JP2003077545A - Method of manufacturing nonaqueous electrolyte battery - Google Patents

Method of manufacturing nonaqueous electrolyte battery

Info

Publication number
JP2003077545A
JP2003077545A JP2001358773A JP2001358773A JP2003077545A JP 2003077545 A JP2003077545 A JP 2003077545A JP 2001358773 A JP2001358773 A JP 2001358773A JP 2001358773 A JP2001358773 A JP 2001358773A JP 2003077545 A JP2003077545 A JP 2003077545A
Authority
JP
Japan
Prior art keywords
battery
polymer layer
electrolytic solution
separator
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001358773A
Other languages
Japanese (ja)
Inventor
Shinya Kitano
真也 北野
Masahiro Tagawa
昌宏 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001358773A priority Critical patent/JP2003077545A/en
Priority to US10/171,692 priority patent/US6835214B2/en
Priority to CN02122606A priority patent/CN1392625A/en
Publication of JP2003077545A publication Critical patent/JP2003077545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a nonaqueous electrolyte battery for allowing quick impregnation with an electrolytic solution and easy manufacture by bonding a positive electrode 1 to a negative electrode 2 with heating compression after impregnating polymer layers 4 formed on both sides of a separator 3 with the electrolytic solution. SOLUTION: The method comprises a polymer layer forming step of forming the polymer layers 4 on both sides of the separator 3, a generating element fabricating step of fabricating a generating element by laminating the positive electrode, the negative electrode and the separator formed in the polymer layer forming step, a battery fabricating step of fabricating the battery by storing the generating element in the battery case and filling the electrolytic solution in the battery case to be sealed, and a compressing step of cooling the battery after heated and compressing the battery case at least during cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電池等の
非水電解質電池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a non-aqueous electrolyte battery such as a polymer battery.

【0002】[0002]

【従来の技術】ポリマー電池は、正負の電極を、必要に
応じてセパレータを介し、電解液を含浸させた高分子層
で接着一体化した非水電解質電池である。このポリマー
電池の従来の製造方法を以下に示す。
2. Description of the Related Art A polymer battery is a non-aqueous electrolyte battery in which positive and negative electrodes are bonded and integrated with a polymer layer impregnated with an electrolytic solution through a separator if necessary. The conventional manufacturing method of this polymer battery is shown below.

【0003】第1の製造方法は、まず高分子材料を溶剤
に溶解して正負の電極やセパレータの表面に塗布し、こ
れらの正負の電極をセパレータを介して積層したり巻回
することにより発電要素を作製する。次に、この発電要
素を乾燥させることにより、溶剤を蒸発させて高分子層
を形成し電極やセパレータの間を接着する。そして、こ
の発電要素を電池ケースに収納して電解液を注入するこ
とにより、電極やセパレータの間の高分子層に電解液を
含浸させてポリマー電池とする。
In the first manufacturing method, first, a polymer material is dissolved in a solvent and applied on the surfaces of positive and negative electrodes or a separator, and these positive and negative electrodes are laminated or wound via the separator to generate electricity. Create the element. Next, the power generating element is dried to evaporate the solvent to form a polymer layer and bond between the electrodes and the separator. Then, the power generating element is housed in a battery case and an electrolytic solution is injected thereinto to impregnate the polymer layer between the electrodes and the separator with the electrolytic solution to obtain a polymer battery.

【0004】第2の製造方法は、まず正負の電極間に高
分子膜を配置して積層したり巻回することにより発電要
素を作製する。次に、この発電要素を加熱することによ
り、高分子膜を溶融させて高分子層とし電極間を接着す
る。そして、この発電要素を電池ケースに収納して電解
液を注入することにより、電極間の高分子層に電解液を
含浸させてポリマー電池とする。なお、この場合、電極
間にはセパレータを介在させてもよい。
In the second manufacturing method, first, a polymer film is arranged between positive and negative electrodes and laminated or wound to manufacture a power generating element. Next, by heating this power generating element, the polymer film is melted to form a polymer layer and the electrodes are bonded together. Then, the power generating element is housed in a battery case and injected with an electrolytic solution to impregnate the polymer layer between the electrodes with the electrolytic solution to obtain a polymer battery. In this case, a separator may be interposed between the electrodes.

【0005】第3の製造方法(特開平10−25584
9号公報に開示)は、支持体の表面上で作製し電解液を
含浸させた高分子膜を正負の電極間に配置し、又は、正
負いずれかの電極の表面上で作製し電解液を含浸させた
高分子層に他方の電極を重ね合わせて、これらを積層し
たり巻回することにより発電要素を作製する。次に、こ
の発電要素を加熱圧迫することにより、高分子膜や高分
子層を不完全に溶融させて電極間を接着し、電池ケース
に収納しポリマー電池とする。
Third manufacturing method (Japanese Patent Laid-Open No. 10-25584)
No. 9)), a polymer membrane prepared on the surface of a support and impregnated with an electrolytic solution is arranged between positive and negative electrodes, or an electrolytic solution prepared on the surface of either positive or negative electrode is disclosed. The other electrode is superposed on the impregnated polymer layer, and these are laminated or wound to produce a power generation element. Next, by heating and pressing this power generating element, the polymer film or polymer layer is incompletely melted and the electrodes are bonded to each other and housed in a battery case to form a polymer battery.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来の第1
の製造方法や第2の製造方法では、正負の電極の間を高
分子層で接着した後に電解液を含浸させるので、この高
分子層の広い両面が積層又は巻回された電極の表面に隙
間なく密着することになり、電解液は、これらの電極間
から露出した高分子層の端縁部にしか浸み込むことがで
きない。このため、電解液が高分子層の中央部にまで広
がって全体に含浸されるまでに長時間を要し、この間、
予備充電等の次工程を実行できないので、電池の生産性
が悪くなるという問題が生じていた。即ち、例えば図4
に示すように、第1や第2の製造方法で、セパレータ3
の両面に塗布された高分子層4により正極1と負極2の
間が接着された後に電解液が注入されると、図示矢印A
に示すように、この電解液は、積層又は巻回された正極
1と負極2の間から露出した高分子層4の端縁部にしか
染み込むことができない。そして、正極1と負極2の活
物質合剤にも、同様に端縁部からしか電解液が染み込ま
ないようになる。
However, the conventional first
In the manufacturing method (1) and the second manufacturing method (2), the positive and negative electrodes are adhered with a polymer layer and then impregnated with an electrolytic solution, so that wide both sides of the polymer layer have gaps on the surface of the laminated or wound electrode. However, the electrolytic solution can only soak into the edges of the polymer layer exposed between these electrodes. Therefore, it takes a long time for the electrolytic solution to spread to the central portion of the polymer layer and be impregnated into the entire polymer layer.
Since the next process such as pre-charging cannot be performed, there is a problem that the productivity of the battery is deteriorated. That is, for example, in FIG.
As shown in FIG.
When the electrolytic solution is injected after the positive electrode 1 and the negative electrode 2 are adhered by the polymer layer 4 applied on both surfaces of
As shown in, the electrolytic solution can only soak into the edges of the polymer layer 4 exposed between the laminated or wound positive electrode 1 and negative electrode 2. Then, similarly, the active material mixture of the positive electrode 1 and the negative electrode 2 is soaked with the electrolytic solution only from the edge portion.

【0007】また、従来の第3の製造方法では、電解液
を含浸させてゲル状となった高分子膜を搬送して電極間
に配置したり、電解液を含浸させてゲル状となった高分
子層を形成した電極を搬送して他方の電極と重ね合わせ
て、これらを積層したり巻回する作業が容易ではなくな
り、製造が困難になるという問題があった。しかも、電
解液の注入量が高分子層や高分子膜への含浸量で決まる
ために、常に一定量の電解液を注液することができない
という問題もあった。さらに、電極間にセパレータを介
在させないので、電池の内部短絡が発生し易くなるとい
う問題も発生していた。
Further, in the third conventional manufacturing method, a polymer film impregnated with an electrolytic solution is conveyed and placed between electrodes, or impregnated with an electrolytic solution to form a gel. There is a problem in that the operation of transporting the electrode having the polymer layer formed thereon and superimposing it on the other electrode, and stacking or winding these electrodes is not easy, which makes manufacturing difficult. Moreover, there is also a problem that a fixed amount of the electrolytic solution cannot always be injected because the injected amount of the electrolytic solution is determined by the impregnated amount in the polymer layer or the polymer film. Furthermore, since no separator is interposed between the electrodes, there is a problem that an internal short circuit of the battery is likely to occur.

【0008】本発明は、かかる事情に対処するためにな
されたものであり、電解液を注入した後に加熱圧迫して
高分子層による電極間の接着を行うことにより、電解液
が迅速に含浸され製造も容易となる非水電解質電池の製
造方法を提供することを目的としている。
The present invention has been made in order to cope with such a circumstance, in which the electrolytic solution is quickly impregnated by injecting the electrolytic solution and then applying heat and pressure to bond the electrodes with the polymer layer. It is an object of the present invention to provide a method for manufacturing a non-aqueous electrolyte battery that can be easily manufactured.

【0009】[0009]

【課題を解決するための手段】請求項1の非水電解質電
池の製造方法は、正負いずれか若しくは双方の電極及び
/又はセパレータの両面若しくは片面に高分子層を形成
する高分子層形成工程と、前記高分子層形成工程で得ら
れた正極、負極およびセパレータを積層し又は巻回する
ことにより発電要素を作製する発電要素作製工程と、こ
の発電要素を電池ケースに収納し、電池ケース内に電解
液を注入して密閉することにより電池を作製する電池作
製工程と、この電池を加熱した後に冷却し、少なくとも
冷却時に電池ケースを圧迫する圧迫工程とを備えたこと
を特徴とする。
A method for producing a non-aqueous electrolyte battery according to claim 1 comprises a polymer layer forming step of forming a polymer layer on both sides or one side of positive and / or negative electrodes and / or separators. The power generation element manufacturing step of manufacturing a power generation element by stacking or winding the positive electrode, the negative electrode and the separator obtained in the polymer layer forming step, and accommodating the power generation element in a battery case, The method is characterized by including a battery manufacturing process of manufacturing a battery by injecting an electrolyte solution and sealing the battery, and a pressing process of heating the battery and then cooling the battery case to press the battery case at least during cooling.

【0010】請求項1の発明によれば、発電要素作製工
程では、高分子層が電極やセパレータの表面にのみ形成
された状態で発電要素の積層や巻回が行われるので、電
極やセパレータと高分子層との間に隙間が生じる。例え
ば、セパレータの両面に高分子層を形成した場合、この
高分子層と正負の電極との間に隙間が生じることにな
り、正負の電極の両面に高分子層を形成した場合にも、
この高分子層とセパレータとの間に隙間が生じる。さら
に、正負の電極とセパレータの両面全てに高分子層を形
成した場合であっても、これらの高分子層の間に隙間が
生じる。そして、電池作製工程では、この発電要素に電
解液を注入するので、高分子層と電極等との間の隙間を
通して毛細管現象により電解液が発電要素の中心部にま
で入り込み、これらの高分子層や電極の表面全体から内
部に迅速に含浸されることができるようになる。このよ
うにして電解液が含浸された高分子層は、加熱圧迫工程
で電池ケース自体を加熱して圧迫することにより、膨潤
又は半溶融状態となり、電極等との間を接着し隙間を埋
めることができる。また、この加熱圧迫工程は、電池ケ
ースを密閉した状態で行うので、加熱時に電解液等がガ
スを発生したとしても、外部に放出されることがなく、
安全に製造を行うことができるようになる。なお、この
高分子層は、加熱によって膨潤又は半溶融してから圧迫
すればよいので、少なくとも冷却時に電池ケースを圧迫
すれば足りる。
According to the first aspect of the present invention, in the step of producing the power generation element, the power generation element is laminated and wound with the polymer layer formed only on the surfaces of the electrodes and the separator. A gap is created between the polymer layer. For example, when the polymer layer is formed on both sides of the separator, a gap is created between the polymer layer and the positive and negative electrodes, and even when the polymer layer is formed on both sides of the positive and negative electrodes,
A gap is created between the polymer layer and the separator. Further, even when the polymer layers are formed on both surfaces of the positive and negative electrodes and the separator, a gap is generated between these polymer layers. Then, in the battery manufacturing process, since the electrolytic solution is injected into this power generating element, the electrolytic solution penetrates into the central portion of the power generating element by the capillary phenomenon through the gap between the polymer layer and the electrode, etc. The inside of the electrode can be rapidly impregnated from the entire surface of the electrode. The polymer layer impregnated with the electrolyte in this way becomes a swollen or semi-molten state by heating and pressing the battery case itself in the heating and pressing step, and it adheres to the electrodes and fills the gap. You can Further, since this heating and pressing step is performed in a state where the battery case is sealed, even if the electrolytic solution or the like generates gas during heating, it is not released to the outside,
It will be possible to manufacture safely. Since the polymer layer may be swelled or semi-melted by heating and then pressed, it is sufficient to press the battery case at least during cooling.

【0011】しかも、電極やセパレータは、高分子層に
電解液を含浸させていない状態で積層や巻回が行われる
ので、ゲル状の高分子層を取り扱う場合のように製造が
困難になるようなこともなくなる。また、電解液は、電
池ケース内に所定量を注入することができるので、この
電解液の注入量にバラツキが生じるようなこともなくな
る。さらに、電極間にセパレータを介在させるので、電
池の内部短絡も発生し難くなる。
Moreover, since the electrodes and the separators are stacked and wound in a state where the polymer layer is not impregnated with the electrolytic solution, it is difficult to manufacture the electrodes and the separator as in the case of handling a gel-like polymer layer. Nothing goes away. Further, since a predetermined amount of the electrolytic solution can be injected into the battery case, variations in the injected amount of the electrolytic solution will not occur. Further, since the separator is interposed between the electrodes, an internal short circuit of the battery is less likely to occur.

【0012】請求項2の非水電解質電池の製造方法は、
前記圧迫工程が、電池作製工程で作製した電池を加熱し
た後に冷却すると共に、この加熱時と冷却時に電池ケー
スを圧迫するものであることを特徴とする。
The method for producing a non-aqueous electrolyte battery according to claim 2 is
The pressing step is characterized in that the battery manufactured in the battery manufacturing step is heated and then cooled, and the battery case is pressed during the heating and cooling.

【0013】請求項2の発明によれば、加熱圧迫工程に
おいて、冷却時だけでなく、加熱時から電池ケースを圧
迫するので、高分子層と電極等との間の隙間を確実に埋
めて接着を行うことができるようになる。
According to the second aspect of the present invention, in the heating and pressing step, the battery case is pressed not only during cooling but also during heating. Therefore, the gap between the polymer layer and the electrode is surely filled and bonded. Will be able to do.

【0014】請求項3の非水電解質電池の製造方法は、
前記圧迫工程における、加熱時の発電要素の最高温度が
60℃以上、100℃以下であることを特徴とする。
The method for producing a non-aqueous electrolyte battery according to claim 3 is
In the pressing step, the maximum temperature of the power generation element during heating is 60 ° C. or higher and 100 ° C. or lower.

【0015】請求項3の発明によれば、加熱圧迫工程に
おける加熱温度が60°C〜100°Cの範囲内となる
ので、高分子層を最適な温度で加熱し膨潤又は半溶融さ
せて電極等との接着を行うことができるようになる。
According to the third aspect of the present invention, since the heating temperature in the heating and pressing step is within the range of 60 ° C to 100 ° C, the polymer layer is heated at an optimum temperature to swell or semi-melt and then the electrode. It becomes possible to perform bonding with the like.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の一実施形態を示すものであ
って、図1は両面に高分子層を形成したセパレータを介
して正極と負極を積層した発電要素の部分拡大縦断面図
である。なお、図4に示した従来例と同様の機能を有す
る構成部材には同じ番号を付記する。
FIG. 1 shows an embodiment of the present invention. FIG. 1 is a partially enlarged vertical cross-sectional view of a power generating element in which a positive electrode and a negative electrode are laminated with a separator having polymer layers formed on both sides thereof. . The constituent elements having the same functions as those of the conventional example shown in FIG.

【0018】本実施形態は、積層型のポリマー電池につ
いて説明する。このポリマー電池の発電要素は、図1に
示すように、正極1と負極2をセパレータ3を介して積
層したものである。正極1は、アルミニウム箔等の正極
基材1aの両面にコバルト酸リチウムやマンガン酸リチ
ウム等の正極活物質を含む正極合剤1bを担持させたも
のであり、負極2は、銅箔等の負極基材2aにグラファ
イト等の負極活物質を含む負極合剤2bを担持させたも
のである。また、セパレータ3は、ここでは微多孔構造
を有するポリオレフィンフィルム等を用いる。
In this embodiment, a laminated polymer battery will be described. As shown in FIG. 1, the power generation element of this polymer battery is one in which a positive electrode 1 and a negative electrode 2 are laminated with a separator 3 in between. The positive electrode 1 is a positive electrode substrate 1a such as an aluminum foil carrying a positive electrode mixture 1b containing a positive electrode active material such as lithium cobalt oxide or lithium manganate, and the negative electrode 2 is a negative electrode such as a copper foil. A negative electrode mixture 2b containing a negative electrode active material such as graphite is carried on a base material 2a. Further, as the separator 3, here, a polyolefin film having a microporous structure or the like is used.

【0019】本実施形態のポリマー電池の製造方法で
は、セパレータ3の両面に高分子層4を形成する場合に
ついて説明する。高分子層4は、ポリフッ化ビニリデン
(PVDF)、ポリヘキサフルオロプロピレン(PHF
P)若しくはポリテトラフルオロエタン(PTFE)若
しくはこれらいずれかの共重合体、又は、ポリアクリロ
ニトリル(PAN)、スチレン−ブタジエン系ゴム、ア
クリル系樹脂、ポリエステル系樹脂等の高分子材料から
なる樹脂層であり、多孔性を有するように形成すること
が好ましい。このような高分子層4は、高分子材料を溶
剤に溶解してセパレータ3の表面に塗布し、この溶剤を
蒸発させることにより形成する(高分子層形成工程)。
In the method of manufacturing the polymer battery of this embodiment, the case where the polymer layers 4 are formed on both surfaces of the separator 3 will be described. The polymer layer 4 is made of polyvinylidene fluoride (PVDF), polyhexafluoropropylene (PHF).
P) or polytetrafluoroethane (PTFE) or a copolymer thereof, or a resin layer made of a polymer material such as polyacrylonitrile (PAN), styrene-butadiene rubber, acrylic resin, polyester resin or the like. Therefore, it is preferable to form it so as to have porosity. Such a polymer layer 4 is formed by dissolving a polymer material in a solvent, applying it on the surface of the separator 3, and evaporating the solvent (polymer layer forming step).

【0020】上記高分子層4を形成したセパレータ3を
正極1と負極2との間にそれぞれ介在させて積層するこ
とにより発電要素を作製する(発電要素作製工程)。こ
の際、セパレータ3の両面の高分子層4は、溶剤が蒸発
して乾燥しているので、作業上の取り扱いが面倒になる
ようなことはない。この発電要素作製工程では、正極1
と負極2が単にセパレータ3を介して重ね合わされてい
るだけであるため、高分子層4と正極1や負極2との間
には、図示のようにわずかな隙間が生じている。
The separator 3 having the polymer layer 4 formed thereon is interposed between the positive electrode 1 and the negative electrode 2 to be laminated to manufacture a power generating element (power generating element manufacturing step). At this time, the solvent is evaporated and the polymer layers 4 on both sides of the separator 3 are dried, so that the handling during the work is not troublesome. In this power generation element manufacturing process, the positive electrode 1
Since the negative electrode 2 and the negative electrode 2 are simply superposed with the separator 3 interposed therebetween, a slight gap is formed between the polymer layer 4 and the positive electrode 1 or the negative electrode 2 as shown in the drawing.

【0021】上記発電要素は、図示しない電池ケースに
収納され、この電池ケース内に電解液を注入して密閉す
る(電池作製工程)。電池ケースは、金属や樹脂等から
なる電池缶や電池容器に蓋を溶接し、接着し又は熱溶着
等により取り付けたものであってもよいし、金属箔の両
面に樹脂フィルムをラミネートしたラミネートフィルム
を袋状にし、開口部を熱溶着したようなもの等を用いる
こともできる。電解液は、リチウム塩等を有機溶媒で溶
解した非水電解液である。この電解液は、通常は常圧の
環境下において注液を行なう。また、電池ケースを減圧
状態の環境において注液を行なうこともできる。さら
に、注液した後、電池ケースをほぼ減圧状態の環境にお
いて、電解液の含浸を促進することもできる。発電要素
を収納し電解液を注入した電池ケースは、蓋やラミネー
トフィルム等の注液口を封口することにより内部を密閉
する。なお、この電池作製工程では、電解液の注入後
に、発電要素を3.6V/セル以上まで充電する予備充
電を行うこともできる。このような予備充電を行うと、
高分子層4との接着を行う前に負極2に皮膜が確実に生
成されるので、電池のサイクル特性の向上と安全性の向
上を図ることができるようになる。ただし、この予備充
電ではガスが発生する場合があるので、電池ケースの密
閉前に充電を行うことが好ましい。
The power generating element is housed in a battery case (not shown), and an electrolytic solution is injected into the battery case to seal it (battery manufacturing process). The battery case may be a battery can or battery container made of metal or resin with a lid welded and adhered or attached by heat welding, or a laminated film in which a resin film is laminated on both sides of a metal foil. It is also possible to use a bag having a bag shape and heat-welded openings. The electrolytic solution is a non-aqueous electrolytic solution in which a lithium salt or the like is dissolved in an organic solvent. This electrolyte is normally injected under an environment of normal pressure. Further, the liquid injection can be performed in a depressurized environment of the battery case. Furthermore, after the liquid injection, the impregnation of the electrolytic solution can be promoted in an environment where the battery case is in a substantially depressurized state. The battery case containing the power generating element and filled with the electrolytic solution is hermetically sealed by closing a liquid inlet such as a lid or a laminated film. In addition, in this battery manufacturing process, after injecting the electrolytic solution, preliminary charging for charging the power generation element to 3.6 V / cell or more can be performed. When such preliminary charging is performed,
Since the film is surely formed on the negative electrode 2 before the bonding with the polymer layer 4, it is possible to improve the cycle characteristics and the safety of the battery. However, since gas may be generated in this preliminary charging, it is preferable to charge before sealing the battery case.

【0022】上記電池作製工程で電池ケース内に電解液
が注入されると、図1の矢印Aに示すように、この電解
液が正極1と負極2の間から露出した高分子層4の端縁
部に染み込むだけでなく、図1の矢印Bに示すように、
高分子層4と正極1や負極2との間の隙間に入り込み、
毛細管現象によって発電要素の中央部にまで達して、こ
の高分子層4の表面全体から層内に染み込むようにな
る。また、正極1の正極合剤1bと負極2の負極合剤2
bにも、同様に端縁部と表面全体から電解液が染み込む
ようになる。
When the electrolytic solution is injected into the battery case in the above-mentioned battery manufacturing process, the electrolytic solution is exposed from between the positive electrode 1 and the negative electrode 2 at the end of the polymer layer 4 as shown by an arrow A in FIG. Not only soaking into the edges, but also as shown by arrow B in FIG.
Enter the gap between the polymer layer 4 and the positive electrode 1 or the negative electrode 2,
The capillary phenomenon reaches the central portion of the power generation element, and the polymer layer 4 permeates into the layer from the entire surface. Further, the positive electrode mixture 1b of the positive electrode 1 and the negative electrode mixture 2 of the negative electrode 2
Similarly, in b, the electrolytic solution comes to permeate from the edge and the entire surface.

【0023】上記電池作製工程で作製されたポリマー電
池は、一旦加熱した後に冷却を行うと共に、少なくとも
冷却時に電池ケースを圧迫する(加熱圧迫工程)。ポリ
マー電池を加熱すると、電池ケース内に収納された発電
要素の高分子層4が膨潤又は半溶融し、冷却すると、こ
の高分子層4が固化又はゲルの状態に戻る。また、この
冷却の際に電池ケースを圧迫すると、膨潤又は半溶融し
た高分子層4が向かい合う正極1や負極2の表面に密着
し、固化又はゲルの状態に戻って接着する。電池ケース
の圧迫は、本実施形態のように積層型の発電要素を用い
る場合には、積層方向の両側から挟み込むように行うこ
とが好ましい。また、巻回型の発電要素の場合には、周
側面の全体を中心軸方向に圧迫することが好ましい。な
お、冷却時だけでなく、加熱時にもこの電池ケースを圧
迫するようにしてもよい。このように加熱時にも圧迫を
加えれば、加熱途上で溶融軟化した高分子層4を正極1
や負極2の表面に押し付けることができるので、これら
の間の隙間を確実に埋めて接着を行うことができるよう
になる。
The polymer battery manufactured in the above battery manufacturing process is heated once and then cooled, and at the same time, the battery case is pressed (heating and pressing process). When the polymer battery is heated, the polymer layer 4 of the power generating element housed in the battery case swells or semi-melts, and when cooled, the polymer layer 4 is solidified or returns to a gel state. Further, when the battery case is pressed during this cooling, the swollen or semi-molten polymer layer 4 adheres to the surfaces of the positive electrode 1 and the negative electrode 2 facing each other, and returns to the solidified or gel state to be adhered. When the laminated power generation element is used as in the present embodiment, the pressing of the battery case is preferably performed so as to be sandwiched from both sides in the stacking direction. Further, in the case of a winding type power generation element, it is preferable to press the entire peripheral side surface in the central axis direction. The battery case may be pressed not only during cooling but also during heating. If pressure is applied even during heating in this way, the polymer layer 4 melted and softened during heating is heated to the positive electrode 1
Since it can be pressed against the surface of the negative electrode 2 or the negative electrode 2, it is possible to reliably fill the gap between them and perform the bonding.

【0024】上記加熱圧迫工程における加熱は、ポリマ
ー電池の発電要素全体の最高温度が60°C以上、10
0°C以下の範囲内となるように行うのが最適である。
加熱温度が60°C未満では、高分子層4が接着に十分
なほどの溶融状態に達しない。これに対して、加熱温度
が100°Cより高いと、高分子層4が溶融し過ぎて、
多孔質の高分子層4であればこの多孔性が損なわれた
り、正極1と負極2の間から溶け出すおそれが生じる。
しかも、さらに高温になると、高分子層4や電解液等か
らガスが発生して電池ケースが膨張する等の不都合も発
生するようになる。また、加熱時間は、接着を確実かつ
十分なものとするために、5分以上、5時間未満が適当
である。さらに、加熱時の昇温速度は、0.01°C/
秒以上であることが好ましく、50°Cまでの冷却時の
降温速度は、0.005°C/秒以上であることが好ま
しい。高温の状態を長時間保つと、高分子層4や電解液
等が変質したりガスを発生するおそれがあるからであ
る。ただし、冷却時に50°C以下の温度まで低下すれ
ば、接着は確実に行われるので、さらに50°C以下の
温度まで急冷することにより、工程に要する時間を短縮
することができる。
The heating in the above heating / pressing step is performed by heating the maximum temperature of the entire power generation element of the polymer battery to 60 ° C. or higher, 10
Optimally, it is carried out within the range of 0 ° C or lower.
If the heating temperature is lower than 60 ° C, the polymer layer 4 does not reach a molten state sufficient for adhesion. On the other hand, when the heating temperature is higher than 100 ° C, the polymer layer 4 melts too much,
If it is the porous polymer layer 4, this porosity may be impaired or it may melt out between the positive electrode 1 and the negative electrode 2.
Moreover, when the temperature becomes higher, gas is generated from the polymer layer 4, the electrolytic solution, etc., and the battery case expands. In addition, the heating time is preferably 5 minutes or more and less than 5 hours in order to ensure the adhesion to be sure and sufficient. Furthermore, the heating rate during heating is 0.01 ° C /
Seconds or more is preferable, and the temperature lowering rate at the time of cooling to 50 ° C is preferably 0.005 ° C / sec or more. This is because if the high temperature state is maintained for a long time, the polymer layer 4, the electrolytic solution and the like may be deteriorated or gas may be generated. However, if the temperature is lowered to 50 ° C. or lower during cooling, the bonding is surely performed. Therefore, by rapidly cooling the temperature to 50 ° C. or lower, the time required for the process can be shortened.

【0025】以上説明したように、本実施形態のポリマ
ー電池の製造方法によれば、電池作製工程で電池ケース
内に電解液を注入すると、高分子層4と正極1や負極2
との間の隙間からこの電解液が発電要素の中央部にまで
入り込み、これらの高分子層4と正極1や負極2の表面
全体から内部に迅速に含浸させることができるようにな
る。このため、電解液が発電要素の内部に十分に含浸さ
れるまでの待ち時間が短くて済むので、ポリマー電池の
生産性を高めることができるようになる。また、このポ
リマー電池は、電池ケースを密閉した後に、加熱圧迫工
程によって高分子層4の接着のための加熱を行うので、
この加熱によって電解液等がガスを発生したとしても、
電池ケースの外部に放出されることがなくなり、安全に
製造を行うことができるようになる。
As described above, according to the method for manufacturing the polymer battery of this embodiment, when the electrolytic solution is injected into the battery case in the battery manufacturing process, the polymer layer 4 and the positive electrode 1 or the negative electrode 2 are formed.
This electrolytic solution enters the central portion of the power generation element through the gap between the polymer layer 4 and the positive electrode 1 or the negative electrode 2 and can be quickly impregnated into the inside. Therefore, the waiting time until the electrolytic solution is sufficiently impregnated into the power generating element can be shortened, so that the productivity of the polymer battery can be improved. Further, in this polymer battery, after the battery case is sealed, heating for adhering the polymer layer 4 is performed by a heating and pressing process,
Even if the electrolytic solution generates gas due to this heating,
It will not be released to the outside of the battery case, and it will be possible to manufacture safely.

【0026】しかも、発電要素作製工程では、セパレー
タ3の両面に形成された高分子層4に電解液が含浸され
ていない状態で積層作業が行われるので、ゲル状の高分
子層4を取り扱う場合のように製造が困難になるような
こともなくなる。また、電池作製工程では、電池ケース
内に所定量の電解液を注入することができるので、この
電解液の注入量にバラツキが生じるようなこともなくな
る。さらに、このポリマー電池は、正極1と負極2の間
にセパレータ3を介在させるので、電池の内部短絡も発
生し難くなる。
Moreover, in the power generation element manufacturing process, since the polymer layer 4 formed on both surfaces of the separator 3 is laminated without the electrolytic solution impregnated therein, when the gel polymer layer 4 is handled. It will not be difficult to manufacture like the above. Further, in the battery manufacturing process, a predetermined amount of the electrolytic solution can be injected into the battery case, so that the injected amount of the electrolytic solution does not vary. Furthermore, in this polymer battery, since the separator 3 is interposed between the positive electrode 1 and the negative electrode 2, an internal short circuit of the battery is less likely to occur.

【0027】なお、上記実施形態では、高分子層4をセ
パレータ3に形成する場合について説明したが、正極1
や負極2のいずれか又は双方に形成するようにしてもよ
く、これら正極1や負極2とセパレータ3の全てに形成
することもできる。
In the above embodiment, the case where the polymer layer 4 is formed on the separator 3 has been described, but the positive electrode 1
It may be formed on either or both of the negative electrode 2 and the negative electrode 2, or may be formed on all of the positive electrode 1 or the negative electrode 2 and the separator 3.

【0028】また、上記実施形態では、積層型の発電要
素を備えたポリマー電池について説明したが、巻回型の
発電要素を備えたポリマー電池にも同様に実施可能であ
る。さらに、セパレータ3を介した正極1と負極2を高
分子層4によって接着する発電要素を備えた電池であれ
ば、ポリマー電池以外の非水電解質電池にも同様に実施
可能である。
Further, in the above embodiment, the polymer battery provided with the laminated power generation element has been described, but the present invention can be similarly applied to the polymer battery provided with the wound power generation element. Further, as long as it is a battery provided with a power generation element in which the positive electrode 1 and the negative electrode 2 are bonded with the polymer layer 4 via the separator 3, the same can be applied to non-aqueous electrolyte batteries other than polymer batteries.

【0029】[0029]

【実施例】次に、本発明を好適な実施例にもとづき説明
する。
Next, the present invention will be described based on preferred embodiments.

【0030】[実施例1〜11]本発明になる非水電解
質二次電池は、正極板とセパレータと負極板とからなる
長円形巻回型発電要素が非水系の電解液(図示省略)と
ともに金属ラミネート樹脂フィルムを熱溶着してなる金
属ラミネート樹脂フィルムケースに収納されたものであ
り、その外観を図2に示す。図2において、11は発電
要素、12は電池ケース、13は電池ケースの溶着部、
14は正極端子、15は負極端子である。
[Examples 1 to 11] In the non-aqueous electrolyte secondary battery according to the present invention, an oval-wound power generating element composed of a positive electrode plate, a separator and a negative electrode plate together with a non-aqueous electrolyte solution (not shown). It is housed in a metal laminated resin film case formed by heat welding a metal laminated resin film, and its appearance is shown in FIG. In FIG. 2, 11 is a power generation element, 12 is a battery case, 13 is a welding part of the battery case,
14 is a positive electrode terminal and 15 is a negative electrode terminal.

【0031】正極活物質にはリチウムコバルト複合酸化
物を用いた。正極板は集電体に上記のリチウムコバルト
複合酸化物が活物質として保持したものである。集電体
は厚さ20μmのアルミニウム箔を用いた。正極板は、
結着剤であるPVDF6wt%と導電剤であるアセチレ
ンブラック4wt%とを活物質90wt%とともに混合
し、適宜N−メチルピロリドンを加えてペースト状に調
製した後、その集電体材料の両面に塗布、乾燥すること
によって製作した。
A lithium cobalt composite oxide was used as the positive electrode active material. The positive electrode plate is obtained by holding the above lithium cobalt composite oxide as an active material on a current collector. An aluminum foil having a thickness of 20 μm was used as the current collector. The positive plate is
PVDF 6 wt% which is a binder and acetylene black 4 wt% which is a conductive agent are mixed with 90 wt% of an active material, and N-methylpyrrolidone is appropriately added to prepare a paste, which is then applied to both surfaces of the current collector material. It was made by drying.

【0032】負極板は、集電体の両面に、ホスト物質と
してのグラファイト(黒鉛)92wt%と結着剤として
のPVDF8wt%とを混合し、適宜N−メチルピロリ
ドンを加えてペースト状に調製したものを塗布、乾燥す
ることによって製作した。負極板の集電体は、厚さ15
μmの銅箔を用いた。
The negative electrode plate was prepared in a paste form by mixing 92 wt% of graphite (graphite) as a host substance and 8 wt% of PVDF as a binder on both sides of the current collector, and appropriately adding N-methylpyrrolidone. It was manufactured by applying and drying the product. The current collector of the negative electrode plate has a thickness of 15
A copper foil of μm was used.

【0033】これらの正極板と負極板を、正極板が厚さ
150μm、幅48mm、負極板が厚さ160μm、幅
49mmなるようにプレス加工および成形し、正極板及
び負極板にそれぞれリード端子を溶接して本発明になる
非水電解質二次電池用の正極板および負極板を得た。
The positive electrode plate and the negative electrode plate were pressed and molded so that the positive electrode plate had a thickness of 150 μm and a width of 48 mm and the negative electrode plate had a thickness of 160 μm and a width of 49 mm, and lead terminals were respectively attached to the positive electrode plate and the negative electrode plate. By welding, a positive electrode plate and a negative electrode plate for a non-aqueous electrolyte secondary battery according to the present invention were obtained.

【0034】セパレータには厚みが20μmのポリエチ
レン微多孔膜の表面に、多孔性のPVDF−HFP共重
合体層を両面にそれぞれ5μmずつ形成したものを用い
た。ポリエチレン微多孔膜の表面に多孔性のPVDF−
HFP共重合体を形成する方法としては、PVDF−H
FP共重合体を溶解させたNMP溶液をポリエチレン微
多孔膜に塗布した後、精製水中に浸漬してポリマー溶液
中のNMPを除去し精製水と置換させることによって多
孔化を行った。その後、60°Cで乾燥させることによ
り表面に多孔性のPVDF−HFP共重合体層を有する
ポリエチレン微多孔膜を得た。ここで、多孔性PDVF
−HFP共重合体の塗布量は10g/m2とした。
As the separator, a polyethylene microporous film having a thickness of 20 μm, on which a porous PVDF-HFP copolymer layer was formed on both sides by 5 μm, was used. Porous PVDF-on the surface of polyethylene microporous membrane
As a method for forming the HFP copolymer, PVDF-H is used.
The NMP solution in which the FP copolymer was dissolved was applied to the polyethylene microporous membrane, and then immersed in purified water to remove NMP in the polymer solution and replace it with purified water to perform porosification. Then, by drying at 60 ° C, a polyethylene microporous membrane having a porous PVDF-HFP copolymer layer on the surface was obtained. Where porous PDVF
The coating amount of the -HFP copolymer was 10 g / m2.

【0035】これらの正極板、負極板およびセパレータ
を正極板−セパレータ−負極板−セパレータの順に重ね
合わせてポリエチレン製の長方形状の巻芯を中心とし
て、長辺が発電要素の巻回中心軸と平行になるよう、そ
の周囲に長円渦状に巻回して、50×35×3mmの大
きさの発電要素とした。
The positive electrode plate, the negative electrode plate, and the separator are superposed in the order of positive electrode plate-separator-negative electrode plate-separator, with a rectangular winding core made of polyethylene as the center, and the longer side is the winding center axis of the power generating element. It was wound in an elliptical spiral shape around it so as to be parallel to each other to obtain a power generation element having a size of 50 × 35 × 3 mm.

【0036】そして、電極の絶縁部分をポリエチレンか
らなる巻き止め用テープで電極幅に相当する長さを、巻
回中心軸と平行な発電要素側壁部分に貼り付け、発電要
素を巻き止め固定した。
Then, the insulating portion of the electrode was affixed to the side wall of the power generation element parallel to the winding central axis with a length corresponding to the electrode width using a polyethylene winding tape to fix the power generation element.

【0037】これをあらかじめ深搾り加工をした金属ラ
ミネート樹脂フィルムケースの凹面に、長円形巻回型発
電要素を収納し、リード端子側および側面の一辺を熱溶
着して袋状とし、溶着していないケースの開口部から、
電解液を各電極とセパレータが十分湿潤し、発電要素外
にフリーな電解液が存在しない量を真空注液した。
The elliptical winding type power generating element is housed in the concave surface of the metal laminated resin film case which has been subjected to a deep squeezing process in advance, and the lead terminal side and one side of the side surface are heat-welded into a bag shape and then welded. Not through the opening of the case,
Each electrode and the separator were sufficiently moistened with the electrolytic solution, and an amount such that there was no free electrolytic solution outside the power generating element was vacuum-injected.

【0038】電解液には、LiPF6 を1mol/l含
むエチレンカーボネート:ジエチルカーボネート=4:
6(体積比)の混合液とした。
The electrolytic solution contains 1 mol / l of LiPF 6 ethylene carbonate: diethyl carbonate = 4:
A mixed solution of 6 (volume ratio) was prepared.

【0039】その後、金属ラミネート樹脂フィルムの開
口部を真空に引きながら熱溶着することにより封口し
た。
After that, the opening of the metal laminated resin film was sealed by heat welding while drawing a vacuum.

【0040】得られた電池を図3に示した電池圧迫ジグ
を用いて、表1に示した各圧迫力で圧迫しながら、それ
ぞれの温度の恒温槽中に30分間放置した。なお、図3
において、21は電池、22は圧縮バネ、23はSUS
板である。その後、表1に示した圧迫力で圧迫したまま
30分間かけて室温まで冷却した。以上のようにして、
本発明になる定格容量500mAhの非水電解質二次電
池A1〜A11を試作した。
The obtained battery was left to stand in a constant temperature bath at each temperature for 30 minutes while being pressed with each pressing force shown in Table 1 using the battery pressing jig shown in FIG. Note that FIG.
, 21 is a battery, 22 is a compression spring, and 23 is SUS
It is a plate. Then, it was cooled to room temperature over 30 minutes while being pressed with the pressing force shown in Table 1. As described above,
Non-aqueous electrolyte secondary batteries A1 to A11 having a rated capacity of 500 mAh according to the present invention were manufactured as prototypes.

【0041】[実施例12]実施例12は、圧迫工程に
おいて、加熱時は圧迫をおこなわずに、冷却時のみ0.
1MPa/cm2 の圧迫力で圧迫しながら冷却したこと
以外は実施例1と同様の構成要素および作成方法で製作
した非水電解質二次電池である。またこの電池をA12
とした。
[Embodiment 12] In Embodiment 12, in the compressing step, compression is not performed at the time of heating and only 0.
A non-aqueous electrolyte secondary battery manufactured by the same components and manufacturing method as in Example 1 except that cooling was performed while pressing with a pressing force of 1 MPa / cm 2 . This battery is A12
And

【0042】[比較例1]比較例1は、圧迫工程におい
て、加熱時は0.1MPa/cm2 の圧迫力で圧迫をお
こなったが、冷却時は圧迫せずに冷却したこと以外は実
施例1と同様の構成要素および作製方法で製作した非水
電解質二次電池である。またこの電池をA13とした。
[Comparative Example 1] In Comparative Example 1, in the pressing step, pressing was performed with a pressing force of 0.1 MPa / cm 2 during heating, but cooling was performed without pressing during cooling. It is a non-aqueous electrolyte secondary battery manufactured by the same constituent elements and manufacturing method as in No. 1. This battery was designated as A13.

【0043】[比較例2]比較例2は、圧迫工程におい
て、加熱時および冷却時とも圧迫をおこなわなかったこ
と以外は実施例1〜11と同様の構成要素および作製方
法で製作した非水電解質二次電池である。またこの電池
をA14とした。
[Comparative Example 2] In Comparative Example 2, a non-aqueous electrolyte produced by the same components and manufacturing method as in Examples 1 to 11 except that no compression was performed during heating and cooling during the compression step. It is a secondary battery. This battery was designated as A14.

【0044】[比較例3]以下に比較例3の製造方法を
示す。正負極板には実施例1〜11と同じものを用い
た。セパレータには、ポリエチレン微多孔膜を用いた。
この、ポリエチレン微多孔膜上に、PVDF−HFP共
重合体を溶解させたNMP溶液を塗布した後、ポリマー
溶液が乾燥する前に、正極板と負極板をそれぞれ正極
板、隔離体、負極板の順に重ね合わせ、ポリエチレン製
の長方形状の巻芯を中心として、長辺が発電要素の巻回
中心軸と平行になるよう、その周囲に長円渦状に巻回し
た。得られた発電要素を図3に示した圧迫ジグを用いて
0.1MPa/cm2 の圧迫力で圧迫しながら、80°
Cで5時間乾燥させることにより、NMPを除去し、正
極板と隔離体および負極板と隔離体間をPVDF−HF
P共重合体で接着させた。
Comparative Example 3 The manufacturing method of Comparative Example 3 will be described below. The same positive and negative electrode plates as in Examples 1 to 11 were used. A polyethylene microporous membrane was used for the separator.
After applying the NMP solution in which the PVDF-HFP copolymer was dissolved onto the polyethylene microporous membrane, the positive electrode plate and the negative electrode plate were respectively separated into the positive electrode plate, the separator, and the negative electrode plate before the polymer solution was dried. They were stacked one on top of the other, and were wound in an elliptical spiral shape around a rectangular winding core made of polyethylene so that the long side was parallel to the winding center axis of the power generation element. While pressing the obtained power generating element with a pressing force of 0.1 MPa / cm 2 using the pressing jig shown in FIG.
NMP is removed by drying at C for 5 hours, and PVDF-HF is removed between the positive electrode plate and the separator and between the negative electrode plate and the separator.
Bonded with P-copolymer.

【0045】これを実施例1と同様に、金属ラミネート
樹脂フィルムケースに発電要素を収納し、電解液を注液
したのち、金属ラミネート樹脂フィルムの開口部を封口
し、比較例3の非水電解質電池を作製した。この電池を
B1とした。
In the same manner as in Example 1, the power generating element was housed in the metal laminated resin film case, the electrolytic solution was injected, and the opening of the metal laminated resin film was sealed to obtain the non-aqueous electrolyte of Comparative Example 3. A battery was made. This battery was designated as B1.

【0046】[比較例4][Comparative Example 4]

【0047】以下に比較例4の製造方法を示す。正負極
板には実施例1と同じものを用いた。セパレータには、
PVDF−HFP共重合体の多孔性高分子膜を用いた。
この多孔性高分子膜と正負極板をそれぞれ正極板−セパ
レータ−負極板の順に重ね合わせ、ポリエチレン製の長
方形状の巻芯を中心として、長辺が発電要素の巻回中心
軸と平行になるよう、その周囲に長円渦状に巻回した。
得られた発電要素を図3に示した圧迫ジグを用いて0.
1MPa/cm2 の圧迫力で圧迫しながら、PVDF−
HFP共重合体の融点である145°Cまで加熱して、
高分子膜を融解させたのち、冷却することにより、正負
極間を高分子層で接着した発電要素を得た。
The manufacturing method of Comparative Example 4 will be described below. The same positive and negative electrode plates as in Example 1 were used. The separator is
A porous polymer membrane of PVDF-HFP copolymer was used.
The porous polymer film and the positive and negative electrode plates are superposed on each other in the order of positive electrode plate-separator-negative electrode plate, and the long side is parallel to the winding center axis of the power generation element with the rectangular winding core made of polyethylene as the center. So that it was spirally wound around it.
The obtained power generating element was measured using the compression jig shown in FIG.
While pressing with a compression force of 1 MPa / cm 2 , PVDF-
Heat to 145 ° C, which is the melting point of the HFP copolymer,
The polymer film was melted and then cooled to obtain a power generation element in which the positive and negative electrodes were bonded with a polymer layer.

【0048】これを実施例1と同様に、金属ラミネート
樹脂フィルムケースに発電要素を収納し、電解液を注液
したのち、金属ラミネート樹脂フィルムの開口部を封口
し、比較例4の非水電解質電池を作製した。この電池を
B2とした。
In the same manner as in Example 1, the power generating element was housed in a metal laminated resin film case, an electrolytic solution was injected, and then the opening of the metal laminated resin film was sealed to obtain a non-aqueous electrolyte of Comparative Example 4. A battery was made. This battery was designated as B2.

【0049】そこで、電解液の含浸性および極板間の接
着性の確認をおこなった。得られた非水電解質二次電池
を解体し、電解液が極板の全面に含浸されているか(電
解液の含浸性)、および正極板―セバレータ間および負
極板―セパレータ間が高分子層によって接着されている
か(接着性)の確認をおこなった。その結果を、表1に
示す。また比較例3、4については、注液から解体調査
までの時間が実施例と同じになるように、封口後に1時
間放置した後、解体調査をおこなった。
Therefore, the impregnation property of the electrolytic solution and the adhesion property between the electrode plates were confirmed. The obtained non-aqueous electrolyte secondary battery was disassembled, and whether the entire surface of the electrode plate was impregnated with the electrolytic solution (impregnating property of the electrolytic solution), and the positive electrode plate-separator and the negative electrode plate-separator were separated by the polymer layer. It was confirmed whether they were adhered (adhesiveness). The results are shown in Table 1. Further, in Comparative Examples 3 and 4, the disassembly survey was conducted after leaving for 1 hour after sealing so that the time from the injection to the disassembly survey was the same as that of the example.

【0050】なお、電解液の浸透性については、電解液
に濡れていない極板の面積が全極板面積の20%以上の
場合を×、濡れていない面積が20%未満だが一部に濡
れていない箇所がある場合を△、全面積が濡れいてる場
合を○とした。また、極板間の接着性については、全く
接着していない場合を×、極板面積の60%未満が接着
されている場合を△、60%以上90%未満が接着され
ている場合を○、90%以上接着されている場合を◎と
した。
Regarding the permeability of the electrolytic solution, the case where the area of the electrode plate which was not wet with the electrolytic solution was 20% or more of the total electrode plate area was x, and the area which was not wet was less than 20% but partially wetted. The case where there was no part was marked with △, and the case where the entire area was wet was marked with ○. Regarding the adhesiveness between the electrode plates, x is the case where they are not adhered at all, Δ is the case where less than 60% of the electrode plate area is adhered, and ○ is the case where 60% or more and less than 90% is adhered. The case where 90% or more was adhered was marked with ⊚.

【0051】[0051]

【表1】 以上の結果から、本発明の製造方法は、電極やセパレー
タと高分子層との接着をおこなう前に、電解液の注入を
おこなうので、電解液を発電要素の内部に迅速に含浸さ
せることができる。また、冷却時に圧迫をおこなうこと
によって、良好に接着させることができる。また、圧迫
時の圧迫力は、0.03MPa/cm2以上とすること
が好ましい。また、圧迫時の加熱温度は60°C以上と
することが好ましい。
[Table 1] From the above results, in the manufacturing method of the present invention, since the electrolytic solution is injected before performing the adhesion between the electrode and the separator and the polymer layer, the electrolytic solution can be quickly impregnated into the power generating element. . Also, by applying pressure during cooling, good adhesion can be achieved. Further, the compression force during compression is preferably 0.03 MPa / cm 2 or more. Further, the heating temperature at the time of compression is preferably 60 ° C. or higher.

【0052】[0052]

【発明の効果】以上の説明から明らかなように、本発明
の非水電解質電池の製造方法によれば、電極やセパレー
タと高分子層との接着を行う前に電解液の注入を行うの
で、この高分子層と電極等との隙間から電解液を入り込
ませて発電要素の内部に迅速に含浸させることができる
ようになる。また、電池ケースを密閉した状態で、高分
子層の接着のための加熱圧迫を行うので、ガスの放出の
おそれがなくなり、安全に製造を行うことができるよう
になる。
As is apparent from the above description, according to the method for producing a non-aqueous electrolyte battery of the present invention, the electrolyte solution is injected before the electrodes and the separator are adhered to the polymer layer. The electrolytic solution can be allowed to enter through the gap between the polymer layer and the electrode or the like to quickly impregnate the inside of the power generation element. In addition, since heating and pressing for adhering the polymer layer are performed in a state where the battery case is hermetically sealed, there is no fear of gas release, and safe manufacturing can be performed.

【0053】しかも、電池ケース内には、所定量の電解
液を注入することができるので、この電解液の注入量に
バラツキが生じるようなことがなくなる。また、電極間
にセパレータを介在させるので、電池の内部短絡も発生
し難くなる。
Moreover, since a predetermined amount of electrolytic solution can be injected into the battery case, there is no variation in the injected amount of this electrolytic solution. Moreover, since the separator is interposed between the electrodes, an internal short circuit of the battery is less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示すものであって、両面
に高分子層を形成したセパレータを介して正極と負極を
積層した発電要素の部分拡大縦断面図である。
FIG. 1 shows an embodiment of the present invention and is a partially enlarged vertical cross-sectional view of a power generation element in which a positive electrode and a negative electrode are laminated with a separator having polymer layers formed on both sides thereof.

【図2】本発明の実施例を示すものであって、非水電解
質電池の外観を示す図である。
FIG. 2 shows an example of the present invention and is a diagram showing the appearance of a non-aqueous electrolyte battery.

【図3】本発明の実施例を示すものであって、電池圧迫
ジクを示す図である。
FIG. 3 shows an embodiment of the present invention and is a diagram showing a battery pressing jig.

【図4】従来例を示すものであって、両面に高分子層を
形成したセパレータを介して正極と負極を積層し接着し
た発電要素の部分拡大縦断面図である。
FIG. 4 shows a conventional example and is a partially enlarged vertical cross-sectional view of a power generation element in which a positive electrode and a negative electrode are laminated and bonded via a separator having polymer layers formed on both surfaces.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 高分子層 1 positive electrode 2 Negative electrode 3 separator 4 polymer layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 BJ12 BJ14 BJ22 CJ02 CJ03 CJ07 CJ13 DJ02 DJ04 HJ14    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ14 AK03 AL07 AM03 AM05                       AM07 BJ12 BJ14 BJ22 CJ02                       CJ03 CJ07 CJ13 DJ02 DJ04                       HJ14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正負いずれか若しくは双方の電極及び/
又はセパレータの両面若しくは片面に高分子層を形成す
る高分子層形成工程と、前記高分子層形成工程で得られ
た正極、負極およびセパレータを積層し又は巻回するこ
とにより発電要素を作製する発電要素作製工程と、この
発電要素を電池ケースに収納し、電池ケース内に電解液
を注入して密閉することにより電池を作製する電池作製
工程と、この電池を加熱した後に冷却し、少なくとも冷
却時に電池ケースを圧迫する圧迫工程とを備えたことを
特徴とする非水電解質電池の製造方法。
1. Positive and / or negative electrodes and / or
Alternatively, a polymer layer forming step of forming a polymer layer on both sides or one side of a separator, and a positive electrode, a negative electrode and a separator obtained in the polymer layer forming step are laminated or wound to produce a power generating element. Element manufacturing process, a battery manufacturing process in which this power generation element is housed in a battery case, and a battery is manufactured by injecting an electrolyte into the battery case and sealing the battery, and after cooling the battery after heating, at least at the time of cooling A method of manufacturing a non-aqueous electrolyte battery, comprising: a pressing step of pressing a battery case.
【請求項2】 前記圧迫工程が、電池作製工程で作製し
た電池を加熱した後に冷却すると共に、この加熱時と冷
却時に電池ケースを圧迫するものであることを特徴とす
る請求項1に記載の非水電解質電池の製造方法。
2. The pressing step comprises heating the battery manufactured in the battery manufacturing step and then cooling the battery, and pressing the battery case during the heating and the cooling. Manufacturing method of non-aqueous electrolyte battery.
【請求項3】 前記圧迫工程における、加熱時の発電要
素の最高温度が60℃以上、100℃以下であることを
特徴とする請求項1又は2に記載の非水電解質電池の製
造方法。
3. The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the maximum temperature of the power generation element during heating in the pressing step is 60 ° C. or higher and 100 ° C. or lower.
JP2001358773A 2001-06-18 2001-11-26 Method of manufacturing nonaqueous electrolyte battery Pending JP2003077545A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001358773A JP2003077545A (en) 2001-06-18 2001-11-26 Method of manufacturing nonaqueous electrolyte battery
US10/171,692 US6835214B2 (en) 2001-06-18 2002-06-17 Process for the production of non-aqueous electrolyte battery
CN02122606A CN1392625A (en) 2001-06-18 2002-06-18 Method for preparing non-water electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001182790 2001-06-18
JP2001-182790 2001-06-18
JP2001358773A JP2003077545A (en) 2001-06-18 2001-11-26 Method of manufacturing nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2003077545A true JP2003077545A (en) 2003-03-14

Family

ID=26617077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358773A Pending JP2003077545A (en) 2001-06-18 2001-11-26 Method of manufacturing nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2003077545A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189478B2 (en) 2002-09-27 2007-03-13 Tdk Corporation Lithium secondary battery
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
US9368778B2 (en) 2011-11-15 2016-06-14 Teijin Limited Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
US9887406B2 (en) 2012-03-09 2018-02-06 Teijin Limited Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP2019071178A (en) * 2017-10-06 2019-05-09 株式会社Gsユアサ Method of manufacturing power storage element
WO2019225077A1 (en) * 2018-05-24 2019-11-28 株式会社日立製作所 Cell sheet and cell
JP2020038850A (en) * 2013-03-12 2020-03-12 エネヴェート・コーポレーション Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
CN111937211A (en) * 2018-04-09 2020-11-13 日产自动车株式会社 Method for manufacturing battery
CN114503322A (en) * 2019-12-10 2022-05-13 株式会社Lg新能源 Apparatus and method for manufacturing unit cell
US11616219B2 (en) 2010-12-22 2023-03-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189478B2 (en) 2002-09-27 2007-03-13 Tdk Corporation Lithium secondary battery
US11616219B2 (en) 2010-12-22 2023-03-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
US9368778B2 (en) 2011-11-15 2016-06-14 Teijin Limited Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
US9887406B2 (en) 2012-03-09 2018-02-06 Teijin Limited Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP2020038850A (en) * 2013-03-12 2020-03-12 エネヴェート・コーポレーション Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP2022002225A (en) * 2013-03-12 2022-01-06 エネヴェート・コーポレーション Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP2019071178A (en) * 2017-10-06 2019-05-09 株式会社Gsユアサ Method of manufacturing power storage element
JP7069625B2 (en) 2017-10-06 2022-05-18 株式会社Gsユアサ Manufacturing method of power storage element
CN111937211A (en) * 2018-04-09 2020-11-13 日产自动车株式会社 Method for manufacturing battery
WO2019225077A1 (en) * 2018-05-24 2019-11-28 株式会社日立製作所 Cell sheet and cell
CN114503322A (en) * 2019-12-10 2022-05-13 株式会社Lg新能源 Apparatus and method for manufacturing unit cell

Similar Documents

Publication Publication Date Title
US5716421A (en) Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same
KR100271237B1 (en) Method of fabrication a lithium ion secondary battery
KR100536431B1 (en) Nonaqueous electrolyte secondary battery, its producing method and battery aggregate
JP5129895B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
US20030194607A1 (en) Polymer-gel lithium ion battery
CN104508861B (en) Separator for non-aqueous electrolyte battery and nonaqueous electrolyte battery
JP3745593B2 (en) Battery and manufacturing method thereof
JP2004253168A (en) Bipolar battery
US6235066B1 (en) Manufacture of lithium ion secondary battery
JP2009543289A (en) Battery manufacturing method using aluminum multilayer film as appearance
US6835214B2 (en) Process for the production of non-aqueous electrolyte battery
JP2010244930A (en) Method for manufacturing laminated battery
JP7066719B2 (en) Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
WO2010135573A2 (en) Treatment and adhesive for microporous membranes
JP2004164896A (en) Electrode for all-solid polymer battery and its manufacturing method
JP2005019156A (en) Separator for electronic component, and electronic component
JP2000315481A (en) Nonaqueous electrolyte secondary battery
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP4142921B2 (en) Lithium ion secondary battery
JP2003077545A (en) Method of manufacturing nonaqueous electrolyte battery
JP4565713B2 (en) Sheet-like lithium battery structure and method for producing sheet-like lithium battery
KR20080095978A (en) Method for production of electrode assembly with improved electrolyte wetting property
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP3814074B2 (en) Non-aqueous electrochemical element