WO2017073040A1 - 太陽熱発電装置およびその制御方法 - Google Patents

太陽熱発電装置およびその制御方法 Download PDF

Info

Publication number
WO2017073040A1
WO2017073040A1 PCT/JP2016/004668 JP2016004668W WO2017073040A1 WO 2017073040 A1 WO2017073040 A1 WO 2017073040A1 JP 2016004668 W JP2016004668 W JP 2016004668W WO 2017073040 A1 WO2017073040 A1 WO 2017073040A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
steam
temperature
power generation
low
Prior art date
Application number
PCT/JP2016/004668
Other languages
English (en)
French (fr)
Inventor
正志 蒲原
ロージェ 加藤
範彦 土井
大介 有馬
雄飛 尾▲崎▼
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to ES16859278T priority Critical patent/ES2861437T3/es
Priority to CN201680064898.6A priority patent/CN108291532B/zh
Priority to MA43127A priority patent/MA43127B1/fr
Priority to EP16859278.0A priority patent/EP3369926B1/en
Publication of WO2017073040A1 publication Critical patent/WO2017073040A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a solar thermal power generation apparatus and a control method thereof. More specifically, the present invention relates to a solar thermal power generation apparatus that uses a molten salt as a solar heat storage medium and a heating medium for generating steam and generates electric power using generated steam, and a control method thereof.
  • Solar thermal power generation using a molten salt as a heat storage medium mainly consists of a system that uses a material other than the molten salt as a heating medium and a system that circulates a molten salt used as a heat storage medium and uses it as a heating medium.
  • the former solar power generation method it is necessary to provide a heat exchanger between the heating medium (other than the molten salt) and the heat storage medium (molten salt). Becomes complicated.
  • Patent Document 1 describes a solar thermal power generation apparatus that uses a nitrate-based molten salt as a heating medium and a heat storage medium and can be continuously operated at a high temperature.
  • the present invention has been made in view of these problems, and is a solar power generation capable of improving durability by suppressing an increase in the exhaust temperature of a low-pressure turbine without increasing the cost and achieving high-efficiency power generation.
  • An object of the present invention is to provide a device control method and a solar thermal power generation device.
  • the method for controlling a solar thermal power generation apparatus includes a steam generator that generates steam by heating water with a molten salt, and further generates a superheated steam by further heating the steam generated by the steam generator with a molten salt.
  • a solar thermal power generation apparatus control method for controlling a solar thermal power generation apparatus having a reheat steam temperature detector for detecting a temperature of the supplied reheat steam, the molten salt supplied to the reheater Step for controlling the amount of molten salt in the reheater for controlling the amount Mr And the reheater molten salt amount control step is such that the temperature of the reheat steam detected by the reheat steam temperature detector is 450 ° C.
  • the solar thermal power generation apparatus generates superheated steam by heating water with a molten salt to generate steam, and further heating the steam generated with the steam generator with molten salt.
  • a superheater a high-pressure turbine driven by superheated steam supplied from the superheater, a reheater that reheats the intermediate exhaust steam from the high-pressure turbine with molten salt to generate reheat steam
  • a low-pressure turbine driven by reheat steam supplied from a reheater, a condenser that condenses exhaust steam from the low-pressure turbine to provide water for the steam generator, and supplies the low-pressure turbine
  • a reheat steam temperature detector for detecting the temperature of the reheat steam to be reheated
  • a reheater molten salt amount control unit for controlling the amount Mr of the molten salt supplied to the reheater
  • the reheater molten salt amount control unit is a low load operation that is a load of a predetermined ratio or less.
  • a control method for a solar thermal power generation apparatus and a solar thermal power generation apparatus capable of improving durability by suppressing an increase in exhaust temperature of a low-pressure turbine without causing an increase in cost, and capable of achieving highly efficient power generation. be able to.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a solar thermal power generation apparatus used in one embodiment of a control method for a solar thermal power generation apparatus according to the present invention.
  • the solar thermal power generation apparatus in the present embodiment is a so-called direct two-tank solar thermal power generation apparatus, and is a solar thermal power generation apparatus that employs a system that uses a common molten salt as a heat storage medium and a heating medium.
  • the configuration of the solar thermal power generation apparatus of the present embodiment will be described in order along the solar thermal power generation process.
  • Heating part Since sunlight has a low energy density, concentrated solar power (CSP) that condenses and converts it into heat (ie, collects heat) is widely adopted. Type solar power generation. Accordingly, it is preferable that the heating unit 10 that heats the molten salt condenses sunlight to heat the molten salt.
  • CSP concentrated solar power
  • the heating unit 10 of the present embodiment is a parabolic trough type, and extends in a bowl shape and has a parabolic cross-section, and connects each parabolic focal point position (the vicinity of the parabolic focal point in each cross section). And a conduit 10b arranged in a linear position).
  • the sunlight reflected by the condensing reflecting mirror 10a is condensed at the position of the conduit 10b and converted into heat to heat the molten salt flowing inside the conduit 10b.
  • the parabola and trough type has a simple structure, so the cost can be reduced, and it can easily achieve excellent light collection because it does not require advanced light collection technology. For these reasons, the parabolic trough type has many achievements in the solar thermal power generation apparatus, and is excellent in terms of reliability.
  • the heating section is not limited to the parabolic trough type, and there is no particular limitation as long as the molten salt can be sufficiently heated by solar heat. Therefore, in addition to the parabolic trough type, for example, other well-known ones such as a linear Fresnel type, a tower type, a dish type, etc. may be used, or these may be used in combination.
  • the heating unit 10 of the present embodiment shown in FIG. 1 is configured by eight condensing reflecting mirrors 10a and a conduit 10b common to each condensing reflecting mirror 10a.
  • the parabolic trough heating unit is not limited to this configuration, and may be, for example, a heating unit including an arbitrary number of condensing reflectors, or a conduit having an arbitrary piping configuration. The heating part provided with may be sufficient.
  • the heating unit 10 heats the molten salt to a temperature higher than 400 ° C., which is the upper limit temperature when using conventional oil as a heating medium.
  • the heating temperature of the molten salt in the heating unit 10 is not particularly limited as long as it is a temperature at which the performance of the molten salt does not deteriorate due to irreversible change of the molten salt due to thermal decomposition or the like. Therefore, it is preferable. However, it is necessary to determine the heating temperature in consideration of the balance between the heat resistance of the apparatus itself such as the conduit 10b, power generation efficiency, and cost.
  • the molten salt is heated to 500 ° C. or higher, preferably 500 ° C. or higher and 600 ° C. or lower, more preferably 540 ° C. or higher and 560 ° C. or lower.
  • the conduit 10b connects the low-temperature heat storage tank 20 and the high-temperature heat storage tank 22 via the condensing position of the heating unit 10, and the molten salt stored in the low-temperature heat storage tank 20 is supplied to the inside of the conduit 10b. It can be made to flow and be led to the high temperature heat storage tank 22.
  • nitrate-based molten salts are excellent in safety, stability and cost, and are widely used as molten salts.
  • a nitrate-based molten salt it is possible to heat to a higher temperature than when a conventional oil is used as a heating medium, and a high-temperature steam is obtained, so that highly efficient solar thermal power generation can be realized.
  • oil as a heating medium
  • decomposition occurs in long-term use and the performance deteriorates. Even if it is used at a high temperature exceeding 400 ° C., the performance does not deteriorate due to decomposition.
  • a mixture of sodium nitrate and potassium nitrate is used as the molten salt.
  • the present invention is not limited to this, and is not particularly limited as long as it can be used as a heat storage medium and a heating medium in a solar thermal power generation apparatus.
  • the nitrate-based molten salt in addition to a two-component mixture of sodium nitrate and potassium nitrate, a three-component system and a four-component system obtained by adding lithium nitrate or the like to this mixture are also known. Can do.
  • the melting point is about 230 ° C., and in an actual operating environment, the temperature is 40 to 50 ° C. higher than the melting point as a measure for preventing solidification of the molten salt.
  • the system is controlled in this way.
  • the molten salt preferably has a low melting point in order to suppress the consumption of heat energy for preventing solidification at night in winter. However, it is necessary to select a molten salt in consideration of its safety, stability, viscosity at operating temperature and cost.
  • the solar thermal power generation apparatus 100 includes a low temperature heat storage tank 20 and a high temperature heat storage tank 22. That is, the solar thermal power generation apparatus 100 in the present embodiment includes a two-tank heat storage unit that stores a low-temperature molten salt and a high-temperature molten salt separately in two tanks and can supply them independently.
  • the heat storage unit in the present invention is not limited to the two-tank type, and may have any configuration as long as the low-temperature molten salt and the high-temperature molten salt can be supplied independently.
  • a heat storage part other than the two-tank type for example, a single tank type heat storage part may be mentioned. In the single tank type heat storage unit, a high-temperature molten salt is stored in the upper part of a single tank, and a low-temperature molten salt is stored in the lower part, so that each can be supplied independently.
  • the molten salt is stored in the low-temperature heat storage tank 20 at a low temperature. And the molten salt stored in this low-temperature heat storage tank 20 receives solar thermal energy from the condensing reflection mirror 10a by the conduit
  • the low temperature heat storage tank 20 and the high temperature heat storage tank 22 are not particularly limited as long as the molten salt can be stored.
  • the low-temperature heat storage tank 20 and the high-temperature heat storage tank 22 in the present embodiment can store a molten salt that transitions from a low-temperature state of about 270 ° C. to a high-temperature state of 500 ° C. or higher, and has a heat-insulating property, heat resistance, and durability. belongs to.
  • the superheater 32 generates superheated steam by heat exchange between the heating medium (molten salt) and steam, and supplies this superheated steam to a high-pressure turbine 36 described later.
  • a high-temperature molten salt is supplied from the high-temperature heat storage tank 22 to the superheater 32.
  • a high-temperature molten salt is supplied from the high-temperature heat storage tank 22 to the superheater 32.
  • the superheater 32 is supplied with steam (steam) generated by the steam generator 30. And this steam is heated by heat exchange with high temperature molten salt, and superheated steam is generated.
  • the molten salt that has released heat by heat exchange is sent to the steam generator 30.
  • the steam generator 30 generates water by heating water supplied from a condenser 40, which will be described in detail later, and supplies this steam to the superheater 32.
  • the water supplied from the condenser 40 is heated to become steam by heat exchange between the molten salt discharged from the superheater 32 and the molten salt discharged from the reheater 34 described later in the steam generator 30, It is supplied to the superheater 32.
  • the molten salt that has released heat by heat exchange and has reached a low temperature state is sent to the low temperature heat storage tank 20.
  • the high pressure turbine 36 is driven by superheated steam supplied from the superheater 32. That is, the turbine blades included in the high-pressure turbine 36 are rotated by the work of the superheated steam, and electric power is generated by the generator G.
  • the superheated steam after the work is discharged to a reheater 34 described later as intermediate discharge steam.
  • a part of the steam is extracted from the inside and discharged to a preheater (not shown). Power generation efficiency can be increased by using the heat of the extracted steam in the preheater.
  • the reheater 34 generates reheat steam by heat exchange between the heating medium (molten salt) and the intermediate exhaust steam, and supplies the reheat steam to a low-pressure turbine 38 described later.
  • a high temperature molten salt is supplied to the reheater 34 from the high temperature heat storage tank 22.
  • high-temperature molten salt is supplied from the high-temperature heat storage tank 22 to the reheater 34.
  • the intermediate exhaust steam exhausted from the high pressure turbine 36 is supplied to the reheater 34.
  • the intermediate exhaust steam is heated by heat exchange with the high-temperature molten salt, and reheat steam is generated.
  • the molten salt that has released heat by heat exchange is sent to the steam generator 30.
  • the molten salt supplied from the high-temperature heat storage tank 22 branches and is supplied to each of the superheater 32 and the reheater 34.
  • the low-pressure turbine 38 is driven by reheat steam supplied from the reheater 34. That is, the turbine blades included in the low-pressure turbine 38 are rotated by the work of the reheated steam, and electric power is generated by the generator G.
  • the reheated steam after the work is discharged to a condenser 40, which will be described later, as discharged steam.
  • a part of the steam is extracted from the inside in a multistage manner (four stages), and is discharged to, for example, a heat exchanger (not shown). Power generation efficiency can be increased by using the heat of the extracted steam in a heat exchanger or the like.
  • the condenser 40 is provided to cool and condense the exhaust steam discharged from the low-pressure turbine 38 and return it to water to lower the back pressure and increase the output. This water is supplied to the steam generator 30 and again used for power generation.
  • the above-mentioned water and various steams circulate in the solar thermal power generation system by circulation means (not shown) such as a pump appropriately disposed in the water / steam circulation path.
  • the molten salt circulates in the solar thermal power generation system by circulation means (not shown) such as a pump appropriately disposed in the molten salt circulation path.
  • a reheat steam temperature detector (not shown) detects the temperature of the reheat steam discharged from the reheater 34 and supplied to the low-pressure turbine 38. Therefore, the reheat steam temperature detector is provided in the path between the reheater 34 outlet and the low pressure turbine 38 inlet.
  • the reheat steam temperature detector may be installed at any position in the path between the reheater 34 outlet and the low pressure turbine 38 inlet as long as the reheat steam temperature can be accurately detected. Also good.
  • a plurality of reheat steam temperature detectors are provided in the vicinity of the inlet of the low pressure turbine 38, and the temperature of the reheat steam is detected in each.
  • the reheat steam temperature detector is not particularly limited as long as it can detect the temperature of the reheat steam, and any temperature detection method may be adopted.
  • a reheat steam temperature detector detects the temperature of reheat steam
  • temperature detection is carried out so that it can always detect that the solar thermal power generation apparatus 100 has brought about some abnormality. Is always (continuous).
  • the present invention is not limited to this, and for example, the temperature of the reheat steam may be detected only during low load operation.
  • the temperature of the reheat steam detected by the reheat steam temperature detector is sent to a reheater molten salt amount control unit described later.
  • a solar thermal power generation apparatus normally generates power by performing normal operation at a load of 100% with respect to a rated load.
  • solar power generation devices can be Reduce the load and perform low-load operation. If the amount of high-temperature molten salt supplied is insufficient, such as rainy or cloudy days or nighttime when the amount of sunlight irradiated is less than the required amount, all stored high-temperature molten salt will be kept at a low temperature if normal operation is continued. Eventually, it will solidify in the solar power generator.
  • the consumption of high-temperature molten salt may be suppressed by performing low-load operation until the amount of sunlight irradiation increases. Also, when the amount of power demand is low and power cannot be sent to the outside, such as early morning or late at night when not much power is consumed, normal operation cannot be performed as it is, so low-load operation is required until the amount of power demand increases. May be performed. Generally, in a solar thermal power generator, power generation is performed by switching between normal operation and low load operation.
  • the solar thermal power generation apparatus 100 has the highest power generation efficiency when the rated load (that is, 100% load) is achieved, and can perform power generation satisfactorily without increasing the temperature of the exhaust steam from the low-pressure turbine 38.
  • the solar thermal power generation apparatus 100 that circulates a molten salt that becomes a very high temperature as a heating medium, the temperature of exhaust steam from the low-pressure turbine 38 increases during low-load operation, leading to problems such as damage to turbine blades. . Therefore, in the present embodiment, a reheater molten salt amount control step (reheater described later) is performed so that the temperature of exhaust steam from the low-pressure turbine 38 does not excessively increase during low load operation that is a load of a predetermined ratio or less. The amount of molten salt Mr supplied to the reheater 34 is controlled by the molten salt amount control unit).
  • the low load operation in the present embodiment refers to an operation state in which the load is 25% or less of the rated load of the solar thermal power generation apparatus 100.
  • the allowable minimum load is a load that is minimum required for operating the solar thermal power generation apparatus.
  • the low load operation is performed with a load of preferably 5% to 25%, more preferably 5% to 20%, and particularly preferably 7% to 15%.
  • the present invention is not limited to these. Since the rated load and the allowable minimum load of the solar thermal power generation device are values specific to the device, it is most preferable to perform a low load operation with a predetermined proportion of load corresponding to the device.
  • the reheater molten salt amount control unit acquires the temperature of the reheat steam output from the reheat steam temperature detector during low load operation, and controls the amount Mr of the molten salt supplied to the reheater 34.
  • the temperature of the reheat steam is set to 450 ° C. or lower.
  • the reheater molten salt amount control unit in the present embodiment controls the reheater 34 so that the temperature of the reheat steam becomes 450 ° C. or less.
  • the amount Mr of the molten salt supplied is reduced.
  • the temperature of the reheat steam is preferably 450 ° C. or lower, and more preferably 370 ° C. or higher and 430 ° C. or lower.
  • the temperature of the reheat steam supplied to the low-pressure turbine 38 during the low-load operation is 450 ° C. or lower, so that the inside of the low-pressure turbine 38 does not become too high, and damage to the turbine blades of the low-pressure turbine 38 is prevented. Can do.
  • the temperature of the molten salt itself supplied to the superheater 32 and the reheater 34 is not lowered, the temperature of the superheated steam is kept at 500 ° C. or higher, so that a decrease in power generation efficiency is suppressed. Highly efficient power generation is performed.
  • the temperature of the reheat steam is set to 450 ° C. or less and high power generation is performed. In order to obtain efficiency, it is particularly preferable to keep the temperature of the reheat steam high. More specifically, considering the model of the solar thermal power generation apparatus 100, the model of the low-pressure turbine 38, the operation load factor, etc., it is possible to obtain high power generation efficiency while avoiding the risk of damage to the turbine blades of the low-pressure turbine 38. It is particularly preferable to control the amount Mr of the molten salt so that the temperature of the reheated steam becomes high.
  • the reheater molten salt amount control unit obtains other temperatures in addition to the reheat steam temperature output from the reheat steam temperature detector, and supplies the reheater 34 with the amount Mr of molten salt. May be controlled.
  • the temperature output from the temperature detector that can detect the temperature of the steam discharged from the outlet of the low-pressure turbine 38 is acquired and used as a control factor together with the temperature of the reheat steam output from the reheat steam temperature detector.
  • the amount Mr of the molten salt supplied to the reheater 34 may be controlled.
  • the amount of steam used in the solar thermal power generation apparatus 100 is determined from the amount of power generation.
  • the amount of steam is determined, the amount of high-temperature molten salt required, that is, the superheater 32 and the reheater 34 is determined.
  • the total amount Mt of molten salt to be supplied is determined. Further, as described above, during the low load operation, the amount of molten salt Mr supplied to the reheater 34 is determined by the reheater molten salt amount control unit.
  • the difference (Mt ⁇ Mr) obtained by subtracting the amount Mr of the molten salt supplied to the reheater 34 from the total amount Mt of molten salt supplied to the superheater 32 and the reheater 34 is the molten salt supplied to the superheater 32. Therefore, the molten salt supply (circulation) control of the entire solar thermal power generation apparatus 100 during low-load operation is determined.
  • the amount of molten salt Mr to be supplied to the reheater 34 is theoretically determined, and thus is naturally determined without being controlled by the reheater molten salt amount control unit.
  • the solar thermal power generation apparatus may include a configuration commonly used in the solar thermal power generation apparatus in addition to the above-described configurations.
  • Example 1 Comparative Examples 1 and 2, Reference Example 1
  • Example 1 Comparative Examples 1 and 2, and Reference Example 1
  • simulation of solar thermal power generation in the solar thermal power generation apparatus shown in FIG. 1 was performed.
  • Comparative Example 1 is a low load operation state with a 10% load with respect to the rated load of the solar thermal power generation apparatus 100.
  • control was performed to reduce the temperature of the high-pressure turbine inlet (temperature of the superheated steam) and the temperature of the low-pressure turbine inlet (temperature of the reheated steam) by lowering the temperature of the molten salt itself.
  • the temperature of the steam at the outlet of the low-pressure turbine 38 was 53.83 ° C.
  • the power generation efficiency of Comparative Example 2 and Example 1 described later was evaluated using the power generation efficiency in Comparative Example 1 as a reference value.
  • the comparative example 2 it is the state of low load operation of 10% load with respect to the rated load of the solar thermal power generation apparatus 100.
  • the amount Mr of molten salt supplied to the reheater 34 was controlled using the target steam flow rate as an index, as in the prior art, without lowering the temperature of the molten salt as in Comparative Example 1.
  • the power generation efficiency increased by about 2.95% compared to Comparative Example 1, but the steam temperature at the outlet of the low-pressure turbine 38 was 126.80 ° C., which was not a temperature that could withstand practical use.
  • Example 1 the control was performed according to the above-described reheater molten salt amount control step of controlling the amount Mr of the molten salt supplied to the reheater 34 using the temperature of the reheat steam as an index. That is, the amount Mr of the molten salt supplied to the reheater 34 was controlled so that the temperature of the reheat steam at the inlet of the low-pressure turbine 38 was 400 ° C. In Example 1, the temperature of the steam at the outlet of the low-pressure turbine 38 was 53.83 ° C. In the first embodiment, the temperature of the steam at the outlet of the low-pressure turbine 38 is low, so there is no risk of damage to the turbine blades even during long-term use. In Example 1, the power generation efficiency increased by about 0.91% compared to Comparative Example 1, and high power generation efficiency was achieved.
  • Reference Example 1 is an operation state (100% load) at the rated load of the solar thermal power generation apparatus 100, that is, a normal operation state.
  • the steam temperature at the outlet of the low-pressure turbine 38 was 41.07 ° C.
  • the steam temperature at the outlet of the low-pressure turbine 38 was low, so that there is no possibility of damage to the turbine blades even during long-term use.
  • the amount of molten salt supplied to the reheater is controlled using the temperature of the reheat steam as an index during low load operation.
  • the solar thermal power generation apparatus control method and the solar thermal power generation apparatus it is understood that a rise in exhaust temperature can be suppressed and durability can be improved and a highly efficient power generation can be achieved without causing an increase in cost. It was.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

低圧タービンの排気温度の上昇を抑制し耐久性を向上させると共に、高効率な発電が達成できる太陽熱発電装置の制御方法および太陽熱発電装置を提供する。溶融塩を過熱器32および再熱器34にそれぞれ供給し、高圧タービン36および低圧タービン38によって電力を生成する太陽熱発電装置100が、所定の割合以下の負荷である低負荷運転のとき、前記低圧タービン38に供給される再熱蒸気の温度を検出し、再熱器34に供給する前記溶融塩の量Mrを制御し、前記再熱蒸気の温度が450℃以下となるようにする。

Description

太陽熱発電装置およびその制御方法
 本発明は、太陽熱発電装置およびその制御方法に関する。より具体的には、溶融塩を太陽熱の蓄熱媒体および蒸気発生用の加熱媒体として用い、生成した蒸気によって発電する太陽熱発電装置およびその制御方法に関する。
 近年、化石燃料の枯渇への懸念から、再生可能エネルギーをエネルギー源とする発電について数多くの研究がなされている。再生可能エネルギーの中でも太陽をエネルギー源とする太陽光発電および太陽熱発電は既に商用稼働がなされており、今後その利用の拡大が見込まれる。
 しかしながら、太陽光は雨天・曇天日や夜間には太陽光照射量が必要量に満たず、電力需要に応じた発電量が得られないという問題があった。また、日中においても一時的に太陽が雲に遮られることによって太陽光照射量が一定になりづらく、ひいては発電量が一定しないという問題があった。
 太陽熱発電ではこれらの問題に対処すべく、太陽光を一旦熱に変換してから発電するという特性を活かし、太陽光照射量が過多のときに熱を貯蓄しておいて、太陽光照射量が不足したときにその熱を利用可能とする蓄熱システムを導入し、発電量を平滑化している。
 蓄熱媒体に溶融塩を用いる太陽熱発電は、加熱媒体に溶融塩以外のものを用いる方式と、蓄熱媒体に用いられる溶融塩を循環させて加熱媒体としても用いる方式と、が主流となっている。
 前者の太陽熱発電の方式の場合、加熱媒体(溶融塩以外のもの)と蓄熱媒体(溶融塩)との間に熱交換器を設ける必要があり、後者の太陽熱発電の方式と比較すると装置の構成が複雑となる。一方、後者の太陽熱発電の方式の場合、加熱媒体としてオイル等を用いた従来の太陽熱発電と比較して高温の蒸気が得られ、高効率化が達成できると共に、簡易な構成で太陽熱発電が実現できる。
 ここで例えば特許文献1には、硝酸塩系溶融塩を加熱媒体および蓄熱媒体に用い、高温で連続運転できる太陽熱発電装置が記載されている。
特表2015-520250号公報
 ところが、加熱媒体に溶融塩を用いる太陽熱発電では、低負荷運転時には低圧タービンの排気温度が上昇してしまうという問題がある。この排気温度の上昇は低圧タービンのタービン翼の破損を引き起こすおそれがある。タービン翼の破損を防ぐには発電を停止させる方法があるが、発電を停止させると発電効率が著しく低下してしまう。
 ところで、従来において低圧タービンの排気温度を低下させる方法としては、低圧タービンのケーシングに対して水を噴霧して冷却する方法や、供給する溶融塩の温度を低下させることによって供給する蒸気温度を低下させる方法が知られている。
 しかしながら、低圧タービンのケーシングに対して水を噴霧して冷却する方法では、低圧タービンのタービン翼を直接冷却するものではないため充分な冷却効果が得られない上、冷却機構を設けるための設備コストを要するという問題がある。また、溶融塩の温度を低下させる方法では低圧タービンの排気温度は低下するが、高圧タービンに供給される過熱蒸気の温度も同時に低下するため、発電効率の低下の問題は依然として解決されない。
 本発明はこれらの問題に鑑みて為されたものであって、コストアップを招くことなく低圧タービンの排気温度の上昇を抑制して耐久性を向上させると共に、高効率な発電が達成できる太陽熱発電装置の制御方法および太陽熱発電装置を提供することを目的とする。
 本発明に係る太陽熱発電装置の制御方法は、水を溶融塩で加熱して蒸気を発生させる蒸気発生器と、該蒸気発生器で発生した蒸気を、溶融塩でさらに加熱して過熱蒸気を生成する過熱器と、該過熱器から供給される過熱蒸気で駆動される高圧タービンと、該高圧タービンからの中間排出蒸気を、溶融塩で再加熱して再熱蒸気を生成する再熱器と、該再熱器から供給される再熱蒸気で駆動される低圧タービンと、該低圧タービンからの排出蒸気を凝縮して前記蒸気発生器に供される水とする復水器と、前記低圧タービンに供給される前記再熱蒸気の温度を検出する再熱蒸気温度検出器と、を有する太陽熱発電装置を制御する、太陽熱発電装置の制御方法であって、前記再熱器に供給される前記溶融塩の量Mrを制御する再熱器溶融塩量制御工程を備え、該再熱器溶融塩量制御工程は、所定の割合以下の負荷である低負荷運転のとき、前記再熱蒸気温度検出器が検出する前記再熱蒸気の温度が450℃以下となるように前記溶融塩の量Mrを制御することを特徴とする。
 また、本発明に係る太陽熱発電装置は、水を溶融塩で加熱して蒸気を発生させる蒸気発生器と、該蒸気発生器で発生した蒸気を、溶融塩でさらに加熱して過熱蒸気を生成する過熱器と、該過熱器から供給される過熱蒸気で駆動される高圧タービンと、該高圧タービンからの中間排出蒸気を、溶融塩で再加熱して再熱蒸気を生成する再熱器と、該再熱器から供給される再熱蒸気で駆動される低圧タービンと、該低圧タービンからの排出蒸気を凝縮して前記蒸気発生器に供される水とする復水器と、前記低圧タービンに供給される前記再熱蒸気の温度を検出する再熱蒸気温度検出器と、前記再熱器に供給される前記溶融塩の量Mrを制御する再熱器溶融塩量制御部と、を備え、該再熱器溶融塩量制御部は、所定の割合以下の負荷である低負荷運転のとき、前記再熱蒸気温度検出器が検出する前記再熱蒸気の温度が450℃以下となるように前記溶融塩の量Mrを制御することを特徴とする。
 本発明によれば、コストアップを招くことなく低圧タービンの排気温度の上昇を抑制して耐久性を向上させると共に、高効率な発電が達成できる太陽熱発電装置の制御方法および太陽熱発電装置を提供することができる。
本発明に係る太陽熱発電装置の制御方法の一実施形態に用いられる太陽熱発電装置の構成を示す概略構成図である。
 次に、本発明に係る太陽熱発電装置の制御方法および太陽熱発電装置について、図面を参照しながらさらに詳細に説明する。
 尚、以下に述べる実施形態は、本発明の好適な実施形態であるから技術的に好ましい種々の限定が付されているが、本発明の範囲は以下の説明において本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
 図1は、本発明に係る太陽熱発電装置の制御方法の一実施形態に用いられる太陽熱発電装置の構成を示す概略構成図である。
 本実施形態における太陽熱発電装置は、いわゆる直接2槽式の太陽熱発電装置であって、蓄熱媒体および加熱媒体として共通の溶融塩を用いる方式を採用した太陽熱発電装置である。
 以下、本実施形態の太陽熱発電装置の構成について、太陽熱発電のプロセスに沿って順次説明していく。
(加熱部)
 太陽光はエネルギー密度が低いため、集光して熱に変換(すなわち、集熱)する、集光型太陽熱発電(CSP:Concentrated Solar Power)が広く採用されており、本実施形態もこの集光型太陽熱発電を採用している。
 したがって、溶融塩を加熱する加熱部10では太陽光を集光して溶融塩を加熱することが好ましい。
 本実施形態の加熱部10はパラボラ・トラフ型であって、樋状に伸び、断面が放物線形状の集光反射鏡10aと、放物線の各焦点近傍位置(各断面における放物線の焦点近傍を結んだ直線位置)に配置された導管10bと、を有する。集光反射鏡10aによって反射された太陽光は、導管10bの位置に集光され、熱に変換されることで導管10bの内部を流動する溶融塩を加熱する。
 パラボラ・トラフ型はその構造が単純であるためコストを抑えられ、且つ、高度な集光技術を要しないことから容易に優れた集光を達成できる。また、これらの理由からパラボラ・トラフ型は太陽熱発電装置において数多くの実績があり、信頼性の面でも優れる。
 なお、本発明において加熱部はパラボラ・トラフ型に限定されるものではなく、溶融塩を太陽熱により充分に加熱できるものであれば特に制限はない。したがって、パラボラ・トラフ型以外にも、例えば、リニア・フレネル型、タワー型、ディッシュ型等、他の周知慣用されているものを用いてもよく、あるいはこれらを併用してもよい。
 図1に示す本実施形態の加熱部10は、8つの集光反射鏡10aおよび各集光反射鏡10aに共通の導管10bからなる構成である。ただし、本発明においてパラボラ・トラフ型の加熱部はこの構成に限られるものではなく、例えば、任意の数の集光反射鏡を備える加熱部であってもよく、また、任意の配管構成の導管を備える加熱部であってもよい。
 加熱部10では、従来のオイルを加熱媒体として用いる際の上限温度である400℃よりも高温に溶融塩を加熱する。加熱部10における溶融塩の加熱温度については、熱分解等による溶融塩の不可逆変化によって溶融塩の性能の劣化が生じない温度である限り特に制限はないが、高温であるほど高効率な発電となるため好ましい。ただし、導管10bなど装置自体の耐熱性、発電効率およびコスト等のバランスを考えて加熱温度を決定する必要がある。
 本実施形態における加熱部10では、溶融塩を500℃以上、好ましくは500℃以上600℃以下、より好ましくは540℃以上560℃以下に加熱する。
 導管10bは、低温蓄熱槽20と高温蓄熱槽22とを、加熱部10の集光位置を介して連結するものであって、低温蓄熱槽20内に貯留される溶融塩を、導管10b内を流動させて高温蓄熱槽22まで導くことができる。
(溶融塩)
 太陽熱発電装置では、硝酸塩系溶融塩がその安全性、安定性およびコスト面などにおいて優れており、溶融塩として広く採用されている。硝酸塩系溶融塩を用いると、従来のオイルを加熱媒体とするよりも高温に加熱することが可能となり、高温の蒸気が得られるため、高効率な太陽熱発電が実現できる。加熱媒体としてオイルを用いた太陽熱発電の場合、400℃を超えるような高温に加熱すると、長期にわたる利用において分解が生じて性能が劣化してしまうが、硝酸塩系溶融塩を用いた場合、長期にわたり400℃を超える高温の利用に供しても分解による性能の劣化が生じない。
 本実施形態では、溶融塩として硝酸ナトリウムと硝酸カリウムとの混合物を用いている。ただし、本発明はこれに何ら限定されるものではなく、太陽熱発電装置における蓄熱媒体および加熱媒体として利用可能なものであれば特に制限はない。
 硝酸塩系溶融塩としては、硝酸ナトリウムと硝酸カリウムとの2成分系混合物の他、これに硝酸リチウム等を加えた3成分系、4成分系なども知られており、本発明においていずれも採用することができる。
 硝酸ナトリウムと硝酸カリウムとからなる2成分系溶融塩の場合、その融点は230℃程度であり、実際の稼働環境下においては溶融塩の固化防止対策として融点よりもさらに40~50℃高い温度となるように系内が制御されている。冬場の夜間などにおける固化防止のための熱エネルギーの消費を抑えるために、溶融塩は融点が低いことが好ましい。ただし、その安全性、安定性、稼働温度における粘度およびコスト面などを考慮して溶融塩を選ぶ必要がある。
(低温蓄熱槽、高温蓄熱槽)
 本実施形態における太陽熱発電装置100は、低温蓄熱槽20と高温蓄熱槽22とを備える。すなわち、本実施形態における太陽熱発電装置100は、低温の溶融塩と高温の溶融塩とを2槽に分けて貯留し、それぞれを独立して供給可能である2槽式の蓄熱部を具備する。ただし、本発明における蓄熱部はこの2槽式に限られるものではなく、低温の溶融塩と高温の溶融塩とを独立して供給可能であれば如何なる構成であってもよい。
 2槽式以外の蓄熱部としては、例えば単槽式の蓄熱部が挙げられる。単槽式の蓄熱部では、単一の槽内の上部において高温の溶融塩を貯留し、下部において低温の溶融塩を貯留し、それぞれを独立して供給可能な構成となっている。
 本実施形態において、溶融塩は低温時には低温蓄熱槽20に貯留されている。そして、この低温蓄熱槽20に貯留されている溶融塩が、導管10bで集光反射鏡10aから太陽熱エネルギーを受けて高温となる。高温となった溶融塩は、本実施形態ではすべて高温蓄熱槽22に貯留される。
 低温蓄熱槽20および高温蓄熱槽22は、溶融塩を貯留可能なものであれば特に制限はない。本実施形態における低温蓄熱槽20および高温蓄熱槽22は、270℃程度の低温状態から500℃以上の高温状態を遷移する溶融塩を貯留可能で、断熱性、耐熱性および耐久性を備える槽形状のものである。また、低温蓄熱槽20および高温蓄熱槽22は、予期せぬ溶融塩の固化が生じたとしても破損等が生じない機械的強度を備えることが特に好ましい。
(過熱器)
 過熱器32は、加熱媒体(溶融塩)と蒸気との熱交換によって過熱蒸気を生成し、この過熱蒸気を後述する高圧タービン36に供給するものである。
 過熱器32には高温の溶融塩が高温蓄熱槽22から供給される。なお、本実施形態では高温の溶融塩が高温蓄熱槽22から過熱器32に供給される構成である。
 また、過熱器32には蒸気発生器30で発生した蒸気(水蒸気)が供給される。
 そして、この蒸気が高温の溶融塩との熱交換によって加熱され、過熱蒸気が生成する。一方、熱交換により熱を放出した溶融塩は、蒸気発生器30に送られる。
(蒸気発生器)
 蒸気発生器30は、詳細を後述する復水器40から供給された水を加熱して蒸気を発生させ、この蒸気を過熱器32に供給するものである。
 復水器40から供給された水は、蒸気発生器30内において過熱器32から排出された溶融塩および後述する再熱器34から排出された溶融塩との熱交換によって加熱されて蒸気となり、過熱器32に供給される。
 一方、熱交換により熱を放出して低温状態となった溶融塩は、低温蓄熱槽20に送られる。
(高圧タービン)
 高圧タービン36は、過熱器32から供給された過熱蒸気によって駆動される。すなわち、高圧タービン36が備えるタービン翼が過熱蒸気の仕事によって回転し、ジェネレータGで電力が発生する。仕事をした後の過熱蒸気は、中間排出蒸気として後述する再熱器34に排出される。
 また、本実施形態の高圧タービン36では、その内部から一部の蒸気が抽気され、不図示のプレヒータに排出される。この抽気された蒸気の熱がプレヒータにおいて利用されることで、発電効率を高めることができる。
(再熱器)
 再熱器34は、加熱媒体(溶融塩)と中間排出蒸気との熱交換によって再熱蒸気を生成し、この再熱蒸気を後述する低圧タービン38に供給するものである。
 再熱器34には高温の溶融塩が高温蓄熱槽22から供給される。なお、本実施形態では高温の溶融塩が高温蓄熱槽22から再熱器34に供給される構成である。
 また、再熱器34には高圧タービン36から排出された中間排出蒸気が供給される。
 そして、この中間排出蒸気が高温の溶融塩との熱交換によって加熱され、再熱蒸気が生成する。一方、熱交換により熱を放出した溶融塩は、蒸気発生器30に送られる。
 なお、本実施形態では高温蓄熱槽22から供給された溶融塩が分岐し、過熱器32および再熱器34のそれぞれに供給されている。
(低圧タービン)
 低圧タービン38は、再熱器34から供給された再熱蒸気によって駆動される。すなわち、低圧タービン38が備えるタービン翼が再熱蒸気の仕事によって回転し、ジェネレータGで電力が発生する。仕事をした後の再熱蒸気は、排出蒸気として後述する復水器40に排出される。
 また、本実施形態の低圧タービン38では、その内部から一部の蒸気が多段的(4段)に抽気され、例えば不図示の熱交換器等に排出される。この抽気された蒸気の熱が熱交換器等において利用されることで、発電効率を高めることができる。
(復水器)
 復水器40は、低圧タービン38から排出された排出蒸気を冷却して凝縮し、水に戻すことにより背圧を下げて出力を稼ぐために設けられるものである。この水は蒸気発生器30に供給され、再び発電の用に供される。
(循環手段)
 上述した水や各種蒸気は、水/蒸気循環路内に適宜配設されたポンプなどの循環手段(不図示)によって太陽熱発電装置系内を循環する。
 また、溶融塩は、溶融塩循環路内に適宜配設されたポンプなどの循環手段(不図示)によって太陽熱発電装置系内を循環する。
(再熱蒸気温度検出器)
 再熱蒸気温度検出器(不図示)は、再熱器34から排出され、低圧タービン38に供給される再熱蒸気の温度を検出する。したがって、再熱蒸気温度検出器は再熱器34出口と低圧タービン38入口との間の経路に設けられている。
 再熱蒸気温度検出器の設置位置は、再熱蒸気の温度を精度よく検出できる位置であれば、再熱器34出口と低圧タービン38入口との間の経路のうち、いずれの箇所であってもよい。本実施形態では、低圧タービン38入口付近に複数個の再熱蒸気温度検出器が設けられ、それぞれにおいて再熱蒸気の温度を検出している。
 この再熱蒸気温度検出器は、再熱蒸気の温度を検出可能なものであれば特に制限はなく、如何なる温度検出方式を採用するものであってもよい。
 再熱蒸気温度検出器が再熱蒸気の温度を検出するタイミングについて特に制限はないが、太陽熱発電装置100が何らかの異常を来したことを常に検知することができるように、本実施形態では温度検出を常時(連続的に)行っている。ただし、本発明はこれに限られるものではなく、例えば、低負荷運転時のみ再熱蒸気の温度を検出してもよい。
 再熱蒸気温度検出器が検出した再熱蒸気の温度は、後述する再熱器溶融塩量制御部に送られる。
(低負荷運転)
 太陽熱発電装置は、通常、定格負荷に対して100%の負荷において通常運転を行い、発電する。
 しかしながら、例えば、太陽光照射量が必要量に満たず高温の溶融塩の供給量が不足する場合や、電力の需要量が少なく外部に電力を送れない場合など、必要に応じて太陽熱発電装置の負荷を低くして低負荷運転を行う。
 太陽光照射量が必要量に満たない雨天・曇天日や夜間など、高温の溶融塩の供給量が不足する場合には、そのまま通常運転を行うと貯留していた高温の溶融塩が全て低温になり、最終的には太陽熱発電装置内において固化してしまう。そこで固化防止のため、太陽光照射量が増加するまで低負荷運転を行って高温の溶融塩の消費量を抑制することがある。
 また、電力をあまり多く消費しない早朝や深夜など、電力の需要量が少なく外部に電力を送れない場合には、そのまま通常運転を行うことができないため、電力の需要量が増加するまで低負荷運転を行うことがある。
 一般的に太陽熱発電装置では、通常運転と低負荷運転とを切り替えて発電を行っている。
 ところで、太陽熱発電装置100は、定格負荷(すなわち、100%負荷)であると最も発電効率がよく、低圧タービン38からの排出蒸気温度が高温化することなく良好に発電を行える。しかしながら、非常に高温となる溶融塩を加熱媒体として循環させる太陽熱発電装置100の場合、低負荷運転の際には低圧タービン38からの排出蒸気温度が上昇し、タービン翼の破損などの不具合を招く。
 そこで本実施形態では、所定の割合以下の負荷である低負荷運転の際、低圧タービン38からの排出蒸気温度が過度に上昇しないように、後述する再熱器溶融塩量制御工程(再熱器溶融塩量制御部)によって、再熱器34に供給する溶融塩の量Mrを制御する。
 ここで、本実施形態における低負荷運転とは、太陽熱発電装置100の定格負荷の25%以下の負荷である運転状態をいう。ただし、負荷が低すぎる場合は太陽熱発電装置100の運転に支障を来すため、許容最低負荷以上で運転する必要がある。許容最低負荷とは、太陽熱発電装置を運転する上で最低限必要とされる負荷である。
 本実施形態では、好ましくは5%以上25%以下、より好ましくは5%以上20%以下、特に好ましくは7%以上15%以下の負荷で低負荷運転を行う。
 ただし、本発明はこれらに何ら限定されるものではない。太陽熱発電装置の定格負荷および許容最低負荷は装置固有の値であるため、当該装置に応じた所定の割合の負荷での低負荷運転を行うことが最も好ましい。
(再熱器溶融塩量制御部、再熱器溶融塩量制御工程)
 再熱器溶融塩量制御部は、低負荷運転時において、再熱蒸気温度検出器から出力される再熱蒸気の温度を取得し、再熱器34に供給する溶融塩の量Mrを制御して、再熱蒸気の温度が450℃以下となるようにする。本実施形態における再熱器溶融塩量制御部は、低負荷運転時において、再熱蒸気の温度が450℃を超える場合、再熱蒸気の温度が450℃以下となるように再熱器34に供給する溶融塩の量Mrを減少させる。再熱蒸気の温度は、450℃以下となることが好ましく、370℃以上430℃以下となることがより好ましい。
 低負荷運転時において低圧タービン38に供給される再熱蒸気の温度が450℃以下となることで、低圧タービン38内が高温になり過ぎることがなく、低圧タービン38のタービン翼の破損を防ぐことができる。また、過熱器32および再熱器34に供給される溶融塩自体の温度は下がっていないため、過熱蒸気の温度が500℃以上に保たれたままとなるため、発電効率の低下が抑えられ、高効率な発電が行われる。
 なお、必要以上に再熱蒸気の温度を低下させることは、低圧タービン38の発電効率を低下させるため好ましくない。低圧タービン38のタービン翼の破損のリスクを充分に低減し得る程度に低圧タービン38の排気温度が低くなることは必要であるため、再熱蒸気の温度は450℃以下とした上で、高い発電効率を得るべく、再熱蒸気の温度を高く維持することが特に好ましい。より具体的には、太陽熱発電装置100の型式や低圧タービン38の型式、運転の負荷率等を考慮し、低圧タービン38のタービン翼の破損のリスクを回避しつつ、高い発電効率が得られるような再熱蒸気の温度となるように、溶融塩の量Mrを制御することが特に好ましい。
 また、再熱器溶融塩量制御部は、再熱蒸気温度検出器から出力される再熱蒸気の温度に加えて、他の温度も取得し、再熱器34に供給する溶融塩の量Mrを制御してもよい。例えば、低圧タービン38出口から排出される蒸気の温度を検出可能な温度検出器から出力される温度を取得し、再熱蒸気温度検出器から出力される再熱蒸気の温度と共に制御因子として用いて、再熱器34に供給する溶融塩の量Mrを制御してもよい。
(太陽熱発電装置全体における溶融塩の量の制御)
 太陽熱発電装置100では、その発電量から太陽熱発電装置100において用いられる蒸気量が決まり、蒸気量が決まると、必要とされる高温の溶融塩の量、即ち、過熱器32および再熱器34に供給する溶融塩の総量Mtが決まる。
 また、前述したとおり、低負荷運転時においては再熱器34に供給する溶融塩の量Mrが再熱器溶融塩量制御部によって決まる。
 したがって、過熱器32および再熱器34に供給する溶融塩の総量Mtから再熱器34に供給する溶融塩の量Mrを引いた差分(Mt-Mr)が、過熱器32に供給する溶融塩の量Msとなるため、低負荷運転時における太陽熱発電装置100全体の溶融塩の供給(循環)制御が決まる。
 一方、通常運転時においては、再熱器34に供給する溶融塩の量Mrは理論的に決まるため、再熱器溶融塩量制御部による制御によらず、自ずと決まる。
(その他の構成)
 本発明に係る太陽熱発電装置では、以上述べた各構成に加え、太陽熱発電装置において周知慣用されている構成を備えていてもよい。
 以下、シミュレーションによる実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(実施例1、比較例1~2、参考例1)
 実施例1、並びに比較例1~2および参考例1では、図1に示す太陽熱発電装置における太陽熱発電のシミュレーションを行った。
 比較例1は、太陽熱発電装置100の定格負荷に対して10%負荷の低負荷運転の状態である。比較例1では、溶融塩の温度自体を低下させることで高圧タービン入口の温度(過熱蒸気の温度)および低圧タービン入口の温度(再熱蒸気の温度)を下げる制御を行った。
 比較例1では、低圧タービン38出口の蒸気の温度が53.83℃であった。また、この比較例1における発電効率を基準値として、後述する比較例2および実施例1の発電効率を評価した。
 比較例2では、太陽熱発電装置100の定格負荷に対して10%負荷の低負荷運転の状態である。比較例2では、比較例1のように溶融塩の温度を低下させることなく、従来と同様に、目標とする蒸気流量を指標として再熱器34に供給する溶融塩の量Mrを制御した。
 比較例2では、発電効率は比較例1に対して約2.95%増加したが、低圧タービン38出口の蒸気の温度が126.80℃であり、実用に耐え得る温度ではなかった。
 実施例1では、再熱蒸気の温度を指標として再熱器34に供給する溶融塩の量Mrを制御する、上述した再熱器溶融塩量制御工程に従って制御を行った。すなわち、低圧タービン38入口の再熱蒸気の温度が400℃となるように再熱器34に供給する溶融塩の量Mrを制御した。
 実施例1では、低圧タービン38出口の蒸気の温度が53.83℃であった。実施例1では、低圧タービン38出口の蒸気の温度が低かったため、長期にわたる使用においてもタービン翼の破損などのおそれがない。また、実施例1では比較例1に対して発電効率が約0.91%増加し、発電の高効率化が達成できた。
 参考例1は、太陽熱発電装置100の定格負荷での運転状態(100%負荷)、すなわち通常運転状態である。
 参考例1では、低圧タービン38出口の蒸気の温度が41.07℃であった。通常運転状態である参考例1では、低圧タービン38出口の蒸気温度が低かったため、長期にわたる使用においてもタービン翼の破損などのおそれがない。
 以上のように、本発明に係る太陽熱発電装置の制御方法および太陽熱発電装置によれば、低負荷運転時において、再熱蒸気の温度を指標として再熱器に供給する溶融塩の量を制御することで、低圧タービンからの排気温度の上昇を防ぐことができ、尚且つ、高圧タービンに供給される過熱蒸気の温度の低下を招くことがない。したがって、本発明に係る太陽熱発電装置の制御方法および太陽熱発電装置によれば、コストアップを招くことなく排気温度の上昇を抑制して耐久性を向上させると共に、高効率な発電が達成できることがわかった。
 この出願は2015年10月28日に出願された日本国特許出願第2015-211799からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
 10  加熱部
 20  低温蓄熱槽
 22  高温蓄熱槽
 30  蒸気発生器
 32  過熱器
 34  再熱器
 36  高圧タービン
 38  低圧タービン
 40  復水器
100  太陽熱発電装置
  G  ジェネレータ
 Mr  再熱器に供給する溶融塩の量
 Ms  過熱器に供給する溶融塩の量
 Mt  過熱器および再熱器に供給する溶融塩の総量

 

Claims (8)

  1.  水を溶融塩で加熱して蒸気を発生させる蒸気発生器と、
     該蒸気発生器で発生した蒸気を、溶融塩でさらに加熱して過熱蒸気を生成する過熱器と、
     該過熱器から供給される過熱蒸気で駆動される高圧タービンと、
     該高圧タービンからの中間排出蒸気を、溶融塩で再加熱して再熱蒸気を生成する再熱器と、
     該再熱器から供給される再熱蒸気で駆動される低圧タービンと、
     該低圧タービンからの排出蒸気を凝縮して前記蒸気発生器に供される水とする復水器と、
     前記低圧タービンに供給される前記再熱蒸気の温度を検出する再熱蒸気温度検出器と、を有する太陽熱発電装置を制御する、太陽熱発電装置の制御方法であって、
     前記再熱器に供給される前記溶融塩の量Mrを制御する再熱器溶融塩量制御工程を備え、
     該再熱器溶融塩量制御工程は、所定の割合以下の負荷である低負荷運転のとき、前記再熱蒸気温度検出器が検出する前記再熱蒸気の温度が450℃以下となるように前記溶融塩の量Mrを制御することを特徴とする太陽熱発電装置の制御方法。
  2.  前記所定の割合以下の負荷である低負荷運転が、前記太陽熱発電装置の許容最低負荷以上であることを特徴とする請求項1に記載の太陽熱発電装置の制御方法。
  3.  前記再熱器溶融塩量制御工程は、所定の割合以下の負荷である低負荷運転のとき、前記再熱蒸気温度検出器が検出する前記再熱蒸気の温度が370℃以上430℃以下となるように前記溶融塩の量Mrを制御することを特徴とする請求項1または2に記載の太陽熱発電装置の制御方法。
  4.  前記溶融塩が硝酸ナトリウムと硝酸カリウムとを含むことを特徴とする請求項1乃至3のいずれか一項に記載の太陽熱発電装置の制御方法。
  5.  前記溶融塩を貯留する低温蓄熱槽と、
     該低温蓄熱槽から供給される前記溶融塩を太陽光によって加熱する加熱部と、
     該溶融塩の少なくとも一部が供給され、これを貯留する高温蓄熱槽と、
    をさらに有することを特徴とする請求項1乃至4のいずれか一項に記載の太陽熱発電装置の制御方法。
  6.  前記加熱部がパラボラ・トラフ型であることを特徴とする請求項5に記載の太陽熱発電装置の制御方法。
  7.  水を溶融塩で加熱して蒸気を発生させる蒸気発生器と、
     該蒸気発生器で発生した蒸気を、溶融塩でさらに加熱して過熱蒸気を生成する過熱器と、
     該過熱器から供給される過熱蒸気で駆動される高圧タービンと、
     該高圧タービンからの中間排出蒸気を、溶融塩で再加熱して再熱蒸気を生成する再熱器と、
     該再熱器から供給される再熱蒸気で駆動される低圧タービンと、
     該低圧タービンからの排出蒸気を凝縮して前記蒸気発生器に供される水とする復水器と、
     前記低圧タービンに供給される前記再熱蒸気の温度を検出する再熱蒸気温度検出器と、
     前記再熱器に供給される前記溶融塩の量Mrを制御する再熱器溶融塩量制御部と、を備え、
     該再熱器溶融塩量制御部は、所定の割合以下の負荷である低負荷運転のとき、前記再熱蒸気温度検出器が検出する前記再熱蒸気の温度が450℃以下となるように前記溶融塩の量Mrを制御することを特徴とする太陽熱発電装置。
  8.  前記溶融塩を貯留する低温蓄熱槽と、
     該低温蓄熱槽から供給される前記溶融塩を太陽光によって加熱する加熱部と、
     該溶融塩の少なくとも一部が供給され、これを貯留する高温蓄熱槽と、
    をさらに備えることを特徴とする請求項7に記載の太陽熱発電装置。

     
PCT/JP2016/004668 2015-10-28 2016-10-24 太陽熱発電装置およびその制御方法 WO2017073040A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES16859278T ES2861437T3 (es) 2015-10-28 2016-10-24 Sistema para la generación de energía térmica solar y método de control del mismo
CN201680064898.6A CN108291532B (zh) 2015-10-28 2016-10-24 太阳能发电装置及其控制方法
MA43127A MA43127B1 (fr) 2015-10-28 2016-10-24 Système de production d'énergie solaire thermique et son procédé de régulation
EP16859278.0A EP3369926B1 (en) 2015-10-28 2016-10-24 Solar thermal power generation system and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211799A JP6596303B2 (ja) 2015-10-28 2015-10-28 太陽熱発電装置およびその制御方法
JP2015-211799 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073040A1 true WO2017073040A1 (ja) 2017-05-04

Family

ID=58630154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004668 WO2017073040A1 (ja) 2015-10-28 2016-10-24 太陽熱発電装置およびその制御方法

Country Status (9)

Country Link
EP (1) EP3369926B1 (ja)
JP (1) JP6596303B2 (ja)
CN (1) CN108291532B (ja)
CL (1) CL2018001011A1 (ja)
ES (1) ES2861437T3 (ja)
MA (1) MA43127B1 (ja)
PT (1) PT3369926T (ja)
SA (1) SA518391449B1 (ja)
WO (1) WO2017073040A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191343A (zh) * 2017-07-28 2017-09-22 中国电力工程顾问集团西北电力设计院有限公司 一种全负荷熔盐蒸汽发生系统及其控制方法
CN109026224A (zh) * 2018-10-17 2018-12-18 中国船舶重工集团公司第七0三研究所 一种单罐蓄热式储能热电联供系统
CN109083811A (zh) * 2018-09-25 2018-12-25 兰州大成聚光能源科技有限公司 风力光热发电设备和方法
CN110006026A (zh) * 2019-04-18 2019-07-12 北京工业大学 一种火电厂深度调峰系统
CN110206603A (zh) * 2019-05-16 2019-09-06 浙江浙能技术研究院有限公司 一种基于蒸汽加热熔盐蓄热的火电机组热电解耦系统及方法
CN110886629A (zh) * 2018-09-07 2020-03-17 上海明华电力技术工程有限公司 一种利用光热实现热电解耦的系统和方法
WO2020145106A1 (ja) * 2019-01-07 2020-07-16 株式会社Ihi 蒸気供給装置及び乾燥システム
CN112781271A (zh) * 2021-02-03 2021-05-11 国电龙源电力技术工程有限责任公司 蓄热型太阳能联合供冷供热系统
CN114251642A (zh) * 2021-11-30 2022-03-29 碳中和绿色建筑科技(苏州)有限公司 熔盐储热换热系统
CN114857974A (zh) * 2022-05-17 2022-08-05 上海电气集团股份有限公司 熔盐储热供汽系统及供汽方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR111473A1 (es) 2017-04-19 2019-07-17 Sumitomo Chemical Co Método para la preparación de compuesto de piridina
CN109838770A (zh) * 2017-09-11 2019-06-04 甘肃光热发电有限公司 光热发电蒸汽发生系统
CN107905862A (zh) * 2017-11-24 2018-04-13 兰州理工大学 太阳能蝶式涡旋昼夜发电系统
KR102180173B1 (ko) * 2018-11-28 2020-11-19 선다코리아주식회사 산업공정용 태양열 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669408A (en) * 1979-11-12 1981-06-10 Hitachi Ltd Reheat turbine plant
JPS62121807A (ja) * 1985-11-21 1987-06-03 Toshiba Corp タ−ビン制御装置
US20130081394A1 (en) * 2011-09-29 2013-04-04 Michael L. Perry Solar power system and method therefor
US20130186089A1 (en) * 2010-10-04 2013-07-25 Jan Brückner Continuous flow steam generator having an integrated reheater
DE102012102115A1 (de) * 2012-02-16 2013-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2544467T3 (es) * 2010-03-30 2015-08-31 Siemens Aktiengesellschaft Central térmica solar con evaporación indirecta y procedimiento para operar una tal central térmica solar
BR112013007036B1 (pt) * 2010-09-30 2022-04-19 Dow Global Technologies Llc Aparelho para produzir vapor superaquecido de uma planta de energia solar de concentração e processo para produzir vapor superaquecido de uma planta de energia solar de concentração
WO2013018014A2 (en) * 2011-08-02 2013-02-07 Brightsource Industries (Israel) Ltd. Solar energy thermal storage systems, devices, and methods
DE102011054618B4 (de) * 2011-10-19 2020-10-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betreiben eines solarthermischen Kraftwerks und solarthermisches Kraftwerk
US20130111902A1 (en) * 2011-11-03 2013-05-09 Mansour Maleki-Ardebili Solar power system and method of operating a solar power system
EP2781832A1 (de) * 2013-03-18 2014-09-24 Siemens Aktiengesellschaft Verfahren zum Anfahren eines solarthermischen Kraftwerks
US20150128594A1 (en) * 2013-11-11 2015-05-14 Esolar Inc. Heat Transfer Fluid Flow Rate and Temperature Regulation System
CN204239166U (zh) * 2014-10-11 2015-04-01 云南能投能源产业发展研究院 太阳能热力发电装置
CN204186541U (zh) * 2014-11-06 2015-03-04 中国电力工程顾问集团华北电力设计院工程有限公司 熔融盐储热太阳能热发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669408A (en) * 1979-11-12 1981-06-10 Hitachi Ltd Reheat turbine plant
JPS62121807A (ja) * 1985-11-21 1987-06-03 Toshiba Corp タ−ビン制御装置
US20130186089A1 (en) * 2010-10-04 2013-07-25 Jan Brückner Continuous flow steam generator having an integrated reheater
US20130081394A1 (en) * 2011-09-29 2013-04-04 Michael L. Perry Solar power system and method therefor
DE102012102115A1 (de) * 2012-02-16 2013-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarthermisches Kraftwerk und Verfahren zum Betreiben eines solarthermischen Kraftwerks

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107191343A (zh) * 2017-07-28 2017-09-22 中国电力工程顾问集团西北电力设计院有限公司 一种全负荷熔盐蒸汽发生系统及其控制方法
CN107191343B (zh) * 2017-07-28 2023-02-07 中国电力工程顾问集团西北电力设计院有限公司 一种全负荷熔盐蒸汽发生系统及其控制方法
CN110886629A (zh) * 2018-09-07 2020-03-17 上海明华电力技术工程有限公司 一种利用光热实现热电解耦的系统和方法
CN109083811A (zh) * 2018-09-25 2018-12-25 兰州大成聚光能源科技有限公司 风力光热发电设备和方法
CN109026224A (zh) * 2018-10-17 2018-12-18 中国船舶重工集团公司第七0三研究所 一种单罐蓄热式储能热电联供系统
JPWO2020145106A1 (ja) * 2019-01-07 2021-09-09 株式会社Ihi 蒸気供給装置及び乾燥システム
WO2020145106A1 (ja) * 2019-01-07 2020-07-16 株式会社Ihi 蒸気供給装置及び乾燥システム
CN110006026A (zh) * 2019-04-18 2019-07-12 北京工业大学 一种火电厂深度调峰系统
CN110006026B (zh) * 2019-04-18 2023-10-17 北京工业大学 一种火电厂深度调峰系统
CN110206603A (zh) * 2019-05-16 2019-09-06 浙江浙能技术研究院有限公司 一种基于蒸汽加热熔盐蓄热的火电机组热电解耦系统及方法
CN110206603B (zh) * 2019-05-16 2023-08-15 浙江浙能技术研究院有限公司 一种基于蒸汽加热熔盐蓄热的火电机组热电解耦系统及方法
CN112781271A (zh) * 2021-02-03 2021-05-11 国电龙源电力技术工程有限责任公司 蓄热型太阳能联合供冷供热系统
CN114251642A (zh) * 2021-11-30 2022-03-29 碳中和绿色建筑科技(苏州)有限公司 熔盐储热换热系统
CN114857974A (zh) * 2022-05-17 2022-08-05 上海电气集团股份有限公司 熔盐储热供汽系统及供汽方法

Also Published As

Publication number Publication date
JP2017082678A (ja) 2017-05-18
JP6596303B2 (ja) 2019-10-23
EP3369926A4 (en) 2019-06-19
MA43127A (fr) 2018-09-05
EP3369926A1 (en) 2018-09-05
PT3369926T (pt) 2021-04-06
ES2861437T3 (es) 2021-10-06
CL2018001011A1 (es) 2018-09-28
SA518391449B1 (ar) 2021-06-11
CN108291532B (zh) 2020-03-06
CN108291532A (zh) 2018-07-17
MA43127B1 (fr) 2021-02-26
EP3369926B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6596303B2 (ja) 太陽熱発電装置およびその制御方法
US9816491B2 (en) Solar power system and method therefor
JP6340473B2 (ja) 太陽エネルギ及びバイオマスエネルギ一体型発電最適化結合システム
US9541070B2 (en) Plant for energy production
JP4786504B2 (ja) 熱媒体供給設備および太陽熱複合発電設備ならびにこれらの制御方法
EP3112679B1 (en) Solar thermal power generation system and solar thermal power generation method
US20140352304A1 (en) Hybrid solar field
CN102483263B (zh) 用于太阳能蓄热器的传热流体的仅在蒸汽状态下的循环
EP2647841B1 (en) Solar thermal power system
AU2015258171B2 (en) Solar thermal power generation system
US9080788B2 (en) Solar power system and method of operation
EP2871359B1 (en) Auxiliary steam supply system in solar power plants
PT2224104E (pt) Processo para o funcionamento de uma central eléctrica
CN109026240B (zh) 基于核能与太阳能耦合的发电系统和方法
JP5638562B2 (ja) 太陽熱利用発電プラントおよびその運転方法
WO2020255692A1 (ja) 発電プラントおよび発電プラントにおける余剰エネルギ蓄熱方法
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
JP6600605B2 (ja) 太陽熱発電システム及び太陽熱発電方法
JP2016160775A (ja) 太陽熱と燃料ボイラの複合発電システム及びその制御方法
CN105247208A (zh) 具有蓄热器的太阳能集热器厂
JPS5948311B2 (ja) 太陽熱発電プラント
ITMS20100004A1 (it) Centrale ibrida eliotermonucleare

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859278

Country of ref document: EP