JP2002042882A - Method of manufacturing organic electrolyte battery - Google Patents
Method of manufacturing organic electrolyte batteryInfo
- Publication number
- JP2002042882A JP2002042882A JP2000228604A JP2000228604A JP2002042882A JP 2002042882 A JP2002042882 A JP 2002042882A JP 2000228604 A JP2000228604 A JP 2000228604A JP 2000228604 A JP2000228604 A JP 2000228604A JP 2002042882 A JP2002042882 A JP 2002042882A
- Authority
- JP
- Japan
- Prior art keywords
- separator
- negative electrode
- electrode plate
- positive electrode
- organic electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムポリマー
二次電池等の有機電解質電池の製造方法に関し、さらに
詳しくはセパレータを介して、正極板と負極板とを積層
一体化させる製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic electrolyte battery such as a lithium polymer secondary battery, and more particularly, to a method for manufacturing a positive electrode plate and a negative electrode plate through a separator. is there.
【0002】[0002]
【従来の技術】携帯機器の小型軽量化あるいは薄型化の
要求に対応して、これらに使用される電池の小型化、薄
型化が求められている。電池の薄型化を達成する手段と
して、電解質にポリマーを用いたリチウムポリマー電池
が注目されており、電解質層と正負各極板とが積層一体
化されるため、強固な外装ケースを用いることが無く、
中間の一層に金属箔を用いたラミネートシートを外装ケ
ースとすることも可能となり電池の薄型化が実現されて
いる。このような積層一体化電池は、米国特許5478
668号等に開示されており、正極集電体上に正極活物
質層を形成した正極板、負極集電体上に負極活物質層を
形成した負極板、ポリマー材料として例えばフッ化ビニ
リデンと6フッ化プロピレンとの共重合体により形成し
たセパレータをそれぞれ作製した後、前記セパレータを
介して正極板および負極板とを加熱および加圧により積
層一体化した積層電池の形態に製造される。2. Description of the Related Art In response to the demand for smaller and lighter or thinner portable devices, there has been a demand for smaller and thinner batteries used in these devices. Lithium polymer batteries using a polymer as the electrolyte have attracted attention as a means to achieve a thinner battery, and the electrolyte layer and the positive and negative electrode plates are laminated and integrated, eliminating the need for a strong outer case. ,
A laminate sheet using a metal foil in the middle layer can be used as the outer case, and the battery is made thinner. Such a stacked integrated battery is disclosed in US Pat.
No. 668 and the like, a positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector, a negative electrode plate having a negative electrode active material layer formed on a negative electrode current collector, and a polymer material such as vinylidene fluoride and 6 After each of the separators formed of a copolymer with fluorinated propylene is produced, a positive electrode plate and a negative electrode plate are stacked and integrated by heating and pressure via the separator to produce a laminated battery.
【0003】この製造方法において、正極板および負極
板はそれぞれが充分な機械的強度を有する集電体上に活
物質層が形成されているため、それらの取扱は容易に行
い得る。しかしながら、セパレータは充分な機械的強度
を有するものがなく、薄く柔軟であるため、少しの力で
伸びや切断が発生しやすく、電池の連続生産工程におけ
る取扱が非常に困難である。これを解決するために例え
ばポリエチレンフィルムなどの基材にセパレータを密着
担持させ、セパレータの基材に接触していない一方側の
面を前記正極板または負極板の活物質層に配設し、熱ロ
ーラあるいは平面プレスを用い、基材を介して加熱およ
び加圧してセパレータと正極活物質層あるいは負極活物
質層と接合した後、セパレータから基材を剥離除去し、
基材が除去されたセパレータの他方側の面とセパレータ
の一方側の面と溶着した正極板あるいは負極板と異なる
正負いずれかの極板活物質層とを溶着することによりセ
パレータを介した正極および負極の一体化構造を形成し
ている。一般的には、負極板あるいは正極板を中心とし
てセパレータを介し、中心にある極板と異なる極性の極
板を両側に配した積層電池の構造である。[0003] In this manufacturing method, the positive electrode plate and the negative electrode plate each have an active material layer formed on a current collector having a sufficient mechanical strength, and therefore can be easily handled. However, since the separator does not have sufficient mechanical strength, and is thin and flexible, it is easy to be stretched or cut by a small force, and it is very difficult to handle the battery in a continuous production process. In order to solve this, for example, a separator is adhered and supported on a base material such as a polyethylene film, and one surface not in contact with the base material of the separator is disposed on the active material layer of the positive electrode plate or the negative electrode plate. Using a roller or a flat press, after joining the separator and the positive electrode active material layer or the negative electrode active material layer by heating and pressing through the base material, peeling and removing the base material from the separator,
The positive electrode and the positive electrode through the separator by welding the positive electrode plate or the negative electrode plate and any positive or negative electrode plate active material layer that is welded to the other surface of the separator and the one surface of the separator from which the base material has been removed. The integrated structure of the negative electrode is formed. In general, the laminated battery has a structure in which an electrode plate having a polarity different from that of a central electrode plate is disposed on both sides of a negative electrode plate or a positive electrode plate with a separator interposed therebetween.
【0004】[0004]
【発明が解決しようとする課題】この積層電池の構成を
形成するための連続生産工程においては、第一に中心と
なる正極板あるいは負極板の両側に基材に担持されたセ
パレータを配し、基材を介してポリマーの融点近くまで
の加熱および加圧により接合した後、セパレータから基
材を剥離除去し、第二に接合されていないセパレータの
一方側の面と中心においた正極板あるいは負極板と異な
る正負いずれかの極板を両側から挟みこみ、加熱および
加圧により接合して積層電池の構成を形成する方法が最
も効率的である。また、各々の溶着は熱ローラあるいは
平面プレスにより行われる。しかしながら第一の正極板
あるいは負極板の両側からセパレータで挟みこみ、熱ロ
ーラあるいは平面プレスを用いてポリマーの融点近くま
で加熱する際、セパレータを担持する基材の幅がセパレ
ータ幅より狭いか、あるいは、正極板あるいは負極板の
一方の活物質層に接するセパレータに向かい合い、正極
板あるいは負極板の反対側の活物質層に接するもう一方
のセパレータが互いにズレを生じていた場合、ポリマー
の融点近くまで加熱を行うためにセパレータを形成する
ポリマーが熱ローラ表面あるいは平面プレス表面に溶融
付着してしまうことがある。このまま使用すると熱ロー
ラあるいは平面プレスによる加熱あるいは加圧量に面方
向のバラツキを生じ、所定の熱量が溶着界面に伝達され
ず未溶着部分が残留したり、過剰の負荷がかかってセパ
レータがダメージを受け、極板間の絶縁性が確保されな
かったりするといった問題が生じる。さらに熱ローラ表
面あるいは平面プレス表面にポリマーが付着するたびに
清掃することは、設備稼働率に大きく影響し非常に好ま
しくない。また、相対するセパレータのズレを皆無にす
るような設備精度の確保は不可能に近い。In a continuous production process for forming the configuration of the laminated battery, first, separators supported on a base material are arranged on both sides of a central positive electrode plate or a negative electrode plate, After bonding by heating and pressurizing to near the melting point of the polymer via the base material, the base material is peeled off from the separator, and secondly, the positive electrode plate or the negative electrode placed on one side and the center of the unbonded separator The most efficient method is to sandwich a positive or negative electrode plate different from the plate from both sides and join them by heating and pressing to form a configuration of a stacked battery. Each welding is performed by a heat roller or a flat press. However, when sandwiched between separators from both sides of the first positive electrode plate or the negative electrode plate, and heated to near the melting point of the polymer using a heat roller or a flat press, the width of the base material supporting the separator is narrower than the separator width, or When facing the separator in contact with one of the active material layers of the positive electrode plate or the negative electrode plate, and the other separator in contact with the active material layer on the opposite side of the positive electrode plate or the negative electrode plate has been displaced from each other, to a temperature close to the melting point of the polymer. Because of the heating, the polymer forming the separator may melt and adhere to the surface of the heat roller or the surface of the flat press. If used as it is, the heating or pressurized amount by a heat roller or a flat press will vary in the surface direction, and the predetermined amount of heat will not be transmitted to the welding interface, and the unwelded portion will remain, or excessive load will be applied and the separator will be damaged. However, there arises a problem that insulation between the electrode plates is not ensured. Further, cleaning each time the polymer adheres to the surface of the heat roller or the surface of the flat press greatly affects the operation rate of the equipment, and is not preferable. Further, it is almost impossible to ensure the equipment accuracy such that there is no deviation of the separators facing each other.
【0005】本発明は積層電池の構造を形成する正極板
あるいは負極板の両側をセパレータを担持する基材とセ
パレータで挟みこみ、セパレータが活物質層に接するよ
うに配設し、熱溶着する製造過程において、高い設備稼
働率を維持しながら安定した品質を得るようにした有機
電解質電池の製造方法を提供することを主たる目的とす
る。According to the present invention, a positive electrode plate or a negative electrode plate forming a structure of a laminated battery is sandwiched on both sides by a separator and a substrate supporting the separator, and the separator is disposed so as to be in contact with the active material layer, and is thermally welded. It is a main object of the present invention to provide a method for manufacturing an organic electrolyte battery that can obtain stable quality while maintaining a high facility operation rate in the process.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の本発明は、正極集電体上に正極活物質層が形成されて
なる正極板と、負極集電体上に負極活物質層が形成され
てなる負極板との間に有機電解液を吸収保持するポリマ
ーからなる多孔性のセパレータを配し、前記セパレータ
と前記正極板および前記負極板が積層一体化されてなる
有機電解質電池の製造方法において、前記セパレータは
溶媒に溶解させたポリマー溶液をセパレータを担持する
基材に塗布、乾燥により溶媒を除去して形成され、その
全幅は、前記セパレータを担持する基材の全幅より狭い
ことを特徴とする有機電解質電池の製造方法である。In order to achieve the above object, the present invention provides a positive electrode plate in which a positive electrode active material layer is formed on a positive electrode current collector, and a negative electrode active material layer on a negative electrode current collector. Manufacture of an organic electrolyte battery in which a porous separator made of a polymer that absorbs and retains an organic electrolytic solution is disposed between the formed negative electrode plate and the separator, the positive electrode plate, and the negative electrode plate are laminated and integrated. In the method, the separator is formed by applying a polymer solution dissolved in a solvent to a substrate supporting the separator and removing the solvent by drying, and the entire width is smaller than the entire width of the substrate supporting the separator. A method for producing an organic electrolyte battery, which is a feature of the present invention.
【0007】この製造方法によれば、セパレータは基材
の寸法より狭く基材上に担持されているので、積層電池
の中央にある正極板あるいは負極板の両側の活物質層に
一対のセパレータを熱溶着する際、許容範囲内でズレが
生じても基材でカバーしているためセパレータが熱ロー
ラ表面あるいは平面プレス表面に直接接触することがな
い。したがって積層電池構成工程での稼働率および絶縁
不良等の品質も確保できるものである。According to this manufacturing method, since the separator is supported on the substrate so as to be narrower than the size of the substrate, a pair of separators is provided on the active material layers on both sides of the positive electrode plate or the negative electrode plate at the center of the laminated battery. In the case of thermal welding, even if a deviation occurs within an allowable range, the separator is not in direct contact with the surface of the heat roller or the surface of the flat press because the substrate is covered. Therefore, it is possible to secure the operation rate and the quality such as insulation failure in the laminated battery configuration process.
【0008】[0008]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。本実施の形態は、リチウム
ポリマー二次電池に適用した形態を示すものである。Embodiments of the present invention will be described below with reference to the drawings. This embodiment shows an embodiment applied to a lithium polymer secondary battery.
【0009】図1は、リチウムポリマー二次電池の断面
図である。積層電池4は負極板1を中心にしてセパレー
タ3を介して両側に正極板2を積層して構成され、加熱
および加圧により熱溶着して積層一体化される。前記正
極板2は、有機電解液を吸収保持するポリマー、活物質
を含む正極活物質層2aが正極集電体2bに担持された
ものから形成される。なお、正極には可塑剤が添加され
ていてもよい。前記正極活物質としては、例えばLiM
n2O4、LiNiO2、LiCoO2などのリチウム含有
複合酸化物をあげることができる。FIG. 1 is a sectional view of a lithium polymer secondary battery. The laminated battery 4 is configured by laminating the positive electrode plates 2 on both sides with the separator 3 interposed therebetween with the negative electrode plate 1 as a center, and is thermally integrated by heating and pressing to be laminated and integrated. The positive electrode plate 2 is formed of a polymer that absorbs and retains an organic electrolyte and a positive electrode active material layer 2a containing an active material supported on a positive electrode current collector 2b. Note that a plasticizer may be added to the positive electrode. As the positive electrode active material, for example, LiM
Lithium-containing composite oxides such as n 2 O 4 , LiNiO 2 , and LiCoO 2 can be given.
【0010】前記有機電解液を保持するポリマーとして
は、例えば、ポリエチレンオキサイド誘導体、ポリプロ
ピレンオキサイド誘導体、前記誘導体を含むポリマー、
ポリフッ化ビニリデンやフッ化ビニリデンと6フッ化プ
ロピレンとの共重合体等を用いることができる。前記正
極集電体2bとしては、例えばアルミニウム箔、アルミ
ニウム製メッシュ、アルミニウム製エキスパンドメタ
ル、アルミニウム製パンチングメタル等を用いることが
できる。Examples of the polymer for holding the organic electrolyte include a polyethylene oxide derivative, a polypropylene oxide derivative, a polymer containing the derivative,
Polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, or the like can be used. As the positive electrode current collector 2b, for example, aluminum foil, aluminum mesh, aluminum expanded metal, aluminum punching metal, or the like can be used.
【0011】また、前記負極板1は、有機電解質を保持
するポリマー、活物質を含む負極活物質層1aが負極集
電体1bに担持されたものから形成され、正極と同様に
可塑剤が添加されていてもよい。前記活物質としては、
電気化学的にリチウムイオンを吸蔵、放出する炭素質材
料を挙げることができる。前記有機電解質を保持するポ
リマーとしては前述した正極で説明したものと同様なも
のが用いられる。前記負極集電体1bとしては、例えば
銅箔、銅製メッシュ、銅製エキスパンドメタル、銅製パ
ンチングメタル等を用いることができる。The negative electrode plate 1 is formed of a negative electrode active material layer 1a containing a polymer holding an organic electrolyte and an active material supported on a negative electrode current collector 1b, and a plasticizer is added similarly to the positive electrode. It may be. As the active material,
Carbonaceous materials that occlude and release lithium ions electrochemically can be given. As the polymer holding the organic electrolyte, the same polymer as that described for the positive electrode described above is used. As the negative electrode current collector 1b, for example, copper foil, copper mesh, copper expanded metal, copper punching metal, or the like can be used.
【0012】前記セパレータ3は、有機電解質を保持す
るポリマーにより形成され、可塑剤が添加されていても
よい。さらに前記セパレータの強度をさらに向上させる
ためにSiO2のような無機フィラーを添加してもよ
い。また、シート状のセパレータは、例えば、有機電解
質を保持する前記ポリマー、前記可塑剤および前記無機
フィラーをアセトンなどの有機溶媒中で混合、分散させ
たセパレータペーストを基材3aに塗布、乾燥して形成
される。そして、次の積層電池構成工程に供するべく、
セパレータおよび基材の幅を所定寸法に裁断する。ここ
でセパレータの幅寸法は基材の幅寸法に対して小さくし
なくてはならない。この工程は、以下に説明する
(A)、(B)の方法によって行うことができる。
(A)まず基材上に担持されたセパレータのみを、例え
ば角型あるいは丸型のカッターの刃先をセパレータ面に
押し当てることにより、基材を切断することなく所定の
幅寸法に裁断する。ここで不必要となるセパレータは基
材から剥離、回収される。その後基材を所定の幅寸法に
切断して次工程で使用できる形態となる。(B)一旦基
材上に担持されたセパレータを剥離し、セパレータを所
定の幅寸法に切断した後、所定の幅寸法に切断した基材
上に再度密着させ、次工程に使用できる形態とする。The separator 3 is formed of a polymer holding an organic electrolyte, and may contain a plasticizer. In order to further improve the strength of the separator, an inorganic filler such as SiO 2 may be added. The sheet-shaped separator is, for example, a separator paste obtained by mixing and dispersing the polymer holding the organic electrolyte, the plasticizer and the inorganic filler in an organic solvent such as acetone on the base material 3a, and drying. It is formed. Then, in order to provide for the next stacked battery construction process,
The width of the separator and the substrate is cut to a predetermined size. Here, the width of the separator must be smaller than the width of the substrate. This step can be performed by the methods (A) and (B) described below.
(A) First, only the separator carried on the base material is cut into a predetermined width without cutting the base material by pressing the edge of a square or round cutter against the separator surface. Unnecessary separators are separated from the base material and collected. After that, the base material is cut into a predetermined width dimension so that the base material can be used in the next step. (B) The separator once carried on the base material is peeled off, the separator is cut into a predetermined width dimension, and then adhered again to the base material cut into the predetermined width dimension so that it can be used in the next step. .
【0013】このように作成したセパレータと前記正極
板2および前記負極板1を用いて積層電池4を構成す
る。積層電池の製造工程について以下に説明する。A laminated battery 4 is constituted by using the thus prepared separator, the positive electrode plate 2 and the negative electrode plate 1. The manufacturing process of the laminated battery will be described below.
【0014】図2に示すように、負極集電体1bの両面
に負極活物質層1aが形成された負極板1とセパレータ
3を熱溶着工程に送り、基材3aの片面に形成されたセ
パレータ3を負極集電体1bの両側に配置された前記負
極活物質層1aにそれぞれ配設する。そして上下あるい
は左右に配設した一対の熱ローラ5a、5bにより、基
材3aを介して加熱、加圧する。熱ローラ5a、5bは
ポリマーの融点近くに加熱されているので、それぞれに
ポリマーを含むセパレータ3と負極活物質層1aとの間
は熱溶着により接合される。ここで熱ローラは、鉄製、
セラミック製、樹脂製のものが使われる。また、熱溶着
は、平面プレスにより加熱、加圧を行うことによっても
よい。セパレータ3が負極集電体1bの両側に配設され
た前記負極活物質層1aに接合された後、セパレータ3
から基材3aが剥離される。このとき、セパレータ3の
幅は、基材3aの幅より狭くできているため、負極板1
あるいはセパレータ3の送り出しに、供給方向に対して
直角なズレが生じたとき、セパレータ3が基材3aの外
側にはみ出し、熱ローラ表面あるいは平面プレス表面に
接触し、熱によりポリマーが溶融して付着することがな
い。As shown in FIG. 2, a negative electrode plate 1 in which a negative electrode active material layer 1a is formed on both surfaces of a negative electrode current collector 1b and a separator 3 are sent to a heat welding step, and a separator formed on one surface of a substrate 3a is formed. 3 are disposed on the negative electrode active material layers 1a disposed on both sides of the negative electrode current collector 1b. Then, heating and pressing are performed via the base material 3a by a pair of heat rollers 5a and 5b arranged vertically or horizontally. Since the heat rollers 5a and 5b are heated near the melting point of the polymer, the separator 3 containing the polymer and the negative electrode active material layer 1a are joined by heat welding. Here, the heat roller is made of iron,
Ceramic and resin products are used. Further, the heat welding may be performed by heating and pressurizing by a flat press. After the separator 3 is joined to the negative electrode active material layers 1a provided on both sides of the negative electrode current collector 1b, the separator 3
The substrate 3a is peeled from the substrate. At this time, since the width of the separator 3 is smaller than the width of the base material 3a,
Alternatively, when the separator 3 is displaced at a right angle to the supply direction, the separator 3 protrudes outside the substrate 3a and comes into contact with the surface of the heat roller or the flat press surface, and the polymer is melted and adhered by heat. I can't.
【0015】セパレータ3の幅は、基材3aの幅より
0.5mm〜15.0mm狭いことが好ましい。0.5
mmより狭いと、直接熱ローラ表面あるいは平面プレス
表面に付着する可能性があり、15.0mmより広いと
基材から剥離、回収されるセパレータのロスが多くなる
ためである。The width of the separator 3 is preferably smaller by 0.5 mm to 15.0 mm than the width of the substrate 3a. 0.5
If it is smaller than 1 mm, it may adhere directly to the surface of the heat roller or the flat pressing surface, and if it is larger than 15.0 mm, the loss of the separator peeled and collected from the base material increases.
【0016】また、設備制度の都合上、セパレータ3の
幅は、基材3aの幅より5mm程度狭くすることで十分
であるが、メッシュ状の正極あるいは負極集電体を使用
する場合には、正極あるいは負極板の一端から突出した
リード取出し部の保護の為に、基材3aの幅をセパレー
タ3の幅より15mm広くすることが好ましい。In addition, it is sufficient to make the width of the separator 3 smaller than the width of the base material 3a by about 5 mm for the sake of the facility system. However, when a mesh-shaped positive or negative electrode current collector is used, It is preferable that the width of the base material 3a is set to be 15 mm wider than the width of the separator 3 in order to protect the lead extraction portion protruding from one end of the positive or negative electrode plate.
【0017】そして、セパレータを担持する基材3a
は、加熱および加圧による熱溶着時に熱変形しない材質
が好ましく、ポリエチレンテレフタレート樹脂、ポリエ
ステル樹脂、ポリイミド樹脂または金属箔などをあげる
ことができ、その厚みは機械的強度から20μm〜10
0μmの範囲が好ましい。The substrate 3a supporting the separator
Is preferably a material that does not thermally deform during heat welding by heating and pressing, and examples thereof include polyethylene terephthalate resin, polyester resin, polyimide resin, and metal foil.
A range of 0 μm is preferred.
【0018】上記工程により両面にセパレータ3が接合
された負極板1は、次工程において、両面のセパレータ
3に正極活物質層2aを対面させて正極板2を配設し、
両側から熱ローラあるいは平面プレスにより加熱、加圧
することにより、セパレータ3と正極板2のそれぞれの
正極活物質層2aとが接合され、積層電池4が得られ
る。The negative electrode plate 1 having the separators 3 bonded on both surfaces in the above process is provided with the positive electrode plate 2 in the next process, with the positive electrode active material layer 2a facing the separators 3 on both surfaces,
The separator 3 and the respective positive electrode active material layers 2a of the positive electrode plate 2 are joined by heating and pressing with heat rollers or flat presses from both sides, and a laminated battery 4 is obtained.
【0019】このようにして得られた積層電池4に可塑
剤が含まれているときには、キシレンなどの溶媒中に浸
漬し、可塑剤を抽出、乾燥して除去する。When the thus obtained laminated battery 4 contains a plasticizer, it is immersed in a solvent such as xylene to extract and dry the plasticizer to remove it.
【0020】その後、積層電池を袋状のラミネートシー
トに挿入し、電解液を注液、含浸し、密封して、使用に
供する有機電解質電池を製造する。Thereafter, the laminated battery is inserted into a bag-like laminated sheet, and an electrolyte is injected, impregnated, and sealed to produce an organic electrolyte battery to be used.
【0021】[0021]
【発明の効果】以上に説明したように本発明によれば、
負極板に基材に担持したセパレータを積層一体化する
際、負極板あるいはセパレータの位置ズレが生じても、
熱ローラ表面あるいは平面プレス表面へのポリマーの付
着を防止でき、高い稼働率と安定した品質を確保できる
セパレータの製造方法を提供することができる。According to the present invention as described above,
When laminating and integrating the separator carried on the substrate to the negative electrode plate, even if the displacement of the negative electrode plate or the separator occurs,
It is possible to provide a method of manufacturing a separator that can prevent the adhesion of a polymer to the surface of a heat roller or a flat press surface, and that can secure a high operation rate and stable quality.
【図1】本発明の一実施形態における平面図FIG. 1 is a plan view according to an embodiment of the present invention.
【図2】本発明の一実施形態における製造工程図FIG. 2 is a manufacturing process diagram according to an embodiment of the present invention.
1 正極板 1a 正極活物質層 1b 正極集電体 2 負極板 2a 負極活物質層 2b 負極集電体 3 セパレータ 3a 基材 4 積層電池(素電池) 5a 上側熱ローラ 5b 下側熱ローラ DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode active material layer 1b Positive electrode current collector 2 Negative electrode plate 2a Negative electrode active material layer 2b Negative electrode collector 3 Separator 3a Base material 4 Stacked battery (unit cell) 5a Upper heat roller 5b Lower heat roller
───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖永 薫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 柳 智文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 住原 正則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H021 AA06 BB01 BB02 BB11 BB12 BB13 CC04 CC08 EE10 EE15 EE25 EE27 HH03 5H029 AJ14 AK03 AL06 AM02 AM16 BJ04 BJ12 CJ02 CJ03 CJ05 CJ06 CJ12 CJ13 CJ22 DJ04 DJ13 EJ01 EJ12 EJ14 HJ04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Kaoru Okinaga, Kazuma 1006 Kadoma, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Inventor Masanori Sumihara 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) CJ03 CJ05 CJ06 CJ12 CJ13 CJ22 DJ04 DJ13 EJ01 EJ12 EJ14 HJ04
Claims (4)
てなる正極板と、負極集電体上に負極活物質層が形成さ
れてなる負極板との間に有機電解液を吸収保持するポリ
マーからなる多孔性のセパレータを配し、前記セパレー
タと前記正極板および前記負極板が積層一体化されてな
る有機電解質電池の製造方法において、前記セパレータ
は溶媒に溶解させたポリマー溶液をセパレータを担持す
る基材に塗布、乾燥により溶媒を除去して形成され、そ
の全幅は、前記セパレータを担持する基材の全幅より狭
いことを特徴とする有機電解質電池の製造方法。An organic electrolyte is absorbed between a positive electrode plate having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode plate having a negative electrode active material layer formed on a negative electrode current collector. In a method for manufacturing an organic electrolyte battery in which a porous separator made of a retained polymer is arranged, and the separator, the positive electrode plate, and the negative electrode plate are laminated and integrated, the separator is a polymer solution dissolved in a solvent. A method for producing an organic electrolyte battery, characterized in that it is formed by applying a solvent to a substrate supporting the separator and drying the solvent to remove the solvent, and the entire width thereof is smaller than the entire width of the substrate supporting the separator.
体化が、両者間の加熱および加圧による熱溶着によりな
され、セパレータの幅方向の寸法が前記セパレータを担
持する基材の幅方向の寸法より0.5mm以上、15m
m以下狭いことを特徴とする請求項1記載の有機電解質
電池の製造方法2. The lamination and unification of the separator and the positive and negative electrode plates are performed by heat welding by heating and pressurizing between the two, and the dimension in the width direction of the separator is in the width direction of the base material supporting the separator. 0.5mm or more than the size, 15m
2. The method for producing an organic electrolyte battery according to claim 1, wherein the width is smaller than m.
熱溶着時に熱変形しないポリエチレンテレフタレート樹
脂、ポリエステル樹脂、ポリイミド樹脂または金属箔よ
り選ばれた1種である請求項1または請求項2記載の有
機電解質電池の製造方法。3. The substrate according to claim 1, wherein the base material supporting the separator is one selected from a polyethylene terephthalate resin, a polyester resin, a polyimide resin, and a metal foil that does not thermally deform during the heat welding. A method for manufacturing an organic electrolyte battery.
ンまたはフッ化ビニリデンと6フッ化プロピレンの共重
合体より選ばれた1種以上を主成分とする請求項1記載
の有機電解質電池の製造方法。4. The method for producing an organic electrolyte battery according to claim 1, wherein the separator contains, as a main component, at least one selected from polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000228604A JP2002042882A (en) | 2000-07-28 | 2000-07-28 | Method of manufacturing organic electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000228604A JP2002042882A (en) | 2000-07-28 | 2000-07-28 | Method of manufacturing organic electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002042882A true JP2002042882A (en) | 2002-02-08 |
Family
ID=18721854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000228604A Pending JP2002042882A (en) | 2000-07-28 | 2000-07-28 | Method of manufacturing organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002042882A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012528456A (en) * | 2009-05-26 | 2012-11-12 | オプトドット コーポレイション | Lithium battery using nanoporous separator layer |
JP2018046005A (en) * | 2016-09-09 | 2018-03-22 | ユニチカ株式会社 | Laminate for power storage element electrode and method for manufacturing electrode for power storage element |
JPWO2017073766A1 (en) * | 2015-10-30 | 2018-09-20 | ユニチカ株式会社 | Storage device electrode polyimide solution, storage device electrode manufacturing method, and storage device electrode |
US10381623B2 (en) | 2015-07-09 | 2019-08-13 | Optodot Corporation | Nanoporous separators for batteries and related manufacturing methods |
US10505168B2 (en) | 2006-02-15 | 2019-12-10 | Optodot Corporation | Separators for electrochemical cells |
US10833307B2 (en) | 2010-07-19 | 2020-11-10 | Optodot Corporation | Separators for electrochemical cells |
US10879513B2 (en) | 2013-04-29 | 2020-12-29 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US12040506B2 (en) | 2015-04-15 | 2024-07-16 | Lg Energy Solution, Ltd. | Nanoporous separators for batteries and related manufacturing methods |
-
2000
- 2000-07-28 JP JP2000228604A patent/JP2002042882A/en active Pending
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11522252B2 (en) | 2006-02-15 | 2022-12-06 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
US11121432B2 (en) | 2006-02-15 | 2021-09-14 | Optodot Corporation | Separators for electrochemical cells |
US11264676B2 (en) | 2006-02-15 | 2022-03-01 | Optodot Corporation | Separators for electrochemical cells |
US12046774B2 (en) | 2006-02-15 | 2024-07-23 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
US10797288B2 (en) | 2006-02-15 | 2020-10-06 | Optodot Corporation | Separators for electrochemical cells |
US10505168B2 (en) | 2006-02-15 | 2019-12-10 | Optodot Corporation | Separators for electrochemical cells |
US11387523B2 (en) | 2009-05-26 | 2022-07-12 | Optodot Corporation | Batteries utilizing cathode coatings directly on nanoporous separators |
US11283137B2 (en) | 2009-05-26 | 2022-03-22 | Optodot Corporation | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
US11777176B2 (en) | 2009-05-26 | 2023-10-03 | Meta Materials Inc. | Lithium batteries utilizing nanoporous separator layers |
US11621459B2 (en) | 2009-05-26 | 2023-04-04 | Meta Materials Inc. | Batteries utilizing anode coatings directly on nanoporous separators |
US10403874B2 (en) | 2009-05-26 | 2019-09-03 | Optodot Corporation | Methods of producing batteries utilizing anode metal depositions directly on nanoporous separators |
US9209446B2 (en) | 2009-05-26 | 2015-12-08 | Optodot Corporation | Lithium batteries utilizing nanoporous separator layers |
US10651444B2 (en) | 2009-05-26 | 2020-05-12 | Optodot Corporation | Lithium batteries utilizing nanoporous separator layers |
JP2015173115A (en) * | 2009-05-26 | 2015-10-01 | オプトドット コーポレイション | Lithium battery utilizing nanoporous separator layer |
US9118047B2 (en) | 2009-05-26 | 2015-08-25 | Optodot Corporation | Batteries utilizing cathode coatings directly on nanoporous separators |
US11870097B2 (en) | 2009-05-26 | 2024-01-09 | Meta Materials Inc. | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
US9660297B2 (en) | 2009-05-26 | 2017-05-23 | Optodot Corporation | Methods of producing batteries utilizing anode coatings directly on nanoporous separators |
US11605862B2 (en) | 2009-05-26 | 2023-03-14 | Meta Materials Inc. | Batteries utilizing anode coatings directly on nanoporous separators |
US9065120B2 (en) | 2009-05-26 | 2015-06-23 | Optodot Corporation | Batteries utilizing electrode coatings directly on nanoporous separators |
JP2012528456A (en) * | 2009-05-26 | 2012-11-12 | オプトドット コーポレイション | Lithium battery using nanoporous separator layer |
US11335976B2 (en) | 2009-05-26 | 2022-05-17 | Optodot Corporation | Batteries utilizing anode coatings directly on nanoporous separators |
US8962182B2 (en) | 2009-05-26 | 2015-02-24 | Optodot Corporation | Batteries utilizing anode coatings directly on nanoporous separators |
US11728544B2 (en) | 2010-07-19 | 2023-08-15 | Lg Energy Solution, Ltd. | Separators for electrochemical cells |
US10833307B2 (en) | 2010-07-19 | 2020-11-10 | Optodot Corporation | Separators for electrochemical cells |
US11387521B2 (en) | 2013-04-29 | 2022-07-12 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US11217859B2 (en) | 2013-04-29 | 2022-01-04 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US10879513B2 (en) | 2013-04-29 | 2020-12-29 | Optodot Corporation | Nanoporous composite separators with increased thermal conductivity |
US12040506B2 (en) | 2015-04-15 | 2024-07-16 | Lg Energy Solution, Ltd. | Nanoporous separators for batteries and related manufacturing methods |
US10381623B2 (en) | 2015-07-09 | 2019-08-13 | Optodot Corporation | Nanoporous separators for batteries and related manufacturing methods |
JPWO2017073766A1 (en) * | 2015-10-30 | 2018-09-20 | ユニチカ株式会社 | Storage device electrode polyimide solution, storage device electrode manufacturing method, and storage device electrode |
JP7166579B2 (en) | 2016-09-09 | 2022-11-08 | ユニチカ株式会社 | Laminate for storage element electrode and method for manufacturing storage element electrode |
JP2018046005A (en) * | 2016-09-09 | 2018-03-22 | ユニチカ株式会社 | Laminate for power storage element electrode and method for manufacturing electrode for power storage element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4835025B2 (en) | Method for manufacturing power storage device | |
WO2017149949A1 (en) | Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery | |
JP6519570B2 (en) | Separator integrated electrode plate, electrode plate pair, laminated type storage element, and method of manufacturing separator integrated electrode plate | |
WO2013105548A1 (en) | Method for manufacturing packed electrode, packed electrode, secondary battery, and heat sealing machine | |
JP2004022534A (en) | Electrode tab treating method of crude cell for lithium secondary battery, crude cell by it, and lithium secondary battery adopting this | |
WO2014058001A1 (en) | Bagged electrode, layered electrical device, and method for manufacturing bagged electrode | |
WO2018092640A1 (en) | High power battery and battery case | |
JP2002015773A (en) | Cell and its manufacturing method | |
WO1999031751A1 (en) | Lithium ion secondary battery and its manufacture | |
JP2000235850A (en) | Layered polymer electrolyte battery | |
JPH11233144A (en) | Manufacture of organic electrolyte battery | |
JP2014086265A (en) | Separator joining method and device | |
JP2002042882A (en) | Method of manufacturing organic electrolyte battery | |
US11424474B2 (en) | Secondary battery, and apparatus and method for manufacturing the same | |
JP2005071658A (en) | Flat electrochemical cell and its manufacturing method | |
JP2019135699A (en) | Manufacturing method for battery | |
JP2000353504A (en) | Laminate pack battery | |
KR20210155529A (en) | All solid state secondary battery and manufacturing thereof | |
JP2003077545A (en) | Method of manufacturing nonaqueous electrolyte battery | |
WO2018179653A1 (en) | Method for bonding separator, method for producing electrochemical device, and electrochemical device | |
KR100477736B1 (en) | Method for manufacturing electrode plate for lithium ion secondary battery and apparatus for manufacturing same | |
WO1999048164A1 (en) | Secondary battery and method for forming the same | |
JP7205723B2 (en) | Ultrasonic bonding method | |
JP4262795B2 (en) | Battery electrode connection method | |
JP2014086267A (en) | Separator joining method and device |