上に活物質層が形成された積層体は市販品を利用することもできるが、例えば以下のような公知の方法で製造することができる。 As the laminate in which the active material layer is formed on the current collector as described above, a commercially available product can be used, but for example, it can be produced by a known method as follows.

すなわち、集電体である金属箔の表面に、前述のバインダと活物質粒子と溶媒とを含む分散体(以下、「活物質分散体」と略記することがある)を塗布後、乾燥して金属箔上に電極活物質層を形成させることができる。 That is, a dispersion containing the above-mentioned binder, active material particles, and a solvent (hereinafter, may be abbreviated as "active material dispersion") is applied to the surface of a metal foil which is a current collector, and then dried. An electrode active material layer can be formed on the metal foil.

以下に、実施例を挙げて、本発明をさらに詳細に説明する。なお本発明は実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples.

下記の実施例及び比較例で使用した、集電体上に形成された電極活物質層(負極用)を以下のようにして得た。 The electrode active material layer (for the negative electrode) formed on the current collector used in the following Examples and Comparative Examples was obtained as follows.

負極活物質である黒鉛粒子(平均粒径8μm)88質量部と、導電助剤のカーボンブラック(アセチレンブラック)5質量部と、バインダ樹脂であるPVDF7質量部とを、NMP中に均一に分散して、固形分濃度25質量%の負極活物質分散体を得た。この分散体を負極集電体である厚さ18μmの銅箔に塗布し、得られた塗膜を150℃で20分乾燥後、熱プレスして、厚みが50μmの負極活物質層を得た。 88 parts by mass of graphite particles (average particle size 8 μm) which is a negative electrode active material, 5 parts by mass of carbon black (acetylene black) which is a conductive auxiliary agent, and 7 parts by mass of PVDF which is a binder resin are uniformly dispersed in NMP. A negative electrode active material dispersion having a solid content concentration of 25% by mass was obtained. This dispersion was applied to a copper foil having a thickness of 18 μm, which is a negative electrode current collector, and the obtained coating film was dried at 150 ° C. for 20 minutes and then hot-pressed to obtain a negative electrode active material layer having a thickness of 50 μm. ..

下記の実施例及び比較例において得られた電極の特性は、以下の方法で評価した。 The characteristics of the electrodes obtained in the following examples and comparative examples were evaluated by the following methods.

電極を直径16mmの円形に打ち抜き、その多孔質PAI被膜面側に、ポリエチレン製多孔膜からなるセパレータと、リチウム箔とを順に積層し、これをステンレス製のコイン型外装容器中に収納した。この外装容器中に電解液(溶媒:エチレンカーボネートとジメチルカーボネートとを体積比で1:1の割合で混合した混合溶媒、電解質:1MLiPF)を注入し、外装容器にパッキンを介してステンレス製のキャップをかぶせて固定し、電池缶を封止して、評価用のセルを得た。このセルを用い、前記した方法で、100KHzでのインピーダンスを測定することにより、イオン抵抗率(Rs−PAI)を算出した。 The electrode was punched into a circle having a diameter of 16 mm, and a separator made of a polyethylene porous film and a lithium foil were laminated in this order on the surface side of the porous PAI coating film, and this was stored in a stainless coin-shaped outer container. An electrolytic solution (solvent: a mixed solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1; electrolyte: 1MLiPF 6 ) is injected into the outer container, and the outer container is made of stainless steel via packing. The cell was obtained by covering it with a cap and fixing it, and sealing the battery can. Using this cell, the ion resistivity (Rs-PAI) was calculated by measuring the impedance at 100 KHz by the method described above.

<実施例1>
TACと、DADEおよびMDAと、を共重合(共重合モル比:DADE/MDA=7/3)して得られるPAI粉体(ソルベイアドバンストポリマーズ株式会社製トーロン4000T−HV、ガラス転移温度280℃)を、NMPとG4とからなる混合溶媒(質量比 NMP/G4=30/70)に、80℃で溶解して、PAIの固形分濃度が15質量%の均一なPAI溶液(S−0)を得た。次に、このPAI溶液に、PAI質量に対し24質量%相当のPPGME(数平均分子量2000:ハンツマン社製ジェファーミンD2000)を添加し、攪拌下、80℃で4時間反応させて均一な固形分濃度が18.0質量%のPAI溶液(S−1)を得た。 S−1の粘度は、30℃で34.5Pa・sであった。
<Example 1>
PAI powder obtained by copolymerizing TAC with DADE and MDA (copolymerization molar ratio: DADE / MDA = 7/3) (Toron 4000T-HV manufactured by Solvent Advanced Polymers Co., Ltd., glass transition temperature 280 ° C.) Was dissolved in a mixed solvent consisting of NMP and G4 (mass ratio NMP / G4 = 30/70) at 80 ° C. to obtain a uniform PAI solution (S-0) having a solid content concentration of PAI of 15% by mass. Obtained. Next, PPGME (number average molecular weight 2000: Jeffamine D2000 manufactured by Huntsman) equivalent to 24% by mass with respect to the mass of PAI was added to this PAI solution, and the mixture was reacted at 80 ° C. for 4 hours under stirring to provide a uniform solid content. A PAI solution (S-1) having a concentration of 18.0% by mass was obtained. The viscosity of S-1 was 34.5 Pa · s at 30 ° C.

<実施例2>
PPGMEの添加量を、PAI質量に対し12質量%相当としたこと以外は、実施例1と同様に行い、固形分濃度が16.5質量%の均一なPAI溶液(S−2)を得た。S−2の粘度は、30℃で11.7Pa・sであった。
<Example 2>
The same procedure as in Example 1 was carried out except that the amount of PPGME added was 12% by mass with respect to the mass of PAI, to obtain a uniform PAI solution (S-2) having a solid content concentration of 16.5% by mass. .. The viscosity of S-2 was 11.7 Pa · s at 30 ° C.

<実施例3>
実施例1で得られたPAI溶液(S−0)に、PAI質量に対し6質量%相当のDASM(数平均分子量860:信越化学社製 KF−8010)を用いたこと以外は、実施例1と同様に行い、固形分濃度が15.8質量%の均一なPAI溶液(S−3)を得た。S−3の粘度は、30℃で10.5Pa・sであった。
<Example 3>
Example 1 except that DASM (number average molecular weight 860: KF-8010 manufactured by Shin-Etsu Chemical Co., Ltd.) equivalent to 6% by mass with respect to the mass of PAI was used in the PAI solution (S-0) obtained in Example 1. In the same manner as above, a uniform PAI solution (S-3) having a solid content concentration of 15.8% by mass was obtained. The viscosity of S-3 was 10.5 Pa · s at 30 ° C.

<実施例4>
実施例2で得られたPAI溶液(S−2)に、PAI質量に対し40質量%相当の市販球状アルミナ(平均粒子径:0.5μm)を加え、ボールミルで混錬混合することにより、固形分濃度が19.8質量%のPAI懸濁液(S−4)を得た。
<Example 4>
To the PAI solution (S-2) obtained in Example 2, commercially available spherical alumina (average particle size: 0.5 μm) equivalent to 40% by mass with respect to the PAI mass was added, and the mixture was kneaded and mixed with a ball mill to solidify. A PAI suspension (S-4) having a particle concentration of 19.8% by mass was obtained.

<比較例1>
TACと、DADEおよびMDAと、を共重合(共重合モル比:DADE/MDA=7/3)して得られるPAI粉体(ソルベイアドバンストポリマーズ株式会社製トーロン4000T−HV、ガラス転移温度280℃)を、NMPとG4とからなる混合溶媒(質量比 NMP/G4=30/70)に、80℃で溶解して、PAIの固形分濃度が16.5質量%の均一なPAI溶液(S−5)を得た。S−5の粘度は、30℃で8.6Pa・sであった。
<Comparative example 1>
PAI powder obtained by copolymerizing TAC with DADE and MDA (copolymerization molar ratio: DADE / MDA = 7/3) (Toron 4000T-HV manufactured by Solvent Advanced Polymers Co., Ltd., glass transition temperature 280 ° C.) Was dissolved in a mixed solvent consisting of NMP and G4 (mass ratio NMP / G4 = 30/70) at 80 ° C., and a uniform PAI solution (S-5) having a solid content concentration of PAI of 16.5% by mass was dissolved. ) Was obtained. The viscosity of S-5 was 8.6 Pa · s at 30 ° C.

<実施例5>
実施例1で得られたS−1を前記負極活物質層の表面に塗布し、130℃で10分乾燥して、厚みが11μmのPAI被膜が負極活物質層の表面に形成された電極(負極)「AN−1」を得た。 塗布の際の塗工性は極めて良好であった。この多孔質PAI被膜は、負極活物質層の表面に強固に接着されていた。 多孔質PAI被膜の平均気孔径(表面)は2100nmであり、気孔率は、61体積%であった。
負極「AN−1」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPAI被膜のRs−PAIは、2.2Ωcmであった。
<Example 5>
The S-1 obtained in Example 1 was applied to the surface of the negative electrode active material layer and dried at 130 ° C. for 10 minutes to form an electrode having a PAI film having a thickness of 11 μm formed on the surface of the negative electrode active material layer. Negative electrode) "AN-1" was obtained. The coatability at the time of coating was extremely good. This porous PAI coating was firmly adhered to the surface of the negative electrode active material layer. The average pore diameter (surface) of the porous PAI coating was 2100 nm, and the porosity was 61% by volume.
When a cell was prepared by the above method using the negative electrode "AN-1" and the ion resistivity was measured, the Rs-PAI of this PAI coating was 2.2 Ωcm 2.

<実施例6>
PAI溶液として、S−2を用いたこと以外は、実施例5と同様にして、厚みが12μmのPAI被膜が負極活物質層の表面に形成された電極(負極)「AN−2」を得た。 塗布の際の塗工性は良好であった。 この多孔質PAI被膜は、負極活物質層の表面に強固に接着されていた。 多孔質PAI被膜の平均気孔径(表面)は2200nmであり、気孔率は、62体積%であった。 負極「AN−2」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPAI被膜のRs−PAIは、2.4Ωcmであった。
<Example 6>
An electrode (negative electrode) "AN-2" in which a PAI film having a thickness of 12 μm was formed on the surface of the negative electrode active material layer was obtained in the same manner as in Example 5 except that S-2 was used as the PAI solution. rice field. The coatability at the time of coating was good. This porous PAI coating was firmly adhered to the surface of the negative electrode active material layer. The average pore diameter (surface) of the porous PAI coating was 2200 nm, and the porosity was 62% by volume. When a cell was prepared by the above method using the negative electrode "AN-2" and the ion resistivity was measured, the Rs-PAI of this PAI coating was 2.4 Ωcm 2.

<実施例7>
PAI溶液として、S−3を用いたこと以外は、実施例5と同様にして、厚みが13μmのPAI被膜が負極活物質層の表面に形成された電極(負極)「AN−3」を得た。 塗布の際の塗工性は良好であった。 この多孔質PAI被膜は、負極活物質層の表面に強固に接着されていた。 多孔質PAI被膜の平均気孔径(表面)は2500nmであり、気孔率は、61体積%であった。 負極「AN−3」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPAI被膜のRs−PAIは、2.3Ωcmであった。
<Example 7>
An electrode (negative electrode) "AN-3" in which a PAI film having a thickness of 13 μm was formed on the surface of the negative electrode active material layer was obtained in the same manner as in Example 5 except that S-3 was used as the PAI solution. rice field. The coatability at the time of coating was good. This porous PAI coating was firmly adhered to the surface of the negative electrode active material layer. The average pore diameter (surface) of the porous PAI coating was 2500 nm, and the porosity was 61% by volume. When a cell was prepared by the above method using the negative electrode "AN-3" and the ion resistivity was measured, the Rs-PAI of this PAI coating was 2.3 Ωcm 2.

<実施例8>
PAI懸濁液として、S−4を用いたこと以外は、実施例5と同様にして、厚みが11μmのPAI被膜が負極活物質層の表面に形成された電極(負極)「AN−4」を得た。 塗布の際の塗工性は良好であった。 この多孔質PAI被膜は、負極活物質層の表面に強固に接着されていた。 多孔質PAI被膜の平均気孔径(表面)は1500nmであり、気孔率は、68体積%であった。 負極「AN−4」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPAI被膜のRs−PAIは、1.9Ωcmであった。
<Example 8>
Electrode (negative electrode) "AN-4" in which a PAI film having a thickness of 11 μm was formed on the surface of the negative electrode active material layer in the same manner as in Example 5 except that S-4 was used as the PAI suspension. Got The coatability at the time of coating was good. This porous PAI coating was firmly adhered to the surface of the negative electrode active material layer. The average pore diameter (surface) of the porous PAI coating was 1500 nm, and the porosity was 68% by volume. When a cell was prepared by the above method using the negative electrode "AN-4" and the ion resistivity was measured, the Rs-PAI of this PAI coating was 1.9 Ωcm 2.

<比較例2>
PAI溶液として、S−5を用いたこと以外は、実施例5と同様にして、厚みが12μmのPAI被膜が負極活物質層の表面に形成された電極(負極)「AN−5」を得た。 塗布の際には、PAI溶液の一部が活物質層の周辺部に流れでることがあった。 この多孔質PAI被膜は、負極活物質層の表面に強固に接着されていた。 多孔質PAI被膜の平均気孔径(表面)は1900nmであり、気孔率は、60体積%であった。 負極「AN−5」を用いて、前記した方法でセルを作成し、イオン抵抗率を測定した所、このPAI被膜のRs−PAIは、2.9Ωcmであった。
<Comparative example 2>
An electrode (negative electrode) "AN-5" in which a PAI film having a thickness of 12 μm was formed on the surface of the negative electrode active material layer was obtained in the same manner as in Example 5 except that S-5 was used as the PAI solution. rice field. At the time of application, a part of the PAI solution sometimes flowed to the peripheral portion of the active material layer. This porous PAI coating was firmly adhered to the surface of the negative electrode active material layer. The average pore diameter (surface) of the porous PAI coating was 1900 nm, and the porosity was 60% by volume. When a cell was prepared by the above method using the negative electrode "AN-5" and the ion resistivity was measured, the Rs-PAI of this PAI coating was 2.9 Ωcm 2.

実施例、比較例で示したように、本発明のPAI溶液は、高粘度化されているので、塗工性が良好である。 さらにこれを用いて、電極活物質上に形成された多孔質PAI塗膜は、イオン抵抗率が低く、良好なイオン透過性が確保できる。 As shown in Examples and Comparative Examples, the PAI solution of the present invention has a high viscosity and therefore has good coatability. Further, by using this, the porous PAI coating film formed on the electrode active material has a low ion resistivity and can secure good ion permeability.

本発明のPAI溶液は、高粘度化されているので、塗工性が良好であり、これから得られる多孔質PAI被膜はイオン透過性に優れる。 従い、これを活物質層の表面に塗布後、乾燥することにより得られる多孔質PAI被膜が活物質層表面に積層一体化された電極は、安全性に優れた蓄電素子電極として好適に用いることができる。
Since the PAI solution of the present invention has a high viscosity, the coatability is good, and the porous PAI film obtained from this is excellent in ion permeability. Therefore, an electrode in which a porous PAI film obtained by applying this to the surface of the active material layer and then drying it is laminated and integrated on the surface of the active material layer is suitably used as an electrode for a power storage element having excellent safety. Can be done.

Claims (3)

ポリアミドイミドに対する良溶媒と貧溶媒とを含有するポリアミドイミド溶液であって、前記ポリアミドイミドが、側鎖中に、アミド結合を介して、オキシアルキレンユニットおよび/またはシロキサンユニットが導入されていることを特徴とするポリアミドイミド溶液。 A polyamide-imide solution containing a good solvent and a poor solvent for polyamide-imide, wherein the oxyalkylene unit and / or the siloxane unit is introduced into the side chain of the polyamide-imide via an amide bond. A featured polyamide-imide solution. 側鎖中にオキシアルキレンユニットおよび/またはシロキサンユニットを含むポリアミドイミドと、前記ポリアミドイミドに対する良溶媒と貧溶媒とを含有するポリアミドイミド溶液を、活物質層表面に塗布後、乾燥することにより多孔質ポリアミドイミド被膜を形成する工程を含む蓄電素子電極の製造方法。 A polyamide-imide containing an oxyalkylene unit and / or a siloxane unit in the side chain and a polyamide-imide solution containing a good solvent and a poor solvent for the polyamide-imide are applied to the surface of the active material layer and then dried to make them porous. A method for manufacturing a power storage element electrode, which comprises a step of forming a polyamide-imide film. 活物質層表面に多孔質ポリアミドイミド被膜が積層一体化されている電極であって、以下の特徴を有する蓄電素子電極。
1) 前記ポリアミドイミドの側鎖中に、オキシアルキレンユニットおよび/またはシロキサンユニットを含む。
2) 前記多孔質ポリアミドイミド被膜表面の平均気孔径が10nm以上、5000nm以下である。
An electrode in which a porous polyamide-imide film is laminated and integrated on the surface of an active material layer, and has the following characteristics.
1) The side chain of the polyamide-imide contains an oxyalkylene unit and / or a siloxane unit.
2) The average pore diameter of the surface of the porous polyamide-imide coating is 10 nm or more and 5000 nm or less.
JP2017158001A 2016-08-22 2017-08-18 Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes Active JP6962548B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162001 2016-08-22
JP2016162001 2016-08-22

Publications (3)

Publication Number Publication Date
JP2018032627A JP2018032627A (en) 2018-03-01
JP2018032627A5 JP2018032627A5 (en) 2020-10-08
JP6962548B2 true JP6962548B2 (en) 2021-11-05

Family

ID=61303838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158001A Active JP6962548B2 (en) 2016-08-22 2017-08-18 Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes

Country Status (1)

Country Link
JP (1) JP6962548B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183153A (en) * 2018-04-12 2019-10-24 ユニチカ株式会社 Method for producing polyimide aerogel
CN108586780B (en) * 2018-05-09 2021-05-07 无锡创彩光学材料有限公司 Porous polyimide film and preparation method thereof
KR102543245B1 (en) * 2018-06-22 2023-06-14 주식회사 엘지에너지솔루션 Lithium Metal Electrode, Method for Preparing the Same and Lithium Secondary Battery
JP7349708B2 (en) * 2018-07-24 2023-09-25 ユニチカ株式会社 Coating liquid for lithium secondary battery electrodes, method for producing electrodes for lithium secondary batteries, and electrodes for lithium secondary batteries

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318026A (en) * 1991-04-17 1992-11-09 Sumitomo Bakelite Co Ltd Polyamideimide solution
JP2758092B2 (en) * 1991-10-03 1998-05-25 第一電工 株式会社 Self-lubricating insulated wire
JP5024517B2 (en) * 2005-09-08 2012-09-12 荒川化学工業株式会社 Thermosetting polyamide-imide resin composition, cured polyamide-imide resin, insulated wire and molded belt
WO2009099039A1 (en) * 2008-02-07 2009-08-13 Toyo Boseki Kabushiki Kaisha Stabilized polyamideimide resin solution, and method for production thereof
JP5998870B2 (en) * 2012-11-16 2016-09-28 株式会社豊田自動織機 Negative electrode material for power storage device, negative electrode for power storage device and power storage device
JP6403576B2 (en) * 2013-01-07 2018-10-10 ユニチカ株式会社 Method for producing electrode for lithium secondary battery
CN105916941A (en) * 2014-01-16 2016-08-31 尤尼吉可株式会社 Polyamide imide solution, porous polyamide imide film, and methods for producing same
JP2016145300A (en) * 2015-02-09 2016-08-12 ユニチカ株式会社 Porous polyamideimide film and manufacturing method therefor

Also Published As

Publication number Publication date
JP2018032627A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP7015578B2 (en) Imid polymer solution
JP6962548B2 (en) Polyamide-imide solution for power storage element electrodes, manufacturing method of power storage element electrodes, and power storage element electrodes
WO2017073766A1 (en) Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode
TWI616505B (en) Electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
JP6217647B2 (en) Bipolar lithium-ion secondary battery current collector and bipolar lithium-ion secondary battery
WO2005080487A1 (en) Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP6969143B2 (en) Porous Membrane and Laminated Porous Membrane
JP6982423B2 (en) Insulating porous layer for non-aqueous electrolyte secondary battery
JP2015204133A (en) Aqueous binder composition
JPWO2016098659A1 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
JPWO2016098660A1 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
TW201223759A (en) Separator
CN103797614A (en) Battery separator, and battery separator manufacturing method
JP7166579B2 (en) Laminate for storage element electrode and method for manufacturing storage element electrode
JP6835348B2 (en) Polyamide-imide solution for power storage element separator and power storage element separator
JP7042765B2 (en) Binder resin composition for electrodes, electrode mixture paste, and method for manufacturing electrodes
JP7113527B2 (en) METHOD FOR MANUFACTURING ELECTRODE FOR LITHIUM SECONDARY BATTERY
JP6860925B2 (en) Non-crosslinked polymaleimide, its manufacturing method, and binder solution for power storage devices
JP7032793B2 (en) Method for forming a porous polyamide-imide film
CN108878753B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
JP6962553B2 (en) Manufacturing method of laminate for power storage element separator and separator for power storage element
JP7100481B2 (en) Insulating porous layer for non-aqueous electrolyte secondary battery
JP5812378B2 (en) Lithium ion secondary battery electrode binder
JP7040743B2 (en) Polyamide-imide coating liquid for forming a porous polyamide-imide film
JP2016079310A (en) Varnish for producing porous film, method for producing porous film using the same and hole forming agent for producing porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6962548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250