WO2017071336A1 - 一种医用多孔钽金属材料及其制备方法 - Google Patents

一种医用多孔钽金属材料及其制备方法 Download PDF

Info

Publication number
WO2017071336A1
WO2017071336A1 PCT/CN2016/091732 CN2016091732W WO2017071336A1 WO 2017071336 A1 WO2017071336 A1 WO 2017071336A1 CN 2016091732 W CN2016091732 W CN 2016091732W WO 2017071336 A1 WO2017071336 A1 WO 2017071336A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
metal material
gas
porous silicon
medical
Prior art date
Application number
PCT/CN2016/091732
Other languages
English (en)
French (fr)
Inventor
赵德伟
王本杰
谢辉
黄诗博
尉晓蔚
王威
Original Assignee
赵德伟
王本杰
谢辉
黄诗博
尉晓蔚
王威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵德伟, 王本杰, 谢辉, 黄诗博, 尉晓蔚, 王威 filed Critical 赵德伟
Priority to EP16858775.6A priority Critical patent/EP3222748B1/en
Publication of WO2017071336A1 publication Critical patent/WO2017071336A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a medical porous metal material and a preparation method thereof, in particular to a medical porous tantalum metal material which can be applied to an orthopedic bearing part and a preparation method thereof.
  • is a high melting point (2996 ° C), corrosion-resistant metal, has been widely used in chemical, metallurgical, aerospace and other fields. In addition, it has no reaction with body fluids and no stimulation to body tissues, and it is also an ideal material for making surgical implants. This has been used for more than half a century, including cardiac pacemakers, skull defect repairs, blood vessel clamps, femoral stem prostheses, wires for nerve repair, sheets or nets, and more. Chemical vapor deposition (CVD) has received attention since the reduction of ruthenium chloride by hydrogen to obtain ruthenium in 1907. The CVD method can deposit metal tantalum on parts of metal or non-metal materials. Porous base metals are expected to play an important role in the reconstruction of bones in the weight-bearing area of the body due to their good biocompatibility and stability.
  • the chemical vapor deposition method is a feasible method for preparing porous tantalum metal, but the rhodium-plated coating usually has a limited thickness, which reduces the mechanical properties of the product.
  • the method puts forward higher requirements on the physical and biological properties of the framework material, namely The skeleton material itself is required to have high temperature resistance, mechanical properties compatible with the implantation environment, and no cytotoxicity.
  • the porous silicon carbide scaffold material used in the invention has the condition of preparing a porous tantalum metal material by using a chemical vapor deposition method; before the rhodium plating, it can be processed into an irregular shape suitable for in vivo application, and the post processing is reduced. And the possibility of damage to the pores. Simultaneous control of chemical vapor deposition During the accumulation process, the concentration of the reaction gas, the deposition temperature and the reaction time make the base metal coating dense, the particle size is only 1-5 ⁇ m, the purity is over 99.5%, and the thickness is sufficient to obtain sufficient mechanical strength.
  • the object of the present invention is to provide a medical porous tantalum metal material which is similar to the mechanical properties of human bones and can be applied as a permanent implant material to a weight-bearing bone or a non-weight-bearing part of a human body and a preparation method thereof.
  • the medical porous bismuth metal material of the invention is prepared by chemical vapor deposition, uniformly depositing a ruthenium metal coating on the surface of porous silicon carbide or porous silicon material, having a high porosity of >70% and an elastic modulus of ⁇ 30 Gpa.
  • the invention relates to a medical porous bismuth metal material, which is obtained by reducing a bismuth metal compound into a ruthenium metal powder by chemical vapor deposition, uniformly depositing on the surface of the porous silicon material support to form a ruthenium coating;
  • the base metal compound is antimony pentachloride or antimony fluoride;
  • the porous silicon material has a porosity of >70%, a pore diameter of 100 to 600 ⁇ m; and the antimony coating layer has a thickness of 10 to 50 ⁇ m.
  • porous silicon material is porous silicon carbide.
  • the base metal compound is a powder having a particle size of 400 mesh.
  • the medical porous base metal material of the present invention has a porosity of >70% and an elastic modulus of ⁇ 30 Gpa.
  • the invention also provides a preparation method of the above medical porous base metal material, the preparation method comprising the following steps:
  • the vapor deposition reaction chamber is evacuated and heated to 900-1500 ° C under inert gas protection;
  • the process gas and hydrogen are simultaneously introduced into the vapor deposition reaction chamber, and the reaction is carried out for 2 to 3 hours at 900 to 1500 ° C under a vacuum of 10 to 15 Pa; wherein the treatment gas contains a base metal compound and a carrier gas, The metal compound is placed in a source tank and heated to 200 to 300 ° C. The inert gas at 300 ° C is used to pass the carrier gas into the reaction chamber.
  • the above preparation method further comprises the step of lowering the temperature in the vapor deposition reaction chamber to 200 ° C under the protection of an inert gas after the end of the reaction in the step (3).
  • the inert gas is preferably a mixture of one or both of argon gas and helium gas, and most preferably argon gas.
  • the flow rate of the processing gas is preferably from 80 to 100 ml/min.
  • the flow rate of the hydrogen gas is preferably from 100 to 150 ml/min.
  • the porous base metal material prepared by the method of the invention has a high porosity of >85% and an elastic modulus of ⁇ 30 Gpa, which is similar to the mechanical properties of human bones, and can be used as a permanent implant material for a load-bearing bone or a non-weight-bearing part of a human body, such as Hip and knee joints, skulls, interbody fusion cages, etc.
  • the porous base metal material prepared by the method of the present invention has a dense base metal coating, and the thickness of the tantalum coating is 10 to 50 ⁇ m, which can also satisfy the hardness and biocompatibility conditions of the medical implant.
  • the thickness of the ruthenium coating can be 10 to 15 ⁇ m, which is advantageous in reducing the cost.
  • the medical porous bismuth metal material of the invention adopts a porous silicon material with high temperature resistance as a base material, and constructs a three-dimensional porous support similar to the bone microstructure, the skeleton is a three-dimensional network structure, and has a high open porosity and a high connectivity porosity. Light weight, moderate strength, no cytotoxicity, good biocompatibility.
  • the medical porous tantalum metal material of the invention has high porosity and uniform pores, and is a porous structure which communicates with each other, and has few pore dead spaces, similar to the human cancellous bone, and can promote bone ingrowth.
  • the 2 ⁇ metal coated scaffold material is biocompatible and obtains the best biomechanical properties based on the coating and the pore diameter of the scaffold. It reduces the adverse effects such as stress occlusion of adjacent bone after implantation in the body.
  • the preparation method of the invention is relatively simple, and the porous silicon material porous silicon carbide has high biological strength, has the unique properties of small density, high strength, corrosion resistance, etc., and is easily processed to be suitable for the implantation site before plating.
  • the irregular shape avoids the problem that the porous tantalum material itself is difficult to process, and the material is greatly damaged during the processing, and the void is broken.
  • the base metal coating is dense, the particle size is only 1-5 ⁇ m, the purity is over 99.5%, and the thickness is sufficient, so that the material is sufficient. Mechanical strength.
  • the porous tantalum metal material of the invention can be applied to the repair of bone defects and bone defects after multiple bone defects in the body.
  • FIG. 1 is an SEM image of a porous silicon carbide stent before and after coating, wherein FIG. 1A is an SEM image of a porous silicon carbide stent before coating, and FIG. 1B is an SEM image of a porous silicon carbide stent coating. ;
  • FIG. 2 is an SEM image of the surface morphology of the porous silicon carbide stent before and after the ruthenium metal coating
  • FIG. 2A is an SEM image of the surface morphology of the porous silicon carbide stent before the ruthenium metal coating
  • FIG. 2B is a porous surface after the ruthenium metal coating. SEM image of the surface topography of a silicon carbide stent.
  • the preparation of a medical porous tantalum metal material comprises the following steps:
  • the finished medical porous base metal material prepared in Example 1 has a porosity of 85%, an elastic modulus of 10 GPa, and a maximum compressive strength of 35 MPa.
  • the porosity is according to the national standard GB/T 21650.1-2008, and the elastic modulus is Tested according to the method described in the national standard GB/T 22315-2008.
  • FIG. 1A is an SEM image of a porous silicon carbide stent before coating
  • FIG. 1B is a porous silicon carbide stent after coating.
  • the SEM image shows that the surface of the porous silicon carbide has a deep black ruthenium metal adhesion, and the reflectivity is obviously weakened
  • 2A and 2B show the surface topography of the porous silicon carbide stent before and after the bismuth metal coating at high magnification, respectively. It can be seen that the surface of the porous silicon carbide stent before the ruthenium coating (Fig. 2A) is bright, which is displayed in the digital microscope image.
  • the strong reflective property is not conducive to the clear display of fine structure; while the surface reflectivity of the porous silicon carbide stent after coating (Fig. 2B) is obviously weakened, the fine structure of the porous support and the morphological characteristics of the pores can be clearly observed, showing good The three-dimensional connectivity, while the enamel coating presents a rugged rough surface that not only facilitates cell adhesion and tissue embedding, but also enhances the link strength of the scaffold to bone tissue.
  • the preparation of a medical porous tantalum metal material comprises the following steps:
  • the finished medical porous base metal material prepared in Example 2 has a porosity of 85%, an elastic modulus of 12 GPa, and a maximum compressive strength of 50 MPa, wherein the porosity is according to the national standard GB/T21650.1-2008, and the elastic modulus is Tested according to the method described in the national standard GB/T 22315-2008.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

一种医用多孔钽金属材料,利用化学气相沉积方法,将钽金属化合物还原为钽金属粉,均匀沉积于多孔硅材料支架表面形成钽涂层制备得到;其中钽金属化合物为五氯化钽、氟化钽中的一种;多孔硅材料的孔隙率>70%,孔径为100~600μm;钽涂层的厚度为10~50μm。还公开了一种医用多孔钽金属材料的制备方法。

Description

一种医用多孔钽金属材料及其制备方法 技术领域
本发明涉及一种医用多孔金属材料及其制备方法,具体涉及可应用于骨科承力部位的医用多孔钽金属材料及其制备方法。
背景技术
骨创伤及坏死后形成的骨缺损修复存在力学及骨诱导性能不佳的问题。多孔材料在体内的重要性被揭示后,这一问题有望得到较好的解决。研究发现多孔材料的孔隙率和孔的大小是决定植入物成功与否的重要因素,增加孔隙率或减少“死腔”将有利于骨长入。一般认为空隙率大于60%,空隙直径大于150μm,将有利于骨的长入,当孔隙大小为200μm-400μm的最有利于新骨生长。同时,较大的空隙率可以减少植入材料的重量,并可使其在生物力学指标上与人体骨骼接近。但对材料的加工提出较高的要求。制备孔隙率大,孔隙形状规则均匀,孔隙联通率高的医用植入材料是研发的目标。
钽是高熔点(2996℃),耐腐蚀的金属,已被广泛用于化工、冶金、宇航等领域。此外,钽与体液无反应、对机体组织无刺激,也成为制作外科植入物的理想材料。这方面的应用历史己超过半个世纪,包括心脏起博器、颅骨缺损修补、血管夹、股骨柄假体、用于神经修复的金属丝、片或网等等。自1907年用氢气还原钽的氯化物得到金属钽以来,化学气相沉积(CVD)钽受到重视。CVD法可以在金属或非金属材料的零部件上沉积金属钽。多孔钽金属因其良好的生物相容性及稳定性,有望在体内负重区骨骼的重建中起到重要作用。
但由于钽的高熔点,传统的粉末松装烧结法等加工较困难,制备的材料孔隙率较低,孔隙大小不均匀且闭孔率高。采用化学气相沉积的方法是制备多孔钽金属的可行方法,但镀钽涂层通常厚度有限,降低了产品的力学性能;而且该方法对骨架材料的物理及生物性能提出了较高的要求,即要求骨架材料本身有耐高温、与植入环境相适应的力学性能及无细胞毒性。
本发明所采用的多孔碳化硅支架材料,具备了应用化学气相沉积的方法制备多孔钽金属材料的支架条件;在镀钽前,可加工成适用于体内应用的不规则形态,减少了因后期加工而对孔隙产生破坏的可能。同时通过控制化学气相沉 积过程中反应气体浓度、沉积温度及反应时间等参数,使钽金属涂层致密、颗粒大小仅1~5μm、纯度则超过99.5%,并有足够厚度,从而使材料获得足够的机械强度。
发明内容
本发明的目的在于提供一种与人体骨骼的力学性能相近,并可作为永久植入材料应用于人体负重骨或非负重部位的医用多孔钽金属材料及其制备方法。本发明的医用多孔钽金属材料是利用化学气相沉积的方法,在多孔碳化硅或多孔硅材料表面均匀沉积钽金属涂层制备得到,具有高孔隙率>70%,弹性模量<30Gpa。
本发明的技术方案为如下:
一种医用多孔钽金属材料,所述医用多孔钽金属材料是利用化学气相沉积方法,将钽金属化合物还原为钽金属粉,均匀沉积于多孔硅材料支架表面形成钽涂层制备得到;
其中所述钽金属化合物为五氯化钽、氟化钽;所述多孔硅材料的孔隙率>70%,孔径为100~600μm;所述钽涂层的厚度为10~50μm。
进一步地,所述的多孔硅材料为多孔碳化硅。
进一步地,所述的钽金属化合物为粒径400目的粉末。
进一步地,所述的本发明所述的医用多孔钽金属材料的孔隙率>70%,弹性模量<30Gpa。
本发明还提供上述医用多孔钽金属材料的制备方法,该制备方法包括如下步骤:
(1)将权利要求1所述多孔硅材料支架用按质量比40%氟氢酸:68%硝酸:水=1:5:6的混合溶液超声震荡后,用干燥氮气吹干,置入气相沉积反应室内;
(2)气相沉积反应室抽真空、在惰性气体保护下加热至900~1500℃;
(3)气相沉积反应室内同时通入处理气体和氢气,在900~1500℃,真空度10~15Pa条件下,反应2~3小时;其中所述处理气体包含钽金属化合物和载气,将钽金属化合物放入源罐中,加热至200~300℃,300℃惰性气体为载气通入至反应室。
上述制备方法还包括,在步骤(3)中反应结束后,在惰性气体保护下将气相沉积反应室内的温度降温至200℃的步骤。
上述制备方法中,所述惰性气体优选氩气、氦气中的一种或两种的混合,最优选氩气。
上述制备方法中,所述处理气体的流量优选为80~100ml/min。
上述制备方法中,所述氢气的流量优选为100~150ml/min。
本发明的方法制备的多孔钽金属材料具有高孔隙率>85%,弹性模量<30Gpa,与人体骨骼的力学性能相近,并可作为永久植入材料应用于人体负重骨或非负重部位,如髋膝关节,颅骨,椎间融合器等。另外,本发明的方法制备的多孔钽金属材料的钽金属涂层致密,钽涂层厚度10~50μm,也可以满足作为医用植入物的硬度以及生物相容性条件。钽涂层厚度可以为10~15μm,有利于降低成本。
本发明的医用多孔钽金属材料,采用以耐高温的多孔硅材料作为基底材料,构建与骨骼微结构相似的三维多孔支架,该骨架为三维网状结构,具有开孔率及连通孔隙度高,重量轻,强度适中,无细胞毒性,生物相容性好等优点。
本发明的有益效果:
①本发明的医用多孔钽金属材料孔隙率高,且孔隙均一,为互相连通的多孔结构,孔隙死腔少,与人体松质骨相似,可促进骨长入。
②钽金属涂层的支架材料生物相容性好,并根据涂层及支架孔隙直径获得最佳的生物力学性能。减少其植入体内后的相邻骨质发生应力遮挡等不良效应。
③本发明的制备方法相对简单,多孔硅材料多孔碳化硅,其生物学强度较高,具有密度小、强度高、耐腐蚀等独特性能,在镀钽前易于加工成与植入部位相适应的不规则形状,避免了多孔钽材料本身难以加工,加工过程中对材料破坏大,破坏空隙等问题。同时通过控制化学气相沉积过程中反应气体浓度、沉积温度及反应时间等参数,使钽金属涂层致密、颗粒大小仅1~5μm、纯度则超过99.5%,并有足够厚度,从而使材料获得足够的机械强度。
④本发明的多孔钽金属材料,可应用于体内多部位的骨创伤及骨坏死后骨缺损的修复。
附图说明
图1为多孔碳化硅支架钽金属涂层前和涂层后的SEM图,其中图1A为多孔碳化硅支架钽涂层前的SEM图,图1B为多孔碳化硅支架钽涂层后的SEM图;
图2为钽金属涂层前后多孔碳化硅支架的表面形貌的SEM图,其中图2A为钽金属涂层前多孔碳化硅支架的表面形貌的SEM图,图2B为钽金属涂层后多孔碳化硅支架的表面形貌的SEM图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用试剂等均可从化学试剂公司购买。所述多孔碳化硅及其他多孔硅材料为商品化的产品,在市面上可以购得。
实施例1
一种医用多孔钽金属材料的制备,包括如下步骤:
(1)将孔隙率为85%,孔径为500μm的多孔碳化硅支架用40%HF:68%HNO3:H2O=1:5:6混合溶液超声震荡清洗后,用干燥氮气吹干,置入气相沉积反应室内;
(2)连接好进/排气管道装置,检查反应室密封情况,抽真空,然后在氩气保护下进行加热至950℃;
(3)将粒径为400目的五氯化碳粉末放入源罐中,加热至200℃,以高温氩气(300℃)为载气通入至反应室,载气流量为120ml/min,反应室温度为950℃,反应室真空度为10Pa;反应室中以氩气为载气通入五氯化钽粉末的同时,以120ml/min流量通入氢气,还原反应2小时,使还原成金属粉末的钽金属均匀沉积于多孔碳化硅支架表面以及其空隙表面,得本发明的医用多孔钽金属材料成品。
实施例1制备的医用多孔钽金属材料成品的孔隙率为85%,弹性模量为10GPa,最大抗压强度为35MPa.,其中孔隙率为根据国家标准GB/T 21650.1-2008,弹性模量为根据国家标准GB/T 22315-2008中所述的方法检测。
图1和图2为上述医用多孔钽植入材料成品的SEM(扫描电子显微镜)图,其中图1A为多孔碳化硅支架钽涂层前的SEM图,图1B为多孔碳化硅支架钽涂层后的SEM图,可见多孔碳化硅表面有深黑色钽金属附着,反光性明显减弱; 图2A和2B分别表示高倍率下的钽金属涂层前后多孔碳化硅支架的表面形貌,可见钽涂层前(图2A)多孔碳化硅支架的表面色泽明亮,在数字显微图像中显示较强的反光性,不利于细微结构清晰显示;而涂层后(图2B)多孔碳化硅支架的表面反光性明显减弱,可以清晰的观察到多孔支架的细微结构和孔的形态特征,展现了良好的三维联通性,同时钽涂层呈现凹凸不平粗糙表面不仅有利于细胞的粘附和组织的嵌入,而且还有增强支架与骨组织的链接强度。
实施例2
一种医用多孔钽金属材料的制备,包括如下步骤:
(1)将孔隙率为85%,孔径为400μm的多孔碳化硅支架用40%HF:68%HNO3:H2O=1:5:6混合溶液超声震荡清洗后,用干燥氮气吹干,置入气相沉积反应室内;
(2)连接好进/排气管道装置,检查反应室密封情况,抽真空,然后在氩气保护下进行加热至1050℃;
(3)将粒径为400目的五氯化碳粉末放入源罐中,加热至250℃,以高温氩气(300℃)为载气通入至反应室,载气流量为120ml/min,反应室温度为1050℃,反应室真空度为15Pa;反应室中以氩气为载气通入五氯化钽粉末的同时,以120ml/min流量通入氢气,还原反应2.5小时,使还原成金属粉末的钽金属均匀沉积于多孔碳化硅支架表面以及其空隙表面,得本发明的医用多孔钽金属材料成品。
实施例2制备的医用多孔钽金属材料成品的孔隙率为85%,弹性模量为12GPa,最大抗压强度为50MPa,其中孔隙率为根据国家标准GB/T21650.1-2008,弹性模量为根据国家标准GB/T 22315-2008中所述的方法检测。

Claims (8)

  1. 一种医用多孔钽金属材料,其特征在于,所述医用多孔钽金属材料是利用化学气相沉积方法,将钽金属化合物还原为钽金属粉,均匀沉积于多孔硅材料支架表面形成钽涂层制备得到;
    其中所述钽金属化合物为五氯化钽、氟化钽中的一种;所述多孔硅材料的孔隙率>70%,孔径为100~600μm;所述钽涂层的厚度为10~50μm。
  2. 根据权利要求1所述的医用多孔钽金属材料,其特征在于,所述的多孔硅为多孔碳化硅。
  3. 根据权利要求1所述的医用多孔钽金属材料,其特征在于,所述钽金属化合物为粒径400目的粉末。
  4. 根据权利要求1所述的医用多孔钽金属材料,其特征在于,所述医用多孔钽金属材料的孔隙率>70%,弹性模量<30Gpa。
  5. 一种制备权利要求1所述医用多孔钽金属材料的方法,包括如下步骤:
    (1)将权利要求1所述多孔硅材料支架用按质量比40%氟氢酸:68%硝酸:水=1:5:6的混合溶液超声震荡后,用干燥氮气吹干,置入气相沉积反应室内;
    (2)气相沉积反应室抽真空、在惰性气体保护下加热至900~1500℃;
    (3)气相沉积反应室内同时通入处理气体和氢气,在900~1500℃,真空度10~15Pa条件下,反应2~3小时;其中所述处理气体包含钽金属化合物和载气,将钽金属化合物放入源罐中,加热至200~300℃,300℃惰性气体为载气通入至反应室。
  6. 根据权利要求5所述的方法,其特征在于,所述惰性气体为氩气、氦气中的一种或两种的混合。
  7. 根据权利要求5所述的方法,其特征在于,所述处理气体的流量为80~100ml/min。
  8. 根据权利要求5所述的方法,其特征在于,所述氢气的流量为100~150ml/min。
PCT/CN2016/091732 2015-10-28 2016-07-26 一种医用多孔钽金属材料及其制备方法 WO2017071336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16858775.6A EP3222748B1 (en) 2015-10-28 2016-07-26 Medical porous tantalum metal material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510712170.7A CN105177523B (zh) 2015-10-28 2015-10-28 一种医用多孔钽金属材料
CN201510712170.7 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017071336A1 true WO2017071336A1 (zh) 2017-05-04

Family

ID=54899937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091732 WO2017071336A1 (zh) 2015-10-28 2016-07-26 一种医用多孔钽金属材料及其制备方法

Country Status (3)

Country Link
EP (1) EP3222748B1 (zh)
CN (1) CN105177523B (zh)
WO (1) WO2017071336A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845378A (zh) * 2021-07-30 2021-12-28 陕西宏大空天新材料研究院有限责任公司 一种具有钽金属涂层的Cf/SiC基复合材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177523B (zh) * 2015-10-28 2016-08-31 赵德伟 一种医用多孔钽金属材料
CN106086809B (zh) * 2016-06-17 2018-08-17 艾因斯(北京)钽应用科技有限公司 一种制备耐腐耐磨钽复合涂层的方法
CN108578018A (zh) * 2018-04-04 2018-09-28 北京市春立正达医疗器械股份有限公司 假体和假体的制作方法
RU2696179C1 (ru) * 2018-08-07 2019-07-31 Общество с ограниченной ответственностью "Научно-производственное объединение "Защитные покрытия", ООО "НПО "Защитные покрытия" Способ газофазного осаждения тантала на поверхность стального изделия
CN109338330B (zh) * 2018-10-22 2020-10-02 赵德伟 超高温度下制备高质量多孔钽金属涂层植入材料的方法
CN110090072B (zh) * 2019-05-31 2020-07-28 赵德伟 个性化3d打印多孔钛基钽涂层接骨板及其制备方法
CN113563114A (zh) * 2021-08-12 2021-10-29 昆明理工大学 一种多孔钽涂层碳纤维/碳复合材料及其制备方法
CN115740495A (zh) * 2022-11-02 2023-03-07 大博医疗科技股份有限公司 一种3d打印骨小梁口腔种植体的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480043A (zh) * 2013-09-26 2014-01-01 赵德伟 一种医用多孔钽植入材料及其制备方法
CN105177523A (zh) * 2015-10-28 2015-12-23 赵德伟 一种医用多孔钽金属材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104338184B (zh) * 2013-07-26 2017-10-27 宁夏东方钽业股份有限公司 一种医用植入多孔材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480043A (zh) * 2013-09-26 2014-01-01 赵德伟 一种医用多孔钽植入材料及其制备方法
CN105177523A (zh) * 2015-10-28 2015-12-23 赵德伟 一种医用多孔钽金属材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222748A4 *
WANG, JING ET AL.: "Porous Biological Materials", POROUS BIOLOGICAL MATERIALS, 31 May 2012 (2012-05-31), XP009503318 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845378A (zh) * 2021-07-30 2021-12-28 陕西宏大空天新材料研究院有限责任公司 一种具有钽金属涂层的Cf/SiC基复合材料及其制备方法

Also Published As

Publication number Publication date
CN105177523A (zh) 2015-12-23
EP3222748A1 (en) 2017-09-27
EP3222748A4 (en) 2018-06-20
CN105177523B (zh) 2016-08-31
EP3222748B1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2017071336A1 (zh) 一种医用多孔钽金属材料及其制备方法
CN103480043B (zh) 一种医用多孔钽植入材料及其制备方法
Liu et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology
CN103357063B (zh) 一种可引导骨生长的金属复合材料及其应用
WO2016134626A1 (zh) 一种三维连通多孔镁基材料的制备方法及其用途
WO2012142952A1 (zh) 多孔钽棒
CN106390198B (zh) 一种选区激光成形及电解还原制备个性化多孔植入物方法
CN111663112B (zh) 一种通过化学气相沉积法制备的医用钽金属骨小梁材料及其制备方法
Braem et al. Bioactive glass–ceramic coated titanium implants prepared by electrophoretic deposition
CN106310371A (zh) 一种骨植入用钽-铜涂层及其制备方法
CN205083596U (zh) 一种多孔钽金属空心螺钉
CN112315627A (zh) 带有骨小梁的含氧化层锆铌合金胫骨平台假体及制备方法
CN105380731A (zh) 一种多孔钽金属骨连接器及其应用
WO2021248260A1 (zh) 一种金属材料及其制备方法与应用
CN110468401A (zh) 一种冷喷涂制备多孔钽生物活性涂层的方法
CN108578018A (zh) 假体和假体的制作方法
WO2017063425A1 (zh) 一种多孔钽金属骨连接器及其应用
CN105147383B (zh) 一种多孔钽金属空心螺钉及其应用
Focsaneanu et al. Experimental study on the influence of zirconia surface preparation on deposition of hydroxyapatite
Khodaei et al. Comparative evaluation of the effect of different types of surface modifiers on bioactivity of porous titanium implants
CN111363995B (zh) 一种医用金属骨植入材料的制备方法
Xie et al. Deposition and biological evaluation of Ta coating on porous SiC scaffold for orthopedic application
TWI513480B (zh) 適用於醫療植入物之鎂合金及其製造方法
CN111803242A (zh) 一种胫骨假体、制备方法及应用
CN209203633U (zh) 假体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858775

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016858775

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE