WO2017071528A1 - 一种电子设备及其充电方法 - Google Patents

一种电子设备及其充电方法 Download PDF

Info

Publication number
WO2017071528A1
WO2017071528A1 PCT/CN2016/102770 CN2016102770W WO2017071528A1 WO 2017071528 A1 WO2017071528 A1 WO 2017071528A1 CN 2016102770 W CN2016102770 W CN 2016102770W WO 2017071528 A1 WO2017071528 A1 WO 2017071528A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
charging
power generation
time period
photovoltaic
Prior art date
Application number
PCT/CN2016/102770
Other languages
English (en)
French (fr)
Inventor
秦牧云
王瑞珉
彭荣安
齐少敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US15/770,084 priority Critical patent/US10756564B2/en
Priority to EP16858963.8A priority patent/EP3355438B1/en
Publication of WO2017071528A1 publication Critical patent/WO2017071528A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • G04C10/02Arrangements of electric power supplies in time pieces the power supply being a radioactive or photovoltaic source
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • Embodiments of the present invention relate to the field of electronics, and in particular, to an electronic device and a charging method thereof.
  • wearable electronic products are increasingly favored by consumers.
  • wearable electronic devices on the market mainly have wristbands and watches.
  • wearable electronic devices are usually light and thin, battery capacity is often limited, and users need to recharge the product frequently during use.
  • the first charging method is wired charging.
  • it is connected by a universal serial bus (English full name: Universal Serial Bus, English abbreviation: USB) for charging.
  • the second charging method is wireless charging.
  • electromagnetic induction charging or magnetic field resonance charging In this charging mode, a coil for generating a magnetic field and a related control circuit are required in the charger, and a power conversion device and a high-frequency filter circuit are required in the electronic product, which leads to more complicated product design and increases product cost. .
  • the wearable electronic device is a mobile device, and the above two charging methods require the electronic device to be connected to the charger or placed near the charger to be charged, and cannot be charged during the movement, which seriously affects the user.
  • Embodiments of the present invention provide an electronic device and a charging method thereof, which are capable of charging an electronic device during a mobile process, thereby improving a user experience.
  • the present application provides a charging method of an electronic device, where the electronic device includes a photovoltaic device a power generating unit for charging a battery of the electronic device by the electrical energy generated by the included photovoltaic material, the method comprising:
  • Detecting a number of times of movement of the electronic device where the number of movements is a cumulative number of times that the electronic device meets a preset condition within a first preset time period
  • time period is a time period for sampling an open circuit voltage of the photovoltaic material
  • the time period is set as a first time period
  • the time period is set to a second time period, and the second time period is greater than the first time period.
  • the time period is set to two time periods with different lengths and short periods.
  • the short time period corresponds to the situation that the electronic device does not move frequently, and the environment in which the device is located does not change much.
  • the long time period corresponds to frequent movement of the electronic device, even if the working point is adjusted. The working point will also quickly shift the optimal working point, thus flexibly adjusting the work of the photovoltaic material according to the use environment.
  • charging interface of the electronic device When it is determined that the charging interface of the electronic device is disconnected from the charging device, the charging interface is disconnected from the charging circuit of the electronic device, and the charging circuit of the electronic power device is turned on, so that Charging the electronic device by the photovoltaic power generation unit; when determining that the charging interface of the electronic device is connected to the charging device, disconnecting the photovoltaic power generation unit from the charging circuit of the electronic device, A charging interface is electrically coupled to a charging circuit of the electronic device to facilitate charging the electronic device by the charging device. Providing a flexible charging method, charging the electronic device by the photovoltaic power generation unit can reduce the number of times the user performs charging through the charging device (charger).
  • an electronic device including a computer readable medium for storing the present application
  • the application code of the solution the program code comprising instructions for performing the method provided by the first aspect.
  • an electronic device including a processor, a motion sensor, a photovoltaic power generation unit, a memory, and a bus, wherein the processor, the motion sensor, the photovoltaic power generation unit, and the memory are connected to each other through the bus And complete the communication with each other.
  • the memory is used to store the application code of the solution of the present application, and when the processor calls the program code in the memory, the method provided by the first aspect of the application is executed.
  • the present application provides a charging method of an electronic device, where the electronic device includes a photovoltaic power generating unit, configured to charge a battery of the electronic device by using the electrical energy generated by the included photovoltaic material, the method comprising:
  • the open circuit voltage of the photovoltaic material is performed Sampling, and setting the power generation parameter of the photovoltaic material according to the open circuit voltage, so that the working point is kept at a level close to the optimal working point for as long as possible, and unnecessary adjustment of the working point is avoided, resulting in a decrease in output power.
  • an electronic device comprising a computer readable medium for storing application code of the solution of the present application, the program code comprising instructions for performing the method provided by the fourth aspect.
  • an electronic device includes a processor, a photosensor, a photovoltaic power generation unit, a memory, and a bus, wherein the processor, the photosensor, the photovoltaic power generation unit, and the reservoir pass each other through the bus Connect and complete communication with each other.
  • the memory is used to store the application code of the solution of the present application, and when the processor calls the program code in the memory, the method provided by the fourth aspect of the application is executed.
  • FIG. 1 is a schematic flow chart of a charging method of an electronic device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an electronic device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of another electronic device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flow chart of a charging method of an electronic device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an electronic device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of another electronic device according to Embodiment 2 of the present invention.
  • Embodiments of the present invention provide an electronic device including a photovoltaic power generation unit for charging a battery of an electronic device by using electrical energy generated by the included photovoltaic material, thereby realizing charging of the electronic device during the moving process.
  • the electronic device can be a variety of mobile devices, including various wearable electronic devices, such as portable emergency lights, smart wrist watches, and the like.
  • Embodiment 1 of the present invention provides a charging method for an electronic device, which counts the number of times that the electronic device meets a certain condition in a certain period of time, and adjusts the power generation parameter of the photovoltaic material according to the counting result.
  • the time interval as shown in Figure 1, specifically includes the following steps:
  • the number of times of motion is the number of times the motion state of the electronic device that meets the preset condition is accumulated within the first preset time period.
  • the electronic device may periodically detect the number of motions, and the length of the first preset duration is less than the detection period.
  • the detection period can be set to 1 minute, and the first preset duration can be set to 25 seconds. Then, during the period from 0 to 25 seconds of each detection period, the electronic device determines the number of motions of the current detection period.
  • the electronic device when the electronic device does not detect the number of motions, when the motion state that meets the preset condition first appears, the electronic device triggers detection of the number of motions, that is, starts counting the number of motions. After the first preset time period, the electronic device resets the number of motions to zero and stops counting. The detection of the number of movements is triggered again until the motion state that satisfies the preset condition reappears.
  • the detection method can be applied to the situation in which the electronic device frequently moves, so as to obtain the number of movements of the electronic device as much as possible in real time, which is convenient for timely adjusting the time interval for adjusting the power generation parameters of the photovoltaic material.
  • the electronic device can detect the number of movements of the electronic device through the motion sensor.
  • the first preset duration may be set to 25 seconds
  • the motion state satisfying the preset condition may be a motion state in which the gravity acceleration is greater than the set value.
  • the electronic device accumulates the motion state in which the motion acceleration is greater than one gravitational acceleration in 25 seconds, and the cumulative result is used as the number of motions.
  • the motion state that satisfies the preset condition may be a motion state in which the angular velocity of the electronic device is greater than a set value.
  • the preset conditions can be set according to the specific type of motion sensor.
  • the time period is a time period for sampling the open circuit voltage of the photovoltaic material.
  • the electronic device includes a photovoltaic power generation unit for charging a battery of the electronic device with electrical energy generated by the contained photovoltaic material.
  • the output power of the photovoltaic material is the product of the output voltage and the output current. Under a certain light intensity, the output power of the photovoltaic material can be adjusted by adjusting the output voltage. Root According to the volt-ampere characteristics of photovoltaic materials, when the output voltage increases continuously within a certain interval, the output power increases. When the output voltage exceeds the interval, the output power drops sharply. Therefore, in the case of a certain light intensity, the photovoltaic material The output power has a maximum value.
  • Embodiments of the present invention are described by taking the case where the power generation parameter of the photovoltaic material is the operating point of the photovoltaic material.
  • the working point of the photovoltaic material refers to the output current and output voltage of the photovoltaic material, and adjusts the working point of the photovoltaic material, that is, sets the output current and output voltage of the photovoltaic material according to the current light intensity, so that the output power of the photovoltaic material is as close as possible to the maximum. value.
  • the output current remains stable during normal operation of the photovoltaic material. Therefore, adjusting the operating point of the photovoltaic material mainly refers to setting the output voltage.
  • the set output voltage may be the same as the output voltage before resetting, depending on whether the light intensity received by the photovoltaic material changes, or the magnitude of the change.
  • the set output voltage is usually equal to or close to the value before the setting.
  • the operating point of the photovoltaic material when the output power is maximum is referred to as the optimal operating point, that is, the optimal operating point is the ideal value of the operating point. Due to the mobility of electronic devices, the environment in which electronic devices are located is constantly changing, which will cause the working point of photovoltaic materials to deviate from the optimal working point. Therefore, it is necessary to constantly adjust the working point of photovoltaic materials so that the working points are as close as possible to the most Good working point.
  • Adjusting the working point of the photovoltaic material can increase the output power of the photovoltaic material.
  • the time period is set according to the number of movements, and the purpose is to adjust the time period according to the number of movements, so that the working point of the photovoltaic material is kept at a level close to the optimal working point for as long as possible, and It may be possible to reduce the output power due to the adjustment of the operating point.
  • the specific manner of setting the time period may be: when the number of movements of the electronic device belongs to the preset number of times interval, the time period is set to the first time period, and when the number of motions does not belong to the preset number of times, the The time period is set to the second time period.
  • the second time period is greater than the first time period.
  • the first preset duration is 25 seconds
  • the preset number of intervals is a closed interval of 6 to 8
  • the first time The interval is 15 seconds and the second period is 30 seconds.
  • the time period is set to 15 seconds.
  • the number of movements of the electronic device in less than 6 seconds is less than 6 times, it means that the electronic device does not move frequently, so the environment in which it is located does not change much, the ambient light intensity does not change or the change is small, so the time period can be set. Longer, specifically 30 seconds.
  • the number of movements of the electronic device in more than 8 times is greater than 8 times, the electronic device frequently moves. Even if the working point is adjusted, the working point will quickly shift to the optimal working point due to frequent movement of the electronic device, so as to avoid frequent Adjusting the operating point causes the output power to drop, and the time period can be set longer, specifically 30 seconds.
  • the value of the number of motions can be divided into more intervals, and different time periods are set for different intervals, and details are not described herein again.
  • the process of adjusting the working point specifically includes sampling the open circuit voltage of the photovoltaic material, and setting the output voltage of the photovoltaic material according to the open circuit voltage.
  • the open circuit voltage of the photovoltaic material is sampled according to the time period set in step 102. For example, if the time period is set to 15 seconds, the open circuit voltage of the photovoltaic material is sampled every 15 seconds.
  • the output voltage is the product of the open circuit voltage and the preset factor, with the preset factor being between 0 and 1, for example the preset factor being set to 0.8.
  • different time periods are set according to the number of movements of the electronic equipment, and the power generation parameters of the photovoltaic materials are adjusted according to the set time period. To avoid open circuit voltage sampling under unnecessary conditions, affecting the output power of photovoltaic materials.
  • steps 101-103 can be performed cyclically, and the time period is dynamically adjusted according to the number of motions, and the working point is adjusted according to the updated time period.
  • the working point can be adjusted according to the number of movements of the electronic device, so that the working point is kept at the level close to the optimal working point for as long as possible, and unnecessary adjustment of the working point is avoided, resulting in The output power is reduced.
  • the electronic device can be charged only by the mobile charging method, or can be combined with the fixed charging method as the main or auxiliary charging method of the electronic device.
  • the mobile charging method refers to The electronic device is charged by the photovoltaic power generation unit.
  • the fixed charging method refers to charging the electronic device through the charging device.
  • the electronic device includes a charging circuit for charging a battery of the electronic device.
  • the charging circuit includes a switching switch, and at the same time, the switching switch is only turned on with one of the photovoltaic power generation unit and the charging interface, wherein the charging interface is used to connect the charging device (charger), thereby charging the electronic device through the charging device.
  • the switching switch When it is determined that the charging interface of the electronic device is disconnected from the charging device, the switching switch is turned on with the photovoltaic power generation unit, and the charging interface is disconnected from the charging circuit of the electronic device, and the charging circuit of the photovoltaic power generation unit and the electronic device is turned on.
  • the electronic device is charged by the photovoltaic power generation unit under certain lighting conditions.
  • the switching switch When it is determined that the charging interface of the electronic device is connected to the charging device, the switching switch is electrically connected to the charging interface, and the photovoltaic power generation unit is disconnected from the charging circuit of the electronic device, and the charging interface is electrically connected to the charging circuit of the electronic device, thereby charging The device charges the electronic device.
  • the smart bracelet includes a photovoltaic material for charging by a mobile charging method.
  • the electronic device can also be connected to the charging device through the charging interface for charging.
  • the charging interface may be a USB interface
  • the charging device includes a charger or other device that supports USB output, such as a personal computer. Then, when the USB interface of the smart bracelet is not connected to the charging device, the steps described in steps 101-103 are performed by the mobile charging method, and the smart bracelet is charged by the photovoltaic material.
  • the mobile charging mode is switched to the fixed charging mode, and the smart bracelet is charged by the electric energy provided by the charging device.
  • the USB interface of the smart bracelet is disconnected from the charging device, the mobile charging mode is switched back.
  • charging by the photovoltaic power generation unit can reduce the number of times of charging by the fixed charging mode and improve the user experience.
  • the charging method of the electronic device detects the number of times of movement of the electronic device, sets a time period according to the number of times of the movement, samples the open circuit voltage of the photovoltaic material according to the time period, and sets the photovoltaic material according to the open circuit voltage.
  • the power generation parameters are such that the working point is kept at a level close to the optimal working point for as long as possible, and unnecessary adjustment of the working point is avoided, resulting in a decrease in output power.
  • the first embodiment of the present invention further provides an electronic device for performing the charging method provided by the embodiment corresponding to FIG. 1 .
  • the electronic device 20 includes a photovoltaic power generation unit 201, a motion detecting unit 202, and a control unit 203.
  • the photovoltaic power generation unit 201 is configured to charge the electronic device 206 by the electrical energy generated by the included photovoltaic material.
  • the photovoltaic power generation unit 201 includes at least one photovoltaic material.
  • the photovoltaic power generation unit 201 includes more than one photovoltaic material, more than one photovoltaic material is connected in parallel with each other.
  • the motion detecting unit 202 is configured to detect the number of times of movement of the electronic device, and the number of times of motion is a cumulative number of times the motion state of the electronic device meets the preset condition is accumulated within the first preset time period.
  • the control unit 203 is configured to set a time period according to the number of motions detected by the motion detecting unit 202, and the time period is a time period for sampling an open circuit voltage of the photovoltaic material.
  • the control unit 203 is further configured to control the photovoltaic power generation unit 201 to sample the open circuit voltage of the photovoltaic material according to a time period, and set the power generation parameter of the photovoltaic material according to the open circuit voltage.
  • control unit 203 is configured to set the time period as the first time period when the number of motions belongs to the preset number of times interval.
  • the time period is set to the second time period, and the second time period is greater than the first time period.
  • the electronic device further includes a switching unit 204,
  • the switching unit 204 is configured to charge the electronic device by the photovoltaic power generation unit when it is determined that the charging interface 205 of the electronic device is disconnected from the charging device. When it is determined that the charging interface 205 of the electronic device is connected to the charging device, the electronic device is charged by the charging device.
  • FIG. 2 shows a case where the photovoltaic power generation unit 201 is connected to the battery 206 through the switching unit 204. When the electronic device 20 does not include the switching unit 204, the photovoltaic power generation unit 201 is directly connected to the battery 206.
  • the electronic device provided by the embodiment of the present invention sets the time period according to the number of movements by detecting the number of movements of the electronic device, samples the open circuit voltage of the photovoltaic material according to the time period, and sets the power generation parameter of the photovoltaic material according to the open circuit voltage. In order to keep the working point at a level close to the optimal working point for as long as possible, and avoid unnecessary adjustment of the working point, resulting in a decrease in output power.
  • the first embodiment of the present invention further provides another electronic device.
  • the charging method provided by the embodiment corresponding to FIG. 1 is performed.
  • the electronic device 30 includes a processor 301, a motion sensor 304, a photovoltaic power generation unit 305, a memory 302, and a bus 303.
  • the processor 301, the motion sensor 304, the photovoltaic power generation unit 305, and the memory 302 are connected to each other through a bus 303. Communication with each other.
  • the electronic device 30 can be a variety of mobile devices, including various wearable electronic devices, such as portable emergency lights, smart wrist watches, and the like.
  • the bus 303 can be an industry standard architecture (English name: Industry Standard Architecture, ISA) bus 303, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus 303 or extended industry standard architecture ( English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus 303 and so on.
  • the bus 303 can be divided into an address bus 303, a data bus 303, a control bus 303, and the like. For ease of representation, only one thick line is shown in FIG. 3, but it does not mean that there is only one bus 303 or one type of bus 303. among them:
  • the memory 302 is used to execute the application code of the inventive scheme, and the application code for executing the inventive scheme is stored in the memory 302 and controlled by the processor 301 for execution.
  • the memory 302 can be a read only memory 302 (English full name: Read Only Memory, English abbreviation: ROM) or other types of static storage devices that can store static information and instructions.
  • the random access memory 302 (English name: Random Access Memory, English abbreviation) : RAM) or other types of dynamic storage devices that can store information and instructions, or can be electrically erasable programmable read only memory 302 (English full name: Electrically Erasable Programmable Read Only Memory, English abbreviation: EEPROM) or other storage devices, Or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer, but is not limited thereto.
  • These memories 302 are coupled to the processor 301 via a bus 303.
  • the processor 301 may be a central processing unit 301 (English name: Central Processing Unit, English abbreviation: CPU), or a specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), or configured to implement One or more integrated circuits of embodiments of the invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 301 is configured to call the program code in the memory 302. In a possible implementation manner, when the application program is executed by the processor 301, the following functions are implemented.
  • the photovoltaic power generation unit 305 is configured to charge the battery 307 of the electronic device 30 by the electrical energy generated by the contained photovoltaic material.
  • the photovoltaic power generation unit 305 includes at least one photovoltaic material.
  • the photovoltaic power generation unit 305 includes more than one photovoltaic material, more than one photovoltaic material is connected in parallel with each other.
  • the motion sensor 304 is configured to detect the number of times of the movement of the electronic device 30, and the number of movements is the number of times the motion state of the electronic device 30 that meets the preset condition is accumulated within the first preset time period.
  • the processor 301 is configured to set a time period according to the number of motions detected by the motion sensor 304.
  • the time period is a time period for sampling an open circuit voltage of the photovoltaic material.
  • the processor 301 is further configured to control the photovoltaic power generation unit 305 to sample the open circuit voltage of the photovoltaic material according to a time period, and set the power generation parameter of the photovoltaic material according to the open circuit voltage.
  • the processor 301 is configured to set the time period as the first time period when the number of motions belongs to the preset number of times interval.
  • the time period is set to the second time period, and the second time period is greater than the first time period.
  • the electronic device 30 further includes a switching circuit 306.
  • the switching circuit 306 is configured to charge the electronic device through the photovoltaic power generation unit when it is determined that the charging interface 308 of the electronic device 30 is disconnected from the charging device. When it is determined that the charging interface 308 of the electronic device 30 is connected to the charging device, the electronic device is charged by the charging device.
  • FIG. 3 shows a case where the photovoltaic power generation unit 305 is connected to the battery 307 through the switching circuit 306. When the electronic device 30 does not include the switching circuit 306, the photovoltaic power generation unit 305 is directly connected to the battery 307.
  • the electronic device provided by the embodiment of the present invention sets the time period according to the number of movements by detecting the number of movements of the electronic device, samples the open circuit voltage of the photovoltaic material according to the time period, and sets the power generation parameter of the photovoltaic material according to the open circuit voltage. In order to keep the working point at a level close to the optimal working point for as long as possible, and avoid unnecessary adjustment of the working point, resulting in a decrease in output power.
  • the second embodiment of the present invention provides a charging method for an electronic device. As shown in Figure 4, the following steps are included:
  • the electronic device includes a photovoltaic power generation unit for charging a battery of the electronic device with electrical energy generated by the contained photovoltaic material, and a photosensitive sensor for detecting the light intensity received by the photovoltaic material.
  • the photosensitive sensor can be an ambient light sensor (English full name: Ambient Light Sensor, English abbreviation: ALS), a photoresistor, and a photodiode.
  • ALS Ambient Light Sensor
  • a photoresistor a photoresistor
  • a photodiode a photodiode
  • ALS itself consumes power when detecting light intensity. By adjusting the way the ALS detects light intensity, the power consumption of ALS can be reduced.
  • the manner in which ALS detects light intensity includes continuous detection and periodic detection.
  • the detected illumination intensity is greater than the first predetermined threshold
  • the illumination intensity received by the photovoltaic material is continuously detected.
  • the ALS stops the continuous detection and begins to periodically detect the illumination intensity of the photovoltaic material.
  • the intensity of the light received by the photovoltaic material is measured and used to adjust the power generation parameters of the photovoltaic material according to the light intensity.
  • the embodiment of the present invention takes the case where the power generation parameter of the photovoltaic material is the working point of the photovoltaic material as an example, and describes the value of the first preset threshold.
  • ALS When ALS detects light intensity, it consumes electricity itself. At the same time, adjusting the working point of photovoltaic material can increase the output power of photovoltaic material. The difference between the power output of the photovoltaic material after the adjustment of the working point and the power consumed by the ALS to continuously detect the light intensity is taken as the power gain. When the light intensity is small, the power gain is small, even negative. When the light intensity is large, the power gain is positive.
  • the value of the first preset threshold may be set to the light intensity corresponding to the power gain of 0.
  • the detected illumination intensity is always greater than the first preset threshold within the second preset duration, and the detected maximum variation of the illumination intensity within the second preset duration exceeds the second preset threshold.
  • the open circuit voltage of the material is sampled, and the power generation parameters of the photovoltaic material are set according to the open circuit voltage.
  • the illumination intensity When the illumination intensity is greater than the first predetermined threshold, a positive power gain can be obtained. Under the premise that the power gain is positive, if the amount of change in illumination intensity is small, there is no need to adjust the working point to avoid adjustment. As a result of the drop in output power, the operating point is adjusted only when the amount of change in the illumination intensity exceeds the second predetermined threshold.
  • the amount of change in the illumination intensity refers to the maximum amount of change in the second preset duration.
  • the ALS continuously detects the illumination intensity received by the photovoltaic material, and if the illumination intensity is always greater than the first preset threshold within the second preset duration, and is at the second preset When the maximum variation within the duration exceeds the second predetermined threshold, the operating point of the photovoltaic material is adjusted.
  • the first threshold is specifically 1000 lux
  • the second preset threshold is 500 lux
  • the second preset time is 15 seconds.
  • the working point of the photovoltaic material is adjusted at this time, that is, the output current and output voltage of the photovoltaic material are set according to the current light intensity. .
  • the open circuit voltage of the photovoltaic material needs to be sampled, and the photovoltaic material cannot be photoelectrically converted during the sampling process, and the power generation parameter of the photovoltaic material is adjusted according to the change of the actual lighting condition to avoid Open circuit voltage sampling is performed under unnecessary conditions, affecting the output power of the photovoltaic material.
  • the operating point of the photovoltaic material is dynamically adjusted to maintain the operating point at a level close to the optimal operating point for as long as possible.
  • the illumination intensity is less than the first preset threshold, the working point does not need to be adjusted, and unnecessary adjustment of the working point is avoided, resulting in a decrease in output power.
  • the electronic device can be charged only by the mobile charging method, or can be combined with the fixed charging method as the main or auxiliary charging method of the electronic device.
  • the mobile charging method refers to charging the electronic device through the photovoltaic power generation unit.
  • the fixed charging method refers to charging the electronic device through the charging device.
  • the electronic device includes a charging circuit for charging a battery of the electronic device.
  • the charging circuit includes a switching switch, and at the same time, the switching switch is only turned on with one of the photovoltaic power generation unit and the charging interface, wherein the charging interface is used to connect the charging device (charger), thereby charging the electronic device through the charging device.
  • the switch and the photovoltaic switch When it is determined that the charging interface of the electronic device is disconnected from the charging device, the switch and the photovoltaic switch The electric unit is turned on, at this time, the charging interface is disconnected from the charging circuit of the electronic device, and the charging circuit of the photovoltaic power generation unit and the electronic device is turned on, and the electronic device is charged by the photovoltaic power generation unit under suitable illumination conditions.
  • the switching switch When it is determined that the charging interface of the electronic device is connected to the charging device, the switching switch is electrically connected to the charging interface, and the photovoltaic power generation unit is disconnected from the charging circuit of the electronic device, and the charging interface is electrically connected to the charging circuit of the electronic device, thereby charging The device charges the electronic device.
  • charging by the photovoltaic power generation unit can reduce the number of times of charging by the fixed charging mode and improve the user experience.
  • the charging method of the electronic device when detecting the illumination intensity received by the photovoltaic material, when the detected illumination intensity is always greater than the first preset threshold for a second preset duration, and in the second pre- When the maximum variation within the duration exceeds the second predetermined threshold, the open circuit voltage of the photovoltaic material is sampled, and the power generation parameter of the photovoltaic material is set according to the open circuit voltage, so that the working point is kept close to the optimal work for as long as possible. The level of the point and avoid unnecessary adjustments to the working point, resulting in a drop in output power.
  • Embodiment 2 of the present invention further provides an electronic device for performing the charging method provided by the embodiment corresponding to FIG. 4.
  • the electronic device 50 is a photovoltaic power generation unit 501, a photosensitive detection unit 502, and a control unit 503.
  • the photovoltaic power generation unit 501 is configured to charge the battery 506 of the electronic device 50 by the electrical energy generated by the included photovoltaic material.
  • the photovoltaic power generation unit 501 includes at least one photovoltaic material.
  • the photovoltaic power generation unit 501 includes more than one photovoltaic material, more than one photovoltaic material is connected in parallel with each other.
  • the photosensitive detecting unit 502 is configured to detect the light intensity received by the photovoltaic material.
  • the control unit 503 is configured to: when the light intensity detected by the photosensitive detecting unit 502 is always greater than the first preset threshold for a second preset duration, and the maximum variation within the second preset duration exceeds the second preset threshold
  • the photovoltaic power generation unit 501 is controlled to adjust the power generation parameters of the photovoltaic material.
  • control unit 503 is configured to: when the light intensity detected by the photosensitive detecting unit 502 is greater than the first preset threshold, control the photosensitive detecting unit 502 to continuously detect the light received by the photovoltaic material. Photo intensity. When the light intensity detected by the light detecting unit 502 is not greater than the first predetermined threshold, the photosensitive detecting unit 502 is controlled to periodically detect the light intensity received by the photovoltaic material.
  • the electronic device 50 further includes a switching unit 504.
  • the switching unit 504 is configured to charge the electronic device by the photovoltaic power generation unit when it is determined that the charging interface 505 of the electronic device 50 is disconnected from the charging device. When it is determined that the charging interface 505 of the electronic device 50 is connected to the charging device, the electronic device is charged by the charging device.
  • FIG. 5 shows a case where the photovoltaic power generation unit 501 is connected to the battery 506 through the switching unit 504. When the electronic device 50 does not include the switching unit 504, the photovoltaic power generation unit 501 is directly connected to the battery 506.
  • the electronic device detects the illumination intensity received by the photovoltaic material, and the detected illumination intensity is always greater than the first preset threshold within the second preset duration, and is within the second preset duration.
  • the open circuit voltage of the photovoltaic material is sampled, and the power generation parameter of the photovoltaic material is set according to the open circuit voltage, so that the working point is maintained at a level close to the optimal working point for as long as possible. And avoid unnecessary adjustments to the working point, resulting in a drop in output power.
  • Embodiment 1 of the present invention further provides another electronic device for performing the charging method provided by the embodiment corresponding to FIG. 4.
  • the electronic device 60 includes a processor 601, a photosensor 604, a photovoltaic power generation unit 605, a memory 602, and a bus 603.
  • the processor 601, the photosensor 604, the photovoltaic power generation unit 605, and the memory 602 are connected to each other through a bus 603. Communication with each other.
  • Electronic device 60 can be a variety of mobile devices, including various wearable electronic devices, such as portable emergency lights, smart wrist watches, and the like.
  • the bus 603 can be an industry standard architecture (English name: Industry Standard Architecture, ISA) bus 603, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus 603 or extended industry standard architecture ( English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus 603 and so on.
  • the bus 603 can be divided into an address bus 603, a data bus 603, a control bus 603, and the like. For ease of representation, only one thick line is shown in FIG. 6, but it does not mean that there is only one bus 603 or one type of bus 603. among them:
  • the memory 602 is used to execute the application code of the solution of the present invention, and the application of the solution of the present invention is performed.
  • the program code is stored in memory 602 and is controlled by processor 601 for execution.
  • the memory 602 can be a read only memory 602 (English full name: Read Only Memory, English abbreviation: ROM) or other types of static storage devices that can store static information and instructions, and a random access memory 602 (English name: Random Access Memory, English abbreviation) : RAM) or other types of dynamic storage devices that can store information and instructions, or can be electrically erasable programmable read only memory 602 (English full name: Electrically Erasable Programmable Read Only Memory, EEPROM) or other storage devices, Or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer, but is not limited thereto.
  • These memories 602 are coupled to the processor 601 via a bus 603.
  • the processor 601 may be a central processing unit 601 (English name: Central Processing Unit, English abbreviation: CPU), or a specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), or configured to implement One or more integrated circuits of embodiments of the invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the processor 601 is configured to call the program code in the memory 602. In a possible implementation manner, when the application program is executed by the processor 601, the following functions are implemented.
  • the photovoltaic power generation unit 605 is configured to charge the battery of the electronic device 60 by the electrical energy generated by the included photovoltaic material.
  • the photovoltaic power generation unit 605 includes at least one photovoltaic material.
  • the photovoltaic power generation unit 605 includes more than one photovoltaic material, more than one photovoltaic material is connected in parallel with each other.
  • Photosensitive sensor 604 is used to detect the intensity of light received by the photovoltaic material.
  • the processor 601 is configured to: when the light intensity detected by the photo sensor 604 is always greater than the first preset threshold for a second preset duration, and the maximum variation within the second preset duration exceeds the second preset threshold,
  • the photovoltaic power generation unit 605 is controlled to adjust the power generation parameters of the photovoltaic material.
  • the processor 601 is configured to control the photosensor 604 to continuously detect the illumination intensity received by the photovoltaic material when the illumination intensity detected by the photosensor 604 is greater than the first preset threshold.
  • the photosensor 604 is controlled to periodically detect the illumination intensity received by the photovoltaic material.
  • the electronic device 60 further includes a switching circuit 606.
  • the switching circuit 606 is configured to charge the electronic device by the photovoltaic power generation unit when it is determined that the charging interface of the electronic device 60 is disconnected from the charging device. When it is determined that the charging interface of the electronic device 60 is connected to the charging device, the electronic device is charged by the charging device.
  • FIG. 6 shows a case where the photovoltaic power generation unit 605 is connected to the battery 607 through the switching circuit 606. When the electronic device 60 does not include the switching circuit 606, the photovoltaic power generation unit 605 is directly connected to the battery 607.
  • the electronic device detects the illumination intensity received by the photovoltaic material, and the detected illumination intensity is always greater than the first preset threshold within the second preset duration, and is within the second preset duration.
  • the open circuit voltage of the photovoltaic material is sampled, and the power generation parameter of the photovoltaic material is set according to the open circuit voltage, so that the working point is maintained at a level close to the optimal working point for as long as possible. And avoid unnecessary adjustments to the working point, resulting in a drop in output power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电子领域的电子设备(20,30,50,60)及其充电方法,所述电子设备(20,30,50,60)包括光伏发电单元(201,305,501,605),用于通过所包含的光伏材料产生的电能为电子设备(20,30,50,60)的电池(206,307,506,607)充电,充电方法包括:检测所述电子设备(20,30,50,60)的运动次数(101);根据所述运动次数设定时间周期(102);按照所述时间周期对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数(103)。或者,检测光伏材料所受到的光照强度(401),当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数(402)。能够对电子设备(20,30,50,60)在移动过程中进行充电,改善用户的使用体验。

Description

一种电子设备及其充电方法
本申请要求于2015年10月28日提交中国专利局、申请号为201510725354.7、名称为“一种电子设备及其充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及电子领域,尤其涉及一种电子设备及其充电方法。
背景技术
随着电子产品功能的多元化,及其外观的小型化,穿戴式电子产品越来越受到消费者青睐。目前,市场上的穿戴式电子设备主要有手环和手表。为获得好的用户体验,穿戴式电子设备通常都具有轻、薄的特点,电池容量往往被限制的非常小,用户在使用过程中需要对产品进行频繁充电。
现有技术中的充电方式包括两种,第一种充电方式为有线式充电。例如通过通用串行总线(英文全称:Universal Serial Bus,英文简称:USB)连接进行充电。第二种充电方式为无线式充电。例如,电磁感应式充电或者磁场共振充电。这种充电方式下,充电器内需要设有产生磁场的线圈,以及相关控制电路,而电子产品内需要设有电力转换装置以及高频滤波电路等,导致产品设计更加复杂,也增加了产品成本。
最重要的一点,穿戴式电子设备是一种移动设备,而以上两种充电方式要求电子设备连接充电器或者置于充电器附近才可以进行充电,不能在移动过程中进行充电,严重影响了用户的使用体验。
发明内容
本发明实施例提供一种电子设备及其充电方法,能够对电子设备在移动过程中进行充电,改善用户的使用体验。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本申请提供一种电子设备的充电方法,所述电子设备包括光伏 发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电,所述方法包括:
检测所述电子设备的运动次数,所述运动次数为所述电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数;
根据所述运动次数设定时间周期,所述时间周期为对光伏材料的开路电压进行采样的时间周期;
按照所述时间周期对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数,以使得光伏材料工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
结合第一方面,在第一种可能的实现方式中,
当所述运动次数属于预设次数区间时,将所述时间周期设定为第一时间周期;
当所述运动次数不属于所述预设次数区间时,将所述时间周期设定为第二时间周期,所述第二时间周期大于所述第一时间周期。将时间周期设为长短不同的两个时间周期,短时间周期对应电子设备没有频繁运动,其所处的环境并没有太大变化的情况,长时间周期对应电子设备频繁运动,即使调整工作点,工作点也会很快偏移最佳工作点的情况,从而灵活地根据使用环境对光伏材料工作进行调整。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,
当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。提供灵活的充电方式,通过光伏发电单元对所述电子设备进行充电,可以减少用户通过充电设备(充电器)进行充电的次数。
第二方面,提供一种电子设备,包括计算机可读介质,用于存储本申 请方案的应用程序代码,所述程序代码包括用于执行第一方面所提供的方法的指令。
第三方面,提供一种电子设备,包括处理器、运动传感器、光伏发电单元、存储器及总线,所述处理器、所述运动传感器、所述光伏发电单元以及所述存储器通过所述总线相互连接并完成相互间的通信。其中存储器用于存储本申请方案的应用程序代码,当处理器调用存储器中的程序代码时,执行本申请第一方面所提供的方法。
第四方面,本申请提供一种电子设备的充电方法,所述电子设备包括光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电,所述方法包括:
检测光伏材料所受到的光照强度;
当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在所述第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
第五方面,提供一种电子设备,包括计算机可读介质,用于存储本申请方案的应用程序代码,所述程序代码包括用于执行第四方面所提供的方法的指令。
第六方面,提供一种电子设备,包括处理器、光敏传感器、光伏发电单元、存储器及总线,所述处理器、所述光敏传感器、所述光伏发电单元以及所述储器通过所述总线相互连接并完成相互间的通信。其中存储器用于存储本申请方案的应用程序代码,当处理器调用存储器中的程序代码时,执行本申请第四方面所提供的方法。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例一所提供的电子设备的充电方法流程示意图;
图2为本发明的实施例一所提供的电子设备的结构示意图;
图3为本发明的实施例一所提供的另一种电子设备的结构示意图;
图4本发明的实施例二所提供的电子设备的充电方法流程示意图;
图5为本发明的实施例二所提供的电子设备的结构示意图;
图6为本发明的实施例二所提供的另一种电子设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供一种电子设备及其充电方法,电子设备包括光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电,从而实现在移动过程中为电子设备充电的目的。电子设备可以是各种移动设备,包括各种穿戴式电子设备,例如便携式的紧急照明灯、智能手环手表等。
传统的电子设备与充电器有线连接的充电方式,以及电子设备靠近充电器通过无线连接进行充电的方式,由于充电过程中电子设备可以活动的范围十分有限,在本发明的实施例中,将以上传统的充电方式称为固定式充电方式,将通过光伏材料为电子设备进行充电的方式称为移动式充电方式。根据电子设备的应用场景,电子设备可以仅以移动式充电方式进行充电,也可以与固定式充电方式相结合,作为电子设备主要的或者辅助性充电方式。
实施例一
本发明的实施例一提供一种电子设备的充电方法,通过对电子设备满足一定条件的运动状态在一定时间内所出现的次数进行计数,并根据计数结果设定对光伏材料的发电参数进行调整的时间间隔,参照图1所示,具体包括以下步骤:
101、检测电子设备的运动次数。
其中,运动次数为电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数。
可选的,电子设备可以周期性检测运动次数,且第一预设时长的长度小于检测周期。例如,检测周期可以设为1分钟,第一预设时长可以设为25秒。则在每个检测周期的0时间点到第25秒的时间段内,电子设备确定当前检测周期的运动次数。
或者,可选的,在电子设备没有对运动次数进行检测时,当满足预设条件的运动状态第一次出现时,电子设备触发对运动次数的检测,即开始对运动次数进行计数。在第一预设时长之后,电子设备将运动次数归零,并停止计数。直到满足预设条件的运动状态再次出现时,则再次触发对运动次数的检测。这种检测方式可以应用于电子设备频繁运动的情况,从而尽可能实时获取电子设备的运动次数,利于及时地调整对光伏材料的发电参数进行调整的时间间隔。
具体的,电子设备可以通过运动传感器对电子设备的运动次数进行检测。以运动传感器具体为重力传感器的应用场景为例,第一预设时长可以设为25秒,满足预设条件的运动状态可以为重力加速度大于设定值的运动状态。例如,设定值具体为1个重力加速度时,电子设备对25秒内运动加速度大于1个重力加速度的运动状态进行累计,以累计结果作为运动次数。
当然,还可以采用其它类型的运动传感器对电子设备的运动次数进行检测,例如陀螺仪、磁力计等。以陀螺仪作为运动传感器的情况为例,满足预设条件的运动状态可以为电子设备旋转角速度大于设定值的运动状态。预设条件可以根据运动传感器的具体种类进行设定。
102、根据运动次数设定时间周期。
其中,时间周期为对光伏材料的开路电压进行采样的时间周期。
电子设备包括光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电。光伏材料的输出功率为输出电压和输出电流的乘积,在一定光照强度下,通过调整输出电压,可以对光伏材料的输出功率进行调整。根 据光伏材料的伏安特性,当输出电压在一定区间内不断增大时,输出功率增大,当输出电压超出该区间时,输出功率骤降,因此在光照强度一定的情况下,光伏材料的输出功率有最大值。
本发明的实施例以光伏材料的发电参数为光伏材料的工作点的情况为例进行说明。光伏材料的工作点指光伏材料的输出电流和输出电压,调整光伏材料的工作点,即根据当前的光照强度设定光伏材料的输出电流和输出电压,以使光伏材料的输出功率尽可能接近最大值。通常情况下,在光伏材料正常工作时,输出电流保持稳定,因此调整光伏材料的工作点,主要是指设定输出电压。需要说明的是,设定的输出电压,其具体取值可以与重设前的输出电压相同,这取决于光伏材料所收到的光照强度的是否变化,或者变化的幅度。当光照强度变化幅度较小时,设定的输出电压通常与设定之前的值相等或者接近。
为便于描述,本发明的实施例中将输出功率最大时光伏材料的工作点称为最佳工作点,即最佳工作点为工作点的理想值。由于电子设备移动性的特点,电子设备所处的环境不断变化,会使得光伏材料的工作点偏离最佳工作点,因此需要经常对光伏材料的工作点进行调整,以使得工作点尽可能接近最佳工作点。
对光伏材料的工作点进行调整,可以提高光伏材料的输出功率,然而,在对光伏材料的工作点进行调整的过程中,需要采样光伏材料的开路电压,采样过程会降低光伏材料的输出功率,因此频繁地调整工作点并不利于提高光伏材料的输出功率。
本发明的实施例中,根据运动次数设定时间周期,目的在于根据运动次数对时间周期进行调整,以使得光伏材料的工作点尽可能长时间地保持在接近最佳工作点的水平,并尽可能减少因为调整工作点而造成输出功率下降的情况。
可选的,设定时间周期的具体方式可以为,当电子设备的运动次数属于预设次数区间时,将时间周期设定为第一时间周期,当运动次数不属于预设次数区间时,将时间周期设定为第二时间周期。其中,第二时间周期大于第一时间周期。
例如,第一预设时长为25秒,预设次数区间为6到8的闭区间,第一时 间周期为15秒,第二时间周期为30秒。如果电子设备在25秒内的运动次数属于6到8的闭区间时,则将时间周期设定为15秒。当电子设备在25秒内的运动次数小于6次时,说明电子设备没有频繁运动,因此其所处的环境并没有太大变化,环境光照强度没有改变或者改变较小,因此时间周期可以设得较长,具体为30秒。当电子设备在25秒内的运动次数大于8次时,说明电子设备频繁运动,此时即使调整工作点,由于电子设备频繁运动,工作点会很快偏移最佳工作点,为免因为频繁调整工作点而造成输出功率下降,时间周期可以设得较长,具体为30秒。
当然,可以将运动次数的取值划分成更多区间,并针对不同区间设定不同的时间周期,此处不再赘述。
103、按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数。
调整工作点的过程具体包括,对光伏材料的开路电压进行采样,根据开路电压设定光伏材料的输出电压。按照步骤102中所设定的时间周期,对光伏材料的开路电压进行采样。例如,时间周期设为15秒,则每隔15秒对光伏材料的开路电压采样一次。通常,输出电压为开路电压与预设系数之积,其中预设系数在0到1之间,例如预设系数设为0.8。在对光伏材料的开路电压进行采样时,光伏材料不能实现光电转换,因此根据电子设备的运动次数的不同,设定不同的时间周期,并按照设定的时间周期对光伏材料的发电参数进行调整,避免在不必要的情况下进行开路电压采样,影响光伏材料的输出功率。
当然,可以循环执行步骤101-步骤103,根据运动次数对时间周期进行动态调整,按照更新后的时间周期调整工作点。通过对时间周期进行动态调整,可以按照电子设备的运动次数进行工作点调整,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
104、根据电子设备的充电接口与充电设备的连接状态切换充电方式。
电子设备可以仅以移动式充电方式进行充电,也可以与固定式充电方式相结合,作为电子设备主要的或者辅助的充电方式。其中,移动式充电方式是指 通过光伏发电单元对电子设备进行充电。固定式充电方式是指通过充电设备对电子设备进行充电。
在一种具体的应用场景中,电子设备包括充电电路,用于为电子设备的电池充电。充电电路包括切换开关,在同一时间点切换开关只与光伏发电单元和充电接口其中之一导通,其中充电接口用于连接充电设备(充电器),从而通过充电设备对电子设备充电。
当确定电子设备的充电接口与充电设备断开时,将切换开关与光伏发电单元导通,此时充电接口与电子设备的充电电路断开,光伏发电单元与电子设备的充电电路导通,在一定光照条件下,通过光伏发电单元对电子设备进行充电。
当确定电子设备的充电接口与充电设备连接时,将切换开关与充电接口导通,此时光伏发电单元与电子设备的充电电路断开,充电接口与电子设备的充电电路导通,从而通过充电设备对电子设备进行充电。
以智能手环为例,智能手环包括光伏材料,用于通过移动式充电方式进行充电,另外,电子设备还可以通过充电接口连接充电设备进行充电。其中充电接口可以是USB接口,充电设备包括充电器或者其它支持USB输出的设备,如个人电脑等。那么当智能手环的USB接口未连接充电设备时,通过移动式充电方式,执行步骤101-103所描述的步骤,利用光伏材料对智能手环进行充电。当智能手环的USB接口与充电设备连接时,从移动式充电方式切换至固定式充电方式,利用充电设备提供的电能对智能手环进行充电。当智能手环的USB接口与充电设备的连接断开时,在切换回移动式充电方式。
在电子设备支持移动式充电方式和固定式充电方式的应用场景中,通过光伏发电单元进行充电,可以减少通过固定式充电方式进行充电的次数,改善用户的使用体验。
本发明的实施例所提供的电子设备的充电方法,通过检测电子设备的运动次数,根据运动次数设定时间周期,按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
基于图1所对应的实施例,本发明的实施例一还提供一种电子设备,用于执行图1所对应实施例所提供的充电方法。参照图2,电子设备20包括光伏发电单元201、运动检测单元202以及控制单元203。
光伏发电单元201,用于通过所包含的光伏材料产生的电能为电子设备的206充电。可选的,光伏发电单元201包括至少一块光伏材料,当光伏发电单元201包括一块以上光伏材料时,一块以上光伏材料互相并联。
运动检测单元202,用于检测电子设备的运动次数,运动次数为电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数。
控制单元203,用于根据运动检测单元202检测得到的运动次数设定时间周期,时间周期为对光伏材料的开路电压进行采样的时间周期。
控制单元203,还用于控制光伏发电单元201按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数。
可选的,控制单元203,具体用于当运动次数属于预设次数区间时,将时间周期设定为第一时间周期。当运动次数不属于预设次数区间时,将时间周期设定为第二时间周期,第二时间周期大于第一时间周期。
可选的,电子设备还包括切换单元204,
切换单元204,用于当确定电子设备的充电接口205与充电设备断开时,通过光伏发电单元对电子设备进行充电。当确定电子设备的充电接口205与充电设备连接时,通过充电设备对电子设备进行充电。图2所示为光伏发电单元201通过切换单元204与电池206连接的情况。当电子设备20不包括切换单元204时,光伏发电单元201直接与电池206连接。
本发明的实施例所提供的电子设备,通过检测电子设备的运动次数,根据运动次数设定时间周期,按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
基于图1所对应的实施例,本发明的实施例一还提供另一种电子设备,用 于执行图1所对应实施例所提供的充电方法。参照图3,电子设备30包括:处理器301、运动传感器304、光伏发电单元305、存储器302及总线303,处理器301、运动传感器304、光伏发电单元305以及存储器302通过总线303相互连接并完成相互间的通信。电子设备30可以是各种移动设备,包括各种穿戴式电子设备,例如便携式的紧急照明灯、智能手环手表等。
该总线303可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线303、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线303或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线303等。该总线303可以分为地址总线303、数据总线303、控制总线303等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线303或一种类型的总线303。其中:
存储器302用于执行本发明方案的应用程序代码,执行本发明方案的应用程序代码保存在存储器302中,并由处理器301来控制执行。
该存储器302可以是只读存储器302(英文全称:Read Only Memory,英文简称:ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存储器302(英文全称:Random Access Memory,英文简称:RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器302(英文全称:Electrically Erasable Programmable Read Only Memory,英文简称:EEPROM)或者其他存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器302通过总线303与处理器301相连接。
处理器301可能是一个中央处理器301(英文全称:Central Processing Unit,英文简称:CPU),或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
处理器301,用于调用存储器302中的程序代码,在一种可能的实施方式中,当上述应用程序被处理器301执行时,实现如下功能。
光伏发电单元305,用于通过所包含的光伏材料产生的电能为电子设备30的电池307充电。可选的,光伏发电单元305包括至少一块光伏材料,当光伏发电单元305包括一块以上光伏材料时,一块以上光伏材料互相并联。
运动传感器304,用于检测电子设备30的运动次数,运动次数为电子设备30满足预设条件的运动状态在第一预设时长内累计出现的次数。
处理器301,用于根据运动传感器304检测得到的运动次数设定时间周期,时间周期为对光伏材料的开路电压进行采样的时间周期。
处理器301,还用于控制光伏发电单元305按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数。
可选的,处理器301,具体用于当运动次数属于预设次数区间时,将时间周期设定为第一时间周期。当运动次数不属于预设次数区间时,将时间周期设定为第二时间周期,第二时间周期大于第一时间周期。
可选的,电子设备30还包括切换电路306。
切换电路306,用于当确定电子设备30的充电接口308与充电设备断开时,通过光伏发电单元对电子设备进行充电。当确定电子设备30的充电接口308与充电设备连接时,通过充电设备对电子设备进行充电。图3所示为光伏发电单元305通过切换电路306与电池307连接的情况。当电子设备30不包括切换电路306时,光伏发电单元305直接与电池307连接。
本发明的实施例所提供的电子设备,通过检测电子设备的运动次数,根据运动次数设定时间周期,按照时间周期对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
实施例二
结合本实施例一,本发明的实施例二提供一种电子设备的充电方法,参照 图4所示,包括以下步骤:
401、检测光伏材料所受到的光照强度。
电子设备包括光伏发电单元以及光敏传感器,其中光伏发电单元用于通过所包含的光伏材料产生的电能为电子设备的电池充电,光敏传感器用于检测光伏材料所受到的光照强度。
可选的,光敏传感器可以是环境光传感器(英文全称:Ambient Light Sensor,英文简称:ALS)、光敏电阻以及光敏二极管等。
以ALS为例,ALS检测光照强度时本身会消耗电能,通过对ALS检测光照强度的方式进行调整,可以减少ALS的耗电。
具体的,ALS检测光照强度的方式包括持续检测和周期性检测。当检测得到的光照强度大于第一预设阈值时,持续检测光伏材料所受到的光照强度。当检测得到的光照强度不大于第一预设阈值时,ALS停止持续检测,开始周期性检测光伏材料所受到的光照强度。
检测光伏材料所受到的光照强度,用于根据光照强度对光伏材料的发电参数进行调整。本发明的实施例以光伏材料的发电参数为光伏材料的工作点的情况为例,对第一预设阈值的取值进行说明。
ALS检测光照强度时本身会消耗电能,同时,对光伏材料的工作点进行调整可以提高光伏材料的输出功率。将工作点调整之后光伏材料输出功率提高的部分,与ALS持续检测光照强度时所消耗电能的差值,作为功率收益。当光照强度较小时,功率收益较小,甚至为负值。当光照强度较大时,功率收益为正。可选的,第一预设阈值的取值可以设为功率收益为0时所对应的光照强度。
402、当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且检测得到的光照强度在第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数。
当光照强度大于第一预设阈值时,可以得到正的功率收益。在功率收益为正的前提下,若光照强度变化量较小,则无需调整工作点,以避免因为调整工 作点而造成输出功率下降的情况,因此只需在光照强度变化量超过第二预设阈值时才对工作点进行调整。其中,光照强度的变化量是指在第二预设时长内的最大变化量。
结合步骤401,当光照强度大于第一预设阈值时,ALS持续检测光伏材料所受到的光照强度,如果光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,则对光伏材料的工作点进行调整。例如,第一阈值具体为1000勒克斯,第二预设阈值为500勒克斯,第二预设时长为15秒。则在15秒内,如果光照强度保持在1000勒克斯以上,并且最大变化量超过500勒克斯,此时对光伏材料的工作点进行调整,即根据当前的光照强度设定光伏材料的输出电流和输出电压。
对光伏材料的工作点进行调整的过程中需要对光伏材料的开路电压进行采样,采样过程中光伏材料不能实现光电转换,根据实际的光照情况的变化确定是否对光伏材料的发电参数进行调整,避免在不必要的情况下进行开路电压采样,影响光伏材料的输出功率。
通过循环执行步骤401-步骤402,对光伏材料的工作点进行动态调整,以使得工作点尽可能长时间保持在接近最佳工作点的水平。同时,当光照强度小于第一预设阈值时则无需对工作点进行调整,避免了对工作点进行不必要的调整,造成输出功率下降的情况。
403、根据电子设备的充电接口与充电设备的连接状态切换充电方式。
电子设备可以仅以移动式充电方式进行充电,也可以与固定式充电方式相结合,作为电子设备主要的或者辅助的充电方式。其中,移动式充电方式是指通过光伏发电单元对电子设备进行充电。固定式充电方式是指通过充电设备对电子设备进行充电。
在一种具体的应用场景中,电子设备包括充电电路,用于为电子设备的电池充电。充电电路包括切换开关,在同一时间点切换开关只与光伏发电单元和充电接口其中之一导通,其中充电接口用于连接充电设备(充电器),从而通过充电设备对电子设备充电。
当确定电子设备的充电接口与充电设备断开时,将切换开关与光伏发 电单元导通,此时充电接口与电子设备的充电电路断开,光伏发电单元与电子设备的充电电路导通,在适宜的光照条件下,通过光伏发电单元对电子设备进行充电。
当确定电子设备的充电接口与充电设备连接时,将切换开关与充电接口导通,此时光伏发电单元与电子设备的充电电路断开,充电接口与电子设备的充电电路导通,从而通过充电设备对电子设备进行充电。
在电子设备支持移动式充电方式和固定式充电方式的应用场景中,通过光伏发电单元进行充电,可以减少通过固定式充电方式进行充电的次数,改善用户的使用体验。
本发明的实施例所提供的电子设备的充电方法,通过检测光伏材料所受到的光照强度,当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
基于图4所对应的实施例,本发明的实施例二还提供一种电子设备,用于执行图4所对应实施例所提供的充电方法。参照图5,电子设备50光伏发电单元501、光敏检测单元502以及控制单元503。
光伏发电单元501,用于通过所包含的光伏材料产生的电能为电子设备50的电池506充电。可选的,光伏发电单元501包括至少一块光伏材料,当光伏发电单元501包括一块以上光伏材料时,一块以上光伏材料互相并联。
光敏检测单元502,用于检测光伏材料所受到的光照强度。
控制单元503,用于当光敏检测单元502检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,控制光伏发电单元501对光伏材料的发电参数进行调整。
可选的,控制单元503,具体用于当光敏检测单元502检测得到的光照强度大于第一预设阈值时,控制光敏检测单元502持续检测光伏材料所受到的光 照强度。当光敏检测单元502检测得到的光照强度不大于第一预设阈值时,控制光敏检测单元502周期性检测光伏材料所受到的光照强度。
可选的,电子设备50还包括切换单元504,
切换单元504,用于当确定电子设备50的充电接口505与充电设备断开时,通过光伏发电单元对电子设备进行充电。当确定电子设备50的充电接口505与充电设备连接时,通过充电设备对电子设备进行充电。图5所示为光伏发电单元501通过切换单元504与电池506连接的情况。当电子设备50不包括切换单元504时,光伏发电单元501直接与电池506连接。
本发明的实施例所提供的电子设备,通过检测光伏材料所受到的光照强度,当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
基于图4所对应的实施例,本发明的实施例一还提供另一种电子设备,用于执行图4所对应实施例所提供的充电方法。参照图6,电子设备60包括:处理器601、光敏传感器604、光伏发电单元605、存储器602及总线603,处理器601、光敏传感器604、光伏发电单元605以及存储器602通过总线603相互连接并完成相互间的通信。电子设备60可以是各种移动设备,包括各种穿戴式电子设备,例如便携式的紧急照明灯、智能手环手表等。
该总线603可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线603、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线603或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线603等。该总线603可以分为地址总线603、数据总线603、控制总线603等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线603或一种类型的总线603。其中:
存储器602用于执行本发明方案的应用程序代码,执行本发明方案的应用 程序代码保存在存储器602中,并由处理器601来控制执行。
该存储器602可以是只读存储器602(英文全称:Read Only Memory,英文简称:ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存储器602(英文全称:Random Access Memory,英文简称:RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器602(英文全称:Electrically Erasable Programmable Read Only Memory,英文简称:EEPROM)或者其他存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。这些存储器602通过总线603与处理器601相连接。
处理器601可能是一个中央处理器601(英文全称:Central Processing Unit,英文简称:CPU),或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
处理器601,用于调用存储器602中的程序代码,在一种可能的实施方式中,当上述应用程序被处理器601执行时,实现如下功能。
光伏发电单元605,用于通过所包含的光伏材料产生的电能为电子设备60的电池充电。可选的,光伏发电单元605包括至少一块光伏材料,当光伏发电单元605包括一块以上光伏材料时,一块以上光伏材料互相并联。
光敏传感器604,用于检测光伏材料所受到的光照强度。
处理器601,用于当光敏传感器604检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,控制光伏发电单元605对光伏材料的发电参数进行调整。
可选的,处理器601,具体用于当光敏传感器604检测得到的光照强度大于第一预设阈值时,控制光敏传感器604持续检测光伏材料所受到的光照强度。当光敏传感器604检测得到的光照强度不大于第一预设阈值时,控制光敏传感器604周期性检测光伏材料所受到的光照强度。
可选的,电子设备60还包括切换电路606,
切换电路606,用于当确定电子设备60的充电接口与充电设备断开时,通过光伏发电单元对电子设备进行充电。当确定电子设备60的充电接口与充电设备连接时,通过充电设备对电子设备进行充电。图6所示为光伏发电单元605通过切换电路606与电池607连接的情况。当电子设备60不包括切换电路606时,光伏发电单元605直接与电池607连接。
本发明的实施例所提供的电子设备,通过检测光伏材料所受到的光照强度,当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的开路电压进行采样,并根据开路电压设定光伏材料的发电参数,以使得工作点尽可能长时间保持在接近最佳工作点的水平,并避免对工作点进行不必要的调整,造成的输出功率下降的情况。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (18)

  1. 一种电子设备的充电方法,其特征在于,所述电子设备包括光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电,所述方法包括:
    检测所述电子设备的运动次数,所述运动次数为所述电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数;
    根据所述运动次数设定时间周期,所述时间周期为对光伏材料的开路电压进行采样的时间周期;
    按照所述时间周期对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述运动次数设定时间周期,包括:
    当所述运动次数属于预设次数区间时,将所述时间周期设定为第一时间周期;
    当所述运动次数不属于所述预设次数区间时,将所述时间周期设定为第二时间周期,所述第二时间周期大于所述第一时间周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;
    当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
  4. 一种电子设备的充电方法,其特征在于,所述电子设备包括光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电,所述方法包括:
    检测光伏材料所受到的光照强度;
    当检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在所述第二预设时长内的最大变化量超过第二预设阈值时,对光伏材料的 开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数。
  5. 根据权利要求4所述的方法,其特征在于,所述检测光伏材料所受到的光照强度,包括:
    当检测得到的光照强度大于所述第一预设阈值时,持续检测光伏材料所受到的光照强度;
    当检测得到的光照强度不大于所述第一预设阈值时,周期性检测光伏材料所受到的光照强度。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;
    当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
  7. 一种电子设备,其特征在于,包括光伏发电单元、运动检测单元以及控制单元;
    所述光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电;
    所述运动检测单元,用于检测所述电子设备的运动次数,所述运动次数为所述电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数;
    所述控制单元,用于根据所述运动检测单元检测得到的运动次数设定时间周期,所述时间周期为对光伏材料的开路电压进行采样的时间周期;
    所述控制单元,还用于控制所述光伏发电单元按照所述时间周期对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数。
  8. 根据权利要求7所述的电子设备,其特征在于,
    所述控制单元,具体用于当所述运动次数属于预设次数区间时,将所述时间周期设定为第一时间周期;当所述运动次数不属于所述预设次数区间时,将所述时间周期设定为第二时间周期,所述第二时间周期大于所述 第一时间周期。
  9. 根据权利要求7或8所述的电子设备,其特征在于,所述电子设备还包括切换单元,
    所述切换单元,用于当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
  10. 一种电子设备,其特征在于,包括光伏发电单元、光敏检测单元以及控制单元;
    所述光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电;
    所述光敏检测单元,用于检测光伏材料所受到的光照强度;
    所述控制单元,用于当所述光敏检测单元检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在所述第二预设时长内的最大变化量超过第二预设阈值时,控制所述光伏发电单元对光伏材料的发电参数进行调整。
  11. 根据权利要求10所述的电子设备,其特征在于,
    所述控制单元,具体用于当所述光敏检测单元检测得到的光照强度大于所述第一预设阈值时,控制所述光敏检测单元持续检测光伏材料所受到的光照强度;当所述光敏检测单元检测得到的光照强度不大于所述第一预设阈值时,控制所述光敏检测单元周期性检测光伏材料所受到的光照强度。
  12. 根据权利要求10或11所述的电子设备,其特征在于,所述电子设备还包括切换单元,
    所述切换单元,用于当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;当确定所述电子设备的充电接口与充电设备连接时, 将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
  13. 一种电子设备,其特征在于,包括处理器、运动传感器、光伏发电单元、存储器及总线,所述处理器、所述运动传感器、所述光伏发电单元以及所述存储器通过所述总线相互连接;
    其中,所述光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电;
    所述运动传感器,用于检测所述电子设备的运动次数,所述运动次数为所述电子设备满足预设条件的运动状态在第一预设时长内累计出现的次数;
    所述处理器,用于根据所述运动传感器检测得到的运动次数设定时间周期,所述时间周期为对光伏材料的开路电压进行采样的时间周期;
    所述处理器,还用于控制所述光伏发电单元按照所述时间周期对光伏材料的开路电压进行采样,并根据所述开路电压设定光伏材料的发电参数。
  14. 根据权利要求13所述的电子设备,其特征在于,
    所述处理器,具体用于当所述运动次数属于预设次数区间时,将所述时间周期设定为第一时间周期;当所述运动次数不属于所述预设次数区间时,将所述时间周期设定为第二时间周期,所述第二时间周期大于所述第一时间周期。
  15. 根据权利要求13或14所述的电子设备,其特征在于,所述电子设备还包括切换电路,
    所述切换电路,用于当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
  16. 一种电子设备,其特征在于,包括处理器、光敏传感器、光伏发 电单元、存储器及总线,所述处理器、所述光敏传感器、所述光伏发电单元以及所述储器通过所述总线相互连接;
    其中,所述光伏发电单元,用于通过所包含的光伏材料产生的电能为电子设备的电池充电;
    所述光敏传感器,用于检测光伏材料所受到的光照强度;
    所述处理器,用于当所述光敏传感器检测得到的光照强度在第二预设时长内始终大于第一预设阈值,且在所述第二预设时长内的最大变化量超过第二预设阈值时,控制所述光伏发电单元对光伏材料的发电参数进行调整。
  17. 根据权利要求16所述的电子设备,其特征在于,
    所述处理器,具体用于当所述光敏传感器检测得到的光照强度大于所述第一预设阈值时,控制所述光敏传感器持续检测光伏材料所受到的光照强度;当所述光敏传感器检测得到的光照强度不大于所述第一预设阈值时,控制所述光敏传感器周期性检测光伏材料所受到的光照强度。
  18. 根据权利要求16或17所述的电子设备,其特征在于,所述电子设备还包括切换电路,
    所述切换电路,用于当确定所述电子设备的充电接口与充电设备断开时,将所述充电接口与所述电子设备的充电电路断开,将所述光伏发电单元与所述电子设备的充电电路导通,以便于通过所述光伏发电单元对所述电子设备进行充电;当确定所述电子设备的充电接口与充电设备连接时,将所述光伏发电单元与所述电子设备的充电电路断开,将所述充电接口与所述电子设备的充电电路导通,以便于通过所述充电设备对所述电子设备进行充电。
PCT/CN2016/102770 2015-10-28 2016-10-20 一种电子设备及其充电方法 WO2017071528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/770,084 US10756564B2 (en) 2015-10-28 2016-10-20 Electronic device and charging method thereof
EP16858963.8A EP3355438B1 (en) 2015-10-28 2016-10-20 Electronic device and charging method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510725354.7 2015-10-28
CN201510725354.7A CN106655444B (zh) 2015-10-28 2015-10-28 一种电子设备及其充电方法

Publications (1)

Publication Number Publication Date
WO2017071528A1 true WO2017071528A1 (zh) 2017-05-04

Family

ID=58629838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102770 WO2017071528A1 (zh) 2015-10-28 2016-10-20 一种电子设备及其充电方法

Country Status (4)

Country Link
US (1) US10756564B2 (zh)
EP (1) EP3355438B1 (zh)
CN (1) CN106655444B (zh)
WO (1) WO2017071528A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112083787B (zh) * 2020-09-15 2021-12-28 北京字跳网络技术有限公司 应用程序运行模式切换方法、装置、电子设备和存储介质
CN113114105B (zh) * 2021-03-10 2022-08-09 上海工程技术大学 一种光伏电池组件输出特性动态测量方法
CN114784936A (zh) * 2022-01-12 2022-07-22 深圳市可信华成通信科技有限公司 一种具有光伏充电的终端保护夹及其光伏充电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420440A (zh) * 2010-09-27 2012-04-18 比亚迪股份有限公司 一种车载太阳能充电器控制系统及其控制方法
US20140159638A1 (en) * 2012-08-19 2014-06-12 EnergyBionics, LLC Portable energy harvesting, storing, and charging device
CN104052108A (zh) * 2014-05-23 2014-09-17 青岛歌尔声学科技有限公司 电子设备的供电电路、供电方法和一种电子设备
CN104716694A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种基于太阳电池的电源补偿装置和方法
CN104753100A (zh) * 2013-12-30 2015-07-01 重庆先锋渝州电器有限公司 一种电动汽车用车载太阳能充电机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987616A (en) * 1975-06-05 1976-10-26 Guy Castegnier Digital watch time setting system
US4243928A (en) * 1979-05-29 1981-01-06 Exxon Research & Engineering Co. Voltage regulator for variant light intensity photovoltaic recharging of secondary batteries
US5341082A (en) * 1989-03-15 1994-08-23 Lorenzen April D Reverse current flow protector for electricity storage systems
TW565812B (en) * 2000-07-21 2003-12-11 Ebauchesfabrik Eta Ag Display assembly including an electro-optical cell and a photovoltaic cell
JP4829424B2 (ja) 2001-05-31 2011-12-07 キヤノン株式会社 太陽電池アレイ及び太陽光発電システム
JP4227525B2 (ja) * 2002-01-31 2009-02-18 富士電機システムズ株式会社 太陽光インバータの制御方法、その制御装置及び給水装置
CN201113841Y (zh) * 2007-06-28 2008-09-10 上海市松江区第六中学 太阳能手表
CN201928050U (zh) * 2010-12-29 2011-08-10 陆建益 手表式太阳能电源
US10630078B2 (en) * 2016-03-25 2020-04-21 Intel Corporation Energy harvester power indicator and power management circuitry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420440A (zh) * 2010-09-27 2012-04-18 比亚迪股份有限公司 一种车载太阳能充电器控制系统及其控制方法
US20140159638A1 (en) * 2012-08-19 2014-06-12 EnergyBionics, LLC Portable energy harvesting, storing, and charging device
CN104716694A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种基于太阳电池的电源补偿装置和方法
CN104753100A (zh) * 2013-12-30 2015-07-01 重庆先锋渝州电器有限公司 一种电动汽车用车载太阳能充电机
CN104052108A (zh) * 2014-05-23 2014-09-17 青岛歌尔声学科技有限公司 电子设备的供电电路、供电方法和一种电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355438A4 *

Also Published As

Publication number Publication date
CN106655444B (zh) 2019-05-10
CN106655444A (zh) 2017-05-10
EP3355438B1 (en) 2019-10-02
US10756564B2 (en) 2020-08-25
EP3355438A1 (en) 2018-08-01
US20180316212A1 (en) 2018-11-01
EP3355438A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
CN110085934B (zh) 一种终端电池的充电方法及移动终端
WO2017071528A1 (zh) 一种电子设备及其充电方法
CN106453896B (zh) 终端的显示亮度调节方法、装置及系统
CN113260949B (zh) 一种降低功耗的方法和电子设备
CN110121812A (zh) 对电池充电的方法、充电装置及终端设备
CN103901352B (zh) 显示移动终端电池剩余电量的方法及装置
CN105357401A (zh) 一种多核移动终端的省电方法及装置
CN106998098A (zh) 一种终端设备
CN106370296B (zh) 一种移动终端光传感器对环境光的检测方法及系统
CN104123081A (zh) 电子装置及该电子装置的休眠唤醒方法
CN109149690B (zh) 充电控制装置和方法、电子设备
JP2014529146A (ja) 中央演算装置を制御するための方法および装置
TW201516635A (zh) 充電方法及行動電子裝置
CN114448015B (zh) 温度补偿方法、装置、终端设备及可读存储介质
CN116885827B (zh) 充电电流控制方法和电子设备
EP3813222A1 (en) Charging method and device, electronic equipment, and storage medium
JP6209699B1 (ja) 電子機器、プログラムおよび制御方法
CN204517927U (zh) 电子设备
CN111404242A (zh) 充电方法、装置、存储介质及移动终端
US11216072B2 (en) Information processing apparatus, information processing method, and program
CN216089878U (zh) 一种led水晶照片摆台及底座
CN108365649A (zh) 一种充电控制方法、装置及移动终端
EP4123574A1 (en) Image fusion method and apparatus, storage medium and mobile terminal
WO2012167481A1 (zh) 终端的背光调整方法及终端
Fan et al. A context aware energy-saving scheme for smart camera phones based on activity sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770084

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016858963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE