WO2017073763A1 - 多能性幹細胞の分化抵抗性を減弱する方法 - Google Patents

多能性幹細胞の分化抵抗性を減弱する方法 Download PDF

Info

Publication number
WO2017073763A1
WO2017073763A1 PCT/JP2016/082152 JP2016082152W WO2017073763A1 WO 2017073763 A1 WO2017073763 A1 WO 2017073763A1 JP 2016082152 W JP2016082152 W JP 2016082152W WO 2017073763 A1 WO2017073763 A1 WO 2017073763A1
Authority
WO
WIPO (PCT)
Prior art keywords
pluripotent stem
gene
demethylase
stem cells
differentiation
Prior art date
Application number
PCT/JP2016/082152
Other languages
English (en)
French (fr)
Inventor
実 洪
智彦 秋山
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Priority to US15/770,634 priority Critical patent/US11136552B2/en
Priority to JP2017547911A priority patent/JP6874994B2/ja
Publication of WO2017073763A1 publication Critical patent/WO2017073763A1/ja
Priority to US17/466,228 priority patent/US20210395692A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/45Artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present disclosure is a method for attenuating differentiation resistance of a pluripotent stem cell into a desired cell type, and more specifically, a method for efficiently differentiating a pluripotent stem cell into a desired cell type and a method for the differentiation. It relates to a differentiation-inducing agent used in the above. This application claims the priority of Japanese Patent Application No. 2015-211356, which is incorporated herein by reference.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • the current mainstream method of inducing differentiation from pluripotent stem cells to the desired cell type is to add cytokines / growth factors suitable for each differentiation stage to the medium in order, and differentiate them via embryoid bodies and progenitor cells. is there.
  • This method has problems such as a long culture period until the desired differentiated cells are obtained, differentiation induction efficiency is not high, and cells of different cell lineages coexist.
  • attempts have been actively made to direct cell differentiation by forcing expression into ES / iPS cells by combining a single or a plurality of transcription factors expressed specifically in tissues.
  • This differentiation induction method using a transcription factor is expected as a very effective means because it can directly induce ES / iPS cells into the desired differentiated cells.
  • the cell differentiation induction efficiency is low, it is difficult to obtain a sufficient amount of target differentiated cells necessary for regenerative medicine depending on the cell type.
  • Prior art Non-Patent Documents 1 to 4 are systems that promote the induction of differentiation of ES / iPS cells, and as one example, disclose the induction of ES / iPS cells to skeletal muscle differentiation.
  • the present inventors thought that part of the above problems was caused by the fact that pluripotent stem cells have the property of resisting cell differentiation (stem cell maintenance) by various mechanisms. Therefore, a method of reducing the differentiation resistance of pluripotent stem cells, producing pluripotent stem cells that actively advance the cell type in the differentiation direction, and inducing differentiation into the desired cell type in a short time with high efficiency.
  • the headline and the present invention were completed.
  • a differentiation induction kit for differentiating a pluripotent stem cell containing at least any one of the following (1) to (5) into a desired cell type; (1) pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced, (2) a pluripotent stem cell in which demethylase is forcibly expressed, (3) Pluripotent stem cell and demethylase gene, (4) a gene construct and pluripotent stem cell carrying a demethylase gene, and (5) a pluripotent stem cell into which a gene construct carrying a demethylase gene has been inserted into the genome.
  • the differentiation induction kit according to item 1 above which comprises (1), (2) or (5).
  • the differentiation induction kit according to item 1 or 2, wherein the demethylase is JMJD3. 4). 3. The differentiation-inducing kit according to item 1 or 2, wherein the demethylase contains only the enzyme active region of JMJD3. 5). 4. The differentiation-inducing kit according to item 3, wherein the amino acid sequence of the demethylase is any one of SEQ ID NOs: 1 to 3. 6). The differentiation induction kit according to any one of claims 1 to 5, further comprising a transcription factor necessary for induction of differentiation into a desired cell type. 7).
  • a differentiation induction kit for differentiating pluripotent stem cells containing at least any one of the following (1) to (5) into skeletal muscle cells; (1) Pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced, and transcription factor MYOD1, (2) Pluripotent stem cells forcibly expressing demethylase and transcription factor MYOD1, (3) pluripotent stem cells, demethylase gene and transcription factor MYOD1, (4) A gene construct carrying a demethylase gene, a pluripotent stem cell and MYOD1 which is a transcription factor, and (5) a pluripotent stem cell in which a gene construct carrying a demethylase gene is inserted into the genome As well as the transcription factor MYOD1. 8).
  • a differentiation-inducing kit for differentiating pluripotent stem cells containing at least any one of the following (1) to (5) into neurons, (1) Pluripotent stem cells having histones with substantially eliminated or reduced H3K27me3 modifications and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2, (2) Pluripotent stem cells forcibly expressing demethylase and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2, (3) Pluripotent stem cells, demethylase genes and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2, (4) Gene constructs carrying demethylase genes, pluripotent stem cells and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1 and NEUROD2, and (5) gene constructs carrying demethylase genes in the genome Inserted pluripotent stem cells and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2.
  • a differentiation-inducing kit for differentiating pluripotent stem cells containing at least any one of the following (1) to (5) into hepatocytes, (1) Pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced, and transcription factor HNF1A, (2) Pluripotent stem cells forcibly expressing demethylase and transcription factor HNF1A, (3) Pluripotent stem cells, demethylase gene and transcription factor HNF1A, (4) A gene construct carrying a demethylase gene, a pluripotent stem cell and a transcription factor HNF1A, and (5) a pluripotent stem cell in which a gene construct carrying a demethylase gene is inserted into the genome As well as HNF1A, a transcription factor.
  • a method of differentiating pluripotent stem cells into a desired cell type comprising the following steps (1) to (7): (1) adding a demethylase gene and a transcription factor necessary for inducing differentiation into a desired cell type to a pluripotent stem cell; (2) inserting a gene construct carrying a demethylase gene and a transcription factor gene necessary for induction of differentiation into a desired cell type into the genome of a pluripotent stem cell; (3) inserting a gene construct carrying a demethylase gene into the genome of a pluripotent stem cell and further adding a transcription factor necessary for inducing differentiation into a desired cell type to the cell; (4) inserting a gene construct carrying a demethylase gene and a gene construct carrying a transcription factor necessary for induction of differentiation into a desired cell type into the genome of a pluripotent stem cell; (5) A step of adding a transcription factor necessary for inducing differentiation into a desired cell type to pluripotent stem cells having histones from which H3K
  • the differentiation method according to item 10 above which comprises the step (1), (3), (6) or (7).
  • 12 The differentiation method according to 10 or 11 above, wherein the demethylase is JMJD3.
  • 13 The differentiation method according to 10 or 11 above, wherein the demethylase contains only the enzyme active region of JMJD3.
  • a method for differentiating pluripotent stem cells into skeletal muscle cells comprising the step according to any one of (1) to (7) below: (1) a process of adding a demethylase gene and a transcription factor MYOD1 to pluripotent stem cells; (2) inserting a gene construct carrying a demethylase gene and a desired transcription factor MYOD1 gene into the genome of a pluripotent stem cell; (3) inserting a gene construct carrying a demethylase gene into the genome of a pluripotent stem cell, and further adding MYOD1, which is a transcription factor, to the cell; (4) a step of inserting a gene construct carrying a demethylase gene and a gene construct carrying a transcription factor MYOD1 into the genome of a pluripotent stem cell; (5) A step of adding MYOD1, which is a transcription factor, to pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced, (6) A step of adding MYOD1 as
  • a method for differentiating pluripotent stem cells into neurons comprising the step according to any one of (1) to (7) below: (1) a step of adding demethylase gene and transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1 and / or NEUROD2 to pluripotent stem cells, (2) inserting a gene construct carrying a demethylase gene and a desired transcription factor NEUROG1, NEUROG2, NEUROG3, NEUROD1 and / or NEUROD2 gene into the genome of a pluripotent stem cell; (3) inserting a gene construct carrying a demethylase gene into the genome of a pluripotent stem cell, and further adding transcription factors NEUROG1, NEUROG2, NEUROG3, NEUROD1 and / or NEUROD2 to the cell; (4) inserting a gene construct carrying a demethylase gene and a gene construct carrying a transcription factor NEUROG1, NEUROG2, NEUROG3, NEUROD1, and / or NEUROD2 into the cell;
  • a method for differentiating pluripotent stem cells into hepatocytes comprising the step according to any one of (1) to (7) below: (1) A step of adding demethylase gene and transcription factor HNF1A to pluripotent stem cells, (2) inserting a gene construct carrying a demethylase gene and a desired transcription factor HNF1A gene into the genome of a pluripotent stem cell; (3) inserting a gene construct carrying a demethylase gene into the genome of a pluripotent stem cell, and further adding a transcription factor HNF1A to the cell; (4) inserting a gene construct carrying a demethylase gene and a gene construct carrying a transcription factor HNF1A into the genome of a pluripotent stem cell; (5) adding a transcription factor HNF1A to pluripotent stem cells having histones from which H3K27me
  • the method for differentiating pluripotent stem cells of the present disclosure into a desired cell type with high efficiency and the differentiation induction kit for efficiently differentiating pluripotent stem cells into a desired cell type have at least one of the following effects: It is what has. (1) Reduction of time required for cell differentiation from pluripotent stem cells and / or improvement of differentiation induction efficiency. (2) Since gene-modified synthetic mRNA is used for gene introduction into pluripotent stem cells, the introduced gene is not incorporated into the genome of pluripotent stem cells, and there is a risk of canceration after induction of cell differentiation. Absent.
  • A A schematic diagram of a method for attenuating the differentiation resistance of a pluripotent stem cell of the present disclosure to a desired cell type.
  • B When H3K27me3 is attenuated or removed from human ES or iPS cells, a transcription factor (TF) binds to a promoter site of a downstream gene, and expression of development / differentiation-related genes is promoted to differentiate.
  • C A method for inducing differentiation of human ES cells or iPS cells by introducing a modified synthetic mRNA of demethylase and then introducing a modified synthetic mRNA of a transcription factor (TF).
  • (D) A method for inducing differentiation of human ES cells or iPS cells by simultaneously introducing demethylase and transcription factor (TF) -modified synthetic mRNA. Schematic diagram of differentiation induction method using modified synthetic mRNA of target gene. Schematic diagram of differentiation process using modified synthetic mRNA of target gene. A method for introducing a target gene into the genome of a pluripotent stem cell. Generation of H3K27me3 attenuated hESC by JMJD3c expression.
  • (A) Protein structure of JMJD3 full length (JMJD3f) and JMJD3c. JMJD3c was designed to include a JmjC domain (amino acids 1376 to 1484) having demethylase activity.
  • HA-JMJD3f human influenza virus hemagglutinin (HA) tag full-length JMJD3
  • HA-JMJD3c HA tag JMJD3c modified synthetic mRNA
  • C The effect of mRNA introduction of HA-JMJD3f and HA-JMJD3c on H3K27me3 was analyzed by immunoblotting. Modified synthetic mRNA (Em) of green fluorescent protein Emerald was introduced as a control. Anti-H3 antibody was used as a loading control.
  • JMJD3c-hESC A plasmid vector for inducing tet-on of JMJD3c (JMJD3c-hESC) in hESC.
  • E JMJD3c-hESC was stained with 5-bromo-4-chloro-3-indolyl- ⁇ -D-galactopyranoside (X-gal) on the third day after doxycycline (Dox) treatment.
  • Dox doxycycline
  • Demethylation of H3K27me3 induced by HA-JMJD3c was detected on the first to third days after DOX treatment.
  • G A point mutation in the JMJD3c mutant (mut) replaced the 1390th amino acid due to lack of demethylase activity.
  • C qRT-PCR analysis showing relative expression of stem cell genes and mesendoderm differentiation-related genes under differentiation conditions compared to hESC.
  • Basic medium indicates a medium without cytokines and growth factors
  • Activin A indicates a medium for endoderm differentiation
  • Activin A + BMP4 + bFGF indicates a medium for mesoderm differentiation
  • JMJD3c represents a medium containing Dox (JMJD3c forced expression).
  • the expression level was normalized by the expression level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). JMJD3c promotes muscle differentiation from hESC by MYOD1.
  • GPDH glyceraldehyde 3-phosphate dehydrogenase
  • (B) RT-qPCR analysis of muscle differentiation-related genes in MYOD1 differentiated cells treated with Dox (+ JMJD3c) or untreated with Dox ( ⁇ JMJD3c). -Indicates non-introduction, Em indicates emerald introduction, and MYOD1 indicates MYOD1 introduction. Expression levels were normalized by GAPDH. n 3. Error bars represent SEM.
  • F MHC immunostaining in MYOD1-introduced cells forcibly expressing JMJD3c or JMJD3c mutation.
  • (G) Percentage of nuclei contained within MHC staining. n 3. * P ⁇ 0.01. Error bars represent SEM.
  • hESCs and iPSCs Differentiation of hESCs and iPSCs into skeletal muscle cells by introducing demethylase and transcription factors as synthetic mRNAs.
  • A Schematic diagram of differentiation induction protocol. JMJD3c or red fluorescent protein mCherry synthesized mRNA was introduced into hESC / iPSC twice on day 1 and day 2, and MYOD1 was introduced three times on days 2 and 3. Cells were fixed for immunostaining on day 5.
  • B Immunostaining of MHC in cells into which MYOD1 has been introduced following mCherry or JMJD3c.
  • FIG. D Representative stained image showing muscle fusion (arrowhead).
  • E Induced myogenic cells were labeled with green fluorescence and nuclei were co-cultured with mouse C2C12 cells labeled with red fluorescence. Cell fusion was detected on the third and fifth days after co-culture (arrowheads).
  • F iPSC introduced mCherry or JMJD3c followed by MYOD1 and immunostained with MHC.
  • hepatoblasts TCF-1
  • chondrocytes SOX9
  • RUNX3 osteoblasts
  • AFP is a marker gene for hepatoblasts
  • COL2 is a marker gene for chondrocytes
  • COL1A1 is a marker gene for osteoblasts.
  • Expression levels were normalized by GAPDH.
  • n 2. * P ⁇ 0.05. Error bars represent SEM.
  • a method for inducing differentiation of a pluripotent stem cell of the present disclosure into a desired cell type with high efficiency is a differentiation resistance of a pluripotent stem cell to a desired cell type. Although it will not specifically limit if it is a method which can attenuate property, it demonstrates below.
  • pluripotent stem cells The pluripotent stem cells used in the method of the present disclosure are not particularly limited, but are preferably derived from mammals, and more preferably derived from humans.
  • human ES cells, human iPS cells, or any combination thereof not particularly limited, tissue stem cells derived from tissues and organs, fibroblasts of skin, and all types derived from tissues and organs Contains cells.
  • a differentiation gene required for inducing differentiation into a desired cell type is rapidly and efficiently promoted by removing or reducing the histone methyl group modification of H3K27me3 from “Bivalent domain”. (Refer to FIG. 1).
  • “attenuating the differentiation resistance of pluripotent stem cells to a desired cell type” in the present disclosure means substantially removing or reducing H3K27me3 modification of pluripotent stem cells.
  • the state in which the H3K27me3 modification of the pluripotent stem cell is substantially removed or reduced can be confirmed by comparing with the degree of the H3K27me3 modification of the pluripotent stem cell that has not been removed or reduced. For example, the state (degree) in which H3K27me3 modification of pluripotent stem cells is substantially removed or reduced is 95 compared with the case where the degree of H3K27me3 modification of pluripotent stem cells not removed or reduced is 100.
  • the degree of H3K27me3 modification of pluripotent stem cells can be easily measured by using a commercially available anti-Histone H3K27me3 antibody, and the gene expression level of H3K27me3 can also be measured by a method known per se. it can.
  • the method of the present disclosure is not particularly limited as long as it can reduce the differentiation resistance of pluripotent stem cells to a desired cell type, but the following can be exemplified.
  • a gene of a compound having an action of substantially removing or reducing H3K27me3 modification, and further, a gene of a transcription factor necessary for inducing differentiation into a desired cell type is added (introduced) to the pluripotent stem cell. ).
  • the “gene” in the present specification is not only a double strand but also a single strand, a linear shape, a circular shape, such as a positive strand (or sense strand) or a complementary strand (or antisense strand) constituting it.
  • DNA, RNA, mRNA, cDNA and the like are included unless otherwise specified.
  • the target gene is meant to include a gene of a compound having an action of substantially removing or reducing the H3K27me3 modification and / or a transcription factor necessary for inducing differentiation into a desired cell type.
  • a gene having a function of substantially removing or reducing the H3K27me3 modification and / or a transcription factor necessary for inducing differentiation into a desired cell type is added (introduced) to the pluripotent stem cell
  • a method known per se can be used, and it is not particularly limited.
  • a method expression method using synthetic mRNA developed by Warren, Rossi et al. (Reference: Cell Stem Cell 7: 618-630, 2010) .), And a method of efficiently introducing transcription factor-synthesizing mRNA into human pluripotent stem cells to induce differentiation (see FIG. 2).
  • the timing of addition of the pluripotent stem cell of a gene having a function of substantially removing or reducing the H3K27me3 modification and a transcription factor necessary for induction of differentiation into a desired cell type is not particularly limited. It is preferable to add a gene of a compound having an action of substantially removing or reducing H3K27me3 modification to pluripotent stem cells before adding a transcription factor necessary for induction of differentiation. Further, the addition timing of each gene (mRNA) may be exemplified by performing at least once every 12 to 64 hours, preferably 2 to 5 times, 2 to 4 times, 2 to 3 times, or 2 times. Yes, but not particularly limited.
  • mRNA is synthesized with reference to the method described in the document “Warrenet al., Cell Stem Cell, 2010 Nov 5; 7 (5): 618-30”. More specifically, mRNA is a mixture of dNTPs modified with template DNA encoding the amino acid sequence of a transcription factor necessary for induction of differentiation into a desired cell type ⁇ (dNTPs: 3-0-Me-m7G (5 ′) ppp (5 ′) G ARCA cap analog, 5-methylcytidine triphosphate, and pseudouridinetriphosphate) ⁇ .
  • Sendai virus vector encoding amino acid sequence of transcription factor
  • a Sendai virus vector capable of expressing a human transcription factor is preferably used.
  • mutants of Sendai virus vectors such as F protein deficient have no infectivity and are easy to manipulate (see Inoue et al., J Virol. 77: 23238-3246, 2003).
  • a cocktail of transcription factors necessary for inducing differentiation into a single or two or more desired cell types is prepared.
  • the form of the transcription factor is not particularly limited, and any of synthetic mRNAs, Sendai virus vectors incorporating transcription factors (or a plurality of transcription factors), and nanoparticle capsules containing synthetic mRNAs may be used.
  • the method of introducing a cocktail of these single or two or more transcription factors into cells is not particularly limited, and utilizes transfection with lipofectamine, viral infection, and the like.
  • a per se known expression vector into which a gene having a function of substantially removing or reducing the H3K27me3 modification and / or a transcription factor necessary for inducing differentiation into a desired cell type is used is used.
  • Examples of expression vectors used in the present disclosure include animal cell expression plasmid vectors and Sendai virus vectors, but are not particularly limited.
  • the method for introducing the synthetic mRNA and expression vector into pluripotent stem cells is not particularly limited, but lipofection method, liposome method, electroporation method, calcium phosphate coprecipitation method, DEAE (diethylaminoethyl) dextran method, microinjection method
  • lipofection method liposome method
  • electroporation method calcium phosphate coprecipitation method
  • DEAE diethylaminoethyl
  • microinjection method The gene gun method can be exemplified, and the lipofection method is particularly preferable.
  • an expression vector can be used for the gene of a compound that has the effect of substantially removing or reducing H3K27me3 modification, and a synthetic mRNA can be used as a transcription factor necessary for inducing differentiation into a desired cell type.
  • the reverse pattern is also possible.
  • the compound having the action of substantially removing or reducing the H3K27me3 modification of the present disclosure is not particularly limited, it is specific to demethylase (in particular, demethylase having the action of removing the methyl group of H3K27me3), H3K27me3
  • demethylase in particular, demethylase having the action of removing the methyl group of H3K27me3
  • H3K27me3 An antibody that binds to H3K27me3, an antibody of a polycomb protein group (PcG protein) having a modifying action of H3K27me3, a small interfering RNA (siRNA), an inhibitor and the like.
  • HDAC Histone Deaceylase
  • Demethylases include AOF (LSD1), AOF1 (LSD2), FBXL11 (JHDM1A), Fbxl10 (JHDM1B), FBXL19 (JHDM1C), KIAA1718 (JHDM1D), PHF2 (JHDM1E), PHF8 (JHDM1F), JMJD1 (JHDJ1A) ), JMJD1B (JHDM2B), JMJD1C (JHDM2C), JMJD2A (JHDM3A), JMJD2B (JHDM3B), JMJD2C (JHDM3C), JMJD2D (JHDM3D), RBP1 (JARID1C, JRID1C) ), Jumonji (JARID2), UTX (UTX), UTY (UTY), JMJD3 (JMJD3), JMJD4 (JMJD4), JMJD5 (JMJD5), JMJD6 (JMJD
  • the demethylase of the present disclosure also includes: (1) The protected derivative, sugar chain modified product, acylated derivative, or acetylated derivative of the demethylase according to any one of the above. (2) 90% (or 92%, 94%, 96%, 98%, 99%) homology with the demethylase according to any one of the above, and the demethylase An enzyme that acts to substantially remove or reduce substantially homogeneous H3K27me3 modifications.
  • the demethylase gene of the present disclosure includes: (1) A gene encoding a polypeptide comprising the amino acid sequence of any one or more of the above enzymes.
  • the enzyme having a mutation may be naturally occurring, or may be obtained by introducing a mutation based on a naturally derived gene.
  • Means for introducing mutations are known per se. For example, site-directed mutagenesis, gene homologous recombination, primer extension or polymerase chain reaction (hereinafter abbreviated as PCR) is used alone or in appropriate combination. it can.
  • PCR polymerase chain reaction
  • peptide 219, p.666 -671 can also be used.
  • homologous amino acids polar amino acids, nonpolar amino acids, Mutual substitution between hydrophobic amino acids, hydrophilic amino acids, positively charged amino acids, negatively charged amino acids, aromatic amino acids, etc.
  • JMJD3 JMJD3 is known as a histone H3K27me3 demethylase (mouse NP_001017426, human NP_001073893), and has the effect of substantially removing or reducing H3K27me3 modification of pluripotent stem cells even in full length (NP_001073893, SEQ ID NO: 1) have.
  • JMJD3c having the JmjC domain ⁇ SEQ ID NO: 2, catalytic domain: SEQ ID NO: 3 (amino acids 1376-1484) ⁇ is substantially more strongly modified by H3K27me3 compared to full-length JMJD3. It has been confirmed that it has an action of removing or reducing (see Example 2).
  • JMJD3 of the present disclosure includes the following aspects.
  • 100 to 10, 50 to 30, 40 to 20, 10 to 5, and 5 to 1 amino acids are substituted, deleted, inserted and / or added.
  • An amino acid sequence having an action of substantially removing or reducing. (9) In the amino acid sequence shown in SEQ ID NO: 3, 100 to 10, 50 to 30, 40 to 20, 10 to 5, and 5 to 1 amino acids are substituted, deleted, inserted and / or added.
  • An amino acid sequence comprising the amino acid sequence of SEQ ID NO: 3 and having an action of substantially removing or reducing H3K27me3 modification substantially the same quality as JMJD3c.
  • Sequence homology usually means 70% or more of the entire amino acid sequence, preferably 80%, more preferably 85% or more, still more preferably 90% or more, even more preferably 95% or more, and most preferably 98%. It is suitable that it is% or more.
  • the JMJD3 gene of the present disclosure includes the following.
  • (2) 1 to 20 (or 1 to 15, 1 to 10, 1 to 7, 1 to 5, 1 to 3) amino acids are substituted in the amino acid sequence described in any one of SEQ ID NOs: 1 to 3
  • (6) 1 to 50 (or 1 to 40, 1 to 30, 1 to 20, 1 to 15, 1 to 10) in the gene (DNA) having the base sequence set forth in any one of SEQ ID NOs: 4 to 6 A gene in which 1 to 5, 1 to 3 nucleotide sequences are substituted, deleted, inserted and / or added.
  • a transcription factor necessary for highly efficient induction of differentiation into a desired cell type used in the method of the present disclosure is not particularly limited, and examples thereof include nucleic acids such as RNA and DNA, synthetic nucleic acids, and proteins. However, it is not particularly limited. For example, it can be illustrated as follows.
  • examples of the desired cell type include skeletal muscle (skeletal muscle cell), liver (hepatocyte), nerve (nerve cell) and the like.
  • the method for inducing differentiation of skeletal muscle is as follows. MYOD1, NRF1, SALL4, ZIC1, KLF9, ZNF281, CTCF, HES1, HOXA2, TBX5, TP73, ERG, MAB21L3, PRDM1, NFIC, CTCFL, FOXP1, HEY1, PITX2, A single or more than one transcription factor selected from JUNB, KLF4, ESX1, TFAP2C, FOS, TFE3, FOSL1, GRHL2, TBX2, NFIB, IRF4 has histones that substantially eliminate or reduce H3K27me3 modification Introduce into pluripotent stem cells.
  • the JMJD3c gene SEQ ID NO: 80
  • MYOD1 myogenic differentiation 1: SEQ ID NO: 86, SEQ ID NO: 88
  • liver differentiation ⁇ Transcription factors required for induction of liver differentiation (particularly liver cells, hepatoblasts)
  • a method for inducing differentiation of the liver is as follows.
  • Liver Human multipotency selected from TCF-1, SALL4, TGIF1, MAB21L3, ZIC1, EGFLAM, PITX2, HNF4A, NRF1, ZNF281, CTCFL, TP73, TFE3, DLX6, TCF4, or two or more transcription factors Introduce into sex stem cells.
  • Fetal liver A single or two or more transcription factors selected from TCF-1, SIX5, HNF4A, SIN3A, ID1, and HNF1A are introduced into human pluripotent stem cells.
  • the JMJD3c gene SEQ ID NO: 80
  • HNF1A hepatocyte nuclearfactor 1, alpha: SEQ ID NO: 87, SEQ ID NO: 94
  • a method for inducing differentiation of nervous system cells is as follows.
  • NEUROG1 neurogenin 1: SEQ ID NO: 81
  • NEUROG2 neurogenin 2: SEQ ID NO: 82
  • NEUROG3 neuroogenin 3: SEQ ID NO: 83
  • NEUROD1 neuroogenic differentiation 1: SEQ ID NO: 84
  • NEUROD2 neuroogenic differentiation 2: SEQ ID NO: 85
  • Alone or 2 or more, 3 or more, 4 or more, or all transcription factors are introduced into human pluripotent stem cells.
  • the JMJD3c gene (SEQ ID NO: 80) and NEUROG1 (SEQ ID NO: 81, SEQ ID NO: 89), NEUROG2 (SEQ ID NO: 82, SEQ ID NO: 90), NEUROG3 (SEQ ID NO: 83, SEQ ID NO: 91), NEUROD1 (SEQ ID NO: 84, sequence) No. 92) and NEUROD2 (SEQ ID NO: 85, SEQ ID NO: 93) are added to pluripotent stem cells known per se.
  • the genome of a pluripotent stem cell contains a transcription factor necessary for the induction of a compound having an action of substantially removing or reducing the H3K27me3 modification and / or highly efficient differentiation into a desired cell type.
  • the method to be introduced into can be a method known per se, and is not particularly limited.
  • the expression cassette is a system (see FIG. 4) that can efficiently establish a gene-combined pluripotent stem cell line by introducing a drug selection cassette.
  • a compound (particularly a protein) having an action of substantially removing or reducing the H3K27me3 modification and / or a transcription factor (protein) necessary for highly efficient differentiation induction into a desired cell type
  • a method for introducing into the genome of pluripotent stem cells a method known per se can be used. For example, a method using a protein introduction reagent, a method using a fusion protein to which a cell membrane-penetrating peptide is added, a microinjection method, etc. be able to.
  • the “cell membrane permeable peptide” of the present disclosure has the property of moving into cells, more specifically the property of passing through the cell membrane, more specifically the property of passing through the cell membrane or the nuclear membrane and penetrating into the cytoplasm or nucleus. It is a peptide having.
  • the amino acid sequence of the peptide is not particularly limited, and examples thereof include TAT (GRKKRRQRRRPQ: SEQ ID NO: 7), r8 ⁇ rrrrrrrr (D form-R): SEQ ID NO: 8 ⁇ , MPG-8 ( ⁇ AFLGWLGAWGTMGWSPKKKRK: SEQ ID NO: 9) can do.
  • the target protein is both a compound (particularly a protein) having an action of substantially removing or reducing H3K27me3 modification and / or a transcription factor (protein) necessary for highly efficient differentiation induction into a desired cell type. including.
  • a differentiation inducing kit for efficiently inducing differentiation of the pluripotent stem cells into desired cell types
  • a differentiation inducing kit (hereinafter sometimes referred to as “kit of the present disclosure”) for efficiently inducing differentiation of the pluripotent stem cells of the present disclosure into a desired cell type has any one or more of the following aspects: Including.
  • pluripotent stem cells from which H3K27me3 modification has been substantially removed or reduced can be easily prepared. As described above, the practitioner of the present disclosure easily introduces transcription factors necessary for inducing differentiation into a desired cell type into pluripotent stem cells from which H3K27me3 modification has been substantially removed or reduced. Then, differentiation can be induced to a desired cell type. In addition, pluripotent stem cells that can temporarily express a demethylase by inserting a gene construct that can be induced by doxycycline or the like into the genome are also targeted.
  • kit demethylase gene for kit of the present disclosure
  • the practitioner of the present disclosure substantially removes or reduces the H3K27me3 modification by adding the kit demethylase gene to a known pluripotent stem cell.
  • the produced pluripotent stem cells can be easily produced.
  • the kit demethylase gene can be exemplified by mRNA, DNA, protein and the like of a demethylase gene (for example, JMJD3c), but is not particularly limited.
  • a gene comprising a demethylase gene for a kit of the present disclosure and a transcription factor necessary for inducing differentiation into a desired cell type substantially adds the H3K27me3 modification by adding a gene containing a demethylase gene for the kit and a transcription factor necessary for induction of differentiation into a desired cell type to a pluripotent stem cell known per se.
  • pluripotent stem cells that have been removed or reduced can be easily prepared and further differentiated into a desired cell type with high efficiency.
  • Both genes may be present on one gene or on another gene.
  • a demethylase gene and a transcription factor necessary for inducing differentiation into a desired cell type can be added to the pluripotent stem cell at the same time or at another time.
  • kits demethylase for Kit of Present Disclosure substantially removed or reduced the H3K27me3 modification by adding the kit demethylase to per se known pluripotent stem cells. Pluripotent stem cells can be easily produced.
  • Gene construct carrying the demethylase gene of the present disclosure The practitioner of the present disclosure introduces a gene construct carrying the demethylase gene into the genome of a pluripotent stem cell known per se, so that H3K27me3 Pluripotent stem cells in which the modification is substantially removed or reduced can be easily produced.
  • the gene construct may contain not only a demethylase gene but also a promoter sequence, a gene expression enhancing sequence, a marker gene, a reporter sequence, a drug resistance gene, and the like as necessary.
  • Gene construct carrying a demethylase gene of the present disclosure and a transcription factor necessary for induction of differentiation into a desired cell type The practitioner of the present disclosure can differentiate into a demethylase gene and a desired cell type.
  • a gene construct carrying a transcription factor necessary for induction into the genome of a pluripotent stem cell known per se, a pluripotent stem cell in which H3K27me3 modification is substantially removed or reduced can be easily produced, and further desired Differentiation into different cell types. Both genes may be present on one gene or on another gene.
  • a demethylase gene and a transcription factor necessary for inducing differentiation into a desired cell type can be introduced into the genome of a pluripotent stem cell at the same time or at another time.
  • the gene construct requires not only a demethylase gene and a transcription factor necessary for inducing differentiation into a desired cell type, but also a promoter sequence, a gene expression enhancing sequence, a marker gene, a reporter sequence, a drug resistance gene, etc. May be included.
  • the method for differentiating pluripotent stem cells of the present disclosure into a desired cell type can be exemplified by a method including the steps described in any one of the following (1) to (7), but is not particularly limited.
  • (1) A step of adding a demethylase gene and a transcription factor necessary for inducing differentiation into a desired cell type to a pluripotent stem cell.
  • (2) A step of inserting a gene construct carrying a demethylase gene and a transcription factor gene necessary for induction of differentiation into a desired cell type into the genome of a pluripotent stem cell.
  • any one of the following desired pluripotent stem cells for cell type differentiation is also targeted.
  • the present disclosure also covers the use of any one of the following desired pluripotent stem cells for cell type differentiation.
  • a desired pluripotent stem cell for cell type differentiation having histones from which H3K27me3 modification has been substantially removed or reduced.
  • a desired pluripotent stem cell for cell type differentiation in which demethylase is forcibly expressed.
  • a desired pluripotent stem cell for cell type differentiation in which a gene construct carrying a demethylase gene is inserted into the genome.
  • the present disclosure also covers use of any one of the following desired pluripotent stem cells for differentiation of a cell type as a production of a differentiation induction kit for differentiating the pluripotent stem cells into a desired cell type.
  • a desired pluripotent stem cell for cell type differentiation having histones from which H3K27me3 modification has been substantially removed or reduced.
  • a desired pluripotent stem cell for cell type differentiation in which demethylase is forcibly expressed.
  • SEES-3 Human pluripotent stem cell culture and differentiation induction method
  • hESC human ES cell line
  • hiPSC Human induced pluripotent stem cells
  • POU5F1, SOX2, KLF4, and c-MYC mRNA were generated from adult human fibroblasts by introduction of POU5F1, SOX2, KLF4, and c-MYC mRNA.
  • hESC / iPSC was maintained on StemFit AK-03 medium (Ajinomoto) on iMatrix-511 (Nippi) -coated plates under conditions that did not contain feeder cells.
  • the ROCK inhibitor Y-27632 was added to the culture medium during cell passage to avoid apoptosis induced by dissociation.
  • hESCs were grown at 10 ng / ml for mesoderm differentiation instead of each growth factor (100 ng / ml activin A for endoderm differentiation, 100 ng / ml activin A on day 1).
  • the cells were cultured in a differentiation medium of RPMI1640 (Gibco) supplemented with ml BMP4 and 10 ng / ml bFGF).
  • hPSCs are loaded onto 5% KSR, 1 mM sodium pyruvate, 0.1 mM non-essential amino acid amino acid, 2 mM glutamine, 0.1 mM ⁇ -mercaptoethanol on iMatrix-511 or Matrigel (BD) coated plates And penicillin / streptomycin (50 U / 50 ⁇ g / ml) in ⁇ MEM (Gibco) medium.
  • JMJD3c-hESC Genetic of JMJD3c-hESC
  • Addgene Plasmid ID # 24167.
  • Point mutations in the catalytic domain were introduced using PrimeSTARMutagenesis Basal Kit (Takara).
  • the HA tag JMJD3c and its mutations were subcloned into a PiggyBac construct containing the tetracycline responsive element IRES- ⁇ geo and a PGK promoter-controlled puromycin resistance gene.
  • the vector was co-introduced with the PiggyBac transposase vector into hESCs that consistently express reverse tetracycline transactivator (SEE3-1v) using GeneJuice transfection reagent (Novagen). Stable clones were established by puromycin selection. Inducible expression in doxycycline treatment was confirmed by X-Gal staining.
  • HA Abcam # ab9110 for immunoblotting, # ab18181 for immunostaining
  • H3K4me3 Millipore # 07-473
  • H3K27me3 Millipore # 07-449
  • H3K27ac Active Motif # 39-133
  • panH3 MHC (R & D # MAB4470).
  • Membranes were washed and incubated with horseradish peroxidase-conjugated secondary antibody (GE) for 1 hour at room temperature. Membranes were washed in TBST and immunoreactivity was visualized using ECL Prime Detection Kit (GE) and further detected using Luminescent Image Analyzer (LAS-4000; Fujifilm).
  • GE horseradish peroxidase-conjugated secondary antibody
  • ChIP Chromatin immunoprecipitation
  • Sonication was performed using Handy Sonic UR-20P (Tomy Seiko) to generate a DNA fragment of about 150-450 bp.
  • Sonicated lysates are diluted with ChIP dilution buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100) containing protease inhibitor cocktail and pre-treated with 3 ⁇ g antibody.
  • the cells were cultured overnight at 4 ° C. with cultured 30 ⁇ l protein G magnetic beads (Invitrogen).
  • the precipitate was washed 3 times with RIPA buffer (10 mM Tris-HCl, pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) Then, it was washed once with 10 mM Tris-HCl, pH 8.0, 5 mM EDTA, 10 mM NaCl. The bound chromatin was eluted from the beads at 68 ° C. in Elution buffer (20 mM Tris-HCl, pH 7.5, 5 mM EDTA, 50 mM NaCl, 1% SDS) and decrosslinked at 68 ° C. for 6 hours.
  • RIPA buffer 10 mM Tris-HCl, pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxychol
  • DNA was purified by phenol / chloroform / isoamyl alcohol and isopropanol precipitation after RNase A and protease K treatment.
  • Real-time PCR was performed using SYBR Green PCR system (Takara). Primer sequences are shown in Tables 1 and 2 above.
  • pluripotent stem cells (H3K27me3-deficient pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced)
  • pluripotent stem cells H3K27me3-deficient hESC
  • two methods for manipulating the expression of the demethylase JMJD3 were used to demethylate H3K27me3 in pluripotent stem cells. Details are as follows.
  • JMJD3f full-length JMJD3
  • JMJD3c C-terminus containing the catalytic domain
  • FIG. 5a The N-terminus of these mRNAs was tagged with a hemagglutinin (HA) sequence for detection of the translated protein.
  • HA hemagglutinin
  • H3K27me3 did not induce any changes in H3K27me3 (FIG. 5h). This confirmed that JMJD3c removed or attenuated H3K27me3 due to its demethylase activity. That is, it was confirmed that pluripotent stem cells from which H3K27me3 modification was substantially removed or reduced were produced.
  • H3K27me3 in pluripotent stem cells can be manipulated in both of the above two methods.
  • the use of modified synthetic mRNAs can control the timing and duration of JMJD3c expression, thus reducing the expression level of H3K27me3 (or H3K27me3 at a specific time to induce differentiation of pluripotent stem cells into the desired cell type. Substantial removal).
  • JMJD3c expression can overcome cell differentiation resistance (stem cell maintenance) by demethylating H3K27me3, resulting in enhanced expression of development / differentiation-related genes.
  • forced expression of JMJD3c enhances the expression of development / differentiation-related genes.
  • genes related to endoderm and mesoderm differentiation such as SOX17, FOXA2, GATA4 / 6, EOMES, T, and MIXL1 were highly expressed 3 days after Dox treatment (FIG. 6c). Furthermore, enhanced expression of these genes was observed even under undifferentiated state maintenance culture conditions.
  • ectopic expression (forced expression) of demethylase can be shifted from the pluripotent maintenance state to the initial differentiation state by directly enhancing the expression of developmental differentiation-related genes. Does not require various cytokines or growth factors. That is, pluripotent stem cells from which H3K27me3 modification has been substantially removed or reduced easily transition from the pluripotent state to the initial differentiated state.
  • JMJD3c was temporarily forcedly expressed in hESC before MYOD1 forced expression (FIG. 7a).
  • JMJD3c-hESC strain was used, and JMJD3c and MYOD1 were induced by Dox treatment and introduction of synthetic mRNA, respectively.
  • Changes in expression of 4 genes (MYOG, MEF2C, CKM, and SIX1), which are markers of skeletal muscle differentiation, were examined.
  • forced expression of MYOD1 alone did not induce enhanced expression of myocyte differentiation-related genes except for SIX1.
  • JMJD3c was forcibly expressed before MYOD1 forced expression, all of these genes showed significant expression enhancement.
  • forced expression of JMJD3c alone did not change the expression pattern of the MYOD1 downstream gene. From these results, it was confirmed that JMJD3c promoted muscle differentiation via MYOD1 gene expression.
  • H3K4me3 and H3K27me3 were found to be lower in both hESCs and differentiated cells compared to positive controls such as GAPDH, POU5F1 or Brachyury (T) (FIG. 7c), and JMJD3c positive There was no significant difference between conditions and negative conditions. On the other hand, it was revealed that these regions were remarkably enriched in H3K27 acetylation (H3K27ac) in differentiated cells only under JMJD3c positive conditions, but not under negative conditions (FIG. 7c). H3K27ac is known to be directly involved in active transcription.
  • JMJD3c / MYOD1 forced expression hESC was myosin heavy chain (MHC) positive and changed to a myotube-like morphology on the 4th day after differentiation (FIG. 7d).
  • MHC myosin heavy chain
  • FIG. 7e The proportion of MHC positive cells was much higher than that observed in the overexpression condition of MYOD1 alone (FIG. 7e).
  • H3K27me3 is essential for the differentiation of hESCs into muscle cells via MYOD1.
  • a transcription factor necessary for inducing differentiation into a desired cell type is introduced into H3K27me3-deficient cells (pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced)
  • the desired efficiency can be efficiently obtained. Differentiation can be induced into cell types.
  • Example 4 (Confirmation of differentiation of pluripotent stem cells into desired cell types using synthetic mRNA)
  • JMJD3c which is a demethylase
  • MYOD1 which is a transcription factor necessary for induction of differentiation into a desired cell type
  • JMJD3c mRNA was introduced twice into hESC, followed by MYOD1 mRNA three times (FIG. 8a). Two days after the last introduction of MYOD1 mRNA, the majority of hESCs differentiated into MHC positive cells (FIGS. 8b, c). As controls, mCherry and MYOD1 mRNA were introduced into hESC, but did not induce myogenic differentiation. MHC positive cells had the possibility of cell fusion (Fig. 8d) and could be further confirmed by a fusion assay using mouse C2C12 cells (Fig. 8e). From these results, it was confirmed that the induced myotube-like cells became mature skeletal muscle in vitro.
  • JMJD3c promotes differentiation of myoblasts derived from fibroblasts into myogenesis via MYOD1 (FIGS. 8f and g). This indicates that JMJD3c promotes the direct conversion from the pluripotent state to the terminally differentiated state.
  • a transcription factor necessary for inducing differentiation into a desired cell type is introduced (added) into a pluripotent stem cell from which H3K27me3 modification has been substantially removed or reduced, so that the desired cell type can be efficiently produced. Differentiation can be induced.
  • Non-Patent Document 4 drug selection must be performed in order to stably express the MYOD1 gene, and pre-culture is required for about 10 days before starting differentiation induction.
  • the PAX7 gene is introduced instead of the MYOD1 gene, but it is necessary to culture for about one month for differentiation induction.
  • differentiation of skeletal muscle is induced by introducing the MYOD1 gene after introducing the gene BAF60C (see: Cell Rep. 2013 Mar 28; 3 (3): 661-70.). However, it takes 20 days to induce differentiation and requires the use of a lentiviral vector.
  • each transcription factor differentiates pluripotent stem cells into desired cell types.
  • MYOD1 induction of hESC differentiation into skeletal muscle cells via MYOD1 can be promoted by forced expression of demethylase or the addition of demethylase synthetic mRNA.
  • each transcription factor can be used to induce differentiation of pluripotent stem cells into a plurality of desired cell types.
  • JMJD3c-hESC was treated with Dox-containing (+ JMJD3c) or non-containing (-JMJD3c) conditions 1-2 days after plating, and then on day 2.
  • synthetic mRNA of TCF1, SOX9, RUNX3 or mCherry was introduced twice each.
  • the cells were collected on the 4th day, and the expression of each differentiation marker gene was examined by RT-qPCR analysis.
  • the analysis results are shown in FIG.
  • AFP which is a marker gene for hepatoblasts
  • COL2 which is a marker gene for chondrocytes
  • COL1A1 which is an osteoblast marker gene
  • H3K27me3-deficient cells pluripotent stem cells having histones from which H3K27me3 modification has been substantially removed or reduced
  • the JMJD3c gene (SEQ ID NO: 80) was introduced twice into human pluripotent stem cells, followed by the HNF1A gene (SEQ ID NO: 87, SEQ ID NO: 94). ) was introduced three times. It was confirmed that the cells had differentiated into hepatocytes after 4 days of culture.
  • the JMJD3c gene (SEQ ID NO: 80) was introduced twice into human pluripotent stem cells, followed by the NEUROG1 gene (SEQ ID NO: 81, SEQ ID NO: 89). ), NEUROG2 gene (SEQ ID NO: 82, SEQ ID NO: 90), NEUROG3 gene (SEQ ID NO: 83, SEQ ID NO: 91), NEUROD1 gene (SEQ ID NO: 84, SEQ ID NO: 92) and NEUROD2 gene (SEQ ID NO: 85, SEQ ID NO: 93). Introduced three times. It was confirmed that the cells had differentiated into neurons after 4 days of culture.
  • differentiation is performed only by adding synthetic mRNA to pluripotent stem cells without adding various cytokines and growth factors necessary for transition from the pluripotent state to the initial differentiation state. It has been confirmed that the differentiation efficiency reaches 60 to 70% in 4 days from the start of induction. That is, in the method of the present disclosure, differentiation induction can be achieved in a short period of time and with high efficiency without requiring various necessary cytokines and growth factors as compared with the conventional method.
  • histone demethylase ⁇ especially the catalytic domain of JMJD3 (JMJD3c) ⁇ enhances the expression of development / differentiation-related genes in pluripotent stem cells even if there is no environmental change, and increases the gene expression pattern. It promoted the switching from the potent stem cell pattern to the differentiated cell gene expression pattern. This indicates that cell differentiation from pluripotent stem cells to differentiated cells can be promoted if there is an effect to remove or attenuate methylation that suppresses the expression of genes related to development / differentiation, not limited to JMJD3. . In this example, it was shown that the histone demethylase JMJD3 releases the suppression of differentiation-related gene expression by rapidly attenuating the methylation of H3K27.
  • H3K27me3 when JMJD3c modified synthetic mRNA was used, significant attenuation of H3K27me3 was confirmed in several hours. These results indicate that histone demethylase regulates antagonistically against H3K27 methylation by PcG complex in human pluripotent stem cells. In pluripotent stem cells, H3K27me3 was demethylated by forced expression of histone demethylase, and gene expression of many genes related to development and differentiation was enhanced. These changes were also observed under human pluripotent stem cell culture conditions that maintain pluripotency.
  • Histone demethylase mutations did not induce these phenomena, and specific demethylation of H3K27 by demethylases is a transcriptional activity of genes related to development and differentiation. It was found to be directly involved in the enhancement.
  • genes related to development / differentiation whose gene expression is enhanced by demethylase activity of JMJD3 are selected rather than genes related to ectoderm differentiation. Also revealed that it contains more. This indicates that the demethylase activity of the JMJD3 gene effectively promotes differentiation into meso / endodermal cells, ie, bone, muscle, liver, circulatory organ, digestive organ, and genital cell. .
  • the expression of genes related to ectoderm differentiation is also enhanced, and it is highly likely to be involved in promoting differentiation into cells such as nerves and epidermis.
  • H3K27me3 does not exist in much in the promoter region of myocyte differentiation-related genes in hESC, the demethylase activity of JMJD3c is enhanced through the expression of genes involved in early development and cell differentiation. It is considered to be indirectly involved in the upregulation of. From the above, it was shown that demethylase activity shifts the state of cells from a pluripotent maintenance state to a differentiation state by attenuating the differentiation resistance of pluripotent stem cells. This attenuation of differentiation resistance is not limited to activation of muscle differentiation-related genes but also promotes activation of other differentiated cell genes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Rheumatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Transplantation (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurosurgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

従来の多能性幹細胞を所望の細胞型へ分化する方法では、ヒトES/iPS細胞を用いて安定した高効率な分化誘導法は未確立であった。 多能性幹細胞の分化抵抗性を減弱させ、積極的に細胞型が分化方向に進む多能性幹細胞を作製し、短時間で高効率に所望の細胞型への分化誘導を行う方法を見出し、本発明を完成した。

Description

多能性幹細胞の分化抵抗性を減弱する方法
 本開示は、多能性幹細胞の所望の細胞型への分化抵抗性を減弱させる方法であり、より詳しくは、多能性幹細胞を所望の細胞型へ高効率に分化させる方法及び該分化させる方法に用いる分化誘導剤に関する。
 本出願は、参照によりここに援用されるところの日本出願特願2015-211356号優先権を請求する。
(多能性幹細胞の分化誘導について)
 胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)を分化誘導し、得られた細胞を用いる再生医療は国民の期待も大きく、早期の実現が待たれている治療法である。再生医療としては、iPS細胞由来の網膜色素上皮細胞移植治療が記憶に新しいが、細胞移植に適した成熟分化細胞を迅速かつ十分量作製する技術は、未だ発展途上であり開発の余地が大きい。
 現在主流の多能性幹細胞から所望の細胞型への分化誘導法としては、各分化段階に適したサイトカイン・増殖因子を順次培地に添加し、胚様体や前駆細胞を経由させ分化させる方法である。この方法では、目的とする分化細胞を得るまでの培養期間が長いこと、分化誘導効率が高くないこと、及び異なる細胞系譜の細胞が混在することなどが問題となっている。
 近年、組織特異的に発現する転写因子を単一または複数組み合わせて、ES/iPS細胞に強制発現することにより細胞分化を方向づける試みが盛んに行われている。この転写因子を用いた分化誘導法は、ES/iPS細胞を直接目的の分化細胞へ誘導できるため、とても有効な手段として期待されている。しかし、この手法をもってしても、細胞分化誘導効率が低いため細胞の種類によっては、再生医療に必要な目的の分化細胞を十分量得るのが困難な状況である。
 以上により、多能性幹細胞から目的の分化細胞をより迅速かつ均一、高効率に産生するための新たな分化誘導法の開発が求められていた。
(従来の多能性幹細胞の分化誘導の現状)
 先行技術である非特許文献1~4は、ES/iPS細胞の分化誘導を促進させるシステムであり、一例として、ES/iPS細胞を骨格筋分化に誘導することを開示している。
Nature medicine 13: 642-648. Cell stem cell 10: 610-619. Mol Ther. Nov;20(11):2153-67. PLoS One. 2013 Apr 23;8(4):e61540.
 従来の多能性幹細胞を所望の細胞型へ分化する方法では、ヒトES/iPS細胞を用いて安定した高効率な分化誘導法は未確立であった。培養条件のコントロールや様々な細胞増殖因子・分化因子などを培養液に加えることによる段階的分化誘導法など多くの試みがなされてきたが、複雑な培養ステップの使用が大きな課題である。また、細胞分化のスピードが遅く、長期間の培養を必要とすること、さらに、分化効率が低いために必要な細胞数を十分量得ることが困難であることなども、大きな問題である。
 本発明者らは、上記問題の一部は、多能性幹細胞が様々なメカニズムで細胞分化に抵抗する性質(幹細胞性維持性)を持っていることに起因していると考えた。そこで、多能性幹細胞の分化抵抗性を減弱させ、積極的に細胞型が分化方向に進む多能性幹細胞を作製し、短時間で高効率に所望の細胞型への分化誘導を行う方法を見出し、本発明を完成した。
 すなわち、本開示は以下からなる。
 1.以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を所望の細胞型へ分化させるための分化誘導キット、
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞、
(2)脱メチル化酵素を強制発現させた多能性幹細胞、
(3)多能性幹細胞及び脱メチル化酵素遺伝子、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び多能性幹細胞、及び
(5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞。
 2.前記(1)、(2)又は(5)を含む、前項1に記載の分化誘導キット。
 3.脱メチル化酵素が、JMJD3である前項1又は2に記載の分化誘導キット。
 4.脱メチル化酵素が、JMJD3の酵素活性領域のみを含むものである前項1又は2に記載の分化誘導キット。
 5.脱メチル化酵素のアミノ酸配列が、配列番号1~3のいずれか1である前項3に記載の分化誘導キット。
 6.さらに、所望の細胞型への分化誘導に必要な転写因子を含む請求項1~5のいずれか1に記載の分化誘導キット。
 7.以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を骨格筋細胞へ分化させるための分化誘導キット、
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるMYOD1、
(2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるMYOD1、
(3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるMYOD1、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるMYOD1、並びに
(5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるMYOD1。
 8.以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を神経細胞へ分化させるための分化誘導キット、
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
(2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
(3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、並びに
(5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2。
 9.以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を肝細胞へ分化させるための分化誘導キット、
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるHNF1A、
(2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるHNF1A、
(3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるHNF1A、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるHNF1A、並びに
(5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるHNF1A。
 10.以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を所望の細胞型へ分化させる方法、
(1)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を多能性幹細胞に添加する工程、
(2)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに所望の細胞型への分化誘導に必要な転写因子を該細胞に添加する工程、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び所望の細胞型への分化誘導に必要な転写因子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(5)所望の細胞型への分化誘導に必要な転写因子を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
(6)所望の細胞型への分化誘導に必要な転写因子を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、及び
(7)脱メチル化酵素及び所望の細胞型への分化に必要な転写因子を多能性幹細胞に添加する工程。
 11.上記(1)、(3)、(6)又は(7)の工程を含む前項10に記載の分化させる方法。
 12.脱メチル化酵素が、JMJD3である前項10又は11に記載の分化方法。
 13.脱メチル化酵素が、JMJD3の酵素活性領域のみを含むものである前項10又は11に記載の分化方法。
 14.以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を骨格筋細胞へ分化させる方法、
(1)脱メチル化酵素遺伝子及び転写因子であるMYOD1を多能性幹細胞に添加する工程、
(2)脱メチル化酵素遺伝子及び所望の転写因子であるMYOD1遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるMYOD1を該細胞に添加する工程、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び転写因子であるMYOD1を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(5)転写因子であるMYOD1を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
(6)転写因子であるMYOD1を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
(7)脱メチル化酵素及び転写因子であるMYOD1を多能性幹細胞に添加する工程。
 15.以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を神経細胞へ分化させる方法、
(1)脱メチル化酵素遺伝子及び転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を多能性幹細胞に添加する工程、
(2)脱メチル化酵素遺伝子及び所望の転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を該細胞に添加する工程、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(5)転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
(6)転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
(7)脱メチル化酵素並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を多能性幹細胞に添加する工程。
 16.以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を肝細胞へ分化させる方法、
(1)脱メチル化酵素遺伝子及び転写因子であるHNF1Aを多能性幹細胞に添加する工程、
(2)脱メチル化酵素遺伝子及び所望の転写因子であるHNF1A遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるHNF1Aを該細胞に添加する工程、
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び転写因子であるHNF1Aを担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
(5)転写因子であるHNF1Aを、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
(6)転写因子であるHNF1Aを、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
(7)脱メチル化酵素及び転写因子であるHNF1Aを多能性幹細胞に添加する工程。
 17.前記所望の細胞型への分化誘導に必要な転写因子がTCF-1であり、かつ所望の細胞型が肝芽細胞である前項10~13のいずれか1に記載の分化方法。
 18.前記所望の細胞型への分化誘導に必要な転写因子がSOX9であり、かつ所望の細胞型が軟骨細胞である前項10~13のいずれか1に記載の分化方法。
 19.前記所望の細胞型への分化誘導に必要な転写因子がRUNX3であり、かつ所望の細胞型が骨芽細胞である前項10~13のいずれか1に記載の分化方法。
 本開示の多能性幹細胞を所望の細胞型へ高効率に分化させる方法及び多能性幹細胞を所望の細胞型へ高効率に分化させるための分化誘導キットは、少なくとも以下のいずれか1の効果を有するものである。
(1)多能性幹細胞から細胞分化に要する時間の短縮及び/又は分化誘導効率の向上。
(2)多能性幹細胞への遺伝子導入に、遺伝子の修飾合成mRNAを使用するので、導入した遺伝子が多能性幹細胞のゲノムへ取り込まれることがなく、細胞分化誘導後に癌化などのリスクがない。
(3)修飾合成mRNAを用いた多能性幹細胞へ遺伝子導入については、遺伝子mRNAの添加時期や回数を容易に変化させることができるので、多能性幹細胞から所望の細胞型に分化させるために種々の各所望の細胞型に特有の最適な条件を選択できる。
(a)本開示の多能性幹細胞の所望の細胞型への分化抵抗性を減弱させる方法の模式図。(b)ヒトESまたはiPS細胞からH3K27me3が減弱又は除去されることにより、転写因子(TF)が下流遺伝子のプロモーター部位に結合し、発生・分化関連遺伝子群の発現が亢進されて分化する。(c)脱メチル化酵素の修飾合成mRNAを導入後、転写因子(TF)の修飾合成mRNAを導入してヒトES細胞またはiPS細胞を分化誘導させる方法。(d)脱メチル化酵素および転写因子(TF)の修飾合成mRNAを同時に導入してヒトES細胞またはiPS細胞を分化誘導させる方法。 標的遺伝子の修飾合成mRNAを使用した分化誘導法の略図。 標的遺伝子の修飾合成mRNAを使用した分化工程の略図。 標的遺伝子を多能性幹細胞のゲノムに導入する方法。 JMJD3c発現によるH3K27me3減弱hESCの作製。(a)JMJD3全長(JMJD3f)及びJMJD3cのタンパク質構造。JMJD3cは、脱メチル化酵素活性を持つJmjCドメイン(1376~1484番目のアミノ酸)を含むように設計した。(b)hESCに、ヒトインフルエンザウイルス・ヘマグルチニン(HA)タグ完全長JMJD3(HA-JMJD3f)又はHAタグJMJD3c(HA-JMJD3c)の修飾合成mRNAを導入し、そして、抗HA抗体及び抗H3K27me3抗体を用いて染色した。矢頭は、導入細胞を示す。(c)H3K27me3に対するHA-JMJD3f及びHA-JMJD3cのmRNA導入の効果は、免疫ブロット法で解析した。緑色蛍光タンパクEmeraldの修飾合成mRNA(Em)は、コントロールとして導入した。抗H3抗体は、ローディングコントロールとして使用した。(d)hESC中のJMJD3c(JMJD3c-hESC)のtet-on誘導のプラスミドベクター。(e)JMJD3c-hESCは、ドキシサイクリン(Dox)処理後、3日目に5-ブロモ-4-クロロ-3-インドリル-β-D-ガラクトピラノシド(X-gal)で染色した。(f)HA-JMJD3c誘導によるH3K27me3の脱メチル化は、DOX処理後1~3日目に検出した。(g)JMJD3c変異体(mut)の点突然変異は、脱メチル化酵素活性欠失のために、1390番目のアミノ酸を置換した。(h)H3K27me3に対するHA-JMJD3c及びHA-JMJD3c mutの影響の確認。 JMJD3-hESCにおいて遺伝子発現が増加している発生・分化関連遺伝子。(a)Dox未処理条件(-JMJD3c)及びDox処理条件(+JMJD3c)におけるJMJD3-hESCの形態。(b)Dox処理後(0~3日目)のH3K27me3及びH3K4me3の変化は、ChIP-qPCRにより解析した。POU5F1及びNANOGは、幹細胞性遺伝子であり、T、MX1、SOX17、FOXA2、GATA4、GATA6、GSC及びEVX1は、中・内胚葉分化関連遺伝子である。n=2又は3。*P<0.05。エラーバーは、標本平均の標準誤差(SEM)を表す。(c)hESCと比較した分化条件における幹細胞性遺伝子及び中・内胚葉分化関連遺伝子の相対発現を示すqRT-PCR解析。基本培地(Basal Medium)は、サイトカイン及び成長因子を含まない培地を示し、アクチビンAは、内胚葉分化のための培地を示し、アクチビンA+BMP4+bFGFは、中胚葉分化のための培地を示し、JMJD3cは、Doxを含む培地(JMJD3c強制発現)を表わす。発現レベルは、グリセルアルデヒド3リン酸脱水素酵素(GAPDH)発現量により標準化した。 JMJD3cはMYOD1によるhESCからの筋分化を促進する。(a)分化プロトコールの概略図。JMJD3c-hESCは、プレーティング後1~2日目にDox含有又は非含有条件で処理し、そして、2~3日目の間にMYOD1又はEmerald合成mRNAを3回導入した。細胞は、5日目に回収した。(b)Dox処理(+JMJD3c)又はDox未処理(-JMJD3c)のMYOD1分化細胞における筋分化関連遺伝子のRT-qPCR解析。-は、非導入を示し、Emは、Emerald導入を示し、MYOD1は、MYOD1導入を示す。発現レベルは、GAPDHにより標準化した。n=3。エラーバーは、SEMを表す。(c)Dox処理(+JMJD3c)又はDox未処理(-JMJD3c)のMYOD1導入細胞のMYOG及びMEF2C遺伝子のプロモーター領域におけるH3K27me3、H3K4me3、及びH3K27acのChIP-qPCR解析。MYOG及びMEF2C遺伝子のプロモーター領域について、それぞれ、2領域(a~c)及び3領域(a、b)で試験した。GAPDH、POU5F1、及びTは、ポジティブコントロールを示し、SOX1はネガティブコントロールを示す。n=2又は3。P<0.05。エラーバーはSEMを表す。(d)JMJD3c、MYOD1、又はJMJD3c+MYOD1を強制発現した細胞におけるミオシン重鎖アイソフォーム(MHC)の免疫染色。(e)MHC染色内に含まれる核の割合。n=3。*P<0.01。エラーバーはSEMを表す。(f)JMJD3c又はJMJD3c変異を強制発現したMYOD1導入細胞におけるMHCの免疫染色。(g)MHC染色内に含まれる核の割合。n=3。*P<0.01。エラーバーはSEMを表す。 脱メチル化酵素と転写因子を合成mRNAとして導入することによるhESC及びiPSCの骨格筋細胞への分化。(a)分化誘導プロトコールの概略図。JMJD3c又は赤色蛍光タンパクmCherry合成mRNAは、hESC/iPSCに1日目と2日目に2回、MYOD1については2日目と3日目に3回遺伝子導入した。細胞は、5日目に免疫染色のため固定した。(b)mCherry又はJMJD3cに続いてMYOD1を導入した細胞におけるMHCの免疫染色。(c)MHC染色内に含まれる核の割合。n=3。*P<0.01。エラーバーはSEMを表す。(d)筋融合(矢頭)を示す代表的な染色像。(e)誘導した筋原性細胞は、緑色蛍光で標識し、そして、核を赤色蛍光で標識されたマウスC2C12細胞とともに共培養した。共培養後3日目及び5日目に、細胞融合が検出された(矢頭)。(f)iPSCは、mCherry又はJMJD3cに続いてMYOD1を導入し、MHCで免疫染色した。(g)MHC染色内に含まれる核の割合。n=3。*P<0.01。エラーバーはSEMを表す。 JMJD3cと組み合わせて、転写因子TCF-1、SOX9、RUNX3をそれぞれ発現させることによる肝芽細胞(TCF-1)、軟骨細胞(SOX9)、又は骨芽細胞(RUNX3)のマーカー遺伝子の発現上昇。AFPは肝芽細胞のマーカー遺伝子、COL2は軟骨細胞のマーカー遺伝子、COL1A1は骨芽細胞のマーカー遺伝子である。発現レベルは、GAPDHにより標準化した。n=2。*P<0.05。エラーバーはSEMを表す。
 本開示の多能性幹細胞を所望の細胞型へ高効率に分化誘導する方法(以後、「本開示の方法」と称する場合がある)は、多能性幹細胞の所望の細胞型への分化抵抗性を減弱させることができる方法であれば特に限定されないが、以下に説明する。
(多能性幹細胞)
 本開示の方法で使用する多能性幹細胞は、特に限定されないが、哺乳類由来が好ましく、特に好ましくはヒト由来である。例えば、ヒトES細胞、ヒトiPS細胞、または、これらの任意の組み合わせであり、特に限定されず、組織や器官由来の組織幹細胞、皮膚の繊維芽細胞、さらには組織や器官に由来するあらゆる種類の細胞を含む。
(多能性幹細胞の所望の細胞型への分化抵抗性を減弱させる)
 多能性幹細胞では、分化に関わる遺伝子群の各プロモーター領域に"Bivalent domain"という特殊なクロマチン構造が形成されており、幹細胞性維持状態では容易に発生・分化に関わる遺伝子群が発現しないように待機状態にある。本開示の実施例では、「"Bivalent domain"からH3K27me3というヒストンメチル基修飾が取り除かれる又は低減させることにより、所望の細胞型への分化誘導に必要な分化遺伝子の発現が迅速かつ効率的に促進される」ことを確認している(参照:図1)。
 すなわち、本開示の「多能性幹細胞の所望の細胞型への分化抵抗性を減弱させる」とは、多能性幹細胞のH3K27me3修飾を実質的に除去又は低減させることを意味する。
 加えて、多能性幹細胞のH3K27me3修飾を実質的に除去又は低減させた状態は、該除去又は該低減させてない多能性幹細胞のH3K27me3修飾の程度と比較することにより、確認できる。例えば、多能性幹細胞のH3K27me3修飾を実質的に除去又は低減させた状態(程度)は、除去又は低減させてない多能性幹細胞のH3K27me3修飾の程度を100とした場合と比較して、95~1、90~2、85~3、80~4、75~5、70~6、65~7、60~8、50~10、40~20、約30、又は50以下、40以下、30以下、20以下、10以下である。なお、多能性幹細胞のH3K27me3修飾の程度は、市販の抗Histone H3K27me3抗体を使用することにより容易に測定することができるし、また、H3K27me3の遺伝子発現量を自体公知の方法により測定することもできる。
(本開示の多能性幹細胞を所望の細胞型へ高効率に分化誘導する方法)
 上記述べたように、本開示の方法は、多能性幹細胞の所望の細胞型への分化抵抗性を減弱させることができる方法であれば特に限定されないが、以下を例示することができる。
(標的遺伝子の修飾合成mRNAの使用)
 本開示の方法では、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子、さらには、所望の細胞型への分化誘導に必要な転写因子の遺伝子を多能性幹細胞に添加(導入)することを含む。
 なお、本明細書の「遺伝子」とは、二本鎖だけでなく、それを構成する正鎖(またはセンス鎖)または相補鎖(またはアンチセンス鎖)などの各一本鎖、線状、環状を含み、さらに、特に言及しない限り、DNA、RNA 、mRNA、cDNA等を含む。
 加えて、標的遺伝子とは、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子及び所望の細胞型への分化誘導に必要な転写因子の両方又はいずれかを含む意味である。
 本開示の方法の工程において、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子及び/又は所望の細胞型への分化誘導に必要な転写因子を多能性幹細胞に添加(導入)方法は、自体公知の方法を使用することができ、特に限定されない。好ましくは、宿主ゲノムへの遺伝子組込みのないフットプリントフリーな遺伝子強制発現法として、Warren, Rossiらが開発した合成mRNAを用いた遺伝子発現法(参照文献:Cell Stem Cell 7:618-630, 2010.)を使用し、転写因子合成mRNAを効率良くヒト多能性幹細胞に導入し分化誘導する方法(参照:図2)を使用する。
 なお、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子及び所望の細胞型への分化誘導に必要な転写因子の多能性幹細胞の添加時期は、特に限定されないが、好ましくは、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子を、分化誘導に必要な転写因子添加前に、多能性幹細胞に添加することが好ましい。
 さらに、各遺伝子(mRNA)の添加時期として、12~64時間毎に1回以上、好ましくは、2~5回、2~4回、2~3回、又は2回行うことを例示することができるが、特に限定されない。
 より具体的な方法は、以下に例示することができる。
(転写因子のアミノ酸配列をコードする修飾mRNAの合成)
 文献「Warrenet al., Cell Stem Cell, 2010 Nov 5;7(5):618-30」に記載の方法を参照して、修飾mRNAを合成する。より詳しくは、mRNAは、所望の細胞型への分化誘導に必要な転写因子のアミノ酸配列をコードするテンプレートDNAを修飾したdNTPsの混合物{(dNTPs: 3-0-Me-m7G(5')ppp(5')G ARCA cap analog, 5-methylcytidine triphosphate、及び pseudouridinetriphosphate)}を用いて、試験管内での転写により合成する。
(転写因子のアミノ酸配列をコードするセンダイウイルスベクターの作成)
 哺乳類(特に、ヒト)の転写因子を発現するために、好ましくは、ヒト転写因子を発現可能なセンダイウイルスベクターを使用する。特に、Fタンパク質欠損等のセンダイウイルスベクターの変異体は、感染性が無く、操作が容易である(参照:Inoue et al., J Virol. 77: 23238-3246, 2003)。
(多能性幹細胞を所望の細胞型への高効率な分化誘導方法)
 単一又は2以上の所望の細胞型への分化誘導に必要な転写因子のカクテルを調製する。転写因子の形態は、特に限定されず、合成mRNAs、転写因子(又は複数の転写因子)を組み込んだセンダイウイルスベクター、合成mRNAsを含むナノ粒子カプセルのいずれでも良い。
 これらの単一又は2以上の転写因子のカクテルを細胞に導入する方法は、特に限定されず、リポフェクタミンによるトランスフェクション、ウイルス感染等を利用する。本開示の方法の分化誘導工程の略図を図3に示す。
(発現ベクターの使用)
 本開示の方法の工程において、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子及び/又は所望の細胞型への分化誘導に必要な転写因子を導入した自体公知の発現ベクターを使用することができる。本開示で用いる発現ベクターとしては、動物細胞発現プラスミドベクター、センダイウイルスベクター等を例示することができるが、特に限定されない。
 上記合成mRNA及び発現ベクターを多能性幹細胞に導入する方法としては、特に制限されないが、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAE(ジエチルアミノエチル)デキストラン法、マイクロインジェクション法、遺伝子銃法等を例示することができるが、特に好ましくは、リポフェクション法が好ましく挙げられる。
 別方法として、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝子は発現ベクターを使用し、所望の細胞型への分化誘導に必要な転写因子は合成mRNAを使用することもできるし、その逆のパターンもできる。
(H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物)
 本開示のH3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物は、特に限定されないが、脱メチル化酵素(特に、H3K27me3のメチル基を取り除く作用を持つ脱メチル化酵素)、H3K27me3に特異的に結合する抗体、H3K27me3の修飾作用を持つポリコームタンパク質群(PcG蛋白質)の抗体、small interfering RNA(siRNA)、阻害剤等である。
 また、これらの化合物を単一で使用するだけではく、複数の種類の化合物及び/又は低分子化合物を組み合わせることにより、効率的に「多能性幹細胞の所望の細胞型への分化抵抗性を減弱させる(多能性幹細胞のH3K27me3修飾を実質的に除去又は低減させる)」ことができる。
 なお、低分子化合物としては、Valproic acid等のHistone Deaceylase (HDAC)抑制剤を例示することができるが特に限定されない。
 脱メチル化酵素としては、AOF(LSD1)、AOF1(LSD2)、FBXL11(JHDM1A)、Fbxl10(JHDM1B)、FBXL19(JHDM1C)、KIAA1718(JHDM1D)、PHF2(JHDM1E)、PHF8(JHDM1F)、JMJD1A(JHDM2A)、JMJD1B(JHDM2B)、JMJD1C(JHDM2C)、JMJD2A(JHDM3A)、JMJD2B(JHDM3B)、JMJD2C(JHDM3C)、JMJD2D(JHDM3D)、RBP2(JARID1A)、PLU1(JARID1B)、SMCX(JARID1C)、SMCY(JARID1D)、Jumonji(JARID2)、UTX(UTX)、UTY(UTY)、JMJD3(JMJD3)、JMJD4(JMJD4)、JMJD5(JMJD5)、JMJD6(JMJD6)、JMJD7(JMJD7)、JMJD8(JMJD8)等を例示することができるが、H3K27me3のメチル基を取り除く作用を持つ脱メチル化酵素として、JMJD3等が好ましい。
 加えて、本開示の脱メチル化酵素は、以下も含む。
 (1)上記いずれか1に記載の脱メチル化酵素の保護化誘導体、糖鎖修飾体、アシル化誘導体、又はアセチル化誘導体。
 (2)上記いずれか1に記載の脱メチル化酵素と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつ該脱メチル化酵素と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つ酵素。
 (3)上記いずれか1に記載の脱メチル化酵素において、100~10個、50~30個、40~20個、10~5個、5~1個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ該脱メチル化酵素と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つ酵素。
 さらに、本開示の脱メチル化酵素の遺伝子は、以下を含む。
 (1)上記いずれか1以上の酵素のアミノ酸配列からなるポリペプチドをコードする遺伝子。
 (2)上記いずれか1以上の酵素のアミノ酸配列において、1~20(又は、1~15、1~10、1~7、1~5、1~3)個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ脱メチル化酵素と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を有するポリペプチドをコードする遺伝子。
 (3)上記いずれか1以上の酵素のアミノ酸配列と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつ脱メチル化酵素と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を有するポリペプチドをコードする遺伝子。
 変異を有する酵素は、天然に存在するものであってよく、また天然由来の遺伝子に基づいて変異を導入して得たものであってもよい。変異を導入する手段は自体公知であり、例えば、部位特異的変異導入法、遺伝子相同組換え法、プライマー伸長法またはポリメラーゼ連鎖反応(以下、PCRと略称する)などを単独でまたは適宜組合せて使用できる。
 例えば成書に記載の方法(サムブルック(Sambrook)ら編、「モレキュラークローニング,ア ラボラトリーマニュアル 第2版」、1989年、コールドスプリングハーバーラボラトリー;村松正實編、「ラボマニュアル遺伝子工学」、1988年、丸善株式会社)に準じて、あるいはそれらの方法を改変して実施することができ、ウルマーの技術(ウルマー(Ulmer, K.M.)、「サイエンス(Science)」、1983年、第219巻、p.666-671)を利用することもできる。ペプチドの場合、変異の導入において、当該ペプチドの基本的な性質(物性、機能、生理活性または免疫学的活性等)を変化させないという観点からは、例えば、同族アミノ酸(極性アミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ酸、陰性荷電アミノ酸および芳香族アミノ酸等)の間での相互の置換は容易に想定される。
(JMJD3)
 JMJD3は、ヒストンのH3K27me3の脱メチル化酵素(マウスNP_001017426、ヒトNP_001073893)として知られており、完全長(NP_001073893、配列番号1)でも多能性幹細胞のH3K27me3修飾を実質的に除去又は低減させる作用を持つ。しかし、本実施例1では、JmjCドメイン{配列番号2、触媒ドメイン:配列番号3(1376-1484番目のアミノ酸)}を持つJMJD3cは、完全長JMJD3と比較して、より強くH3K27me3修飾を実質的に除去又は低減させる作用を持つことを確認している(参照:実施例2)。
 加えて、本開示のJMJD3は、以下の態様も含む。
 (1)配列番号1に記載のアミノ酸配列の保護化誘導体、糖鎖修飾体、アシル化誘導体、又はアセチル化誘導体。
 (2)配列番号1に記載のアミノ酸配列と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつ該JMJD3と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (3)配列番号1に記載のアミノ酸配列において、100~10個、50~30個、40~20個、10~5個、5~1個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ該JMJD3と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (4)配列番号2に記載のアミノ酸配列の保護化誘導体、糖鎖修飾体、アシル化誘導体、又はアセチル化誘導体。
 (5)配列番号2に記載のアミノ酸配列と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつJMJD3cと実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (6)配列番号2に記載のアミノ酸配列において、100~10個、50~30個、40~20個、10~5個、5~1個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ該JMJD3cと実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (7)配列番号3に記載のアミノ酸配列の保護化誘導体、糖鎖修飾体、アシル化誘導体、又はアセチル化誘導体。
 (8)配列番号3に記載のアミノ酸配列と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつ該JMJD3と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (9)配列番号3に記載のアミノ酸配列において、100~10個、50~30個、40~20個、10~5個、5~1個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ該JMJD3と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
 (10)配列番号3に記載のアミノ酸配列を含み、かつJMJD3cと実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を持つアミノ酸配列。
「配列相同性」とは、通常、アミノ酸配列の全体で70%以上、好ましくは80%、より好ましくは85%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上、最も好ましくは98%以上であることが適当である。
 さらに、本開示のJMJD3遺伝子は、以下を含む。
 (1)配列番号1~3のいずれか1に記載のアミノ酸配列からなるポリペプチドをコードする遺伝子。
 (2)配列番号1~3のいずれか1に記載のアミノ酸配列において、1~20(又は、1~15、1~10、1~7、1~5、1~3)個のアミノ酸が置換、欠損、挿入及び/又は付加しており、かつ配列番号1~3に記載のアミノ酸配列と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を有するポリペプチドをコードする遺伝子。
 (3)配列番号1~3のいずれか1に記載のアミノ酸配列と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有し、かつ配列番号1~3に記載のアミノ酸配列と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を有するポリペプチドをコードする遺伝子。
 (4)配列番号4~6のいずれか1に記載の塩基配列からなる遺伝子。
 (5)配列番号4~6のいずれか1に記載の塩基配列と相補的な塩基配列とストリンジェントな条件下でハイブリダイズし、かつ配列番号1~3に記載のアミノ酸配列と実質的同質のH3K27me3修飾を実質的に除去又は低減させる作用を有するポリペプチドをコードする遺伝子。
 (6)配列番号4~6のいずれか1に記載の塩基配列からなる遺伝子(DNA)において、1~50(又は、1~40、1~30、1~20、1~15、1~10、1~5、1~3個の塩基配列が置換、欠損、挿入及び/又は付加している遺伝子。
 (7)配列番号4~6のいずれか1に記載の塩基配列からなる遺伝子と90%(又は、92%、94%、96%、98%、99%)以上の相同性を有する遺伝子。
(所望の細胞型への高効率な分化誘導に必要な転写因子)
 本開示の方法で使用する「所望の細胞型への高効率な分化誘導に必要な転写因子」の形態は、特に限定されないが、例えば、RNA、DNAなどの核酸、合成核酸、タンパク質等を例示することができるが特に限定されない。例えば、以下のように、例示することができる。
 また、本開示の方法において、所望の細胞型の例示として、骨格筋(骨格筋細胞)、肝臓(肝細胞)、神経(神経細胞)等を例示することができる。
{骨格筋(特に骨格筋に存在する細胞)の分化誘導に必要な転写因子}
 骨格筋の分化誘導方法は、以下の通りである。
 MYOD1、NRF1、SALL4、ZIC1、KLF9、ZNF281、CTCF、HES1、HOXA2、TBX5、TP73、ERG、MAB21L3、PRDM1、NFIC、CTCFL、FOXP1、HEY1、PITX2、
JUNB、KLF4、ESX1、TFAP2C、FOS、TFE3、FOSL1、GRHL2、TBX2、NFIB、IRF4から選択される単独、ないしは、2以上の転写因子を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に導入する。
 特に、JMJD3c遺伝子(配列番号80)及びMYOD1(myogenic differentiation 1:配列番号86、配列番号88)を自体公知の多能性幹細胞に添加する。
{肝臓(特に肝臓に存在する細胞である肝細胞、肝芽細胞)の分化誘導に必要な転写因子}
 肝臓(特に、肝臓、肝細胞、胎児肝臓)の分化誘導方法は、以下の通りである。
 肝臓:TCF-1、SALL4、TGIF1、MAB21L3、ZIC1、EGFLAM、PITX2、HNF4A、NRF1、ZNF281、CTCFL、TP73、TFE3、DLX6、TCF4から選択される単独、ないしは、2以上の転写因子をヒト多能性幹細胞に導入する。
 胎児肝臓:TCF-1、SIX5、HNF4A、SIN3A、ID1、HNF1Aから選択される単独、ないしは、2以上の転写因子をヒト多能性幹細胞に導入する。
 特に、JMJD3c遺伝子(配列番号80)及びHNF1A(hepatocyte nuclearfactor 1, alpha:配列番号87、配列番号94)を自体公知の多能性幹細胞に添加する。
{神経系細胞(特に、運動神経、末梢性の運動神経細胞)の分化誘導に必要な転写因子}
 神経系細胞(特に、運動神経、末梢性の運動神経細胞)の分化誘導方法は、以下の通りである。
 NEUROG1(neurogenin 1:配列番号81)、NEUROG2(neurogenin 2:配列番号82)、NEUROG3(neurogenin 3:配列番号83)、NEUROD1(neurogenic differentiation 1:配列番号84)NEUROD2(neurogenic differentiation 2:配列番号85)から選択される単独、ないしは、2以上、3以上、4以上又はすべての転写因子をヒト多能性幹細胞に導入する。
 特に、JMJD3c遺伝子(配列番号80)並びにNEUROG1(配列番号81、配列番号89)、NEUROG2(配列番号82、配列番号90)、NEUROG3(配列番号83、配列番号91)、NEUROD1(配列番号84、配列番号92)及びNEUROD2(配列番号85、配列番号93)を自体公知の多能性幹細胞に添加する。
(標的遺伝子を多能性幹細胞のゲノムに導入する方法)
 本開示の方法の工程において、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物の遺伝及び/又は所望の細胞型への高効率な分化誘導に必要な転写因子を多能性幹細胞のゲノムに導入する方法は、自体公知の方法を使用することができ、特に限定されない。好ましくは、導入する遺伝子が積極的に多能性幹細胞(特に、ヒトES細胞ゲノム)に組み込まれるような仕組みとして、Woltjenらが開発したPiggyBacトランスポゼース認識配列(PB配列)に挟まれた発現カセット(参照文献:Nature 458:766-770, 2009.)を使用することができる。該発現カセットでは、薬剤選別カセットを導入することで、効率良く遺伝子組み多能性幹細胞株を樹立できる系(参照:図4)である。
(標的タンパク質を多能性幹細胞に導入する方法)
 本開示の方法の工程において、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物(特に、タンパク質)及び/又は所望の細胞型への高効率な分化誘導に必要な転写因子(タンパク質)を多能性幹細胞のゲノムに導入する方法は、自体公知の方法を使用することができ、例えば、タンパク質導入試薬を用いる方法、細胞膜透過ペプチドを付加した融合タンパク質を用いる方法、マイクロインジェクション法などを挙げることができる。
 本開示の「細胞膜透過性ペプチド」は、細胞内に移行する性質、より詳しくは、細胞膜を透過する性質、さらに詳しくは、細胞膜又は核膜を透過して細胞質内又は核内に透過する性質を有するペプチドである。該ペプチドのアミノ酸配列は、特に限定されないが、例えば、TAT(GRKKRRQRRRPQ:配列番号7)、r8{rrrrrrrr(D体-R):配列番号8}、MPG-8(βAFLGWLGAWGTMGWSPKKKRK:配列番号9)を例示することができる。
 なお、標的タンパク質とは、H3K27me3修飾を実質的に除去又は低減させる作用を持つ化合物(特に、タンパク質)及び/又は所望の細胞型への高効率な分化誘導に必要な転写因子(タンパク質)の両方を含む。
(多能性幹細胞を所望の細胞型へ高効率に分化誘導するための分化誘導キット)
 本開示の多能性幹細胞を所望の細胞型へ高効率に分化誘導するための分化誘導キット(以後、「本開示のキット」と称する場合がある)は、以下のいずれか1以上の態様を含む。
(1)H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞
 上記記載の本開示の方法により、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作成可能である。
 本開示の実施者は、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞に、上記述べたように、所望の細胞型への分化誘導に必要な転写因子を導入することにより、容易に、所望の細胞型へ分化誘導することができる。
 また、ドキシサイクリン等で誘導可能な遺伝子構築物がゲノムに挿入されていることで、脱メチル化酵素を一時的に強制発現することができる多能性幹細胞も対象である。
(2)本開示のキット用脱メチル化酵素遺伝子
 本開示の実施者は、キット用脱メチル化酵素遺伝子を自体公知の多能性幹細胞に添加することにより、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作製可能である。
 キット用脱メチル化酵素遺伝子は、脱メチル化酵素遺伝子(例えば、JMJD3c)のmRNA、DNA、タンパク質等を例示することができるが特に限定されない。
(3)本開示のキット用脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を含む遺伝子。
 本開示の実施者は、キット用脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を含む遺伝子を自体公知の多能性幹細胞に添加することにより、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作製し、さらに所望の細胞型へ高効率に分化誘導させることができる。
 なお、両遺伝子は、1つの遺伝子上に存在していても良いし、別の遺伝子上でも良い。別の遺伝子上であれば、脱メチル化酵素遺伝子と所望の細胞型への分化誘導に必要な転写因子を同時又は別の時期に多能性幹細胞に添加することができる。
(4)本開示のキット用脱メチル化酵素
 本開示の実施者は、キット用脱メチル化酵素を自体公知の多能性幹細胞に添加することにより、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作製可能である。
(5)本開示の脱メチル化酵素遺伝子を担持した遺伝子構築物
 本開示の実施者は、脱メチル化酵素遺伝子を担持した遺伝子構築物を自体公知の多能性幹細胞のゲノムに導入することにより、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作製可能である。
 なお、遺伝子構築物には、脱メチル化酵素遺伝子だけでなく、プロモーター配列、遺伝子発現向上配列、マーカー遺伝子、レポーター配列、薬剤耐性遺伝子等を必要に応じて含んでもよい
(6)本開示の脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を担持した遺伝子構築物
 本開示の実施者は、脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を担持した遺伝子構築物を自体公知の多能性幹細胞のゲノムに導入することにより、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞を容易に作製し、さらに所望の細胞型へ分化誘導させることができる。
 なお、両遺伝子は、1つの遺伝子上に存在していても良いし、別の遺伝子上でも良い。別の遺伝子上であれば、脱メチル化酵素遺伝子と所望の細胞型への分化誘導に必要な転写因子を同時又は別の時期に多能性幹細胞のゲノムに導入することができる。
 なお、遺伝子構築物には、脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子だけでなく、プロモーター配列、遺伝子発現向上配列、マーカー遺伝子、レポーター配列、薬剤耐性遺伝子等を必要に応じて含んでもよい。
 本開示の多能性幹細胞を所望の細胞型へ分化させる方法では、下記の(1)~(7)のいずれか1に記載の工程を含む方法を例示することができるが、特に限定されない。
(1)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を多能性幹細胞に添加する工程。
(2)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程。
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに所望の細胞型への分化誘導に必要な転写因子を該細胞に添加する工程。
(4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び所望の細胞型への分化誘導に必要な転写因子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程。
(5)所望の細胞型への分化誘導に必要な転写因子を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程。
(6)所望の細胞型への分化誘導に必要な転写因子を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程。
(7)脱メチル化酵素及び所望の細胞型への分化に必要な転写因子を多能性幹細胞に添加する工程。
 本開示では、以下のいずれか1の所望の細胞型分化用多能性幹細胞も対象とする。
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する、所望の細胞型分化用多能性幹細胞。
(2)脱メチル化酵素を強制発現させた、所望の細胞型分化用多能性幹細胞。
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている、所望の細胞型分化用多能性幹細胞。
 本開示では、以下のいずれか1の所望の細胞型分化用多能性幹細胞の使用も対象とする。
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する、所望の細胞型分化用多能性幹細胞。
(2)脱メチル化酵素を強制発現させた、所望の細胞型分化用多能性幹細胞。
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている、所望の細胞型分化用多能性幹細胞。
 本開示では、以下のいずれか1の所望の細胞型分化用多能性幹細胞を、多能性幹細胞を所望の細胞型へ分化させるための分化誘導キットの製造としての使用も対象とする。
(1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する、所望の細胞型分化用多能性幹細胞。
(2)脱メチル化酵素を強制発現させた、所望の細胞型分化用多能性幹細胞。
(3)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている、所望の細胞型分化用多能性幹細胞。
 以下に示す実施例によって本開示を具体的に説明するが、本開示はこれらに限定されるものではない。すべての本実施例は、慶應義塾大医学部の倫理委員会によって承認された後に、実施した。
(材料及び方法)
 以下に記載の材料及び方法を使用して実施例2~7を行った。詳細は、以下の通りである。
(ヒト多能性幹細胞培養及び分化誘導方法)
 ヒトES細胞(hESC)系列であるSEES-3は、日本国立成育医療研究センター(NationalResearch Institute for Child Health and Development)から得た。ヒト誘導多能性幹細胞(hiPSC)は、POU5F1、SOX2、KLF4、及びc-MYCのmRNAの導入により、成人ヒト線維芽細胞から生成した。hESC/iPSCは、iMatrix-511(ニッピ)コーティングプレート上にStemFit AK-03培地(味の素)を用いて、フィーダー細胞を含まない条件で保持した。ROCK阻害剤Y-27632は、解離により誘導されるアポトーシスを避けるために、細胞継代中に培地に添加した。
 初期分化のために、hESCは、各成長因子(内胚葉分化のために100 ng/ml のアクチビンA、1日目の100 ng/ml のアクチビンAの代わりに中胚葉分化のために10 ng/mlのBMP4と10 ng/mlの bFGF)が添加されているRPMI1640(Gibco)の分化培地で培養した。筋原性分化のために、hPSCは、iMatrix-511又はMatrigel(BD)コーティングプレート上に、5% KSR、1 mM ピルビン酸ナトリウム、0.1 mM非必須アミノ酸アミノ酸、2 mMグルタミン、0.1 mM βメルカプトエタノール、及びペニシリン/ストレプトマイシン(50 U/50 μg/ml)を添加したαMEM(Gibco)の培地中で培養した。
(JMJD3c-hESCの生成)
 完全長ヒトJMJD3クローンは、Addgeneから得た(プラスミドID#24167)。触媒ドメインにおける点突然変異は、PrimeSTARMutagenesis Basal Kit(タカラ)を用いて導入した。HAタグJMJD3c及びその変異は、テトラサイクリン応答性エレメントであるIRES-βgeo及びPGKプロモーター制御ピューロマイシン耐性遺伝子を含むPiggyBacコンストラクトにサブクローニングした。ベクターは、GeneJuice transfection reagent(Novagen)を用いて、リバーステトラサイクリントランス活性化因子(SEE3-1v)を一貫して発現するhESCに、PiggyBacトランスポゼースベクターと同時導入した。安定的なクローンは、ピューロマイシン選択により樹立した。ドキシサイクリン処理における誘導可能な発現は、X-Gal染色により確認した。
(修飾mRNA合成及び導入)
 mRNAを合成するテンプレートの調製のために、赤色蛍光蛋白質mCherryのタンパク質コーディング領域(Open Reading Frame, ORF)、緑色蛍光タンパク質Emerald及びヒトインフルエンザウイルス ヘマグルチニン(Hemagglutinin, HA)タグ完全長、JMJD3触媒ドメイン及びUTXは、mRNA安定性及び翻訳効率を増加させるマウスαグロビンの5' UTR及び3' UTRを含むpCRIIコンストラクトにサブクローニングした。
 修飾mRNAは、文献「Cell stem cell7, 618-630 (2010)」の記載を基にして合成された。簡単に言及すると、T7プロモーターとポリA末端は、KAPA taq kit(Kapabiosystems)を用いてPCR反応で添加した。RNAは、ARCA cap analog(New England Biolabs)、ATP、GTP、5-Methyl-CTP (TriLink)、及びpseudo-UTP(TriLink)と共に、MEGAscript T7 kit(Ambion)を用いて、PCR産物から合成した。合成mRNAは、MEGAclear kit(Ambion)を用いて精製した。RNA導入は、添付の説明書の指示に従って、Lipofectamine 2000(Invitrogen)又はLipofectamine Messenger Max(Invitrogen)を用いて行った。導入細胞の生存率を向上させるために、B18Rインターフェロン阻害剤(eBioscience)を、培養培地に添加した。培地は、各導入の2~3時間後に交換した。
(抗体)
 以下の抗体を使用した。
 HA (免疫ブロット法用Abcam#ab9110、免疫染色用#ab18181)
 H3K4me3(Millipore #07-473)
 H3K27me3(Millipore #07-449)
 H3K27ac(Active Motif #39-133)
 panH3(Abcam #ab1791)
 MHC(R&D #MAB4470)。
(免疫染色)
 細胞は、4%PFA中で10分間室温で固定し、そして、0.5%Triton-X含有PBS中で10分間透過処理した。細胞は、2%BSA含有PBS中で10分間ブロッキングし、そして、ブロッキング溶液中で1次抗体(1:500)と共に2~3時間室温で若しくは一晩4℃で培養した。細胞は、PBS中で2回洗浄した後、ブロッキング溶液中でAlexa色素結合2次抗体(1:500;Invitrogen)と共に、1時間室温で培養した。核は、DAPI(Dako)で5分間室温で対比染色した。免疫蛍光は、倒立蛍光顕微鏡IX73(オリンパス)を用いて可視化した。画像は、オリンパスcellSensイメージングソフトウェアを用いて得た。
(免疫ブロット法)
 細胞は、サンプルバッファー(50 mM Tris-HCl pH6.8、2% SDS、6% 2-メルカプトエタノール、500 mg/ml尿素)で溶解した。タンパク質は、4-15%ポリアクリルアミドゲル(Biorad)を用いたSDS-PAGEにより分離し、そして、ポリフッ化ビニリデン膜(Biorad)に電気的に転写した。膜は、1時間、0.1% Tween-20含有Tris-buffered saline(TBST)及び5%スキムミルク中でブロッキングした。膜は、TBST中で洗浄し、その後2% BSA含有TBS中で、一晩4℃で1次抗体(1:1000で希釈)と共に培養した。膜は、洗浄し、そして、ホースラディッシュペルオキシダーゼ結合2次抗体(GE)と共に1時間室温で培養した。膜は、TBST中で洗浄し、そして、免疫反応性は、ECL Prime Detection Kit(GE)を用いて可視化し、さらにLuminescent Image Analyzer(LAS-4000; Fujifilm)を用いて検出した。
(qRT-PCR)
 全RNAは、TRIzol reagent(Invitrogen)で単離し、そして、cDNAは、Superscript IIIFirst-strand Synthesis kit(Invitrogen)を用いて、ランダムヘキサマーで生成した。リアルタイムPCRは、SYBR Green PCR system(タカラ)を用いて行った。RT-PCR用プライマー配列は、下記表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
{クロマチン免疫沈降(ChIP)解析}
 細胞は、10分間室温でPBS(終濃度1%)中においてホルムアルデヒドで架橋した。反応は、グリシン(終濃度125 M)により停止させた。細胞は、PBSで洗浄し、使用するまで-80℃で保管した。細胞は、プロテアーゼインヒビターカクテル含有Lysis buffer 3(10 mM Tris-HCl、pH8.0、100 mM NaCl、1 mM EDTA、0.5 mM EGTA、0.1%デオキシコール酸ナトリウム、0.5% N-ラウロイルサルコシン)中で溶解した。超音波処理は、約150~450 bpのDNA断片を生成するために、Handy Sonic UR-20P(トミー精工)を用いて行った。超音波処理溶解物は、プロテアーゼインヒビターカクテル含有ChIP dilution buffer(20 mM Tris-HCl、pH 8.0、150 mM NaCl、2 mM EDTA、1% Triton X-100)で希釈し、そして、3μgの抗体で前培養した30 μl protein G magnetic beads(Invitrogen)と共に一晩4℃で培養した。沈殿物は、RIPAbuffer(10mM Tris-HCl、pH 7.5、140 mM NaCl、1 mM EDTA、0.5 mM EGTA、1% Triton X-100、0.1% SDS、0.1%デオキシコール酸ナトリウム)で3回洗浄し、そして、10 mM Tris-HCl、pH 8.0、5 mM EDTA、10 mM NaClで1回洗浄した。結合したクロマチンは、Elution buffer(20 mM Tris-HCl、pH 7.5、5 mM EDTA、50 mM NaCl、1% SDS)中において68℃でビーズから溶出させ、68℃、6時間で脱架橋した。DNAは、RNase A及びプロテアーゼK処理後、フェノール・クロロホルム・イソアミルアルコール及びイソプロパノール沈殿により精製した。リアルタイムPCRは、SYBR Green PCR system(タカラ)を用いて行った。プライマー配列は、上記表1、2に示す。
(筋原性細胞及びC2C12細胞の共培養)
 誘導した筋原性細胞は、Emerald mRNAの導入により緑色蛍光で標識した。細胞は、2%ウマ血清添加DMEM(Gibco)の培地中においてH2B-mCherryを発現するC2C12細胞中と共に共培養した。
(統計解析)
 サンプル間の差異の統計学的有意性は、独立したサンプルのスチューデントのt検定により評価した。
(H3K27me3欠損多能性幹細胞(H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞)の作製)
 本実施例により、H3K27me3を脱メチル化した多能性幹細胞(H3K27me3欠損hESC)を作製した。詳しくは、多能性幹細胞のH3K27me3を脱メチル化するために、脱メチル化酵素JMJD3の発現を操作するための2つの方法を使用した。詳細は、以下の通りである。
(1)修飾合成mRNAの使用
 修飾合成mRNAの使用によりJMJD3の強制発現系を作製した。完全長のJMJD3(JMJD3f)及び触媒ドメインを含むC末端(JMJD3c)をコードするmRNAをインビトロで合成した(図5a)。
 これらのmRNAのN末端は、翻訳したタンパク質の検出のために、ヘマグルチニン(HA)配列によりタグ付けした。合成mRNAのhESCへの導入後8時間にて、H3K27me3の脱メチル化は、免疫染色及び免疫ブロット法により検出した(図5b、c)。これらの結果は、「JMJD3c mRNAの導入は、JMJD3f mRNAと比較して、より顕著なH3K27me3の減少を誘導したこと」を示し、この結果は、JMJD3の触媒ドメインは、ヌクレオソームヒストンを十分脱メチル化できることを示した。
(2)脱メチル化酵素遺伝子が挿入されたプラスミドベクターの使用
 JMJD3cが導入されたプラスミドベクターの使用によりJMJD3cの強制発現系を作製した。より詳しくは、ドキシサイクリン(Dox)処理により、HA-JMJD3cの発現が制御されるhESC株を生成した(JMJD3c-hESC)(図5d)。Dox処理(1 μg/ml)は、全てのhESCにおけるHA-JMJD3c発現及びH3K27me3の顕著な減少を誘導した(図5f)。触媒機能欠損であるJMJD3c変異の強制発現(図5g)は、H3K27me3におけるいかなる変化も誘導しなかった(図5h)。これにより、JMJD3cが、その脱メチル化酵素活性によりH3K27me3を除去又は減弱することを確認した。
 すなわち、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞が作製されていることを確認した。
 上記2つの方法の両方において、多能性幹細胞のH3K27me3の発現レベルを操作できることを確認した。加えて、修飾合成mRNAの使用では、JMJD3c発現のタイミングと持続時間を制御できるので、多能性幹細胞を所望の細胞型へ分化誘導する特定の時期に、H3K27me3の発現レベルの減少(又は、H3K27me3の実質的な除去)を行うことができる。
(H3K27me3欠損多能性幹細胞における発生遺伝子の変化の確認)
 JMJD3c強制発現(H3K27me3欠損多能性幹細胞)が、分化へ向かうhESCの形態変化を引き起こしたことを明らかにした(図6a)。この形態変化は、未分化状態を維持するための培養条件においても起ること確認した。
 クロマチン免疫沈降(ChIP)解析により、H3K27me3の減少は、Dox処理JMJD3c-hESCにおいて遺伝子発現が増強された遺伝子のプロモーターにおいて起こったが、H3K4me3は、それらの領域に依然として豊富であることが明らかになった(図6b)。この結果は、クロマチン構造が活性状態になることを意味する。
 本実施例では、JMJD3c発現が、H3K27me3を脱メチル化することにより、細胞分化抵抗性(幹細胞維持性)を乗り越え、発生・分化関連遺伝子の発現亢進をもたらすことができることを示した。
 上述した通り、JMJD3cの強制発現は、発生・分化関連遺伝子の発現を増強する。特に、SOX17,FOXA2、GATA4/6、EOMES、T、及びMIXL1等の内胚葉及び中胚葉分化に関する遺伝子は、Dox処理3日後において高く発現した(図6c)。さらに、これらの遺伝子の発現亢進は、未分化状態維持培養条件においてでも認められた。通常、hESC/iPSCの中胚葉/内胚葉への分化は、様々なサイトカインや成長因子(アクチビンA、BMP、及びFGF等)を含む分化培地への変更を必要とする。初期分化のための遺伝子発現亢進に対するJMJD3cの影響を評価するために、JMJD3c発現条件と従来の分化条件における発生分化関連遺伝子の発現レベルを比較した。リアルタイムPCR解析により、未分化培地においてJMJD3が、サイトカイン及び成長因子を用いた分化条件と比較して、同程度、発生遺伝子の発現を増強したことを確認した(図6c)。
 これらの結果から、脱メチル化酵素の異所発現(強制発現)は、発生分化関連遺伝子を直接的に発現亢進させることにより、多能性維持状態から初期分化状態に移行させることができ、これは様々なサイトカインや成長因子を必要としない。すなわち、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞は、多能性状態から初期分化状態に容易に移行する。
(脱メチル化酵素を強制発現する多能性幹細胞の所望の細胞型への分化確認)
 上記実施例において、JMJD3cによるH3K27脱メチル化が、hESCのクロマチン構造を所望の細胞型への高効率な分化誘導に対して活性型に変更することを確認した。これにより、所望の細胞型への分化誘導に必要な転写因子を導入すれば、高効率に所望の細胞型へ分化誘導できると考えた。よって、本実施例では、所望の細胞型への分化誘導の一例として、筋形成を制御するマスター転写因子であるMYOD1を用いた筋形成分化のモデルを採用した。なお、hESCにおけるMYOD1単独の強制発現は、エピジェネティックな変化及び転写変化の不足により、筋形成までの分化に向かうことが困難であることが知られている(参照:Cell reports 3, 661-670 (2013))。
 JMJD3cがMYOD1誘導筋細胞分化を促進できるかを確認するために、MYOD1強制発現前に、hESCにおいて、JMJD3cを一時的に強制発現させた(図7a)。
 この工程において、JMJD3c-hESC株を用い、JMJD3c及びMYOD1は、それぞれDox処理及び合成mRNAの導入により誘導された。
 骨格筋分化のマーカーである4遺伝子(MYOG、MEF2C、CKM、及びSIX1)の発現変化を調べた。リアルタイムPCR解析により、MYOD1単独の強制発現は、SIX1を除き、筋細胞分化関連遺伝子の発現増強を誘導しなかった。
 しかし、MYOD1強制発現前に、JMJD3cを強制発現させたとき、これらの遺伝子の全てが、顕著な発現増強を示した。しかし、JMJD3c単独の強制発現は、MYOD1下流遺伝子の発現パターンを変更しなかった。これらの結果から、JMJD3cが、MYOD1遺伝子発現を介した筋分化を促進したことを確認した。
 更に、ChIPアッセイによるJMJD3c強制発現をした場合又はしない場合のMYOD1強制発現を介した分化過程のMYOG及びMEF2Cのプロモーター領域におけるクロマチン変化を調べた。これらの領域において、H3K4me3及びH3K27me3のレベルは、hESC及び分化細胞の両方において、GAPDH、POU5F1又はBrachyury(T)等のポジティブコントロールと比較して、低いことが明らかになり(図7c)、JMJD3cポジティブ条件及びネガティブ条件の間で大きな差はなかった。一方で、それらの領域が、JMJD3cポジティブ条件においてのみ、分化細胞におけるH3K27のアセチル化(H3K27ac)に顕著に富み、ネガティブ条件ではみられないことが明らかになった(図7c)。H3K27acは、活性転写に直接関わることが知られている。したがって、JMJD3cとMYOD1の組み合わせが、筋形成遺伝子におけるクロマチンの活性状態を形成することを示した。
 更に、JMJD3c/MYOD1強制発現hESCが、ミオシン重鎖(MHC)陽性であり、分化後4日目に筋管様の形態に変化したことを確認した(図7d)。MHC陽性細胞の割合は、MYOD1単独の過剰発現条件で観察された割合よりも遥かに高かった(図7e)。これらの結果は、JMJD3cが、MYOD1を介した、hESCの骨格筋細胞への分化を促進することを示す。しかし、JMJD3c変異の強制発現は、MYOD1を介した、筋形成への分化を誘導しなかった(図7f、g)。これにより、H3K27me3の脱メチル化は、MYOD1を介した、hESCの筋細胞への分化に必須であることを確認した。
 以上により、所望の細胞型への分化誘導に必要な転写因子をH3K27me3欠損細胞(H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞)に導入すれば、効率的に所望の細胞型に分化誘導できる。
(合成mRNAを用いた多能性幹細胞を所望の細胞型への分化の確認)
 上記実施例4では、脱メチル化酵素を強制発現することにより、MYOD1を介した、hESCの骨格筋細胞への分化を促進できることを確認した。
 本実施例では、脱メチル化酵素であるJMJD3c及び所望の細胞型への分化誘導に必要な転写因子であるMYOD1の合成mRNAのみを用いて、多能性幹細胞のDNAを改変することなく、hESCを骨格筋細胞に分化誘導できるかどうかを確認した。
 JMJD3cのmRNAを、hESCに2回導入し、続いてMYOD1 mRNAを3回導入した(図8a)。MYOD1 mRNAの最後の導入の2日後に、hESCの大部分は、MHC陽性細胞に分化した(図8b、c)。コントロールとして、mCherryとMYOD1のmRNAをhESCに導入したが、筋原性分化を誘導しなかった。
 MHC陽性細胞は、細胞融合の可能性を有し(図8d)、マウスC2C12細胞を用いた融合アッセイにより、更に確認できた(図8e)。これらの結果から、誘導された筋管様細胞は、インビトロで成熟した骨格筋になることを確認できた。
 さらに、JMJD3cのmRNAが、MYOD1を介した、線維芽細胞由来のhiPSCの筋形成への分化を促進させることを確認した(図8f、g)。これにより、JMJD3cが、多能性状態からの最終分化状態への直接転換を促進することを示している。
 以上により、所望の細胞型への分化誘導に必要な転写因子を、H3K27me3修飾を実質的に除去又は低減させた多能性幹細胞に導入(添加)することにより、所望の細胞型へ高効率に分化誘導させることができる。
 先行技術では、MYOD1単独でも骨格筋細胞を誘導できることを示している。しかし、非特許文献4では、MYOD1遺伝子を安定に発現させるために薬剤選別を行わなければならず、分化誘導を開始する前に10日ほど前培養が必要となる。また、非特許文献3では、MYOD1遺伝子の代わりにPAX7遺伝子を導入しているが、分化誘導には1ヶ月ほど培養させる必要がある。
 また、BAF60Cという遺伝子を導入後、MYOD1遺伝子を導入することにより骨格筋分化を誘導することが報告されている(参照:Cell Rep. 2013 Mar 28;3(3):661-70.)。しかし、分化誘導に20日かかり、さらにレンチウイルスベクターの使用が必要である。
(各転写因子は多能性幹細胞を所望の細胞型へ分化させる)
 上記実施例4、5では、脱メチル化酵素を強制発現又は脱メチル化酵素の合成mRNAの添加により、MYOD1を介した、hESCの骨格筋細胞への分化誘導を促進できることを確認した。
 本実施例では、各転写因子を用いて多能性幹細胞を複数の所望の細胞型へ分化誘導できるかどうかを確認した。
 実施例4に記載の方法を参照して、JMJD3c-hESCを、プレーティング後1~2日目にDox含有(+JMJD3c)又は非含有(-JMJD3c)条件で処理し、次に、2日目の間にTCF1、SOX9、RUNX3またはmCherryの合成mRNAをそれぞれ2回導入した。細胞は、4日目に回収し、各分化マーカー遺伝子の発現をRT-qPCR解析で調べた。
 解析結果を図9に示す。TCF1転写因子を導入した細胞では、肝芽細胞のマーカー遺伝子であるAFPが顕著に増加していた。SOX9転写因子を導入した細胞では、軟骨細胞のマーカー遺伝子であるCOL2が顕著に増加していた。RUNX3転写因子を導入した細胞では、骨芽細胞のマーカー遺伝子であるCOL1A1が顕著に増加していた。
 以上により、所望の細胞型への分化誘導に必要な転写因子をH3K27me3欠損細胞(H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞)に導入すれば、効率的に所望の細胞型に分化誘導できることを確認した。
(本開示の多能性幹細胞を使用した所望細胞型への分化の例示)
 本実施例では、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞を使用して各所望細胞型への分化を確認した。
(骨格筋細胞への分化)
 実施例5の記載を参照して、4日間の培養中において、JMJD3c遺伝子(配列番号80)を、ヒト多能性幹細胞に2回導入して、続いてMYOD1遺伝子(配列番号86、配列番号88)を3回導入した。4日間の培養で、骨格筋細胞に分化していることを確認した。
(肝細胞への分化)
 実施例5の記載を参照して、4日間の培養中において、JMJD3c遺伝子(配列番号80)を、ヒト多能性幹細胞に2回導入して、続いてHNF1A遺伝子(配列番号87、配列番号94)を3回導入した。4日間の培養で、肝細胞に分化していることを確認した。
(神経細胞への分化)
 実施例5の記載を参照して、4日間の培養中において、JMJD3c遺伝子(配列番号80)を、ヒト多能性幹細胞に2回導入して、続いてNEUROG1遺伝子(配列番号81、配列番号89)、NEUROG2遺伝子(配列番号82、配列番号90)、NEUROG3遺伝子(配列番号83、配列番号91)、NEUROD1遺伝子(配列番号84、配列番号92)及びNEUROD2遺伝子(配列番号85、配列番号93)を3回導入した。4日間の培養で、神経細胞に分化していることを確認した。
(本発明の主題)
 本開示の方法では、多能性状態から初期分化状態に移行させるために必要な様々なサイトカインや成長因子を添加することなく、さらに、合成mRNAを多能性幹細胞に添加することのみにより、分化誘導開始より4日で分化効率が6~7割に到達することを確認している。すなわち、本開示の方法では、従来の方法と比較して、必要な様々なサイトカインや成長因子を必要とすることなく、短期間かつ高効率の分化誘導を達成することができる。
 本実施例では、ヒストン脱メチル化酵素{特に、JMJD3の触媒ドメイン(JMJD3c)}が、環境変化がなくても、多能性幹細胞における発生・分化関連遺伝子発現を亢進し、遺伝子発現パターンを多能性幹細胞パターンから分化細胞遺伝子発現パターンへの切り替えを促進した。これは、JMJD3に限らず、発生・分化関連遺伝子の発現を抑制しているメチル化を除去又は減弱する効果があれば、多能性幹細胞から分化細胞への細胞分化を促進できることを示している。
 本実施例では、ヒストン脱メチル化酵素JMJD3が、H3K27のメチル化を急速に減弱させることにより分化関連遺伝子の発現抑制を解除することを示した。特に、JMJD3cの修飾合成mRNAを用いたときに、H3K27me3の顕著な減弱が、数時間で確認された。これらの結果は、ヒストン脱メチル化酵素が、ヒト多能性幹細胞において、PcG複合体によるH3K27メチル化に対して拮抗的に制御することを示している。
 多能性幹細胞において、ヒストン脱メチル化酵素の強制発現によりH3K27me3の脱メチル化が起こるとともに、多くの発生・分化関連遺伝子の遺伝子発現が増強していた。これらの変化は、多能性を維持するようなヒト多能性幹細胞培養条件下でも認められた。ヒストン脱メチル化酵素の変異(JMJD3cの機能消失変異)は、これらの現象を誘導しなかったことにより、脱メチル化酵素によるH3K27の特異的な脱メチル化は、発生・分化関連遺伝子の転写活性増強に直接関与していることが明らかとなった。
 本実施例では、JMJD3の脱メチル化酵素活性により、遺伝子発現が増強される発生・分化関連遺伝子群の中で、外胚葉分化に関わる遺伝子よりも中胚葉/内胚葉分化に関連する遺伝子群をより多く含むことも明らかにした。このことは、JMJD3遺伝子の脱メチル化酵素活性が、中/内胚葉系細胞、すなわち骨、筋肉、肝臓、循環器、消化器、生殖器細胞への分化を効果的に促進することを示している。しかしながら、多能性幹細胞と比べると外胚葉分化に関わる遺伝子群についても、発現が増強されており、神経、表皮などの細胞への分化促進にも関与する可能性が高い。
 H3K27me3は、hESCにおける筋細胞分化関連遺伝子のプロモーター領域には多くは存在しないので、JMJD3cの脱メチル化酵素活性は、初期発生・細胞分化に関わる遺伝子の発現亢進を介して、筋細胞分化関連遺伝子の発現亢進に間接的に関与していると考えられる。
 以上により、脱メチル化酵素活性は、多能性幹細胞の分化抵抗性を減弱することで、細胞の状態を多能性維持状態から分化状態に移行させることを示した。この分化抵抗性減弱に関しては、筋分化関連遺伝子の活性化だけに限定されるのではなく、他の分化細胞遺伝子の活性化も促進する。
 本開示では、新規な多能性幹細胞を所望の細胞型へ高効率に分化する方法を提供できる。

Claims (16)

  1.  以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を所望の細胞型へ分化させるための分化誘導キット、
    (1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞、
    (2)脱メチル化酵素を強制発現させた多能性幹細胞、
    (3)多能性幹細胞及び脱メチル化酵素遺伝子、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び多能性幹細胞、及び
    (5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞。
  2.  前記(1)、(2)又は(5)を含む、請求項1に記載の分化誘導キット。
  3.  脱メチル化酵素が、JMJD3である請求項1又は2に記載の分化誘導キット。
  4.  脱メチル化酵素が、JMJD3の酵素活性領域のみを含むものである請求項1又は2に記載の分化誘導キット。
     
  5.  脱メチル化酵素のアミノ酸配列が、配列番号1~3のいずれか1である請求項3に記載の分化誘導キット。
  6.  さらに、所望の細胞型への分化誘導に必要な転写因子を含む請求項1~5のいずれか1に記載の分化誘導キット。
  7.  以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を骨格筋細胞へ分化させるための分化誘導キット、
    (1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるMYOD1、
    (2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるMYOD1、
    (3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるMYOD1、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるMYOD1、並びに
    (5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるMYOD1。
     
  8.  以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を神経細胞へ分化させるための分化誘導キット、
    (1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
    (2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
    (3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2、並びに
    (5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及びNEUROD2。
     
  9.  以下の(1)~(5)のいずれか1を少なくとも含む多能性幹細胞を肝細胞へ分化させるための分化誘導キット、
    (1)H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞並びに転写因子であるHNF1A、
    (2)脱メチル化酵素を強制発現させた多能性幹細胞並びに転写因子であるHNF1A、
    (3)多能性幹細胞、脱メチル化酵素遺伝子並びに転写因子であるHNF1A、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物、多能性幹細胞並びに転写因子であるHNF1A、並びに
    (5)脱メチル化酵素遺伝子を担持した遺伝子構築物がゲノムに挿入されている多能性幹細胞並びに転写因子であるHNF1A。
  10.  以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を所望の細胞型へ分化させる方法、
    (1)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子を多能性幹細胞に添加する工程、
    (2)脱メチル化酵素遺伝子及び所望の細胞型への分化誘導に必要な転写因子遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに所望の細胞型への分化誘導に必要な転写因子を該細胞に添加する工程、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び所望の細胞型への分化誘導に必要な転写因子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (5)所望の細胞型への分化誘導に必要な転写因子を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
    (6)所望の細胞型への分化誘導に必要な転写因子を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、及び
    (7)脱メチル化酵素及び所望の細胞型への分化に必要な転写因子を多能性幹細胞に添加する工程。
  11.  上記(1)、(3)、(6)又は(7)の工程を含む請求項10に記載の分化させる方法。
  12.  脱メチル化酵素が、JMJD3である請求項10又は11に記載の分化方法。
  13.  脱メチル化酵素が、JMJD3の酵素活性領域のみを含むものである請求項10又は11に記載の分化方法。

  14.  以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を骨格筋細胞へ分化させる方法、
    (1)脱メチル化酵素遺伝子及び転写因子であるMYOD1を多能性幹細胞に添加する工程、
    (2)脱メチル化酵素遺伝子及び所望の転写因子であるMYOD1遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるMYOD1を該細胞に添加する工程、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び転写因子であるMYOD1を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (5)転写因子であるMYOD1を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
    (6)転写因子であるMYOD1を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
    (7)脱メチル化酵素及び転写因子であるMYOD1を多能性幹細胞に添加する工程。
  15.  以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を神経細胞へ分化させる方法、
    (1)脱メチル化酵素遺伝子及び転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を多能性幹細胞に添加する工程、
    (2)脱メチル化酵素遺伝子及び所望の転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を該細胞に添加する工程、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (5)転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
    (6)転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
    (7)脱メチル化酵素並びに転写因子であるNEUROG1、NEUROG2、NEUROG3、NEUROD1及び/又はNEUROD2を多能性幹細胞に添加する工程。
     
  16.  以下の(1)~(7)のいずれか1に記載の工程を含む、多能性幹細胞を肝細胞へ分化させる方法、
    (1)脱メチル化酵素遺伝子及び転写因子であるHNF1Aを多能性幹細胞に添加する工程、
    (2)脱メチル化酵素遺伝子及び所望の転写因子であるHNF1A遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (3)脱メチル化酵素遺伝子を担持した遺伝子構築物を多能性幹細胞のゲノムに挿入して、さらに転写因子であるHNF1Aを該細胞に添加する工程、
    (4)脱メチル化酵素遺伝子を担持した遺伝子構築物及び転写因子であるHNF1Aを担持した遺伝子構築物を多能性幹細胞のゲノムに挿入する工程、
    (5)転写因子であるHNF1Aを、H3K27me3修飾を実質的に除去又は低減させたヒストンを有する多能性幹細胞に添加する工程、
    (6)転写因子であるHNF1Aを、脱メチル化酵素を強制発現させた多能性幹細胞に添加する工程、並びに
    (7)脱メチル化酵素及び転写因子であるHNF1Aを多能性幹細胞に添加する工程。
PCT/JP2016/082152 2015-10-28 2016-10-28 多能性幹細胞の分化抵抗性を減弱する方法 WO2017073763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/770,634 US11136552B2 (en) 2015-10-28 2016-10-28 Method for reducing differentiation resistance of pluripotent stem cells
JP2017547911A JP6874994B2 (ja) 2015-10-28 2016-10-28 多能性幹細胞の分化抵抗性を減弱する方法
US17/466,228 US20210395692A1 (en) 2015-10-28 2021-09-03 Method For Reducing Differentiation Resistance Of Pluripotent Stem Cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211356 2015-10-28
JP2015211356 2015-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/770,634 A-371-Of-International US11136552B2 (en) 2015-10-28 2016-10-28 Method for reducing differentiation resistance of pluripotent stem cells
US17/466,228 Division US20210395692A1 (en) 2015-10-28 2021-09-03 Method For Reducing Differentiation Resistance Of Pluripotent Stem Cells

Publications (1)

Publication Number Publication Date
WO2017073763A1 true WO2017073763A1 (ja) 2017-05-04

Family

ID=58631636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082152 WO2017073763A1 (ja) 2015-10-28 2016-10-28 多能性幹細胞の分化抵抗性を減弱する方法

Country Status (3)

Country Link
US (2) US11136552B2 (ja)
JP (1) JP6874994B2 (ja)
WO (1) WO2017073763A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136555B2 (en) 2017-03-01 2021-10-05 Elixirgen Scientific, Inc. Compositions and methods for differentiation of human pluripotent stem cells into desired cell types

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050261A1 (en) * 2022-08-29 2024-03-07 University Of Rochester Antisense oligonucleotide-based anti-fibrotic therapeutics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045004A (ja) * 2007-08-20 2009-03-05 Japan Science & Technology Agency クロマチン制御因子による幹細胞未分化制御方法
JP2014502153A (ja) * 2011-10-21 2014-01-30 中国科学院広州生物醫薬與健康研究院 多能性幹細胞の誘導生成効率を高める方法
WO2014069479A1 (ja) * 2012-10-29 2014-05-08 学校法人埼玉医科大学 分化多能性幹細胞の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045004A (ja) * 2007-08-20 2009-03-05 Japan Science & Technology Agency クロマチン制御因子による幹細胞未分化制御方法
JP2014502153A (ja) * 2011-10-21 2014-01-30 中国科学院広州生物醫薬與健康研究院 多能性幹細胞の誘導生成効率を高める方法
WO2014069479A1 (ja) * 2012-10-29 2014-05-08 学校法人埼玉医科大学 分化多能性幹細胞の製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AKIYAMA, TOMOHIKO ET AL.: "Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells", DEVELOPMENT, vol. 143, no. 20, 2016, pages 3674 - 3685, XP055380061 *
DEY, BIJAN K. ET AL.: "The Histone Demethylase KDMSb/JARID1b Plays a Role in Cell Fate Decisions by Blocking Terminal Differentiation", MOLECULAR AND CELLULAR BIOLOGY, vol. 28, no. 17, 30 June 2008 (2008-06-30), pages 5312 - 5327, XP055380074 *
KAZUO TAKAYAMA: "Establishment of a Method of Hepatocyte Differentiation from Human Pluripotent Stem Cells for Innovative Drug Development", YAKUGAKU ZASSHI, vol. 135, no. 10, 1 October 2015 (2015-10-01), pages 1141 - 1146, XP055380456, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/yakushi/135/10/135_15-00194/_pdf> *
KOHEI YAMAMIZU ET AL.: "Tensha Inshi o Mochiita Tanosei Kansaibo kara Nin'i Saibo eno Bunka Yudoho no Kaihatsu", EXPERIMENTAL MEDICINE, vol. 33, no. 2, 2015, pages 239 - 246 *
TORRES, CRISTINA M. ET AL.: "Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells", PLOS ONE, vol. 8, no. 4, April 2013 (2013-04-01), pages e60020, XP055380065 *
WANG, JING-JING ET AL.: "Histone demethylase KDM2B inhibits the chondrogenic differentiation potentials of stem cells from apical papilla", INT.J.CLIN.EXP.MED., vol. 8, no. 2, 2015, pages 2165 - 2173, XP055380076 *
XIANG, YANG ET AL.: "JMJD3 is a histone H3K27 demethylase", CELL RESEARCH, vol. 17, 2007, pages 850 - 857, XP055380083 *
YUKIKO GOTO: "50. Shinkei Kansaibo no Jiki Izonteki Unmei Seigyo Kiko no Kaiseki", RESEARCH REPORTS OF UEHARA MEMORIAL FOUNDATION, vol. 22, 2008, pages 1 - 3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136555B2 (en) 2017-03-01 2021-10-05 Elixirgen Scientific, Inc. Compositions and methods for differentiation of human pluripotent stem cells into desired cell types
US12098392B2 (en) 2017-03-01 2024-09-24 Elixirgen Scientific, Inc. Compositions and methods for differentiation of human pluripotent stem cells into desired cell types

Also Published As

Publication number Publication date
JPWO2017073763A1 (ja) 2018-09-27
JP6874994B2 (ja) 2021-05-19
US11136552B2 (en) 2021-10-05
US20210395692A1 (en) 2021-12-23
US20200048612A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US8962331B2 (en) Method of making induced pluripotent stem cell from adipose stem cells using minicircle DNA vectors
US12098389B2 (en) Method for promoting differentiation of pluripotent stem cells by reducing undifferentiated state thereof
US20210395699A1 (en) Compositions And Methods For Differentiation Of Human Pluripotent Stem Cells Into Desired Cell Types
JP5987063B2 (ja) 分化多能性幹細胞の製造方法
WO2011133288A9 (en) Microrna induction of pluripotential stem cells and uses thereof
US20210395692A1 (en) Method For Reducing Differentiation Resistance Of Pluripotent Stem Cells
EP2616540A1 (en) Method of efficiently establishing induced pluripotent stem cells
US11060062B2 (en) Generation of glucose-responsive beta cells
Li et al. Transcriptional reactivation of OTX2, RX1 and SIX3 during reprogramming contributes to the generation of RPE cells from human iPSCs
WO2022110494A1 (zh) 用于重编程细胞的方法
US20130202649A1 (en) Activation of innate immunity for nuclear reprogramming of somatic cells
US20220213444A1 (en) Compositions and methods for cellular reprogramming
JP2020524504A (ja) ヒト誘導神経ボーダー幹細胞の生成と利用のための新規な方法
US8895301B2 (en) Exogenous Pax6 nucleic acid expression in primate neural stem cells maintains proliferation without differentiation
EP4381051A1 (en) Neural progenitor cells and therapeutic uses of same
Goes Barbosa Buskin Improving our understanding of autosomal dominant Retinitis Pigmentosa using PRPF31 patient-specific induced pluripotent stem cells (iPSCs)
Cheung Deciphering X-chromosome Inactivation and the Role of MECP2e1 in Rett Syndrome Patient Induced Pluripotent Stem Cells
Monteiro Reprogramming Strategies for Cord Blood CD34+ Cells with Different Mitochondria Phenotype

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859991

Country of ref document: EP

Kind code of ref document: A1