JP6969143B2 - Porous Membrane and Laminated Porous Membrane - Google Patents

Porous Membrane and Laminated Porous Membrane Download PDF

Info

Publication number
JP6969143B2
JP6969143B2 JP2017079430A JP2017079430A JP6969143B2 JP 6969143 B2 JP6969143 B2 JP 6969143B2 JP 2017079430 A JP2017079430 A JP 2017079430A JP 2017079430 A JP2017079430 A JP 2017079430A JP 6969143 B2 JP6969143 B2 JP 6969143B2
Authority
JP
Japan
Prior art keywords
heat
film
porous membrane
aromatic
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017079430A
Other languages
Japanese (ja)
Other versions
JP2017212201A (en
Inventor
敦司 沢本
明光 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017212201A publication Critical patent/JP2017212201A/en
Application granted granted Critical
Publication of JP6969143B2 publication Critical patent/JP6969143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、多孔質膜および積層多孔質膜に関するものであり、特にリチウムイオン二次電池などの非水電解質二次電池用セパレータとして好適に使用できる多孔質膜に関するものである。 The present invention relates to a porous film and a laminated porous film, and more particularly to a porous film that can be suitably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

リチウムイオン二次電池(LIB)などの非水電解質二次電池は、携帯機器用途を中心に広範に普及しており、一般にそれらのセパレータとしては、シャットダウン機能を有するポリオレフィン樹脂からなる多孔質膜が用いられている。シャットダウン機能とは、電池の温度が上昇したときに孔が閉塞し、イオン透過を遮断して電池の暴走を未然に防ぐ一種の安全機能である。 Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (LIBs) are widely used mainly for mobile device applications, and generally, as their separators, a porous film made of a polyolefin resin having a shutdown function is used. It is used. The shutdown function is a kind of safety function that closes the hole when the temperature of the battery rises and blocks ion permeation to prevent the battery from running out of control.

LIBの開発課題の1つとして、さらなる高エネルギー密度化が挙げられ、特に車載用LIBにおいては大型化による高容量化も相まって、セパレータへの耐熱性、とりわけ高温での寸法安定性向上の要求は益々高くなっている。 One of the development issues of LIB is to further increase the energy density. Especially in the case of in-vehicle LIB, there is a demand for heat resistance to the separator, especially improvement of dimensional stability at high temperature, due to the increase in capacity due to the increase in size. It is getting higher and higher.

このような背景のもと、ポリオレフィン多孔質膜に耐熱多孔質膜を積層する構成が提案されており、例えば、特許文献1や2には、ポリオレフィン多孔質膜の片面または両面に耐熱樹脂と無機粒子との複合体からなる耐熱多孔質膜を形成した積層多孔質膜からなるセパレータが提案されている。 Against this background, a configuration in which a heat-resistant porous membrane is laminated on a polyolefin porous membrane has been proposed. For example, Patent Documents 1 and 2 describe heat-resistant resin and inorganic material on one or both sides of the polyolefin porous membrane. A separator made of a laminated porous film having a heat-resistant porous film made of a composite with particles has been proposed.

特開2000−30686号公報Japanese Unexamined Patent Publication No. 2000-30686 特開2006−32246号公報Japanese Unexamined Patent Publication No. 2006-322466

しかしながら、従来技術では、耐熱多孔質膜中の無機粒子の含有量を一定量以上とすると、無機粒子の凝集や結着性不足による粉落ちが起きることが課題である。一方で、耐熱多孔質膜中の耐熱樹脂含有量を多くすると、耐熱性(特に高温での寸法安定性)の低下、膜抵抗の上昇、薄膜化時の機械特性(特に耐圧縮性)の低下などの課題がある。 However, in the prior art, when the content of the inorganic particles in the heat-resistant porous membrane is set to a certain amount or more, there is a problem that powder drops due to aggregation of the inorganic particles and insufficient binding property. On the other hand, when the content of the heat-resistant resin in the heat-resistant porous film is increased, the heat resistance (particularly dimensional stability at high temperature) is lowered, the film resistance is increased, and the mechanical properties (especially compression resistance) at the time of thinning are lowered. There are issues such as.

本発明は上記事情に鑑み、無機粒子の分散性、担持性に優れ、高耐熱かつ低抵抗、高強度である多孔質膜およびこの多孔質膜を有する積層多孔質膜を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a porous membrane having excellent dispersibility and supportability of inorganic particles, high heat resistance, low resistance, and high strength, and a laminated porous membrane having this porous membrane. do.

上記目的を達成するための本発明は、以下の構成を特徴とする。 The present invention for achieving the above object is characterized by the following configuration.

芳香族耐熱樹脂と無機粒子とを含有し、無機粒子の含有量が60〜99質量%であり、かつ芳香族耐熱樹脂の芳香環上に電子求引性基を有することを特徴とする多孔質膜。 Porous characterized by containing an aromatic heat-resistant resin and inorganic particles, having an inorganic particle content of 60 to 99% by mass, and having an electron-attracting group on the aromatic ring of the aromatic heat-resistant resin. film.

本発明の多孔質膜(以下、耐熱多孔質膜ということがある)は、芳香族耐熱樹脂と無機粒子とを含有し、無機粒子の含有量が60〜99質量%であり、かつ芳香族耐熱樹脂の芳香環上に電子求引性基を有することを特徴とする。この耐熱多孔質膜は、無機粒子の含有量が多く、かつその分散性と担持性に優れるため、膜抵抗を低くすることが可能である。そのため、二次電池用セパレータとして用いた際に、良好な出力特性やサイクル特性が得られる。また、耐圧縮性と耐熱性に優れるため、何らかの原因で電池内部に圧力がかかったり、高温に曝され続けても、正負極間の絶縁を保持することが可能である。 The porous film of the present invention (hereinafter, may be referred to as a heat-resistant porous film) contains an aromatic heat-resistant resin and inorganic particles, has an inorganic particle content of 60 to 99% by mass, and has an aromatic heat resistance. It is characterized by having an electron-attracting group on the aromatic ring of the resin. Since this heat-resistant porous film has a large content of inorganic particles and is excellent in dispersibility and supportability thereof, it is possible to reduce the film resistance. Therefore, good output characteristics and cycle characteristics can be obtained when used as a separator for a secondary battery. Further, since it is excellent in compression resistance and heat resistance, it is possible to maintain the insulation between the positive and negative electrodes even if pressure is applied to the inside of the battery for some reason or the battery is continuously exposed to high temperature.

本発明において用いる芳香族耐熱樹脂とは、主鎖上に芳香環を有し、かつASTM E1640−13に準拠する方法で測定したガラス転移温度が150℃以上の樹脂をいう。好ましくはガラス転移温度が200℃以上の樹脂であり、より好ましくはガラス転移温度が250℃以上の樹脂である。また、主鎖上の芳香環の少なくとも一部が、電子求引性基で置換された芳香環であることを特徴とする。好ましくは、すべての芳香環の合計の30〜100モル%が電子求引性基で置換された芳香環であり、より好ましくは、50〜100モル%、さらに好ましくは、70〜100モル%である。ここで、本発明における電子求引性基とは、電気陰性度が2.5以上の基をいう。このような電子求引性基として、例えば、フルオロ基、クロロ基、ブロモ基などのハロゲン基、トリフルオロメチル基などのハロゲン化アルキル基、ニトロ基、シアノ基、シアネート基、フェニル基などが挙げられる。中でも特に好ましくは、フルオロ基、クロロ基、トリフルオロメチル基である。 The aromatic heat-resistant resin used in the present invention means a resin having an aromatic ring on the main chain and having a glass transition temperature of 150 ° C. or higher measured by a method according to ASTM E1640-13. A resin having a glass transition temperature of 200 ° C. or higher is preferable, and a resin having a glass transition temperature of 250 ° C. or higher is more preferable. Further, at least a part of the aromatic ring on the main chain is an aromatic ring substituted with an electron-attracting group. Preferably, 30-100 mol% of the total of all aromatic rings is an electron-withdrawing group substituted aromatic ring, more preferably 50-100 mol%, still more preferably 70-100 mol%. be. Here, the electron-attracting group in the present invention means a group having an electronegativity of 2.5 or more. Examples of such an electron-attracting group include a halogen group such as a fluoro group, a chloro group and a bromo group, an alkyl halide group such as a trifluoromethyl group, a nitro group, a cyano group, a cyanate group and a phenyl group. Be done. Of these, a fluoro group, a chloro group and a trifluoromethyl group are particularly preferable.

上記ポリマー骨格として、例えば、次の化学式(1)および/または化学式(2)で表される繰り返し単位を有する芳香族ポリアミド(アラミド)、化学式(3)で表される繰り返し単位を有する芳香族ポリイミド、化学式(4)で表される繰り返し単位を有する芳香族ポリアミドイミドなどが挙げられる。
化学式(1):
As the polymer skeleton, for example, an aromatic polyamide (aramid) having a repeating unit represented by the following chemical formula (1) and / or a chemical formula (2), and an aromatic polyimide having a repeating unit represented by the chemical formula (3). , Aromatic polyamide-imide having a repeating unit represented by the chemical formula (4) and the like.
Chemical formula (1):

Figure 0006969143
Figure 0006969143

化学式(2): Chemical formula (2):

Figure 0006969143
Figure 0006969143

化学式(3): Chemical formula (3):

Figure 0006969143
Figure 0006969143

化学式(4): Chemical formula (4):

Figure 0006969143
Figure 0006969143

ここで、Ar〜Arの骨格としては、例えば、次の化学式(5)〜(9)などが挙げられる。Ar〜Arのそれぞれについて、化学式(5)〜(9)から選ばれる複数の基による共重合としてもよい。
化学式(5)〜(9):
Here , examples of the skeletons of Ar 1 to Ar 7 include the following chemical formulas (5) to (9). For each of Ar 1 to Ar 7, the copolymerization may be carried out by a plurality of groups selected from the chemical formulas (5) to (9).
Chemical formulas (5) to (9):

Figure 0006969143
Figure 0006969143

また、化学式(8)、(9)におけるX、Yは、−O−、−CO−、−SO−、−CH−、−S−、−C(CH−などから選択することができるが、これに限定されるものではない。 The chemical formula (8), X, Y are in (9), -O -, - CO -, - SO 2 -, - CH 2 -, - S -, - C (CH 3) 2 - is selected from such It can, but is not limited to.

通常、芳香族耐熱樹脂は、その芳香環がパラ配向性を有したり結合手の分子内回転が制限されるなどの剛直な分子構造であるほど、また分子量が大きいほど、強度、耐熱性などの特性に優れる。一方でその反面、剛直で高分子量の芳香族耐熱樹脂は、分子鎖の凝集力が強いため、溶媒への溶解性が低く重合や溶液調製が困難であったり、多孔化し難く膜抵抗が上昇しやすいことがある。一方、本発明において用いる芳香族耐熱樹脂は、芳香環上に電子求引性基を有することで、斥力の作用が働き、剛直で高分子量であっても、溶媒中で分子内および分子間凝集が抑えられ、高い溶媒溶解性と孔形成能が得られる。さらに溶媒中で分子鎖が凝集せず広がりやすいことが、本発明のように無機粒子の含有量を多くしても、その分散性と担持性に優れることにつながる。 Generally, an aromatic heat-resistant resin has a rigid molecular structure such that the aromatic ring has a para-orientation or the intramolecular rotation of the bond is restricted, and the larger the molecular weight, the stronger the strength and heat resistance. Excellent in characteristics. On the other hand, since the rigid and high molecular weight aromatic heat-resistant resin has a strong cohesive force of molecular chains, its solubility in a solvent is low, it is difficult to polymerize or prepare a solution, and it is difficult to make it porous, and the film resistance increases. It can be easy. On the other hand, the aromatic heat-resistant resin used in the present invention has an electron-attracting group on the aromatic ring, so that a repulsive force acts, and even if it is rigid and has a high molecular weight, intramolecular and intermolecular aggregation in a solvent. Is suppressed, and high solvent solubility and pore-forming ability can be obtained. Further, the fact that the molecular chains do not aggregate and spread easily in the solvent leads to excellent dispersibility and supportability even if the content of the inorganic particles is increased as in the present invention.

また、Ar〜Arにおける結合手は、オルト配向性、メタ配向性、パラ配向性のいずれであってもよいが、パラ配向性を有しているものが、全芳香環の50〜100モル%であることが好ましく、80〜100モル%であることがより好ましい。ここでいうパラ配向性とは、芳香環上主鎖を構成する結合手が互いに同軸または平行にある状態をいう。このパラ配向性が50モル%未満の場合、得られる耐熱多孔質膜の強度や耐熱性が不十分となる場合がある。 Further, the binding hands in Ar 1 to Ar 7 may be any of ortho-orientation, meta-orientation, and para-orientation, but those having para-orientation are 50 to 100 of all aromatic rings. It is preferably mol%, more preferably 80 to 100 mol%. The term "para-orientation" as used herein means a state in which the bonds constituting the main chain on the aromatic ring are coaxial or parallel to each other. If this para-orientation is less than 50 mol%, the strength and heat resistance of the obtained heat-resistant porous film may be insufficient.

さらに、Ar〜Arの一部に、化学式(8)、(9)におけるX、Yとして酸素原子Oを持つ骨格を有すると、さらに高い溶媒溶解性と孔形成能が得られるためより好ましい。 Further, it is more preferable to have a skeleton having an oxygen atom O as X and Y in the chemical formulas (8) and (9) in a part of Ar 1 to Ar 7 because higher solvent solubility and pore-forming ability can be obtained. ..

芳香族耐熱樹脂の化学構造について同定が必要な場合は、核磁気共鳴法(NMR)、フーリエ変換赤外分光法(FT−IR)および質量分析法(MS)などを組み合わせて構造解析を行うことができる。なお、ポリオレフィン樹脂を含有する多孔質膜基材(以下、単にポリオレフィン多孔質膜ということがある。)の少なくとも一方の上に形成した積層多孔質膜から、芳香族耐熱樹脂の化学構造について同定する場合は、以下の方法で解析を行うことができる。積層多孔質膜試料100質量部に対して100質量部の濃硫酸中に60℃加温下で24時間浸漬することで試料からポリオレフィン多孔質膜を分離する。その後、回収した濃塩酸溶液から遠心分離などで不溶分(例えば無機粒子など)を除去し、得られた耐熱樹脂成分について上記構造解析を行うことで同定ができる。 If it is necessary to identify the chemical structure of the aromatic heat-resistant resin, perform structural analysis by combining nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), and mass spectrometry (MS). Can be done. The chemical structure of the aromatic heat-resistant resin is identified from the laminated porous membrane formed on at least one of the porous membrane base materials containing the polyolefin resin (hereinafter, may be simply referred to as the polyolefin porous membrane). In that case, the analysis can be performed by the following method. The polyolefin porous membrane is separated from the sample by immersing it in 100 parts by mass of concentrated sulfuric acid for 24 hours under heating at 60 ° C. with respect to 100 parts by mass of the laminated porous membrane sample. Then, insoluble matter (for example, inorganic particles) is removed from the recovered concentrated hydrochloric acid solution by centrifugation or the like, and the obtained heat-resistant resin component can be identified by performing the above structural analysis.

本発明において用いる無機粒子としては、例えば、金属酸化物、金属水酸化物、金属炭酸塩、金属リン酸塩、金属珪素塩、金属硫酸塩、粘土鉱物などが挙げられる。より具体的には、二酸化珪素(湿式および乾式シリカ、コロイダルシリカ)、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、酸化亜鉛(亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、塩基性炭酸鉛(鉛白)、リン酸カルシウム、珪酸アルミ、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム及びフッ化カルシウムなどが挙げられる。これらの粒子を1種類で用いても良く、2種類以上を混合して用いてもよい。この中で電池用セパレータとして用いるのにより好ましいのは、二酸化珪素、酸化チタン、酸化アルミニウム、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウムであり、特に好ましいのは、酸化アルミニウムである。無機粒子の平均一次粒径は、0.01〜5.0μmが好ましい。無機粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよいが、分散性、塗工性の観点から球状であることが好ましい。 Examples of the inorganic particles used in the present invention include metal oxides, metal hydroxides, metal carbonates, metal phosphates, metal silicon salts, metal sulfates, clay minerals and the like. More specifically, silicon dioxide (wet and dry silica, colloidal silica), titanium oxide (titania), aluminum oxide (alumina), zinc oxide (zinc oxide), antimony oxide, cerium oxide, zirconium oxide, tin oxide, oxidation. Lantern, magnesium oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, basic lead carbonate (lead white), calcium phosphate, aluminum silicate, barium sulfate, calcium sulfate, lead sulfate, zinc sulfide , Mica, mica titanium, talc, clay, kaolin, lithium fluoride, calcium fluoride and the like. These particles may be used alone or in admixture of two or more. Among these, silicon dioxide, titanium oxide, aluminum oxide, magnesium oxide, aluminum hydroxide and magnesium hydroxide are more preferable for use as a separator for a battery, and aluminum oxide is particularly preferable. The average primary particle size of the inorganic particles is preferably 0.01 to 5.0 μm. Examples of the shape of the inorganic particles include a spherical shape, a plate shape, a needle shape, a rod shape, an elliptical shape, and the like, and any shape may be used, but the shape is preferably spherical from the viewpoint of dispersibility and coatability.

本発明の耐熱多孔質膜における上記無機粒子の含有量は60〜99質量%であり、好ましくは70〜99質量%、より好ましくは80〜99質量%である。無機粒子の含有量が60質量%未満であると、耐熱性、特に高温での寸法安定性が低下することがある。また、ガーレ透気度や膜抵抗の上昇が起きることがある。無機粒子の含有量を本発明の範囲内とするため、芳香族耐熱樹脂の構造を上述のとおりとし、後述の条件で製膜原液中に無機粒子を分散させることが好ましい。ここで、耐熱多孔質膜中における無機粒子の含有量は、多孔膜試料を灰化後、塩酸にて加熱溶解した溶液について、高周波誘導結合プラズマ(ICP)発光分光分析法により求めることができる。 The content of the inorganic particles in the heat-resistant porous membrane of the present invention is 60 to 99% by mass, preferably 70 to 99% by mass, and more preferably 80 to 99% by mass. If the content of the inorganic particles is less than 60% by mass, the heat resistance, particularly the dimensional stability at a high temperature may decrease. In addition, the Gale air permeability and membrane resistance may increase. In order to keep the content of the inorganic particles within the range of the present invention, it is preferable that the structure of the aromatic heat-resistant resin is as described above and the inorganic particles are dispersed in the membrane-forming stock solution under the conditions described below. Here, the content of the inorganic particles in the heat-resistant porous membrane can be determined by high-frequency inductively coupled plasma (ICP) emission spectroscopic analysis for a solution in which the porous membrane sample is incinerated and then heated and dissolved in hydrochloric acid.

本発明の耐熱多孔質膜の厚みは、0.5〜30μmであることが好ましく、1.0〜20μmであることがより好ましい。厚みが0.5μm未満であると、十分な耐熱性や強度が得られないことがある。厚みが30μmを超えると、膜抵抗が高く、電池用セパレータとして使用した際に出力が低下したり、電池内に組み込める活物質層の厚みが薄くなり体積あたりのエネルギー密度が小さくなることがある。 The thickness of the heat-resistant porous membrane of the present invention is preferably 0.5 to 30 μm, more preferably 1.0 to 20 μm. If the thickness is less than 0.5 μm, sufficient heat resistance and strength may not be obtained. If the thickness exceeds 30 μm, the film resistance is high, the output may decrease when used as a battery separator, or the thickness of the active material layer that can be incorporated into the battery may become thin, and the energy density per volume may decrease.

本発明の耐熱多孔質膜は、ガーレ透気度が1〜200秒/100mlであることが好ましい。より好ましくは1〜150秒/100mlである。ガーレ透気度が1秒/100mlより小さいと強度が低下し、加工時にフィルムの破断が起きたり、電池用セパレータとして使用したときに電極間の短絡が起き易くなることがある。ガーレ透気度が200秒/100mlより大きいと、膜抵抗が高く、電池用セパレータとして使用したときに、出力特性の低下が起きたり、繰り返し使用した際に容量劣化が大きくなることがある。ガーレ透気度を上記範囲内とするため、芳香族耐熱樹脂の構造および無機粒子の含有量を上述のとおりとし、製膜原液中への無機粒子の分散および多孔質膜の製膜条件を後述の範囲内とすることが好ましい。 The heat-resistant porous membrane of the present invention preferably has a Gale air permeability of 1 to 200 seconds / 100 ml. More preferably, it is 1 to 150 seconds / 100 ml. If the Gale air permeability is less than 1 second / 100 ml, the strength may decrease, the film may break during processing, or a short circuit between the electrodes may easily occur when used as a battery separator. If the Gale air permeability is larger than 200 seconds / 100 ml, the film resistance is high, and when used as a battery separator, the output characteristics may be deteriorated, or the capacity may be significantly deteriorated when used repeatedly. In order to keep the Gale air permeability within the above range, the structure of the aromatic heat-resistant resin and the content of the inorganic particles are as described above, and the dispersion of the inorganic particles in the membrane-forming stock solution and the membrane-forming conditions of the porous membrane will be described later. It is preferably within the range of.

なお、耐熱多孔質膜のガーレ透気度について、ポリオレフィン多孔質膜の少なくとも一方の上に形成した積層状態の多孔質膜から計測する場合は、積層多孔質膜試料のガーレ透気度からポリオレフィン多孔質膜基材のガーレ透気度を減ずることで算出する。ポリオレフィン多孔質膜基材のガーレ透気度が不明の場合は、以下の方法でポリオレフィン多孔質膜基材を分離して測定を行うことができる。積層多孔質膜試料100質量部に対して100質量部の濃硫酸中に60℃加温下で24時間浸漬することで積層多孔質膜試料から耐熱多孔質膜を取り除く。その後、流水で洗浄し、真空乾燥機にて80℃で12時間乾燥させることで、ポリオレフィン多孔質膜基材を分離する。 When measuring the Gale air permeability of the heat-resistant porous membrane from the laminated porous membrane formed on at least one of the polyolefin porous membranes, the polyolefin porous is measured from the Gale air permeability of the laminated porous membrane sample. Calculated by reducing the Gale air permeability of the quality film substrate. When the galley air permeability of the polyolefin porous membrane substrate is unknown, the polyolefin porous membrane substrate can be separated and measured by the following method. The heat-resistant porous membrane is removed from the laminated porous membrane sample by immersing the laminated porous membrane sample in 100 parts by mass of concentrated sulfuric acid for 24 hours under heating at 60 ° C. Then, it is washed with running water and dried in a vacuum dryer at 80 ° C. for 12 hours to separate the polyolefin porous membrane substrate.

本発明の耐熱多孔質膜は、面内方向の少なくとも一方向における200℃の熱収縮率が−0.5〜5.0%であることが好ましく、−0.5〜3.0%であることがより好ましい。熱収縮率が5.0%を超える場合、電池の異常発熱時にセパレータの収縮により、電池端部において短絡が起こることがある。熱収縮率を上記範囲内とするため、芳香族耐熱樹脂の構造および無機粒子の含有量を上述のとおりとし、製膜原液中への無機粒子の分散および多孔質膜の製膜条件を後述の範囲内とすることが好ましい。 The heat-resistant porous membrane of the present invention preferably has a heat shrinkage rate of −0.5 to 5.0% at 200 ° C. in at least one direction in the in-plane direction, preferably −0.5 to 3.0%. Is more preferable. If the heat shrinkage rate exceeds 5.0%, a short circuit may occur at the end of the battery due to the shrinkage of the separator when the battery generates abnormal heat. In order to keep the heat shrinkage within the above range, the structure of the aromatic heat-resistant resin and the content of the inorganic particles are as described above, and the conditions for dispersing the inorganic particles in the membrane-forming stock solution and forming the porous membrane are described later. It is preferably within the range.

本発明の耐熱多孔質膜は、厚み方向の500℃の熱収縮率が−0.5〜15.0%であることが好ましく、−0.5〜10.0%であることがより好ましい。熱収縮率が15.0%を超える場合、電池の異常発熱時にセパレータの厚みが減少することにより、正負極間において短絡が起きることがある。耐熱多孔質膜中の無機粒子の含有量が多く、かつその分散性に優れることで、厚み方向の熱収縮率を低く抑えることができる。厚み方向の500℃の熱収縮率を上記範囲内とするため、芳香族耐熱樹脂の構造および無機粒子の含有量を上述のとおりとし、製膜原液中への無機粒子の分散および多孔質膜の製膜条件を後述の範囲内とすることが好ましい。 The heat-resistant porous membrane of the present invention preferably has a heat shrinkage rate of −0.5 to 15.0% at 500 ° C. in the thickness direction, more preferably −0.5 to 10.0%. When the heat shrinkage rate exceeds 15.0%, a short circuit may occur between the positive and negative electrodes due to the decrease in the thickness of the separator during abnormal heat generation of the battery. Since the content of the inorganic particles in the heat-resistant porous membrane is high and the dispersibility is excellent, the heat shrinkage rate in the thickness direction can be suppressed to a low level. In order to keep the heat shrinkage rate at 500 ° C. in the thickness direction within the above range, the structure of the aromatic heat-resistant resin and the content of the inorganic particles are set as described above, and the dispersion of the inorganic particles in the membrane-forming stock solution and the porous membrane are made. It is preferable that the film forming conditions are within the range described later.

本発明の耐熱多孔質膜は、単独で二次電池用セパレータとして用いてもよいし、ポリオレフィン樹脂を含有する多孔質膜基材(以下、単にポリオレフィン多孔質膜ということがある。)の少なくとも一方の表面に形成して積層多孔質膜として用いてもよい。積層多孔質膜のカールを抑制できる点、および、高い耐熱性を得られる点から、耐熱多孔質膜はポリオレフィン多孔質膜の両方の表面に形成することが好ましい。 The heat-resistant porous membrane of the present invention may be used alone as a separator for a secondary battery, or at least one of a porous membrane base material containing a polyolefin resin (hereinafter, may be simply referred to as a polyolefin porous membrane). It may be formed on the surface of the above and used as a laminated porous film. The heat-resistant porous film is preferably formed on both surfaces of the polyolefin porous film from the viewpoint of suppressing curling of the laminated porous film and obtaining high heat resistance.

本発明において用いるポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブテン−1、ポリ4−メチルペンテン−1、ノルボルネン系誘導体を開環メタセシス重合することにより得た環状ポリオレフィン系樹脂や、ノルボルネン系誘導体とエチレン、プロピレン、ブテン、ペンテンなどのα−オレフィン類を共重合した環状ポリオレフィン共重合体樹脂などが好適である。また、これらのポリオレフィン樹脂のうち複数種を混合したり積層して用いてもよい。 Examples of the polyolefin resin used in the present invention include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, poly4-methylpentene-1, and cyclic polyolefin resins obtained by ring-opening metathesis polymerization of norbornene-based derivatives. , A cyclic polyolefin copolymer resin obtained by copolymerizing a norbornene-based derivative with α-olefins such as ethylene, propylene, butene, and penten is suitable. Further, a plurality of types of these polyolefin resins may be mixed or laminated for use.

本発明において用いるポリオレフィン多孔質膜とは、ポリオレフィン多孔質膜中における上述のポリオレフィン樹脂の含有量が55〜100質量%である多孔質膜を意味する。ポリオレフィン樹脂の含有量が55質量%未満であると、十分なシャットダウン機能が得られないことがある。 The polyolefin porous membrane used in the present invention means a porous membrane in which the content of the above-mentioned polyolefin resin in the polyolefin porous membrane is 55 to 100% by mass. If the content of the polyolefin resin is less than 55% by mass, a sufficient shutdown function may not be obtained.

本発明において用いるポリオレフィン多孔質膜の厚みは、2〜30μmであることが好ましく、3〜20μmであることがより好ましい。厚みが2μm未満であると、加工時にフィルムの破断が起きたり、十分なシャットダウン機能が得られないことがある。厚みが30μmを超えると、膜抵抗が高くなり、電池用セパレータとして使用した際に出力が低下したり、電池内に組み込める活物質層の厚みが薄くなり体積あたりのエネルギー密度が小さくなることがある。 The thickness of the porous polyolefin membrane used in the present invention is preferably 2 to 30 μm, more preferably 3 to 20 μm. If the thickness is less than 2 μm, the film may be broken during processing or a sufficient shutdown function may not be obtained. If the thickness exceeds 30 μm, the film resistance may increase, the output may decrease when used as a battery separator, or the thickness of the active material layer that can be incorporated into the battery may become thin, resulting in a decrease in energy density per volume. ..

本発明の積層多孔質膜は、25℃における膜抵抗が1.6〜9.6Ω・cmであることが好ましい。より好ましくは1.6〜7.2Ω・cmである。膜抵抗を上記範囲内とすることで、電池用セパレータとして使用したときに、イオン透過性が高く、優れた出力特性やサイクル特性が得られる。膜抵抗が9.6Ω・cmを超えると、電池用セパレータとして使用したときに、イオン透過性が低く、出力特性の低下が起きたり、繰り返し使用した際に容量劣化が大きくなることがある。膜抵抗を上記範囲内とするため、ポリオレフィン多孔質膜の少なくとも一方の上に形成する耐熱多孔質膜を本発明に記載の条件で形成することが好ましい。 The laminated porous membrane of the present invention preferably has a membrane resistance of 1.6 to 9.6 Ω · cm 2 at 25 ° C. More preferably, it is 1.6 to 7.2 Ω · cm 2 . By setting the membrane resistance within the above range, when used as a battery separator, ion permeability is high, and excellent output characteristics and cycle characteristics can be obtained. If the membrane resistance exceeds 9.6 Ω · cm 2 , the ion permeability may be low when used as a battery separator, the output characteristics may be deteriorated, or the capacity may be significantly deteriorated when used repeatedly. In order to keep the film resistance within the above range, it is preferable to form a heat-resistant porous film formed on at least one of the polyolefin porous films under the conditions described in the present invention.

本発明の積層多孔質膜は、面内方向の少なくとも一方向における150℃の熱収縮率が−0.5〜20.0%であることが好ましく、−0.5〜10.0%であることがより好ましい。熱収縮率が20.0%を超える場合、電池の異常発熱時にセパレータの収縮により、電池端部において短絡が起こることがある。熱収縮率を上記範囲内とするため、ポリオレフィン多孔質膜の少なくとも一方の上に形成する耐熱多孔質膜を本発明に記載の条件で形成することが好ましい。 The laminated porous membrane of the present invention preferably has a heat shrinkage rate of −0.5 to 20.0% at 150 ° C. in at least one direction in the in-plane direction, preferably −0.5 to 10.0%. Is more preferable. When the heat shrinkage rate exceeds 20.0%, a short circuit may occur at the end of the battery due to the shrinkage of the separator when the battery generates abnormal heat. In order to keep the heat shrinkage within the above range, it is preferable to form a heat-resistant porous film formed on at least one of the polyolefin porous films under the conditions described in the present invention.

次に、本発明の耐熱多孔質膜および積層多孔質膜の製造方法について、以下に説明する。 Next, the method for producing the heat-resistant porous membrane and the laminated porous membrane of the present invention will be described below.

初めに、本発明に用いることができる芳香族耐熱樹脂を得る方法を芳香族ポリアミドおよび芳香族ポリイミドを例に説明するが、本発明に用いることができる芳香族耐熱樹脂およびその重合方法はこれらに限定されるものではない。 First, a method for obtaining an aromatic heat-resistant resin that can be used in the present invention will be described by taking aromatic polyamide and aromatic polyimide as examples. Not limited.

芳香族ポリアミドを得る方法は種々の方法が利用可能であるが、例えば、酸ジクロライドとジアミンを原料として低温溶液重合法を用いる場合には、N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性有機極性溶媒中で溶液重合により合成する方法や、水系媒体を使用する界面重合で合成する方法等をとることができる。ポリマーの分子量を制御しやすいことから、非プロトン性有機極性溶媒中での溶液重合が好ましい。酸ジクロライドとジアミンを原料とする場合、重合反応の進行に伴って塩化水素が副生するが、これを中和する場合には炭酸リチウム、炭酸カルシウム、水酸化カルシウムなどの無機の中和剤、あるいは、エチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミン等の有機の中和剤を使用するとよい。 Various methods can be used to obtain aromatic polyamides. For example, when a low-temperature solution polymerization method using acid dichloride and diamine as raw materials is used, N-methylpyrrolidone, N, N-dimethylacetamide, and dimethylformamide are used. , A method of synthesizing by solution polymerization in an aprotic organic polar solvent such as dimethylsulfoxide, a method of synthesizing by surface polymerization using an aqueous medium, or the like can be taken. Solution polymerization in an aprotic organic polar solvent is preferred because it is easy to control the molecular weight of the polymer. When acid dichloride and diamine are used as raw materials, hydrogen chloride is by-produced as the polymerization reaction progresses, but when neutralizing this, an inorganic neutralizer such as lithium carbonate, calcium carbonate, or calcium hydroxide, Alternatively, an organic neutralizing agent such as ethylene oxide, propylene oxide, ammonia, triethylamine, triethanolamine, or diethanolamine may be used.

芳香族ポリイミドあるいはその前駆体であるポリアミド酸を、例えば、テトラカルボン酸無水物と芳香族ジアミンを原料として重合する場合には、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性有機極性溶媒中で溶液重合により合成する方法などをとることができる。合成した芳香族ポリアミド酸をイミド化して芳香族ポリイミドを得る方法としては、熱処理や化学処理、およびその併用などが用いられる。熱処理法は、一般的にポリアミド酸を100〜500℃程度で加熱処理することでイミド化する方法である。一方、化学処理は、トリエチルアミンなどの第三級アミンを触媒として、脂肪族酸無水物、芳香族酸無水物などの脱水剤を用いる方法や、ピリジンなどのイミド化剤を用いる方法がある。 When polyamic acid, which is an aromatic polyimide or a precursor thereof, is polymerized using, for example, tetracarboxylic acid anhydride and aromatic diamine as raw materials, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide , A method of synthesizing by solution polymerization in an aprotic organic polar solvent such as dimethylsulfoxide can be taken. As a method for imidizing the synthesized aromatic polyamic acid to obtain an aromatic polyimide, heat treatment, chemical treatment, and a combination thereof are used. The heat treatment method is generally a method of imidizing a polyamic acid by heat-treating it at about 100 to 500 ° C. On the other hand, the chemical treatment includes a method using a tertiary amine such as triethylamine as a catalyst and a dehydrating agent such as aliphatic acid anhydride and aromatic acid anhydride, and a method using an imidizing agent such as pyridine.

芳香族ポリアミド、芳香族ポリイミドあるいはその前駆体であるポリアミド酸の対数粘度(ηinh)は、1.5〜7.0dl/gであることが好ましく、2.0〜5.0dl/gであることがより好ましい。対数粘度が1.5dl/g未満であると、重合度が低く、十分な強度が得られなかったり、無機粒子の担持性が低下し粉落ちなどが発生することがある。樹脂の溶解性を維持して対数粘度を上記範囲内とするため、芳香族耐熱樹脂の構造を上述のとおりとすることが好ましい。 The logarithmic viscosity (η inh ) of the aromatic polyamide, the aromatic polyimide or its precursor, polyamic acid, is preferably 1.5 to 7.0 dl / g, preferably 2.0 to 5.0 dl / g. Is more preferable. If the logarithmic viscosity is less than 1.5 dl / g, the degree of polymerization is low, sufficient strength may not be obtained, the supportability of the inorganic particles may be lowered, and powder dropping may occur. In order to maintain the solubility of the resin and keep the logarithmic viscosity within the above range, it is preferable that the structure of the aromatic heat-resistant resin is as described above.

次に、耐熱多孔質膜を製造する工程に用いる芳香族耐熱樹脂と無機粒子とを含有する製膜原液(以下、単に製膜原液ということがある。)について説明する。製膜原液には重合後の芳香族耐熱樹脂溶液をそのまま使用してもよく、あるいは芳香族耐熱樹脂を一度単離してから溶媒に再溶解して使用してもよい。芳香族耐熱樹脂を単離する方法としては、特に限定しないが、重合後の芳香族耐熱樹脂溶液を多量の水中に投入することで溶媒および中和塩などを水中に抽出し、析出した芳香族耐熱樹脂のみを分離した後、乾燥させる方法などが挙げられる。また、再溶解時に溶解助剤として金属塩などを添加してもよい。金属塩としては、アルカリ金属またはアルカリ土類金属のハロゲン化物が好ましく、例えば、塩化リチウム、臭化リチウム、塩化ナトリウム、臭化ナトリウム、塩化カリウム、臭化カリウムなどが挙げられる。 Next, a film-forming stock solution containing an aromatic heat-resistant resin and inorganic particles used in the process of producing a heat-resistant porous film (hereinafter, may be simply referred to as a film-forming stock solution) will be described. The aromatic heat-resistant resin solution after polymerization may be used as it is as the film-forming stock solution, or the aromatic heat-resistant resin may be isolated once and then redissolved in a solvent before use. The method for isolating the aromatic heat-resistant resin is not particularly limited, but the solvent and the neutralizing salt are extracted into the water by putting the polymerized aromatic heat-resistant resin solution into a large amount of water, and the precipitated aromatic resin is extracted. Examples thereof include a method of separating only the heat-resistant resin and then drying it. Further, a metal salt or the like may be added as a dissolution aid at the time of re-dissolution. The metal salt is preferably a halide of an alkali metal or an alkaline earth metal, and examples thereof include lithium chloride, lithium bromide, sodium chloride, sodium bromide, potassium chloride, and potassium bromide.

芳香族耐熱樹脂溶液に無機粒子を分散させてスラリー状の製膜原液を得る方法としては、ビーズミル、ボールミル、サンドミル、ロールミル、ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザーなどの公知の手法を用いることができる。ここで、無機粒子を分散させる際の芳香族耐熱樹脂溶液の液性を、塩基性とすることが無機粒子の分散性の点で好ましく、pH値で8〜12であることがより好ましい。これは、無機粒子同士の斥力による効果と考えられる。すなわち、液性を塩基性とすることで、無機粒子表面のプロトンが解離し、無機粒子が負電荷を帯びる。これにより、無機粒子同士が互いに反発し、凝集が抑えられると考えられる。ここで、芳香族耐熱樹脂溶液の液性は、芳香族耐熱樹脂溶液10gを容量50mlのビーカーに採取後、純水40gを添加して25℃にて10分間撹拌後の抽出液について測定することができる。芳香族耐熱樹脂溶液の液性は、重合後あるいは単離する場合は再溶解後の芳香族耐熱樹脂溶液に、エチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミンなどの塩基性物質を添加することで調整できる。 As a method for obtaining a slurry-like membrane-forming stock solution by dispersing inorganic particles in an aromatic heat-resistant resin solution, a known method such as a bead mill, a ball mill, a sand mill, a roll mill, a homogenizer, a high-pressure homogenizer, or an ultrasonic homogenizer can be used. .. Here, it is preferable that the liquid property of the aromatic heat-resistant resin solution for dispersing the inorganic particles is basic in terms of the dispersibility of the inorganic particles, and the pH value is more preferably 8 to 12. This is considered to be the effect of the repulsive force between the inorganic particles. That is, by making the liquid basic, the protons on the surface of the inorganic particles are dissociated, and the inorganic particles are negatively charged. It is considered that this causes the inorganic particles to repel each other and suppress aggregation. Here, the liquid property of the aromatic heat-resistant resin solution is measured for the extract after collecting 10 g of the aromatic heat-resistant resin solution in a beaker having a capacity of 50 ml, adding 40 g of pure water, and stirring at 25 ° C. for 10 minutes. Can be done. The liquidity of the aromatic heat-resistant resin solution is that basic substances such as ethylene oxide, propylene oxide, ammonia, triethylamine, triethanolamine, and diethanolamine are added to the aromatic heat-resistant resin solution after polymerization or redissolution if isolated. It can be adjusted by adding it.

製膜原液には孔形成能を向上させる目的で、親水性ポリマーを混合してもよい。親水性ポリマーとしては、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸、ポリエチレンイミン等が挙げられる。 A hydrophilic polymer may be mixed with the film-forming stock solution for the purpose of improving the pore-forming ability. Examples of the hydrophilic polymer include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyacrylic acid, polyethyleneimine and the like.

また、製膜原液には、上記の他に必要に応じて、電極との接着性を付与するフッ素系樹脂やアクリル系樹脂、分散剤、増粘剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。 In addition to the above, the undiluted film-forming solution includes a fluororesin or acrylic resin that imparts adhesiveness to electrodes, a dispersant, a thickener, a stabilizer, a defoaming agent, and a leveling agent, if necessary. Etc. may be added.

製膜原液中の芳香族耐熱樹脂および無機粒子の合計含有量は、5〜30質量%が好ましく、より好ましくは7〜20質量%である。 The total content of the aromatic heat-resistant resin and the inorganic particles in the film-forming stock solution is preferably 5 to 30% by mass, more preferably 7 to 20% by mass.

上記のようにして調製された製膜原液を用いて、いわゆる溶液製膜法により、耐熱多孔質膜の製造が行われる。溶液製膜法として、代表的には湿式法や吸湿法、あるいはその組み合わせなどが挙げられるが、特に限定されない。いずれも方法も、まず製膜原液を支持体(ポリオレフィン多孔質膜の少なくとも一方の上に形成して積層多孔質膜とする場合はポリオレフィン多孔質膜)上にキャスト(流延)した後、湿式法の場合は水や貧溶媒からなる凝固浴に導入することで、吸湿法の場合は調温調湿雰囲気下で徐々に吸湿させることで芳香族耐熱樹脂を析出させて多孔質膜を得る。また、これらの組み合わせで、調温調湿雰囲気下で吸湿後、凝固浴に導入してもよい。湿式法における凝固浴の浴組成は特に限定されないが、水、あるいは有機溶媒/水の混合系を用いることが好ましい。また、湿式浴中には無機塩が含まれていてもよい。吸湿法における調温調湿雰囲気条件は、容積絶対湿度10〜500g/mとすることが好ましく、また、この容積絶対湿度を満たす範囲内で雰囲気の温度は20〜100℃、相対湿度は60〜100%RHとすることがより好ましい。処理時間は0.1〜5分とすることが好ましい。 A heat-resistant porous membrane is produced by a so-called solution membrane-forming method using the membrane-forming stock solution prepared as described above. Typical examples of the solution film forming method include a wet method, a hygroscopic method, or a combination thereof, but the method is not particularly limited. In each method, the membrane-forming stock solution is first cast (cast) on a support (or a polyolefin porous film when formed on at least one of the polyolefin porous films to form a laminated porous film), and then wet. In the case of the method, it is introduced into a coagulation bath composed of water or a poor solvent, and in the case of the moisture absorption method, it is gradually absorbed under a temperature-controlled and humidity-controlled atmosphere to precipitate an aromatic heat-resistant resin to obtain a porous film. In addition, these combinations may be introduced into the coagulation bath after absorbing moisture in a temperature-controlled and humidity-controlled atmosphere. The bath composition of the coagulation bath in the wet method is not particularly limited, but it is preferable to use water or an organic solvent / water mixed system. In addition, the wet bath may contain an inorganic salt. The temperature and humidity control atmosphere conditions in the moisture absorption method are preferably 10 to 500 g / m 3 in volume absolute humidity, and the temperature of the atmosphere is 20 to 100 ° C. and the relative humidity is 60 within a range satisfying this volume absolute humidity. It is more preferable to set it to ~ 100% RH. The treatment time is preferably 0.1 to 5 minutes.

このようにして多孔質膜化したのち、テンターなどを用いて熱処理を施す。熱処理温度は40〜300℃が好ましく、150〜280℃がより好ましい。ただし、ポリオレフィン多孔質膜の少なくとも一方の上に形成して積層多孔質膜とする場合は、熱処理温度を40〜120℃とすることが好ましい。 After forming a porous film in this way, heat treatment is performed using a tenter or the like. The heat treatment temperature is preferably 40 to 300 ° C, more preferably 150 to 280 ° C. However, when it is formed on at least one of the polyolefin porous membranes to form a laminated porous membrane, the heat treatment temperature is preferably 40 to 120 ° C.

次に、本発明において用いるポリオレフィン多孔質膜の製膜方法を説明する。原料となるポリオレフィン溶液は、前述のポリオレフィンを溶媒に加熱溶解することにより調製する。この溶媒としては、ポリオレフィンを十分に溶解できるものであれば特に限定されないが、例えば、ノナン、デカン、ウンデカン、ドデカン、パラフィン油などの脂肪族または環式の炭化水素などが挙げられる。加熱溶解は、ポリオレフィンが溶媒中で完全に溶解する温度で撹拌しながら行う。その温度は使用する重合体及び溶媒により異なるが、例えばポリエチレンの場合には140〜250℃の範囲が好ましい。また、ポリオレフィン溶液の濃度は、10〜50質量%が好ましい。次にこのポリオレフィンの加熱溶液をダイスから押し出した後、冷却することによりゲル状物に成形される。なお、ダイスから押し出された溶液は、冷却前あるいは冷却中に、1〜10の引取比で引き取るのが好ましい。次にテンターなどでこのゲル状成形物を加熱し、所定の倍率で2軸延伸を行う。延伸温度は、使用するポリオレフィンの融点+10℃以下、好ましくは結晶分散温度から結晶融点未満の範囲である。例えば、多段重合ポリエチレンの場合は90〜140℃の範囲である。延伸倍率は原反の厚さによって異なるが、面倍率で10〜400倍である。得られた延伸成形物は、溶剤で洗浄することにより残留溶媒を除去する。洗浄溶剤としては、ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類などの易揮発性のものを用いることができる。その後洗浄溶剤を乾燥するが、洗浄溶剤の乾燥方法は加熱乾燥、風乾などの方法で行うことができる。乾燥した延伸成形物は、結晶分散温度〜融点の温度範囲で熱固定することが好ましい。 Next, a method for forming a porous polyolefin membrane used in the present invention will be described. The raw material polyolefin solution is prepared by heating and dissolving the above-mentioned polyolefin in a solvent. The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin, and examples thereof include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, and paraffin oil. The heat dissolution is carried out with stirring at a temperature at which the polyolefin is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but in the case of polyethylene, for example, the temperature is preferably in the range of 140 to 250 ° C. The concentration of the polyolefin solution is preferably 10 to 50% by mass. Next, the heated solution of this polyolefin is extruded from the die and then cooled to form a gel. The solution extruded from the die is preferably taken up at a take-up ratio of 1 to 10 before or during cooling. Next, this gel-like molded product is heated with a tenter or the like, and biaxial stretching is performed at a predetermined magnification. The stretching temperature is the melting point of the polyolefin used + 10 ° C. or lower, preferably in the range from the crystal dispersion temperature to less than the crystal melting point. For example, in the case of multistage polymerized polyethylene, the temperature is in the range of 90 to 140 ° C. The draw ratio varies depending on the thickness of the original fabric, but the surface ratio is 10 to 400 times. The obtained stretched molded product is washed with a solvent to remove the residual solvent. Examples of the cleaning solvent include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. Volatile ones can be used. After that, the cleaning solvent is dried, and the cleaning solvent can be dried by heating or air-drying. The dried stretched molded product is preferably heat-fixed in the temperature range from the crystal dispersion temperature to the melting point.

本発明の耐熱多孔質膜は、芳香族耐熱樹脂と無機粒子とを含有し、無機粒子の含有量が60〜99質量%であり、かつ芳香族耐熱樹脂の芳香環上に電子求引性基を有することを特徴とする。この耐熱多孔質膜は、無機粒子の含有量が多く、かつその分散性と担持性に優れるため、膜抵抗を低くすることが可能である。そのため、二次電池用セパレータとして用いた際に、良好な出力特性やサイクル特性が得られる。また、耐圧縮性と耐熱性に優れるため、何らかの原因で電池内部に圧力がかかったり、高温に曝され続けても、正負極間の絶縁を保持することを可能とする。さらに本発明の耐熱多孔質膜をポリオレフィン樹脂を含有する多孔質膜基材の少なくとも一方の上に形成した積層多孔質膜は、基材のシャットダウン機能に加え、上述の耐熱多孔質膜の特性により、低抵抗、耐圧縮性、耐熱性に優れる積層多孔質膜となるため、幅広い用途の二次電池用セパレータとして好適に用いることができる。 The heat-resistant porous film of the present invention contains an aromatic heat-resistant resin and inorganic particles, has an inorganic particle content of 60 to 99% by mass, and has an electron-attracting group on the aromatic ring of the aromatic heat-resistant resin. It is characterized by having. Since this heat-resistant porous film has a large content of inorganic particles and is excellent in dispersibility and supportability thereof, it is possible to reduce the film resistance. Therefore, good output characteristics and cycle characteristics can be obtained when used as a separator for a secondary battery. Further, since it has excellent compression resistance and heat resistance, it is possible to maintain the insulation between the positive and negative electrodes even if pressure is applied to the inside of the battery for some reason or the battery is continuously exposed to high temperature. Further, the laminated porous membrane in which the heat-resistant porous membrane of the present invention is formed on at least one of the porous membrane base materials containing a polyolefin resin has the above-mentioned characteristics of the heat-resistant porous membrane in addition to the shut-down function of the base material. Since it is a laminated porous membrane having excellent low resistance, compression resistance, and heat resistance, it can be suitably used as a separator for a secondary battery for a wide range of applications.

[物性の測定方法ならびに効果の評価方法]
実施例における物性の測定方法は次の方法に従って行った。
[Measurement method of physical properties and evaluation method of effect]
The method for measuring the physical properties in the examples was as follows.

(1)厚み
定圧厚み測定器FFA−1(尾崎製作所社製)を用いて試料の厚み(μm)を測定した。測定子径は5mm、測定荷重は1.25Nである。試料の幅方向に10点測定し、平均値を求めた。
(1) Thickness The thickness (μm) of the sample was measured using a constant pressure thickness measuring device FFA-1 (manufactured by Ozaki Seisakusho Co., Ltd.). The stylus diameter is 5 mm and the measured load is 1.25 N. Ten points were measured in the width direction of the sample, and the average value was calculated.

(2)ガーレ透気度
B型ガーレデンソメーター(安田精機製作所社製)を使用し、JIS−P8117(1998)に規定された方法に従って、試料のガーレ透気度(秒/100ml)の測定を行った。試料を直径28.6mm、面積642mmの円孔に締め付け、内筒により(内筒質量567g)、筒内の空気を試験円孔部から筒外へ通過させ、空気100mlが通過する時間を測定することでガーレ透気度とした。
(2) Gale air permeability A B-type Gale Densometer (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) is used to measure the Gale air permeability (seconds / 100 ml) of the sample according to the method specified in JIS-P8117 (1998). went. The sample is tightened in a circular hole with a diameter of 28.6 mm and an area of 642 mm 2 , and the air inside the cylinder is passed through the test circular hole to the outside of the cylinder by the inner cylinder (inner cylinder mass 567 g), and the time for 100 ml of air to pass is measured. By doing so, the air permeability of Gale was set.

(3)25℃における膜抵抗
測定用電極1として、厚み20μmのアルミシートを長辺50mm×短辺40mmに切り出した。このうち、短辺40mm×長辺の端10mmはタブを接続するためののりしろであり、有効測定面積は40mm×40mm(1,600mm=16cm)である。切り出したアルミシートののりしろ部の任意の位置に幅5mm、長さ30mm、厚み100μmのアルミ製タブを超音波溶接した後、溶接部を含むのりしろ部全体をカプトン(登録商標)テープで覆うことで絶縁処理を行った。測定用電極2として、同様のアルミシートを長辺55mm×短辺45mmに切り出した。このうち、短辺45mm×長辺の端10mmはタブを接続するためののりしろである。切り出したアルミシートののりしろ部の任意の位置に幅5mm、長さ30mm、厚み100μmのアルミ製タブを超音波溶接した後、溶接部を含むのりしろ部全体をカプトン(登録商標)テープで覆うことで絶縁処理を行った。試料の多孔質膜を55mm×55mmに切り出した。
(3) As an electrode 1 for measuring film resistance at 25 ° C., an aluminum sheet having a thickness of 20 μm was cut out into a long side of 50 mm and a short side of 40 mm. Of these, the short side 40 mm × the long side end 10 mm is a margin for connecting the tabs, and the effective measurement area is 40 mm × 40 mm (1,600 mm 2 = 16 cm 2 ). After ultrasonically welding an aluminum tab with a width of 5 mm, a length of 30 mm, and a thickness of 100 μm to an arbitrary position of the margin of the cut aluminum sheet, the entire margin including the weld is covered with Capton (registered trademark) tape. Insulation treatment was performed. As the measurement electrode 2, a similar aluminum sheet was cut out into a long side of 55 mm and a short side of 45 mm. Of these, the short side 45 mm × the long side end 10 mm is a margin for connecting tabs. After ultrasonically welding an aluminum tab with a width of 5 mm, a length of 30 mm, and a thickness of 100 μm to an arbitrary position of the margin of the cut aluminum sheet, the entire margin including the weld is covered with Capton (registered trademark) tape. Insulation treatment was performed. The porous membrane of the sample was cut out to 55 mm × 55 mm.

切り出した測定用電極1、測定用電極2、および試料を乾燥器(減圧度0.09MPa、80℃)にて12時間減圧乾燥させた後、測定用電極1/試料/測定用電極2の順に重ねた。このとき、測定用電極1の40mm×40mmの有効測定領域の全てが試料膜を隔てて測定用電極2と対向するように配置した。次に、アルミラミネートフィルムに上記の(電極/試料/電極)積層体を挟み込み、アルミラミネートフィルムの1辺を残して熱融着し、袋状とした。袋状にしたアルミラミネートフィルムに、エチレンカーボネート:ジエチルカーボネート=3:7(体積比)の混合溶媒に溶質としてLiPFを濃度1mol/Lとなるように溶解させた電解液を1.5g注入し、減圧含浸させながらアルミラミネートフィルムの短辺部を熱融着させてラミネートセルを作製した。このようなセルを、電極間の試料を2枚、4枚として2種類作製した。 The cut out measurement electrode 1, measurement electrode 2, and sample are dried under reduced pressure in a desiccator (decompression degree 0.09 MPa, 80 ° C.) for 12 hours, and then in the order of measurement electrode 1 / sample / measurement electrode 2. Stacked. At this time, the entire effective measurement area of 40 mm × 40 mm of the measurement electrode 1 was arranged so as to face the measurement electrode 2 with the sample film interposed therebetween. Next, the above (electrode / sample / electrode) laminate was sandwiched between aluminum laminated films and heat-sealed to form a bag shape, leaving one side of the aluminum laminated film. Inject 1.5 g of an electrolytic solution prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio) to a concentration of 1 mol / L into a bag-shaped aluminum laminate film. A laminated cell was prepared by heat-sealing the short side portion of the aluminum laminated film while impregnating it under reduced pressure. Two types of such cells were prepared with two or four samples between the electrodes.

以上により作製した各セルについて、25℃雰囲気下、電圧振幅10mV、周波数10〜5,000Hzの条件で交流インピーダンスを測定し、Cole−Coleプロットから交流抵抗(Ω)を求めた。得られた交流抵抗を試料の枚数に対してプロットし、このプロットを直線で結んだときの傾きから試料1枚あたりの交流抵抗を算出した。得られた交流抵抗に有効測定面積16cmを乗ずることで、規格化した膜抵抗(Ω・cm)を算出した。なお、上記したプロットに供する交流抵抗値は、試料の枚数が異なる2種類の評価用セルについて、各5個づつ作成し、交流抵抗値の最大値、最小値を除いた3個の測定値を平均した値をそれぞれ用いた。 For each cell produced as described above, the AC impedance was measured under the conditions of a voltage amplitude of 10 mV and a frequency of 10 to 5,000 Hz in an atmosphere of 25 ° C., and the AC resistance (Ω) was obtained from the Core-Cole plot. The obtained AC resistance was plotted against the number of samples, and the AC resistance per sample was calculated from the inclination when the plots were connected by a straight line. By multiplying the effective measurement area 16cm 2 to AC resistance obtained was calculated film resistance normalized (Ω · cm 2). For the AC resistance values used in the above plot, 5 cells were created for each of the two types of evaluation cells with different numbers of samples, and 3 measured values excluding the maximum and minimum AC resistance values were used. The averaged values were used respectively.

(4)面内方向の熱収縮率
試料を、長手方向(MD)50mm×幅方向(TD)50mm(ここで、MDとは膜の製膜方向であり、TDとはそれと直交する方向である。)に切り出し、所定温度(150℃または200℃)の熱風オーブン中で1時間、実質的に張力を掛けない状態で熱処理を行った後、25℃まで冷却した。処理後の試料を厚み3mmのガラス板で挟み込み、MDおよびTDのそれぞれにおいて最も寸法変化が大きい部分の寸法を計測し、処理後の寸法L(mm)とした。求めたLを用いて、下式でMDおよびTDの熱収縮率(%)を計算した。測定は5回実施し、MDおよびTDそれぞれについて平均値を求めた。
(4) Heat shrinkage rate in the in-plane direction The sample is placed in the longitudinal direction (MD) 50 mm × width direction (TD) 50 mm (here, MD is the film forming direction of the film, and TD is the direction orthogonal to it. The sample was cut into (1) and heat-treated in a hot air oven at a predetermined temperature (150 ° C. or 200 ° C.) for 1 hour with substantially no tension applied, and then cooled to 25 ° C. The treated sample was sandwiched between glass plates having a thickness of 3 mm, and the dimensions of the portion having the largest dimensional change in each of MD and TD were measured and used as the treated dimension L (mm). Using the obtained L, the heat shrinkage rate (%) of MD and TD was calculated by the following formula. The measurement was performed 5 times, and the average value was calculated for each of MD and TD.

面内方向の熱収縮率(%)=((50−L)/50)×100
(5)厚み方向の熱収縮率
試料を、長手方向50mm×幅方向50mmに切り出し、(1)に記載の方法にて処理前の厚みD(μm)を測定した。この試料を2枚のステンレス板(SUS316、厚み1mm、200mm角)に挟んだ状態で、500℃の熱風オーブン中で10分間熱処理を行った後、25℃まで冷却した。処理後の試料厚みDを上記と同様に測定し、下式で熱収縮率(%)を計算した。
In-plane heat shrinkage rate (%) = ((50-L) / 50) × 100
(5) Heat shrinkage rate in the thickness direction A sample was cut out in a length direction of 50 mm × a width direction of 50 mm, and the thickness D 0 (μm) before treatment was measured by the method described in (1). This sample was heat-treated in a hot air oven at 500 ° C. for 10 minutes with this sample sandwiched between two stainless steel plates (SUS316, thickness 1 mm, 200 mm square), and then cooled to 25 ° C. The sample thickness D after the treatment was measured in the same manner as above, and the heat shrinkage rate (%) was calculated by the following formula.

厚み方向の熱収縮率(%)=((D−D)/D)×100
(実施例1)
脱水したN−メチル−2−ピロリドン(NMP)に、ジアミン全量に対して80モル%に相当する2−クロロ−1,4−フェニレンジアミンと20モル%に相当する4,4’−ジアミノジフェニルエーテルを溶解させた。そこへ酸ジクロライドとして、ジアミン全量に対して99モル%に相当する2−クロロテレフタロイルクロライドを添加し撹拌を行うことで、芳香族ポリアミド(A)を重合した。得られた重合溶液を、酸ジクロライド全量に対して97モル%の炭酸リチウムで中和し、さらに15モル%のジエタノールアミン、25モル%のトリエタノールアミンにてpHを10.0に調整し、芳香族ポリアミド濃度が10質量%である溶液を得た。なお、pHの測定は、ビーカーに上記の溶液を10g採取したところに純水40gを添加し、スターラーを用いて25℃で10分間撹拌後、抽出水についてpHメーターを用いて測定した。得られた芳香族ポリアミドの対数粘度ηinhは2.5dl/gであった。
Heat shrinkage rate in the thickness direction (%) = ((D 0 −D) / D 0 ) × 100
(Example 1)
Dehydrated N-methyl-2-pyrrolidone (NMP) was charged with 2-chloro-1,4-phenylenediamine equivalent to 80 mol% and 4,4'-diaminodiphenyl ether corresponding to 20 mol% with respect to the total amount of diamine. Dissolved. The aromatic polyamide (A) was polymerized by adding 2-chloroterephthaloyl chloride corresponding to 99 mol% with respect to the total amount of diamine as acid dichloride and stirring the mixture. The obtained polymerization solution was neutralized with 97 mol% lithium carbonate with respect to the total amount of acid dichloride, and the pH was further adjusted to 10.0 with 15 mol% diethanolamine and 25 mol% triethanolamine to aroma. A solution having a group polyamide concentration of 10% by mass was obtained. The pH was measured by collecting 10 g of the above solution in a beaker, adding 40 g of pure water, stirring at 25 ° C. for 10 minutes using a stirrer, and then measuring the extracted water using a pH meter. The log viscosity η inh of the obtained aromatic polyamide was 2.5 dl / g.

次に、得られた芳香族ポリアミド溶液中にアルミナ粒子(平均粒径0.4μm)および希釈用のNMPを加えて攪拌機で予備分散後、ビーズミルにて混練することで、製膜原液中の芳香族ポリアミドおよびアルミナ粒子の合計量に対するアルミナ粒子の含有量が90質量%となるように調製した。 Next, alumina particles (average particle size 0.4 μm) and NMP for dilution are added to the obtained aromatic polyamide solution, pre-dispersed with a stirrer, and kneaded with a bead mill to achieve the aroma in the film-forming stock solution. The content of the alumina particles was adjusted to 90% by mass with respect to the total amount of the group polyamide and the alumina particles.

以上で得られた製膜原液を、支持体であるステンレス(SUS316)ベルト上に膜状に連続的に塗布し、温度50℃、相対湿度85%RHの調温調湿空気中で、塗布膜が支持体から剥離可能になるまで処理した。次に、塗布膜を支持体から剥離し、30℃の水浴に導入することで、溶媒および中和塩などの抽出を行った。続いて、得られた含水状態の多孔質膜を、温度280℃のテンターに導入し、テンター室内にて製膜方向(MD)は定長で、幅方向(TD)に1.05倍の延伸を施しながら、1分間の高温熱処理を施し、MDに連続で巻き取ることで、厚み10μmの耐熱多孔質膜を得た。 The film-forming stock solution obtained above is continuously applied in the form of a film on a stainless steel (SUS316) belt as a support, and the coating film is applied in a temperature-controlled humidity-controlled air having a temperature of 50 ° C. and a relative humidity of 85% RH. Was treated until it could be peeled off from the support. Next, the coating film was peeled off from the support and introduced into a water bath at 30 ° C. to extract the solvent, neutralizing salt and the like. Subsequently, the obtained porous film in a water-containing state was introduced into a tenter having a temperature of 280 ° C., and the film-forming direction (MD) was a constant length in the tenter chamber, and the film was stretched 1.05 times in the width direction (TD). A heat-resistant porous film having a thickness of 10 μm was obtained by subjecting it to a high-temperature heat treatment for 1 minute and continuously winding it around the MD.

得られた耐熱多孔質膜の評価結果を表1に示す。 Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例2)
芳香族ポリアミド(B)を得るためのジアミンを、ジアミン全量に対して50モル%に相当する2−クロロ−1,4−フェニレンジアミンと50モル%に相当する4,4’−ジアミノジフェニルエーテルとすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 2)
The diamine for obtaining the aromatic polyamide (B) is 2-chloro-1,4-phenylenediamine corresponding to 50 mol% and 4,4'-diaminodiphenyl ether corresponding to 50 mol% with respect to the total amount of diamine. A heat-resistant porous film was obtained in the same manner as in Example 1 except for the above. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例3)
芳香族ポリアミド(C)を得るための酸ジクロライドを、ジアミン全量に対して30モル%に相当する2−クロロテレフタロイルクロライドと69モル%に相当するテレフタロイルクロライドとすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 3)
Examples except that the acid dichloride for obtaining the aromatic polyamide (C) is 2-chloroterephthaloyl chloride corresponding to 30 mol% and terephthaloyl chloride corresponding to 69 mol% with respect to the total amount of diamine. A heat-resistant porous film was obtained in the same manner as in 1. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例4)
芳香族ポリアミド(D)を得るためのジアミンを、ジアミン全量に対して50モル%に相当する2−クロロ−1,4−フェニレンジアミンと50モル%に相当する4,4’−ジアミノジフェニルエーテルとし、酸ジクロライドを、ジアミン全量に対して99モル%に相当するテレフタロイルクロライドとすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 4)
The diamines for obtaining the aromatic polyamide (D) were 2-chloro-1,4-phenylenediamine corresponding to 50 mol% and 4,4'-diaminodiphenyl ether corresponding to 50 mol% with respect to the total amount of diamine. A heat-resistant porous film was obtained in the same manner as in Example 1 except that the acid dichloride was terephthaloyl chloride corresponding to 99 mol% with respect to the total amount of diamine. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例5)
芳香族ポリアミド(E)を得るためのジアミンを、ジアミン全量に対して100モル%に相当する2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルとすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 5)
Same as Example 1 except that the diamine for obtaining the aromatic polyamide (E) is 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, which corresponds to 100 mol% with respect to the total amount of diamine. A heat-resistant porous film was obtained. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例6)
製膜原液中の芳香族ポリアミドおよびアルミナ粒子の合計量に対するアルミナ粒子の含有量を80質量%とすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 6)
A heat-resistant porous film was obtained in the same manner as in Example 1 except that the content of the alumina particles was 80% by mass with respect to the total amount of the aromatic polyamide and the alumina particles in the film-forming stock solution. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例7)
製膜原液中の芳香族ポリアミドおよびアルミナ粒子の合計量に対するアルミナ粒子の含有量を70質量%とすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 7)
A heat-resistant porous film was obtained in the same manner as in Example 1 except that the content of the alumina particles was 70% by mass with respect to the total amount of the aromatic polyamide and the alumina particles in the film-forming stock solution. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例8)
重量平均分子量(Mw)が2.0×10の超高分子量ポリエチレン20質量% 、Mwが3.5×10の高密度ポリエチレン70質量%、及びMwが3.8×10のポリブチレンテレフタレート10質量%からなる樹脂組成物を二軸押出機に投入した。この二軸押出機のサイドフィーダーから流動パラフィンを樹脂組成物:流動パラフィンの質量比=3:7となるように230℃で溶融混練して、押出機中で樹脂溶液を調製した。続いてこの樹脂溶液を押出機の先端に設置されたTダイから押し出し、0℃に温調された冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。得られたゲル状シートについて、テンター延伸機を用いて115℃でMDおよびTDともに5倍となるように同時二軸延伸し、延伸膜を得た。得られた延伸膜を、25℃に温調されたジクロロメタンを含有する洗浄槽中に導入して洗浄を行った。最後に、テンターに導入してMD、TDとも定長定幅、125℃で2分間熱固定処理後、連続的に巻き取ることにより、ポリオレフィン多孔質膜を得た。得られたポリオレフィン多孔質膜は厚み8μm、ガーレ透気度90秒/100mlであった。
(Example 8)
The weight average molecular weight (Mw) of 2.0 × 10 6 ultra high molecular weight polyethylene 20 wt% of high density polyethylene 70 wt% of the Mw of 3.5 × 10 5, and Mw of 3.8 × 10 4 polybutylenes A resin composition consisting of 10% by mass of terephthalate was charged into a twin-screw extruder. Liquid paraffin was melt-kneaded from the side feeder of this twin-screw extruder at 230 ° C. so that the mass ratio of resin composition: liquid paraffin was 3: 7, and a resin solution was prepared in the extruder. Subsequently, this resin solution was extruded from a T-die installed at the tip of the extruder and cooled while being taken up by a cooling roll whose temperature was adjusted to 0 ° C. to form a gel-like sheet. The obtained gel-like sheet was simultaneously biaxially stretched at 115 ° C. using a tenter stretching machine so that both MD and TD were 5-fold, and a stretched film was obtained. The obtained stretched membrane was introduced into a washing tank containing dichloromethane whose temperature was adjusted to 25 ° C. for washing. Finally, it was introduced into a tenter, and both MD and TD were heat-fixed at a constant length and a constant width at 125 ° C. for 2 minutes, and then continuously wound to obtain a porous polyolefin film. The obtained porous polyolefin membrane had a thickness of 8 μm and a Gale air permeability of 90 seconds / 100 ml.

次に、実施例1と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を、ポリオレフィン多孔質膜の両面にディップコートにて連続的に膜状に塗布し、30℃の水浴に導入した。続いて、得られた含水状態の膜を、80℃の熱風オーブンにて10分熱処理を施すことで、ポリオレフィン多孔質膜の両面に片面厚み2μmずつ(両面合計厚み4μm)の耐熱多孔質膜を形成した積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。 Next, the film-forming stock solution containing the aromatic polyamide and the inorganic particles obtained in the same manner as in Example 1 was continuously applied in a film form on both sides of the polyolefin porous film by a dip coat, and a water bath at 30 ° C. was applied. Introduced to. Subsequently, the obtained water-containing film is heat-treated in a hot air oven at 80 ° C. for 10 minutes to form a heat-resistant porous film having a thickness of 2 μm on each side (total thickness of 4 μm on both sides) on both sides of the polyolefin porous film. The formed laminated porous film was obtained. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例9)
ポリオレフィン多孔質膜の両面に形成する耐熱多孔質膜の厚みを、片面厚み4μmずつ(両面合計厚み8μm)とすること以外は実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Example 9)
A laminated porous film was obtained in the same manner as in Example 8 except that the thickness of the heat-resistant porous film formed on both sides of the polyolefin porous film was 4 μm on each side (total thickness on both sides was 8 μm). Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例10)
実施例7と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を用いること以外は実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Example 10)
A laminated porous film was obtained in the same manner as in Example 8 except that the membrane-forming stock solution containing the aromatic polyamide and the inorganic particles obtained in the same manner as in Example 7 was used. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例11)
脱水したN−メチル−2−ピロリドンに、ジアミンとしてジアミン全量に対して100モル%に相当する2,2’−ジトリフルオロメチル−4,4’−ジアミノビフェニルを室温にて溶解させた。そこへ、ジアミン全量に対して100モル%に相当する4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物を30分かけて添加し、全量添加後約2時間の撹拌を行うことで、芳香族ポリイミド(G)の前駆体を重合した。さらにトリエタノールアミンにてpHを10.0に調整し、前駆体濃度が10質量%である溶液を得た。得られた芳香族ポリイミド前駆体の対数粘度ηinhは2.5dl/gであった。
(Example 11)
In the dehydrated N-methyl-2-pyrrolidone, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl corresponding to 100 mol% of the total amount of diamine as a diamine was dissolved at room temperature. To this, 4,4'-(hexafluoroisopropyridene) diphthalic anhydride corresponding to 100 mol% with respect to the total amount of diamine was added over 30 minutes, and after the total amount was added, stirring was performed for about 2 hours. A precursor of aromatic polyimide (G) was polymerized. Further, the pH was adjusted to 10.0 with triethanolamine to obtain a solution having a precursor concentration of 10% by mass. The log viscosity η inh of the obtained aromatic polyimide precursor was 2.5 dl / g.

以降は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。 After that, a heat-resistant porous film was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(実施例12)
実施例11と同様にして得た芳香族ポリイミド前駆体と無機粒子とを含む製膜原液を用いること以外は実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Example 12)
A laminated porous film was obtained in the same manner as in Example 8 except that a film-forming stock solution containing an aromatic polyimide precursor and inorganic particles obtained in the same manner as in Example 11 was used. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例13)
実施例5と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を用いること以外は実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Example 13)
A laminated porous film was obtained in the same manner as in Example 8 except that the membrane-forming stock solution containing the aromatic polyamide and the inorganic particles obtained in the same manner as in Example 5 was used. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例14)
実施例7と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を、実施例8と同様にして得たポリオレフィン多孔質膜の両面にディップコートにて連続的に膜状に塗布した。次に、温度90℃、相対湿度95%RHの調温調湿空気中で10秒間処理した後、30℃の水浴に導入した。続いて、得られた含水状態の膜を、80℃の熱風オーブンにて10分熱処理を施すことで、ポリオレフィン多孔質膜の両面に片面厚み2μmずつ(両面合計厚み4μm)の耐熱多孔質膜を形成した積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Example 14)
The film-forming stock solution containing the aromatic polyamide and the inorganic particles obtained in the same manner as in Example 7 was continuously applied in a film form on both sides of the polyolefin porous film obtained in the same manner as in Example 8 by dip coating. bottom. Next, the treatment was carried out in a temperature-controlled humidity-controlled air having a temperature of 90 ° C. and a relative humidity of 95% RH for 10 seconds, and then introduced into a water bath at 30 ° C. Subsequently, the obtained water-containing film is heat-treated in a hot air oven at 80 ° C. for 10 minutes to form a heat-resistant porous film having a thickness of 2 μm on each side (total thickness of 4 μm on both sides) on both sides of the polyolefin porous film. The formed laminated porous film was obtained. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(実施例15)
芳香族ポリアミド溶液のpHを7.0とすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Example 15)
A heat-resistant porous film was obtained in the same manner as in Example 1 except that the pH of the aromatic polyamide solution was set to 7.0. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(比較例1)
芳香族ポリアミド(F)を得るためのジアミンを、ジアミン全量に対して100モル%に相当する4,4’−ジアミノジフェニルエーテルとし、酸ジクロライドを、ジアミン全量に対して99モル%に相当するテレフタロイルクロライドとすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜は無機粒子の凝集による表面荒れ、粉落ちが見られた。得られた耐熱多孔質膜の評価結果を表1に示す。
(Comparative Example 1)
The diamine for obtaining the aromatic polyamide (F) was 4,4'-diaminodiphenyl ether corresponding to 100 mol% with respect to the total amount of diamine, and the acid dichloride was terephthalo corresponding to 99 mol% with respect to the total amount of diamine. A heat-resistant porous film was obtained in the same manner as in Example 1 except that it was an ilchloride. The surface of the obtained heat-resistant porous film was roughened due to the aggregation of inorganic particles, and powder was found to fall off. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(比較例2)
芳香族ポリアミド(F)を用い、製膜原液中の芳香族ポリアミドおよびアルミナ粒子の合計量に対するアルミナ粒子の含有量を70質量%とすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Comparative Example 2)
A heat-resistant porous film in the same manner as in Example 1 except that the aromatic polyamide (F) is used and the content of the alumina particles is 70% by mass with respect to the total amount of the aromatic polyamide and the alumina particles in the film-forming stock solution. Got Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(比較例3)
製膜原液中の芳香族ポリアミドおよびアルミナ粒子の合計量に対するアルミナ粒子の含有量を50質量%とすること以外は実施例1と同様にして、耐熱多孔質膜を得た。得られた耐熱多孔質膜の評価結果を表1に示す。
(Comparative Example 3)
A heat-resistant porous film was obtained in the same manner as in Example 1 except that the content of the alumina particles was 50% by mass with respect to the total amount of the aromatic polyamide and the alumina particles in the film-forming stock solution. Table 1 shows the evaluation results of the obtained heat-resistant porous membrane.

(比較例4)
比較例2と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を用いること以外はは実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Comparative Example 4)
A laminated porous film was obtained in the same manner as in Example 8 except that a film-forming stock solution containing an aromatic polyamide and inorganic particles obtained in the same manner as in Comparative Example 2 was used. Table 1 shows the evaluation results of the obtained laminated porous membrane.

(比較例5)
比較例3と同様にして得た芳香族ポリアミドと無機粒子とを含む製膜原液を用いること以外はは実施例8と同様にして、積層多孔質膜を得た。得られた積層多孔質膜の評価結果を表1に示す。
(Comparative Example 5)
A laminated porous film was obtained in the same manner as in Example 8 except that a film-forming stock solution containing an aromatic polyamide and inorganic particles obtained in the same manner as in Comparative Example 3 was used. Table 1 shows the evaluation results of the obtained laminated porous membrane.

Figure 0006969143
Figure 0006969143

本発明の耐熱多孔質膜は、無機粒子の含有量が多く、かつその分散性と担持性に優れるため、膜抵抗が低いことが特徴である。そのため、二次電池用セパレータとして用いた際に、良好な出力特性やサイクル特性が得られる。また、耐圧縮性と耐熱性に優れるため、何らかの原因で電池内部に圧力がかかったり、高温に曝され続けても、正負極間の絶縁を保持することを可能とする。さらに本発明の耐熱多孔質膜をポリオレフィン樹脂を含有する多孔質膜基材の少なくとも一方の上に形成した積層多孔質膜は、基材のシャットダウン機能に加え、上述の耐熱多孔質膜の特性により、低抵抗、耐圧縮性、耐熱性に優れる積層多孔質膜となるため、幅広い用途の二次電池用セパレータとして好適に用いることができる。 The heat-resistant porous film of the present invention is characterized in that it has a high content of inorganic particles and is excellent in dispersibility and supportability, so that the film resistance is low. Therefore, good output characteristics and cycle characteristics can be obtained when used as a separator for a secondary battery. Further, since it has excellent compression resistance and heat resistance, it is possible to maintain the insulation between the positive and negative electrodes even if pressure is applied to the inside of the battery for some reason or the battery is continuously exposed to high temperature. Further, the laminated porous membrane in which the heat-resistant porous membrane of the present invention is formed on at least one of the porous membrane base materials containing a polyolefin resin has the above-mentioned characteristics of the heat-resistant porous membrane in addition to the shut-down function of the base material. Since it is a laminated porous membrane having excellent low resistance, compression resistance, and heat resistance, it can be suitably used as a separator for a secondary battery for a wide range of applications.

Claims (4)

ポリオレフィン樹脂を含有する多孔質膜基材の少なくとも一方の表面に、多孔質膜が形成された積層多孔質膜であって、多孔質膜が芳香族耐熱樹脂と無機粒子とを含有し、無機粒子の含有量が60〜99質量%であり、香族耐熱樹脂芳香環上に電子求引性基を有し、かつ対数粘度(η inh )1.5〜7.0dl/gである芳香族ポリアミド、芳香族ポリイミドあるいはその前駆体であるポリアミド酸である、積層多孔質膜。 A laminated porous film in which a porous film is formed on at least one surface of a porous film base material containing a polyimide resin, wherein the porous film contains an aromatic heat-resistant resin and inorganic particles, and is an inorganic particle. aromatic content is 60 to 99 wt%, have a Fang aromatic heat resistant resin is an electron withdrawing group on the aromatic ring, and a logarithmic viscosity inh) 1.5~7.0dl / g A laminated porous film which is a polyamic acid which is a group polyamide, an aromatic polyimide or a precursor thereof. 多孔質膜の厚み方向の500℃の熱収縮率が−0.5〜15.0%である、請求項に記載の積層多孔質膜。 Porous membrane thickness direction of 500 ° C. of thermal shrinkage is -0.5~15.0%, the laminated porous film according to claim 1. 25℃における膜抵抗が1.6〜9.6Ωcmである、請求項1又は2に記載の積層多孔質膜。 The laminated porous film according to claim 1 or 2 , wherein the film resistance at 25 ° C. is 1.6 to 9.6 Ωcm 2. 面内方向の少なくとも一方向における150℃熱収縮率が−0.5〜20%である、請求項1〜3のいずれかに記載の積層多孔質膜。 The laminated porous membrane according to any one of claims 1 to 3, wherein the heat shrinkage rate at 150 ° C. in at least one direction in the in-plane direction is −0.5 to 20%.
JP2017079430A 2016-05-19 2017-04-13 Porous Membrane and Laminated Porous Membrane Active JP6969143B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100196 2016-05-19
JP2016100196 2016-05-19

Publications (2)

Publication Number Publication Date
JP2017212201A JP2017212201A (en) 2017-11-30
JP6969143B2 true JP6969143B2 (en) 2021-11-24

Family

ID=60476942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079430A Active JP6969143B2 (en) 2016-05-19 2017-04-13 Porous Membrane and Laminated Porous Membrane

Country Status (1)

Country Link
JP (1) JP6969143B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018397926A1 (en) * 2017-12-26 2020-06-25 Toray Industries, Inc. Gas separation membrane, gas separation membrane element, and gas separation method
JP2020119888A (en) * 2019-01-28 2020-08-06 株式会社リコー Liquid composition
JP2021014525A (en) * 2019-07-12 2021-02-12 帝人株式会社 Para-type wholly aromatic polyamide laminate film and laminated porous film formed by laminating the laminate film
CN110635090B (en) * 2019-09-27 2022-04-29 宁德卓高新材料科技有限公司 Preparation method of high-heat-resistance vinylidene fluoride polymer mixed coating diaphragm
CN110938228B (en) * 2019-11-26 2020-09-08 武汉理工大学 Preparation method and application of zeolite/polyimide composite membrane
DE102021003349A1 (en) * 2020-06-30 2021-12-30 Sumitomo Chemical Company, Limited composition

Also Published As

Publication number Publication date
JP2017212201A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6969143B2 (en) Porous Membrane and Laminated Porous Membrane
JP5644506B2 (en) Aromatic polyamide porous membrane, and capacitor and battery separator using the same
JP6672795B2 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
KR101807377B1 (en) Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same
US20110052962A1 (en) Porous film, multilayer porous film comprising the same, and separator
JP6662043B2 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
JP2014240189A (en) Aromatic polyamide/aromatic polyimide composite porous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112940307B (en) Polyimide aerogel film and preparation method and application thereof
JP5664022B2 (en) Aromatic polyamide porous membrane, porous film and battery separator
WO2013105300A1 (en) Aromatic polyamide porous film, separator for batteries and battery
JP2017014493A (en) Ionic conductive film, ionic conductive composite film, and electrode complex
JP2018032627A (en) Polyamide-imide solution for power storage element electrode, method for manufacturing power storage element electrode, and power storage element electrode
TWI761458B (en) Porous film, separator for secondary battery, and secondary battery
JP5929469B2 (en) Aromatic polyamide porous membrane, battery separator and method for producing the same
JP6256038B2 (en) Aromatic polyamide porous membrane and separator for secondary battery
JP2016207649A (en) Battery separator and battery
TWI765096B (en) Porous film, separator for secondary battery, and secondary battery
JP5853607B2 (en) Method for producing aromatic polyamide porous membrane, porous membrane obtained thereby, and battery separator using the same
JP6398304B2 (en) Aromatic polyamide porous membrane and battery separator
KR20160032311A (en) Battery Separator with Excellent Shut-down Function and Heat Resistance and Secondaty Cell Battery
CN110556491B (en) Separator for nonaqueous electrolyte secondary battery
JP2015069745A (en) Aromatic polyamide bag-shaped separator
JP2019031615A (en) Aromatic polyamide porous membrane and battery separator
CN117154342A (en) Polyimide lithium battery diaphragm containing benzonorbornene structure and preparation method thereof
Park et al. Crosslinkable Fluorinated Polymer-Coated Self-Extinguishable Separators with Highly Enhanced Thermal Stability and Electrolyte Affinity for High-Performance Lithium-Ion Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151