JP6256038B2 - Aromatic polyamide porous membrane and separator for secondary battery - Google Patents

Aromatic polyamide porous membrane and separator for secondary battery Download PDF

Info

Publication number
JP6256038B2
JP6256038B2 JP2014009165A JP2014009165A JP6256038B2 JP 6256038 B2 JP6256038 B2 JP 6256038B2 JP 2014009165 A JP2014009165 A JP 2014009165A JP 2014009165 A JP2014009165 A JP 2014009165A JP 6256038 B2 JP6256038 B2 JP 6256038B2
Authority
JP
Japan
Prior art keywords
aromatic polyamide
film
solution
porous membrane
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014009165A
Other languages
Japanese (ja)
Other versions
JP2014194922A (en
Inventor
敦司 沢本
敦司 沢本
幸平 佐藤
幸平 佐藤
佃 明光
佃  明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014009165A priority Critical patent/JP6256038B2/en
Publication of JP2014194922A publication Critical patent/JP2014194922A/en
Application granted granted Critical
Publication of JP6256038B2 publication Critical patent/JP6256038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明は芳香族ポリアミド多孔質膜およびそれを用いた二次電池用セパレータに関するものである。   The present invention relates to an aromatic polyamide porous membrane and a separator for a secondary battery using the same.

芳香族ポリアミドからなる多孔質膜は、二次電池などに用いる耐熱セパレータとして検討されており、例えば特許文献1〜4に開示されている。   A porous membrane made of an aromatic polyamide has been studied as a heat-resistant separator used in a secondary battery or the like, and is disclosed in, for example, Patent Documents 1 to 4.

しかしながら、一般的にセパレータに用いられる多孔質膜は、内部に存在する多数の孔により光が散乱されるため、白色や黄白色であることが多く、透明性を有していない。そのため、多孔質膜や電池を製造する工程で、多孔質膜に存在する欠点や異物などを検査する方法に制限がある。また、電池製造時に正負極およびセパレータを積層する際、光学検知器などで各部材の位置を認識することが難しく、巻きずれによる初期不良で歩留まり悪化の原因となる懸念がある。   However, a porous film generally used for a separator is often white or yellowish white because light is scattered by a large number of pores present therein, and is not transparent. For this reason, there is a limit to a method for inspecting a defect or a foreign substance existing in the porous film in the process of manufacturing the porous film or the battery. Further, when the positive and negative electrodes and the separator are laminated at the time of manufacturing the battery, it is difficult to recognize the position of each member with an optical detector or the like, and there is a concern that the initial failure due to winding deviation may cause the yield to deteriorate.

特許文献1〜3では、メタ配向性やエーテル結合などの柔軟成分を多数含む芳香族ポリアミド多孔質膜が開示されているが、これらは柔軟成分による分子鎖間の結合力の低下により孔構造が粗大化しやすく、透明性は有していない。一方、特許文献4では、剛直成分であるパラ配向性を多数含む芳香族ポリアミド多孔質膜が開示されているが、孔径のムラが大きく、膜全体で緻密な孔構造とならないため、十分な透明性は得られていない。   Patent Documents 1 to 3 disclose aromatic polyamide porous membranes containing a large number of flexible components such as meta-orientation and ether bonds, but these have a pore structure due to a decrease in bonding force between molecular chains due to the flexible components. It is easy to coarsen and does not have transparency. On the other hand, Patent Document 4 discloses an aromatic polyamide porous membrane containing a large number of para-orientations, which are rigid components, but has a large non-uniformity in pore diameter and does not form a dense pore structure as a whole, so that it is sufficiently transparent. Sex has not been obtained.

特開2012−82399号公報JP 2012-82399 A 特開2012−207221号公報JP 2012-207221 A 特開2005−209989号公報JP 2005-209989 A 特開平9−208736号公報JP-A-9-208736

このように、電池用セパレータに用いられる程度に透気性を有する芳香族ポリアミド多孔質膜において、透明性を持たせることは困難であった。   As described above, it is difficult to impart transparency to the aromatic polyamide porous membrane having gas permeability enough to be used for a battery separator.

本発明は、上記事情に鑑み、透気性を損なうことなく、透明性を有する芳香族ポリアミド多孔質膜およびそれを用いた二次電池用セパレータを提供することを目的とする。   An object of this invention is to provide the aromatic polyamide porous membrane which has transparency, and the separator for secondary batteries using the same, without impairing air permeability in view of the said situation.

上記目的を達成するため、本発明は以下の構成からなる。   In order to achieve the above object, the present invention has the following configuration.

(1)膜厚が10〜30μmであり、波長750nmの光線透過率が20〜80%であり、ガーレ透気度が1〜300sec/100mlである芳香族ポリアミド多孔質膜。 (1) An aromatic polyamide porous film having a film thickness of 10 to 30 μm, a light transmittance of 20 to 80% at a wavelength of 750 nm , and a Gurley permeability of 1 to 300 sec / 100 ml .

(2)波長550nmの光線透過率が20〜80%である、上記(1)に記載の芳香族ポリアミド多孔質膜。   (2) The aromatic polyamide porous film according to (1), wherein the light transmittance at a wavelength of 550 nm is 20 to 80%.

)上記(1)または(2)に記載の芳香族ポリアミド多孔質膜を用いた二次電池用セパレータ。
( 3 ) A separator for a secondary battery using the aromatic polyamide porous membrane according to (1) or (2) .

本発明の芳香族ポリアミド多孔質膜は透明性を有しているにも関わらず、良好な透気性を持つため、リチウムイオン二次電池などの二次電池用セパレータに好適に用いることができる。本発明の芳香族ポリアミド多孔質膜を電池用セパレータとして用いた場合、セパレータが透明性を有するため、製造時の欠点検査や電池部材を積層する際の部材の位置検知が容易となり、初期不良品を減らすことができる。   Since the aromatic polyamide porous membrane of the present invention has good air permeability even though it has transparency, it can be suitably used for a secondary battery separator such as a lithium ion secondary battery. When the aromatic polyamide porous membrane of the present invention is used as a battery separator, since the separator has transparency, defect inspection at the time of manufacture and position detection of members when stacking battery members are facilitated, and initial defective products. Can be reduced.

本発明において用いる芳香族ポリアミドとしては、柔軟芳香族ポリアミド部分と剛直芳香族ポリアミド部分とがブロック共重合されたものが好適である。   As the aromatic polyamide used in the present invention, those obtained by block copolymerization of a flexible aromatic polyamide portion and a rigid aromatic polyamide portion are suitable.

本発明における柔軟芳香族ポリアミド部分とは、化学式(1)において、Ar、Arのうち少なくともどちらか一方が、化学式(2)のa群のいずれかに示される柔軟な構造を有するものをいう。また、剛直芳香族ポリアミド部分とは、化学式(1)において、Ar、Arがともに化学式(2)のbに示される剛直な構造を有するものをいう。 The flexible aromatic polyamide portion in the present invention is a compound in which at least one of Ar 1 and Ar 2 in Chemical Formula (1) has a flexible structure represented by any one of group a in Chemical Formula (2). Say. Further, the rigid aromatic polyamide portion means that in Ar (1), Ar 1 and Ar 2 both have a rigid structure represented by b in Chemical Formula (2).

化学式(1):   Chemical formula (1):

Figure 0006256038
Figure 0006256038

化学式(2):   Chemical formula (2):

Figure 0006256038
Figure 0006256038

ここで、X、Yは、−O−、−CH−、−CO−、−S−、−SO−、−C(CH−のいずれかの基である。 Here, X and Y are any group of —O—, —CH 2 —, —CO—, —S—, —SO 2 —, and —C (CH 3 ) 2 —.

本発明の芳香族ポリアミド多孔質膜を構成する芳香族ポリアミドは、孔形成能の高い柔軟芳香族ポリアミド部分の分子鎖同士が、分子鎖内に一定間隔で存在する凝集力の強い剛直芳香族ポリアミド部分によって物理的に架橋されている。そのため、後述する製膜方法により形成される孔は微細かつ均一な構造となる。これにより、多孔質膜中での光の散乱が抑えられ光線透過率が高まるため、高い透明性を得ることができる。   The aromatic polyamide constituting the aromatic polyamide porous membrane of the present invention is a rigid aromatic polyamide having a strong cohesive force in which molecular chains of a flexible aromatic polyamide portion having a high pore-forming ability are present in the molecular chain at regular intervals. It is physically crosslinked by the part. For this reason, the holes formed by the film forming method described later have a fine and uniform structure. Thereby, since scattering of the light in a porous film is suppressed and the light transmittance increases, high transparency can be obtained.

本発明で用いる芳香族ポリアミドにおける柔軟芳香族ポリアミド部分の割合は、柔軟芳香族ポリアミド部分と剛直芳香族ポリアミド部分の合計モル数に対して50〜90モル%であることが好ましく、60〜80モル%がより好ましい。柔軟芳香族ポリアミド部分の割合が50モル%未満ではポリマーの剛直性が高く、孔形成能が低下するためガーレ透気度が本発明の範囲内とならないことがある。一方で柔軟芳香族ポリアミド部分の割合が90モル%を超えると、孔構造の粗大化が起こり、光線透過率が本発明の範囲内とならないことがある。   The proportion of the flexible aromatic polyamide portion in the aromatic polyamide used in the present invention is preferably 50 to 90 mol%, and preferably 60 to 80 mol based on the total number of moles of the flexible aromatic polyamide portion and the rigid aromatic polyamide portion. % Is more preferable. When the proportion of the flexible aromatic polyamide portion is less than 50 mol%, the rigidity of the polymer is high and the pore forming ability is lowered, so that the Gurley air permeability may not fall within the scope of the present invention. On the other hand, if the proportion of the flexible aromatic polyamide portion exceeds 90 mol%, the pore structure becomes coarse and the light transmittance may not fall within the scope of the present invention.

本発明の芳香族ポリアミド多孔質膜は、波長750nmの光線透過率が20〜80%であることが好ましく、より好ましくは20〜70%であり、さらに好ましくは30〜60%である。多孔質膜における光線透過率は、膜内部の孔構造に起因し、孔構造が均一かつ微細であると高くなり、不均一や粗大であると低くなる。波長750nmの光線透過率が20%未満であると、電池製造時の欠点検査や部材積層時の位置検知が困難となることがある。また、膜内部の孔構造が不均一や粗大であるため、二次電池用セパレータとして用いたとき、デンドライト状金属の成長やサイクル劣化などが起こることがある。また、さらに好ましい条件として、波長550nmの光線透過率が20〜80%であることであり、より好ましくは、30〜70%である。光線の波長が短いほど欠点検査や製造時の位置検知の精度が高くなるが、一方で、内部孔による散乱も起きやすくなるため、より均一かつ微細な孔構造を有することが好ましい。光線透過率を上記範囲内とするために孔構造を制御する方法としては、前述のブロック共重合で得られた芳香族ポリアミドを用いて、後述の製膜原液処方および製膜方法で多孔質膜を製造することが好ましい。   In the aromatic polyamide porous membrane of the present invention, the light transmittance at a wavelength of 750 nm is preferably 20 to 80%, more preferably 20 to 70%, and further preferably 30 to 60%. The light transmittance in the porous membrane is high when the pore structure is uniform and fine due to the pore structure inside the membrane, and is low when the pore structure is uneven or coarse. If the light transmittance at a wavelength of 750 nm is less than 20%, it may be difficult to perform defect inspection during battery manufacture and position detection during member lamination. In addition, since the pore structure inside the film is non-uniform or coarse, when used as a secondary battery separator, dendritic metal growth or cycle deterioration may occur. Further, as a more preferable condition, the light transmittance at a wavelength of 550 nm is 20 to 80%, and more preferably 30 to 70%. The shorter the wavelength of the light beam, the higher the accuracy of defect inspection and position detection at the time of manufacture. On the other hand, since scattering by the internal holes is likely to occur, it is preferable to have a more uniform and fine hole structure. As a method for controlling the pore structure in order to make the light transmittance within the above range, a porous membrane can be prepared by using the aromatic polyamide obtained by the block copolymerization described above and a film-forming stock solution formulation and a film-forming method described later. It is preferable to manufacture.

本発明の芳香族ポリアミド多孔質膜の厚みは、10〜30μmであることが好ましく、15〜30μmがさらに好ましい。厚みが10μm未満であると、強度が低く、加工時にフィルムの破断が起きたり、耐電圧性が低く、二次電池用セパレータとして使用した際に電極間が短絡する可能性がある。厚みが30μmを超えると、光線透過率が本発明の範囲内にならないことがある。また、二次電池用セパレータとして使用した際にセパレータ抵抗の上昇により出力が低下したり、電池内に組み込める活物質層の厚みが薄くなり体積あたりの容量が小さくなることがある。本発明の芳香族ポリアミド多孔質膜の厚みは、製膜原液濃度、製膜原液粘度、製膜原液中の添加物、流延厚み、多孔化条件、湿式浴温度、熱処理温度および延伸条件など種々の条件により制御することができる。具体的には、製膜原液において製膜原液濃度および製膜原液粘度が高いほど、さらには、製膜原液中の添加物が多いほど、得られる多孔質膜の厚みは厚くなる傾向にある。また、製膜工程において流延厚みが厚いほど、湿式浴温度が高いほど、熱処理温度が低いほど、さらには、延伸倍率が低いほど、得られる多孔質膜の厚みは厚くなる傾向にある。   The thickness of the aromatic polyamide porous membrane of the present invention is preferably 10 to 30 μm, more preferably 15 to 30 μm. If the thickness is less than 10 μm, the strength is low, the film breaks during processing, the voltage resistance is low, and the electrodes may be short-circuited when used as a secondary battery separator. If the thickness exceeds 30 μm, the light transmittance may not fall within the scope of the present invention. In addition, when used as a separator for a secondary battery, the output may decrease due to an increase in separator resistance, or the thickness of the active material layer that can be incorporated in the battery may be reduced, resulting in a decrease in capacity per volume. The thickness of the aromatic polyamide porous membrane of the present invention varies depending on the concentration of the stock solution, the viscosity of the stock solution, the additives in the stock solution, the casting thickness, the porosity, the wet bath temperature, the heat treatment temperature, and the stretching conditions. It can be controlled according to the conditions. Specifically, in the membrane-forming stock solution, the higher the membrane-forming stock solution concentration and the membrane-forming stock solution viscosity, and the more additives in the membrane-forming stock solution, the thicker the resulting porous membrane tends to be. Further, in the film forming process, the thickness of the porous film obtained tends to increase as the casting thickness increases, the wet bath temperature increases, the heat treatment temperature decreases, and the draw ratio decreases.

本発明の芳香族ポリアミド多孔質膜はガーレ透気度が1〜300sec/100mlであることが好ましく、より好ましくは5〜200sec/100mlである。ガーレ透気度が1sec/100ml未満であると、多孔質膜の強度が低下し、加工時に破断が起きたり、二次電池用セパレータとして使用した場合に電極間が短絡したりすることがある。ガーレ透気度が300sec/100mlを超えると、セパレータとして使用した場合に、電池の出力が低下することがある。微細な孔構造でありながら、ガーレ透気度を上記範囲内とするためには、前述のブロック共重合で得られた芳香族ポリアミドを用いて、後述の製膜原液処方および製膜方法で多孔質膜を製造することが好ましい。   The aromatic polyamide porous membrane of the present invention preferably has a Gurley air permeability of 1 to 300 sec / 100 ml, more preferably 5 to 200 sec / 100 ml. If the Gurley air permeability is less than 1 sec / 100 ml, the strength of the porous film may be reduced, causing breakage during processing, or short-circuiting between electrodes when used as a secondary battery separator. When the Gurley air permeability exceeds 300 sec / 100 ml, the battery output may be reduced when used as a separator. In order to keep the Gurley air permeability within the above range while having a fine pore structure, the aromatic polyamide obtained by the block copolymerization described above is used to form a porous film by the following film-forming solution formulation and film-forming method. It is preferable to produce a membrane.

次に、本発明の芳香族ポリアミド多孔質膜の製造方法について説明する。まず、芳香族ポリアミドを、例えばジアミンと酸ジクロライドを原料として重合する場合には、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホオキシドなどの非プロトン性有機極性溶媒中での重合や、水系媒体を使用する界面重合などで合成することができる。ポリマーの分子量を制御しやすいことから、非プロトン性有機極性溶媒中での重合が好ましい。   Next, the manufacturing method of the aromatic polyamide porous membrane of this invention is demonstrated. First, in the case of polymerizing aromatic polyamide using, for example, diamine and acid dichloride as raw materials, aprotic organic polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc. It can synthesize | combine by superposition | polymerization in the inside, interfacial polymerization using an aqueous medium, etc. Polymerization in an aprotic organic polar solvent is preferable because the molecular weight of the polymer can be easily controlled.

以下、非プロトン性有機極性溶媒中での重合方法について記載する。分子量の高いポリマーを得るために、重合に使用する溶媒の水分率を500ppm以下(質量基準、以下同様)とすることが好ましく、200ppmとすることがより好ましい。使用するジアミンおよび酸ジクロライドは、吸湿に注意し、純度が高いものを用いることが好ましい。また、芳香族ポリアミドの重合反応は発熱を伴うが、重合系の温度が上がると、副反応が起きて重合度が十分に上がらないことがあるため、重合中の溶液の温度を40℃以下に冷却することが好ましい。重合中の溶液の温度は30℃以下にすることがより好ましい。さらに、酸ジクロライドとジアミンを原料とする場合、重合反応に伴って塩化水素が副生するが、これを中和する場合には炭酸リチウム、炭酸カルシウム、水酸化カルシウムなどの無機の中和剤、あるいは、エチレンオキサイド、プロピレンオキサイド、アンモニア、トリエチルアミン、トリエタノールアミン、ジエタノールアミン等の有機の中和剤を使用するとよい。   Hereinafter, a polymerization method in an aprotic organic polar solvent will be described. In order to obtain a polymer having a high molecular weight, the water content of the solvent used for the polymerization is preferably 500 ppm or less (mass basis, the same shall apply hereinafter), more preferably 200 ppm. As the diamine and acid dichloride used, it is preferable to pay attention to moisture absorption and to use a high purity. In addition, the polymerization reaction of the aromatic polyamide is exothermic, but if the temperature of the polymerization system rises, side reaction may occur and the degree of polymerization may not be sufficiently increased. It is preferable to cool. The temperature of the solution during polymerization is more preferably 30 ° C. or lower. Furthermore, when acid dichloride and diamine are used as raw materials, hydrogen chloride is produced as a by-product in the polymerization reaction, but when neutralizing this, an inorganic neutralizing agent such as lithium carbonate, calcium carbonate, calcium hydroxide, Alternatively, an organic neutralizer such as ethylene oxide, propylene oxide, ammonia, triethylamine, triethanolamine, diethanolamine may be used.

本発明の芳香族ポリアミドは、柔軟芳香族ポリアミド部分と剛直芳香族ポリアミド部分のブロック共重合により得ることが好ましい。このとき、まず柔軟芳香族ポリアミド部分あるいは剛直芳香族ポリアミド部分のみを重合した後、同一反応系にもう一方の原料モノマーを添加して重合することでブロック共重合化してもよいし、あるいは、柔軟芳香族ポリアミド部分と剛直芳香族ポリアミド部分とを別々の反応系で重合した後、両者を少量のモノマーと共に混合することでブロック共重合化してもよい。   The aromatic polyamide of the present invention is preferably obtained by block copolymerization of a flexible aromatic polyamide portion and a rigid aromatic polyamide portion. At this time, after first polymerizing only the flexible aromatic polyamide part or the rigid aromatic polyamide part, block copolymerization may be carried out by adding another raw material monomer to the same reaction system and polymerizing, or After the aromatic polyamide portion and the rigid aromatic polyamide portion are polymerized in separate reaction systems, block copolymerization may be performed by mixing both together with a small amount of monomer.

本発明で用いる芳香香族ポリアミドの対数粘度(ηinh)は1.5〜3.5dl/gであることが好ましく、2.0〜3.0dl/gであることがより好ましい。対数粘度が1.5dl/g未満であると、ポリマー分子鎖間の結合力が低く、得られる多孔質膜の孔構造が粗大化し、光線透過率が本発明の範囲内とならないことがある。また、多孔質膜の強度が低くなることがある。一方、対数粘度が3.5dl/gを超えると、多孔質膜を製造することが困難になることがある。 The logarithmic viscosity (η inh ) of the aromatic aromatic polyamide used in the present invention is preferably 1.5 to 3.5 dl / g, more preferably 2.0 to 3.0 dl / g. When the logarithmic viscosity is less than 1.5 dl / g, the bonding force between the polymer molecular chains is low, the pore structure of the resulting porous film is coarsened, and the light transmittance may not fall within the scope of the present invention. In addition, the strength of the porous membrane may be lowered. On the other hand, when the logarithmic viscosity exceeds 3.5 dl / g, it may be difficult to produce a porous membrane.

次に、本発明の芳香族ポリアミド多孔質膜を製造する際に用いる製膜原液について説明する。製膜原液には重合後のポリマー溶液をそのまま製膜原液として使用してもよく、あるいは、ポリマーを一度単離してから上記の有機溶媒や、硫酸などの無機溶剤に再溶解して製膜原液を調製してもよい。製膜原液100質量%中の芳香族ポリアミドの含有量は5〜15質量%が好ましい。より好ましくは7〜12質量%である。芳香族ポリアミドの含有量が5質量%未満であると、多孔質膜の孔構造の粗大化が起こり、光線透過率が本発明の範囲内とならないことがある。また、靭性や強度などの機械特性が低くなることがある。一方で、製膜原液の芳香族ポリアミドの含有量が15質量%を超えると、溶液粘度が高く製膜性が低下したり、孔形成能が低下することでガーレ透気度が本発明の範囲内とならないことがある。   Next, the film forming stock solution used when manufacturing the aromatic polyamide porous film of the present invention will be described. The polymer solution after polymerization may be used as a film-forming stock solution as it is as a film-forming stock solution, or the polymer is isolated and then dissolved again in the above organic solvent or an inorganic solvent such as sulfuric acid to form a film-forming stock solution. May be prepared. The content of the aromatic polyamide in 100% by mass of the film-forming stock solution is preferably 5 to 15% by mass. More preferably, it is 7-12 mass%. When the content of the aromatic polyamide is less than 5% by mass, the pore structure of the porous membrane is coarsened, and the light transmittance may not fall within the scope of the present invention. In addition, mechanical properties such as toughness and strength may be lowered. On the other hand, when the content of the aromatic polyamide in the raw film forming solution exceeds 15% by mass, the solution viscosity is high, the film forming property is lowered, or the pore forming ability is lowered, so that the Gurley air permeability is within the scope of the present invention. It may not be inside.

製膜原液には孔形成能を向上させる目的で、親水性ポリマーを混合してもよい。親水性ポリマーを混合することで、製膜原液から多孔質膜を形成する過程において、芳香族ポリアミド分子の凝集を制御し、孔形成を誘起することができる。   A hydrophilic polymer may be mixed with the film-forming stock solution for the purpose of improving pore forming ability. By mixing the hydrophilic polymer, it is possible to control the aggregation of the aromatic polyamide molecules and induce the formation of pores in the process of forming the porous film from the film-forming stock solution.

親水性ポリマーとしては、非プロトン性有機極性溶媒に溶解するポリマーのうち、極性の置換基、特に、水酸基、アシル基、アミノ基からなる群から選ばれる少なくとも一種の置換基を含有するポリマーであることが好ましい。このようなポリマーとして、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、ポリビニルアルコール、ポリアリルアミン、ポリアクリル酸などが挙げられる。   The hydrophilic polymer is a polymer that contains at least one substituent selected from the group consisting of a polar substituent, particularly a hydroxyl group, an acyl group, and an amino group, among polymers that are soluble in an aprotic organic polar solvent. It is preferable. Examples of such a polymer include polyvinylpyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylamide, polyvinyl alcohol, polyallylamine, and polyacrylic acid.

製膜原液には、その後の多孔質膜の製造工程におけるポリマーの析出を速やかに、かつ、均一に進行させ、孔構造を本発明の範囲とするために、あらかじめ水を混合することが好ましい。混合する水は、製膜原液100質量%に対して2〜20質量%であることが好ましく、4〜15質量%であることがより好ましい。水の混合量が2質量%未満であると、ポリマーの析出に時間を要し、孔構造の過度の緻密化や、厚み方向の孔構造の不均一化が進行することがある。一方で、水の混合量が20質量%を超えると、流延前の製膜原液中で芳香族ポリアミドの析出が起き、得られる多孔質膜の孔構造が不均一になったり、ピンホールなどの欠点が生じたりすることがある。混合する水として、特に限定しないが、逆浸透により処理した水、フィルター・活性炭・イオン交換膜などの組み合わせにより処理した水、あるいは蒸留水などを用いることが好ましい。   It is preferable to mix water in advance with the film-forming stock solution in order to cause the polymer precipitation in the subsequent production process of the porous film to proceed promptly and uniformly and make the pore structure within the scope of the present invention. The water to be mixed is preferably 2 to 20% by mass, more preferably 4 to 15% by mass with respect to 100% by mass of the film-forming stock solution. When the mixing amount of water is less than 2% by mass, it takes time for the polymer to precipitate, and excessive densification of the pore structure or non-uniformity of the pore structure in the thickness direction may proceed. On the other hand, when the mixing amount of water exceeds 20% by mass, precipitation of aromatic polyamide occurs in the film-forming stock solution before casting, resulting in uneven pore structure of the resulting porous film, pinholes, etc. The disadvantages may occur. Although it does not specifically limit as water to mix, It is preferable to use the water processed by the reverse osmosis, the water processed by the combination of a filter, activated carbon, an ion exchange membrane, etc., or distilled water.

上記のようにして調製された製膜原液は、いわゆる溶液製膜法により多孔質膜化が行われる。溶液製膜法には乾式法、乾湿式法、湿式法、析出法などがあり、いずれの方法で製膜しても差し支えないが、孔構造を制御しやすいことから、析出法が好ましい。析出法で多孔質膜を製造する場合、製膜原液をガラス板や、ドラム、エンドレスベルト等の支持体上に流延することによって、膜状とした後、水を吸収させることにより、ポリマーを析出させる。この時、水を吸収させる方法は、霧状の水を付着させる方法、水中に導入する方法、調湿空気中に導入する方法、いずれの方法でも差し支えないが、水の吸収速度、量を細かくコントロール可能である、調湿空気中へ導入する方法が好適に用いられる。調湿雰囲気下で吸湿させて多孔質膜を製造する方法では、雰囲気の温度を20〜90℃、相対湿度を55〜95%RHとすることが好ましい。   The film-forming stock solution prepared as described above is made into a porous film by a so-called solution film-forming method. The solution casting method includes a dry method, a dry-wet method, a wet method, a deposition method, and the like, and any method may be used, but the deposition method is preferable because the pore structure can be easily controlled. When producing a porous membrane by the precipitation method, the polymer solution is formed by absorbing the water after forming the membrane by casting the membrane-forming stock solution onto a support such as a glass plate, drum or endless belt. Precipitate. At this time, the method of absorbing water may be any of the method of adhering mist-like water, the method of introducing into water, or the method of introducing into humidity-controlled air. A controllable method for introducing into the humidity-controlled air is preferably used. In the method for producing a porous film by absorbing moisture in a humidity-controlled atmosphere, it is preferable that the temperature of the atmosphere is 20 to 90 ° C. and the relative humidity is 55 to 95% RH.

上記の工程によって得られた芳香族ポリアミド多孔質膜は、支持体ごと、あるいは支持体から剥離して湿式浴に導入され、溶媒、親水性ポリマー、無機塩などの除去が行われる。浴組成は特に限定されないが、水、あるいは有機溶媒/水の混合系を用いることが取扱いの容易さ、経済性の点から好ましい。   The aromatic polyamide porous membrane obtained by the above process is peeled off from the support or from the support and introduced into a wet bath to remove the solvent, hydrophilic polymer, inorganic salt, and the like. The bath composition is not particularly limited, but it is preferable to use water or an organic solvent / water mixed system from the viewpoint of ease of handling and economy.

次に、脱溶媒を終えた多孔質膜にテンターなどを用いて熱処理を施す。熱処理は230〜300℃で行うことが好ましい。このとき、ポリマー内部に取り込まれている水分を取り除く目的で、事前に100〜210℃で予備乾燥を行ってもよい。また、熱処理を行う際に幅方向へ延伸もしくはリラックスを施してもよい。   Next, the porous film that has been desolvated is subjected to heat treatment using a tenter or the like. It is preferable to perform heat processing at 230-300 degreeC. At this time, preliminary drying may be performed at 100 to 210 ° C. in advance for the purpose of removing moisture taken into the polymer. Moreover, you may extend | stretch or relax in the width direction when performing heat processing.

本発明の芳香族ポリアミド多孔質膜は、透明性に加え、緻密な孔構造および優れた耐熱性を併せ持つため、二次電池用セパレータとして好適に使用することができる。本発明の芳香族ポリアミド多孔質膜を二次電池用セパレータとして用いた場合、セパレータが透明性を有するため、製造時の欠点検査や電池部材を積層する際の部材の位置検知が容易となり、初期不良品を減らすことができる。従って、本発明の芳香族ポリアミド多孔質膜をセパレータとして用いた二次電池は、小型の電子機器をはじめ、電気自動車(EV)やハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)などの自動車用電池、産業用クレーンなどの大型産業機器の動力源として好適に用いることができる。また、太陽電池、風力発電装置などにおける電力の平準化やスマートグリッドのための定置用大型蓄電装置としても好適に用いることができる。本発明の二次電池の例として、リチウムイオン二次電池の他に、ナトリウムイオン二次電池、ナトリウム溶融塩電池、マグネシウム二次電池、リチウム硫黄電池、金属空気電池などが上げられる。   Since the aromatic polyamide porous film of the present invention has a dense pore structure and excellent heat resistance in addition to transparency, it can be suitably used as a separator for a secondary battery. When the aromatic polyamide porous membrane of the present invention is used as a separator for a secondary battery, since the separator has transparency, defect inspection at the time of manufacture and position detection of the member when stacking battery members are facilitated. Defective products can be reduced. Accordingly, the secondary battery using the aromatic polyamide porous membrane of the present invention as a separator is not only a small electronic device but also an automobile such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV). It can be suitably used as a power source for large industrial equipment such as industrial batteries and industrial cranes. Further, it can be suitably used as a stationary large power storage device for power leveling in a solar cell, a wind power generation device or the like or for a smart grid. Examples of the secondary battery of the present invention include a sodium ion secondary battery, a sodium molten salt battery, a magnesium secondary battery, a lithium sulfur battery, and a metal-air battery in addition to the lithium ion secondary battery.

[物性の測定方法ならびに効果の評価方法]
実施例における物性の測定方法は次の方法に従って行った。
[Methods for measuring physical properties and methods for evaluating effects]
The physical properties were measured in the examples according to the following method.

(1)対数粘度(ηinh
臭化リチウムを2.5質量%含有したN−メチル−2−ピロリドン(NMP)に、ポリマーを0.5g/dlの濃度で溶解させ、ウベローデ粘度計を使用して、30℃にて流下時間を測定した。ポリマーを溶解させないブランク溶液の流下時間も同様に測定し、下式を用いて対数粘度(ηinh)を算出した。
(1) Logarithmic viscosity (η inh )
The polymer was dissolved at a concentration of 0.5 g / dl in N-methyl-2-pyrrolidone (NMP) containing 2.5% by mass of lithium bromide, and the flow time was 30 ° C. using an Ubbelohde viscometer. Was measured. The flow time of the blank solution in which the polymer was not dissolved was also measured in the same manner, and the logarithmic viscosity (η inh ) was calculated using the following formula.

ηinh(dl/g)=〔ln(t/t)〕/0.5
t:ポリマー溶液の流下時間(sec)
:ブランク溶液の流下時間(sec)
(2)厚み
定圧厚み測定器FFA−1(尾崎製作所製)を用いて多孔質膜の厚みを測定した。測定子径は5mm、測定荷重は1.25Nである。多孔質膜の幅方向に、20mm間隔で10箇所測定し、平均値を求めた。
η inh (dl / g) = [ln (t / t 0 )] / 0.5
t: Flow time of polymer solution (sec)
t 0 : Flowing time of blank solution (sec)
(2) Thickness The thickness of the porous membrane was measured using a constant pressure thickness measuring device FFA-1 (manufactured by Ozaki Seisakusho). The probe diameter is 5 mm and the measurement load is 1.25 N. Ten locations were measured at 20 mm intervals in the width direction of the porous membrane, and the average value was determined.

(3)ガーレ透気度
測定はJIS−P8117(1998年)に規定された方法に則り、B型ガーレデンソメーター(安田精機製作所製)を使用して行った。試料の多孔質膜を直径28.6cm、面積645mmの円孔に締め付け、内筒により(内筒質量567g)、筒内の空気を試験円孔部から筒外へ通過させ、空気100mlが通過する時間を測定することで、ガーレ透気度とした。なお、通過時間が1,000secを超過した場合、透気なしとして、測定を中断した。
(3) Gurley air permeability The measurement was performed using a B-type Gurley densometer (manufactured by Yasuda Seiki Seisakusho) according to the method defined in JIS-P8117 (1998). The sample porous membrane is clamped to a circular hole with a diameter of 28.6 cm and an area of 645 mm 2 , and the air inside the cylinder is passed from the test hole to the outside of the cylinder by the inner cylinder (inner cylinder mass 567 g), and 100 ml of air passes. By measuring the time to do, it was set as the Gurley air permeability. In addition, when the passage time exceeded 1,000 sec, the measurement was interrupted with no air permeability.

(4)光線透過率
分光光度計U−4100(日立製作所製)と角度可変透過測定付属装置を用い、入射角度0°での光線透過率を測定した。スリット幅は2nm、ゲインは2と設定し、走査速度600nm/分にて波長400〜800nmの範囲において測定し、750nmおよび550nmにおける光線透過率を得た。試料の裏面側(基材側)がガラス側となるようにクリアガラスに貼り付けて、ガラス面側から光を入射させて測定した。
(4) Light transmittance The light transmittance at an incident angle of 0 ° was measured using a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.) and a variable angle transmission measurement accessory. The slit width was set to 2 nm, the gain was set to 2, and measurement was performed in the wavelength range of 400 to 800 nm at a scanning speed of 600 nm / min, and light transmittances at 750 nm and 550 nm were obtained. It affixed on clear glass so that the back surface side (base material side) of a sample might turn into a glass side, and measured by making light inject from the glass surface side.

(実施例1)
窒素気流下で脱水したN−メチル−2−ピロリドン(NMP)に4,4’−ジアミノジフェニルエーテル(4,4’−DPE)を原料モノマーの合計モル数に対して35モル%溶解させた。その溶液に原料モノマーの合計モル数に対して35モル%の2−クロロ−テレフタル酸クロライド(CTPC)を添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して15モル%の2−クロロ−パラフェニレンジアミン(CPA)を上記の重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して15モル%の2−クロロ−テレフタル酸クロライドを添加し、1時間撹拌することで、剛直芳香族ポリアミド部分を合成し、柔軟芳香族ポリアミド部分とブロック共重合化した。この溶液を炭酸リチウム、ジエタノールアミンで中和することで、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
Example 1
35 mol% of 4,4′-diaminodiphenyl ether (4,4′-DPE) was dissolved in N-methyl-2-pyrrolidone (NMP) dehydrated under a nitrogen stream with respect to the total number of moles of raw material monomers. To the solution, 35 mol% of 2-chloro-terephthalic acid chloride (CTPC) with respect to the total number of moles of raw material monomers was added and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 15 mol% of 2-chloro-paraphenylenediamine (CPA) with respect to the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 15 mol% of 2-chloro-terephthalic acid chloride is added to the total number of moles of the raw material monomers, and the mixture is stirred for 1 hour to synthesize a rigid aromatic polyamide portion. Polymerized. This solution was neutralized with lithium carbonate and diethanolamine to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

次に、得られた芳香族ポリアミド溶液中に、ポリビニルピロリドン(PVP、粘性特性値K90)、水、希釈用のNMPを以下の組成となるように添加し、60℃で2時間撹拌することで製膜原液を得た。製膜原液中のそれぞれの成分の含有量は製膜原液100質量%に対して、芳香族ポリアミド9質量%、PVP5質量%、水6質量%であり、残りの80質量%はNMPおよび重合原液に含まれる中和塩(塩化リチウム、ジエタノールアミン塩酸塩)である。   Next, polyvinyl pyrrolidone (PVP, viscosity characteristic value K90), water and NMP for dilution are added to the obtained aromatic polyamide solution so as to have the following composition, and the mixture is stirred at 60 ° C. for 2 hours. A film-forming stock solution was obtained. The content of each component in the film-forming stock solution is 9% by weight of aromatic polyamide, 5% by weight of PVP and 6% by weight of water with respect to 100% by weight of the film-forming stock solution, and the remaining 80% by weight is NMP and polymerization stock solution. Are neutralized salts (lithium chloride, diethanolamine hydrochloride).

この製膜原液を、厚み50μmのポリエチレンテレフタレート(PET)フィルム上に口金から膜状に塗布した。この膜状物を温度40℃、相対湿度85%RHで調湿された調湿空気槽に2分間導入し、膜状物全体を失透させた。失透した膜状物をPETフィルムから剥離し、水浴に10分間導入し溶媒の抽出を行った。溶媒抽出後、230℃のオーブン中で1分間熱処理を行い、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。   This film-forming stock solution was applied in a film form from a die onto a polyethylene terephthalate (PET) film having a thickness of 50 μm. This film-like material was introduced into a humidity-controlled air tank conditioned at a temperature of 40 ° C. and a relative humidity of 85% RH for 2 minutes to devitrify the entire film-like material. The devitrified film was peeled from the PET film and introduced into a water bath for 10 minutes to extract the solvent. After solvent extraction, heat treatment was performed in an oven at 230 ° C. for 1 minute to obtain an aromatic polyamide porous membrane. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例2)
口金からの塗布厚みを変更すること以外は実施例1と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Example 2)
An aromatic polyamide porous membrane was obtained in the same manner as in Example 1 except that the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例3)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して40モル%溶解させた。その溶液に原料モノマーの合計モル数に対して40モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して10モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して10モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.2dl/gであった。
(Example 3)
4,4′-DPE was dissolved in NMP at 40 mol% with respect to the total number of moles of raw material monomers. 40 mol% of CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 10 mol% of CPA with respect to the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 10 mol% of CTPC was added to the total number of moles of the raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion and block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.2 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例4)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して30モル%溶解させた。その溶液に原料モノマーの合計モル数に対して30モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して20モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して20モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
Example 4
4,4′-DPE was dissolved in NMP at 30 mol% with respect to the total number of moles of raw material monomers. 30 mol% of CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 20 mol% of CPA with respect to the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 20 mol% of CTPC was added to the total number of moles of raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion, which was then block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例5)
実施例1と同様にして得られた芳香族ポリアミド溶液を用い、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド11質量%、PVP2質量%、水6質量%、NMPおよび中和塩81質量%とすること、および口金からの塗布厚みを変更すること以外は実施例1と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Example 5)
Using the aromatic polyamide solution obtained in the same manner as in Example 1, the content of each component in the film-forming stock solution was 11% by weight aromatic polyamide and 2% by weight PVP with respect to 100% by weight of the film-forming stock solution. An aromatic polyamide porous membrane was obtained in the same manner as in Example 1, except that water was 6% by mass, NMP and neutralized salt were 81% by mass, and the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例6)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して25モル%溶解させた。その溶液に原料モノマーの合計モル数に対して25モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して25モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して25モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
(Example 6)
25 mol% of 4,4′-DPE was dissolved in NMP based on the total number of moles of raw material monomers. 25 mol% of CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 25 mol% of CPA based on the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 25 mol% of CTPC was added to the total number of moles of raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion and block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例7)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して45モル%溶解させた。その溶液に原料モノマーの合計モル数に対して45モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して5モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して5モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
(Example 7)
4,4′-DPE was dissolved in NMP at 45 mol% with respect to the total number of moles of raw material monomers. 45 mol% CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 5 mol% of CPA with respect to the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 5 mol% of CTPC was added to the total number of moles of the raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion, and block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例8)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して35モル%溶解させた。その溶液に原料モノマーの合計モル数に対して34モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミドを重合した。次に、上記の柔軟芳香族ポリアミドとは別の反応容器中において、NMPに原料モノマーの合計モル数に対して15モル%のCPAを添加し、溶解させた。その後、原料モノマーの合計モル数に対して14モル%のCTPCを添加して1時間撹拌し、剛直芳香族ポリアミドを重合した。以上により得られた柔軟芳香族ポリアミドと剛直芳香族ポリアミドを同一容器内で混合した後、原料モノマーの合計モル数に対して2モル%のCTPCを添加して1時間撹拌し、ブロック共重合化した。この溶液を炭酸リチウム、ジエタノールアミンで中和することで、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.4dl/gであった。
(Example 8)
35 mol% of 4,4'-DPE was dissolved in NMP with respect to the total number of moles of raw material monomers. 34 mol% of CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide. Next, in a reaction vessel different from the above flexible aromatic polyamide, 15 mol% of CPA was added to NMP and dissolved with respect to the total number of moles of raw material monomers. Thereafter, 14 mol% of CTPC was added to the total number of moles of the raw material monomers and stirred for 1 hour to polymerize the rigid aromatic polyamide. After mixing the flexible aromatic polyamide and rigid aromatic polyamide obtained in the same container in the same container, add 2 mol% CTPC with respect to the total number of moles of raw material monomers, and stir for 1 hour to block copolymerize did. This solution was neutralized with lithium carbonate and diethanolamine to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.4 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例9)
NMPに4,4’−DPEを原料モノマーの合計モル数に対して30モル%溶解させた。その溶液に原料モノマーの合計モル数に対して30モル%のイソフタル酸クロライド(IPC)を添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して20モル%のCPAを上記の重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して20モル%のテレフタル酸クロライド(TPC)を添加し、1時間撹拌することで、剛直芳香族ポリアミド部分を合成し、柔軟芳香族ポリアミド部分とブロック共重合化した。この溶液を炭酸リチウム、ジエタノールアミンで中和することで、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
Example 9
4,4′-DPE was dissolved in NMP at 30 mol% with respect to the total number of moles of raw material monomers. 30 mol% of isophthalic acid chloride (IPC) with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 20 mol% of CPA based on the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 20 mol% of terephthalic acid chloride (TPC) is added to the total number of moles of raw material monomers, and the mixture is stirred for 1 hour to synthesize a rigid aromatic polyamide portion and block copolymerized with a flexible aromatic polyamide portion. Turned into. This solution was neutralized with lithium carbonate and diethanolamine to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例10)
口金からの塗布厚みを変更すること以外は実施例9と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Example 10)
An aromatic polyamide porous membrane was obtained in the same manner as in Example 9 except that the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(実施例11)
NMPにCPAを原料モノマーの合計モル数に対して40モル%溶解させた。その溶液に原料モノマーの合計モル数に対して40モル%のIPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して10モル%のCPAを上記の重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して10モル%のCTPCを添加し、1時間撹拌することで、剛直芳香族ポリアミド部分を合成し、柔軟芳香族ポリアミド部分とブロック共重合化した。この溶液を炭酸リチウム、ジエタノールアミンで中和することで、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.3dl/gであった。
(Example 11)
40 mol% of CPA was dissolved in NMP with respect to the total number of moles of raw material monomers. 40 mol% IPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 10 mol% of CPA based on the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 10 mol% of CTPC was added to the total number of moles of the raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion, and block copolymerized with the flexible aromatic polyamide portion. This solution was neutralized with lithium carbonate and diethanolamine to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.3 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例1)
NMPに4,4’‐DPEを原料モノマーの合計モル数に対して20モル%溶解させた。その溶液に原料モノマーの合計モル数に対して20モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して30モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して30モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.1dl/gであった。
(Comparative Example 1)
In NMP, 4,4′-DPE was dissolved in 20 mol% with respect to the total number of moles of raw material monomers. 20 mol% of CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 30 mol% of CPA based on the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 30 mol% of CTPC was added to the total number of moles of raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion, and block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.1 dl / g.

この重合溶液を用いて実施例1と同様に製膜原液の調製、膜の製造を行ったが、得られた膜は透気がなく、多孔質膜とならなかった。   Using this polymerization solution, a film-forming stock solution was prepared and a film was produced in the same manner as in Example 1. However, the obtained film was not permeable and did not become a porous film.

(比較例2)
NMPに4,4’‐DPEを原料モノマーの合計モル数に対して47.5モル%溶解させた。その溶液に原料モノマーの合計モル数に対して47.5モル%のCTPCを添加して1時間撹拌し、柔軟芳香族ポリアミド部分を重合した。次に、原料モノマーの合計モル数に対して2.5モル%のCPAを重合溶液に添加し、溶解させた。その後、原料モノマーの合計モル数に対して2.5モル%のCTPCを添加し、1時間撹拌して剛直芳香族ポリアミド部分を合成し、ブロック共重合化した。以降、実施例1と同様に中和を行い、ポリマー濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.1dl/gであった。
(Comparative Example 2)
4,4′-DPE was dissolved in NMP at 47.5 mol% with respect to the total number of moles of raw material monomers. 47.5 mol% CTPC with respect to the total number of moles of raw material monomers was added to the solution and stirred for 1 hour to polymerize the flexible aromatic polyamide portion. Next, 2.5 mol% of CPA with respect to the total number of moles of raw material monomers was added to the polymerization solution and dissolved. Thereafter, 2.5 mol% of CTPC was added to the total number of moles of raw material monomers, and the mixture was stirred for 1 hour to synthesize a rigid aromatic polyamide portion and block copolymerized. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a polymer concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.1 dl / g.

この重合溶液を用いて、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド9質量%、PVP5質量%、水8質量%、NMPおよび中和塩78質量%とした。以降、実施例1と同様に多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, the content of each component in the film-forming stock solution is 9% by weight of aromatic polyamide, 5% by weight of PVP, 8% by weight of water, NMP and neutralization with respect to 100% by weight of the film-forming stock solution. The salt was 78% by mass. Thereafter, a porous membrane was produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例3)
NMPにCPAと4,4’−DPEを原料モノマーの合計モル数に対してそれぞれ15モル%と35モル%溶解させた。この溶液に原料モノマーの合計モル数に対して50モル%のCTPCを添加し2時間重合を行った。以降、実施例1と同様に中和を行い、濃度12質量%の芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.1dl/gであった。
(Comparative Example 3)
CPA and 4,4′-DPE were dissolved in NMP at 15 mol% and 35 mol% with respect to the total number of moles of raw material monomers, respectively. 50 mol% of CTPC was added to this solution based on the total number of moles of raw material monomers, and polymerization was carried out for 2 hours. Thereafter, neutralization was performed in the same manner as in Example 1 to obtain an aromatic polyamide solution having a concentration of 12% by mass. The logarithmic viscosity of the obtained aromatic polyamide was 2.1 dl / g.

この重合溶液を用いて、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド9質量%、PVP5質量%、水12質量%、NMPおよび中和塩74質量%とした。以降、実施例1と同様に多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, the content of each component in the film-forming stock solution is 9% by weight of aromatic polyamide, 5% by weight of PVP, 12% by weight of water, NMP and neutralization with respect to 100% by weight of the film-forming stock solution. The salt was 74% by mass. Thereafter, a porous membrane was produced in the same manner as in Example 1. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例4)
CPAおよび4,4’−DPEを原料モノマーの合計モル数に対していずれも25モル%とすること以外は比較例3と同様にして芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.4dl/gであった。
(Comparative Example 4)
An aromatic polyamide solution was obtained in the same manner as in Comparative Example 3 except that CPA and 4,4′-DPE were both 25 mol% based on the total number of moles of raw material monomers. The logarithmic viscosity of the obtained aromatic polyamide was 2.4 dl / g.

この重合溶液を用いて比較例3と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Comparative Example 3. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例5)
CPAと4,4’−DPEを原料モノマーの合計モル数に対してそれぞれ35モル%と15モル%とすること以外は比較例3と同様にして芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.1dl/gであった。
(Comparative Example 5)
An aromatic polyamide solution was obtained in the same manner as in Comparative Example 3 except that CPA and 4,4′-DPE were respectively 35 mol% and 15 mol% with respect to the total number of moles of the raw material monomers. The logarithmic viscosity of the obtained aromatic polyamide was 2.1 dl / g.

この重合溶液を用いて、口金からの塗布厚みを変更すること以外は比較例3と同様に製膜原液の調製、多孔質膜の製造を行った。得られた多孔質膜の評価結果を表1に示す。   Using this polymerization solution, a film-forming stock solution and a porous film were produced in the same manner as in Comparative Example 3 except that the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例6)
CPAと4,4’−DPEを原料モノマーの合計モル数に対してそれぞれ42.5モル%と7.5モル%とすること以外は比較例3と同様にして芳香族ポリアミド溶液を得た。得られた芳香族ポリアミドの対数粘度は2.5dl/gであった。
(Comparative Example 6)
An aromatic polyamide solution was obtained in the same manner as in Comparative Example 3 except that CPA and 4,4′-DPE were 42.5 mol% and 7.5 mol%, respectively, with respect to the total number of moles of raw material monomers. The logarithmic viscosity of the obtained aromatic polyamide was 2.5 dl / g.

この重合溶液を用いて、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド10質量%、PVP4質量%、水4質量%、NMPおよび中和塩82質量%とした。以降、実施例1と同様に膜の製造を行ったが、得られた膜は透気がなく、多孔質膜とならなかった。   Using this polymerization solution, the content of each component in the film-forming stock solution is 10% by weight of aromatic polyamide, 4% by weight of PVP, 4% by weight of water, NMP and neutralization with respect to 100% by weight of the film-forming stock solution. The salt was 82% by mass. Thereafter, the membrane was produced in the same manner as in Example 1. However, the obtained membrane was not permeable and did not become a porous membrane.

(比較例7)
比較例2と同様にして得られた芳香族ポリアミド溶液を用い、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド10質量%、PVP2質量%、水8質量%、NMPおよび中和塩80質量%とすること、および口金からの塗布厚みを変更すること以外は実施例1と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Comparative Example 7)
Using the aromatic polyamide solution obtained in the same manner as in Comparative Example 2, the content of each component in the film-forming stock solution was 10% by weight aromatic polyamide and 2% by weight PVP with respect to 100% by weight of the film-forming stock solution. An aromatic polyamide porous membrane was obtained in the same manner as in Example 1 except that water was 8% by mass, NMP and neutralized salt were 80% by mass, and the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例8)
比較例3と同様にして得られた芳香族ポリアミド溶液を用い、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド11質量%、PVP2質量%、水8質量%、NMPおよび中和塩79質量%とすること、および口金からの塗布厚みを変更すること以外は実施例1と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Comparative Example 8)
Using the aromatic polyamide solution obtained in the same manner as in Comparative Example 3, the content of each component in the film-forming stock solution was 11% by weight aromatic polyamide and 2% by weight PVP with respect to 100% by weight of the film-forming stock solution. An aromatic polyamide porous membrane was obtained in the same manner as in Example 1 except that water was 8% by mass, NMP and neutralized salt were 79% by mass, and the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

(比較例9)
比較例5と同様にして得られた芳香族ポリアミド溶液を用い、製膜原液中のそれぞれの成分の含有量を、製膜原液100質量%に対して、芳香族ポリアミド11質量%、PVP4質量%、水8質量%、NMPおよび中和塩77質量%とすること、および口金からの塗布厚みを変更すること以外は実施例1と同様にして、芳香族ポリアミド多孔質膜を得た。得られた多孔質膜の評価結果を表1に示す。
(Comparative Example 9)
Using the aromatic polyamide solution obtained in the same manner as in Comparative Example 5, the content of each component in the film forming stock solution was 11% by weight aromatic polyamide and 4% by weight PVP with respect to 100% by weight of the film forming stock solution. An aromatic polyamide porous membrane was obtained in the same manner as in Example 1 except that water was 8% by mass, NMP and neutralized salt were 77% by mass, and the coating thickness from the die was changed. The evaluation results of the obtained porous membrane are shown in Table 1.

Figure 0006256038
Figure 0006256038

Claims (3)

膜厚が10〜30μmであり、波長750nmの光線透過率が20〜80%であり、ガーレ透気度が1〜300sec/100mlである芳香族ポリアミド多孔質膜。 An aromatic polyamide porous film having a thickness of 10 to 30 μm, a light transmittance of 750 nm at a wavelength of 20 to 80% , and a Gurley permeability of 1 to 300 sec / 100 ml . 波長550nmの光線透過率が20〜80%である、請求項1に記載の芳香族ポリアミド多孔質膜。 The aromatic polyamide porous film according to claim 1, wherein the light transmittance at a wavelength of 550 nm is 20 to 80%. 請求項1または2に記載の芳香族ポリアミド多孔質膜を用いた二次電池用セパレータ。 The separator for secondary batteries using the aromatic polyamide porous membrane of Claim 1 or 2 .
JP2014009165A 2013-02-27 2014-01-22 Aromatic polyamide porous membrane and separator for secondary battery Active JP6256038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009165A JP6256038B2 (en) 2013-02-27 2014-01-22 Aromatic polyamide porous membrane and separator for secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013036803 2013-02-27
JP2013036803 2013-02-27
JP2014009165A JP6256038B2 (en) 2013-02-27 2014-01-22 Aromatic polyamide porous membrane and separator for secondary battery

Publications (2)

Publication Number Publication Date
JP2014194922A JP2014194922A (en) 2014-10-09
JP6256038B2 true JP6256038B2 (en) 2018-01-10

Family

ID=51840014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009165A Active JP6256038B2 (en) 2013-02-27 2014-01-22 Aromatic polyamide porous membrane and separator for secondary battery

Country Status (1)

Country Link
JP (1) JP6256038B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100395A (en) * 2016-12-21 2018-06-28 東レ株式会社 Aromatic polyamide film
KR102475081B1 (en) * 2017-02-23 2022-12-07 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery
JP7307129B2 (en) * 2020-09-03 2023-07-11 住友化学株式会社 Porous layer for non-aqueous electrolyte secondary battery
US20220069418A1 (en) * 2020-09-03 2022-03-03 Sumitomo Chemical Company, Limited Porous layer for nonaqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134229A (en) * 1985-12-09 1987-06-17 Asahi Chem Ind Co Ltd Aromatic polyamide film and its preparation
TW381105B (en) * 1995-07-18 2000-02-01 Sumitomo Chemical Co Para-oriented aromatic polyamide porous film
JP3279189B2 (en) * 1995-07-18 2002-04-30 住友化学工業株式会社 Para-oriented aromatic polyamide porous film, production method thereof and use thereof
JP2002167091A (en) * 2000-11-30 2002-06-11 Fuji Electric Co Ltd Film processing device
JP4945054B2 (en) * 2002-06-19 2012-06-06 シャープ株式会社 Lithium polymer secondary battery and manufacturing method thereof
JP2007246772A (en) * 2006-03-17 2007-09-27 Nagoya Industrial Science Research Inst Multibranched polyimide-based hybrid material
JP5309769B2 (en) * 2007-09-04 2013-10-09 東レ株式会社 Aromatic polyamide film
JP5853607B2 (en) * 2011-02-07 2016-02-09 東レ株式会社 Method for producing aromatic polyamide porous membrane, porous membrane obtained thereby, and battery separator using the same
JP6022177B2 (en) * 2011-04-07 2016-11-09 日産自動車株式会社 Electrode position detection device and electrode position detection method
JP5929469B2 (en) * 2011-06-28 2016-06-08 東レ株式会社 Aromatic polyamide porous membrane, battery separator and method for producing the same

Also Published As

Publication number Publication date
JP2014194922A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US8815384B2 (en) Aromatic polyamide porous film and separator for capacitor or battery using the same
JP6256038B2 (en) Aromatic polyamide porous membrane and separator for secondary battery
JP6969143B2 (en) Porous Membrane and Laminated Porous Membrane
EP2248847A1 (en) Porous film, multilayer porous film comprising the same, and separator
JP6398298B2 (en) Aromatic polyamide / aromatic polyimide composite porous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6672795B2 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
JP5939159B2 (en) Aromatic polyamide porous membrane, battery separator and battery
JP6299168B2 (en) Aromatic polyamide porous membrane and battery separator
JPWO2016098660A1 (en) Polymer ion permeable membrane, composite ion permeable membrane, battery electrolyte membrane and electrode composite
JP2011068883A (en) Aromatic polyamide porous membrane, porous film, and battery separator
JP2008056905A (en) Method for producing polymeric porous membrane and the resultant polymeric porous membrane
JP2018100395A (en) Aromatic polyamide film
JP5929469B2 (en) Aromatic polyamide porous membrane, battery separator and method for producing the same
JP2006257397A (en) Aromatic polyamide porous film
JP5853607B2 (en) Method for producing aromatic polyamide porous membrane, porous membrane obtained thereby, and battery separator using the same
JP6398304B2 (en) Aromatic polyamide porous membrane and battery separator
JP5251055B2 (en) Porous membrane containing aromatic polyamide
JP5533265B2 (en) Porous film containing aromatic polyamide and electricity storage device
JP2019212446A (en) Separator for nonaqueous electrolyte secondary battery
JP5794054B2 (en) Totally aromatic polyamide porous membrane and non-aqueous electrolyte separator
JP7275687B2 (en) Porous membrane and manufacturing method thereof
JP5782789B2 (en) Aromatic polyamide porous membrane and battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6256038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151