WO2017071008A1 - 具有触控与三次元影像显示功能的装置 - Google Patents

具有触控与三次元影像显示功能的装置 Download PDF

Info

Publication number
WO2017071008A1
WO2017071008A1 PCT/CN2015/096719 CN2015096719W WO2017071008A1 WO 2017071008 A1 WO2017071008 A1 WO 2017071008A1 CN 2015096719 W CN2015096719 W CN 2015096719W WO 2017071008 A1 WO2017071008 A1 WO 2017071008A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
touch
cylindrical mirror
component
layer structure
Prior art date
Application number
PCT/CN2015/096719
Other languages
English (en)
French (fr)
Inventor
林明彦
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Publication of WO2017071008A1 publication Critical patent/WO2017071008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the invention belongs to the field of image display, in particular to the field of touch and three-dimensional image display.
  • FIG. 1 it is a schematic diagram of a device having an Out-Cell touch and a three-dimensional image display function.
  • the Out-Cell touch component 10, the lenticular component 30, and the secondary image display component 50 are generally used, by means of two glue structures 20, 40, And through the two known alignment bonding processes, the Out-Cell touch component 10, the lenticular component 30, and the secondary component display component 50 are sequentially connected and fixed from top to bottom to achieve integration into a touch and
  • the three-dimensional image shows the purpose of the functional device.
  • the Out-Cell touch component 10 is one of the well-known OGS (One Glass Solution), GG (Glass-Glass), GFF (Glass-Film-Film), G1F (Glass-Film) and the like. Structured.
  • the secondary liquid crystal display device 50 can be constituted by one of displays known as liquid crystals and OLEDs.
  • the lenticular lens assembly 30 is composed of a planar layer 31, a convex cylindrical mirror array layer 32, and a base material 33 in order from top to bottom.
  • the plane layer 31 and the lenticular lens array layer 32 each have a thickness of about 10 to 20 um, and are composed of an ultraviolet curable resin material, and each has an outer-line photocured refractive index n1 and n2, and n1 ⁇ n2.
  • the convex prism array layer 32 is composed of a plurality of well-known cylindrical mirrors or a plurality of well-known multi-sided cylindrical mirrors, and the cylindrical mirror surface 32' faces the Out-Cell touch assembly 10.
  • This base material 33 is composed of a PET film.
  • the convex prism array layer 32 can be first applied to the substrate 33 by two processes of the Art of Lens Array Replication Based on Roll-to-Roll UV Cured Process. After that, the planar layer 31 is disposed on the convex lenticular array layer 32 to form a coil-shaped convex lenticular array film, and then processed by a precision laser cutting process to complete an appropriate size and slice.
  • a cylindrical mirror assembly 30 is composed of a plurality of well-known cylindrical mirrors or a plurality of well-known multi-sided cylindrical mirrors, and the cylindrical mirror surface 32' faces the Out-Cell touch assembly 10.
  • This base material 33 is composed of a PET film.
  • the convex prism array layer 32 can be first applied to the
  • the PET substrate 33 has a film thickness of generally 125 um or more.
  • the two cemented structures 20 and 40 may be formed of a known rubber material such as OCA glue or OCR glue, and generally have a thickness of 50 ⁇ m or more.
  • the total thickness of the lenticular assembly 30 and the two glued structures 20, 40 is about 250 um.
  • the 250 um thickness is not conducive to thinness.
  • the materials of the two bonding structures 20 and 40 and the PET substrate 33 are greatly reduced, and the light transmittance and image quality are greatly reduced, which is disadvantageous for high image quality.
  • FIG. 2 it is a schematic diagram of another known Out-Cell touch and three-dimensional image display function device.
  • the Out-Cell touch and three-dimensional image display function device 2 has the same structure and process as the device 1 shown in FIG. 1, and the only difference is that only the cylindrical mirror surface 32' faces the second-dimensional image display. Component 50.
  • FIG. 3 it is a schematic diagram of a device having a function of On-Cell touch and three-dimensional image display.
  • the Cover Lens component 11, the lenticular component 30, and the secondary image display component 51 having the On-Cell touch function are generally used.
  • the Cover Lens component 11, the lenticular component 30, and the On-Cell touch are sequentially connected and fixed from top to bottom by two bonding structures 20 and 40 and by two known processes of alignment bonding.
  • the function of the secondary element display component 51 is to achieve the purpose of integrating into a touch and three-dimensional image display function device 3.
  • the cylindrical mirror 32' is oriented toward the Cover Lens assembly 11.
  • FIG. 4 it is a schematic diagram of another known device with On-Cell touch and three-dimensional image display function.
  • the On-Cell touch and three-dimensional image display function device 4 has the same structure and process as the device 3 shown in FIG. 3, the only difference is that only the cylindrical mirror 32' is facing the On-Cell.
  • FIG. 5 it is a schematic diagram of a device having a function of In-Cell touch and three-dimensional image display.
  • the Cover Lens component 11, the lenticular component 30, and the secondary image display component 52 having the In-Cell touch function are generally used.
  • the Cover Lens assembly 11, the lenticular assembly 30, and the In-Cell touch are sequentially connected and fixed from top to bottom by the two bonding structures 20, 40 and by two known processes of alignment bonding.
  • the function of the secondary element display component 52 is achieved for integration into a touch and three-dimensional image display function device 5.
  • the cylindrical mirror 32' is oriented toward the Cover Lens assembly 11.
  • FIG. 6 it is a schematic diagram of another known In-Cell touch and three-dimensional image display function device.
  • the In-Cell touch and three-dimensional image display function device 6 has the same structure and process as the device 5 shown in FIG. 5, the only difference being that only the cylindrical mirror surface 32' is facing the In-Cell.
  • a two-dimensional display component 52 of the touch function is shown in FIG. 6, the only difference being that only the cylindrical mirror surface 32' is facing the In-Cell.
  • the known On-Cell touch and three-dimensional image display function devices 3, 4, or the known In-Cell touch and three-dimensional image display function devices 5, 6 for the column The total thickness of the mirror assembly 30 and the two glued structures 20, 40 is about 250 um. For a smart phone with strict thickness requirements, the 250 um thickness is not conducive to the thin and short appearance requirements. In addition, the materials of the two bonding structures 20 and 40 and the PET substrate 33 are greatly reduced, and the light transmittance and image quality are greatly reduced, which is disadvantageous for high image quality.
  • the present invention discloses a device with touch and three-dimensional image display functions, including a touch component, an ultra-thin cylindrical mirror component and a secondary image display.
  • the components are composed of.
  • the ultra-thin cylindrical mirror assembly includes a structure of a concave cylindrical mirror array layer and a cylindrical mirror bonding layer, and is formed by a plane-to-Plate UV Cured Process (Art of Lens Array Replication Based on Plate-to-Plate UV Cured Process).
  • the structure of the concave column mirror array layer can be directly applied to the Out-Cell touch component; for the On-Cell and In-Cell touch field applications, The structure of the concave mirror array layer is directly mounted on the cover of the touch module (Cover Lens).
  • the Art of Plate-to-Plate Alignment and Lamination Process for the application of the Out-Cell touch field, can be performed by a lenticular glue layer structure.
  • the secondary image shows the components connected and fixed. That is, as shown in FIG. 1, the present invention removes the original two glue layers 20, 40 and removes the substrate 33 in the original lenticular assembly 30, as shown in FIG.
  • the lenticular glue layer replaces the structure of the original planar layer 31 to greatly reduce the thickness and improve the lack of light transmittance and image quality deterioration, and achieves thinning for the touch and three-dimensional image display function device. Improve the quality of the image.
  • FIG. 1 is a schematic diagram showing a configuration of an Out-Cell touch and three-dimensional image display function device
  • FIG. 2 is a schematic diagram showing another configuration of an Out-Cell touch and three-dimensional image display function device
  • FIG. 3 is a schematic diagram showing the structure of a device having the On-Cell touch and three-dimensional image display functions
  • FIG. 4 is a schematic diagram showing another configuration of an On-Cell touch and three-dimensional image display function device
  • FIG. 5 is a schematic diagram showing the configuration of an In-Cell touch and three-dimensional image display function device.
  • FIG. 6 is a schematic diagram showing another configuration of an In-Cell touch and three-dimensional image display function device
  • FIG. 7 is a schematic diagram showing the structure of a touch and three-dimensional image display function device according to the present invention.
  • Figure 8 is a schematic view showing the structure of a concave cylindrical mirror array layer of the present invention.
  • FIG. 9 is a schematic view showing a planar mold structure for forming a concave cylindrical mirror array layer structure according to the present invention.
  • FIG. 10 is a schematic view showing a process of filling a liquid mold with a liquid ultraviolet light curing resin according to the present invention
  • 11 to 12 are schematic views showing a process of pressing and covering a touch component and a planar mold according to the present invention.
  • FIG. 13 is a schematic view showing a curing process of a liquid ultraviolet light curing resin in a planar mold according to the present invention.
  • Figure 14 is a schematic view showing the process of stripping the structure of the concave cylindrical mirror array layer of the present invention.
  • Figure 15 is a schematic view showing the structure of a 3D structure of a concave cylindrical mirror array layer structure according to the present invention.
  • 16 is a schematic view showing a precision glue coating process for a secondary image display assembly according to the present invention.
  • 17 to 18 are schematic views showing a process of laminating and covering a concave cylindrical mirror array layer structure forming component and a glue coated secondary image display assembly according to the present invention
  • 19 is a schematic view showing a curing process of a liquid ultraviolet light curing resin in a concave cylindrical mirror array layer structure assembly according to the present invention.
  • 20 is a schematic view showing a precision glue dispensing process for a concave cylindrical mirror array layer structure forming assembly according to the present invention
  • 21 to 22 are schematic views showing a process of laminating and covering a cylindrical mirror glue layer structure forming assembly and a secondary element image display assembly according to the present invention
  • FIG. 23 is a schematic view showing a curing process of a liquid ultraviolet light curing resin in a concave cylindrical mirror array layer structure assembly according to the present invention.
  • FIG. 7 is a schematic diagram showing the structure of a touch and three-dimensional image display function device according to the present invention.
  • the touch and three-dimensional image display function device 7 of the present invention includes a touch component 10, an ultra-thin cylindrical mirror assembly 130 and a secondary image display assembly 50.
  • the touch component 10 can be an Out-Cell touch component, an On-Cell touch component, or an In-Cell touch component, and the touch component further includes a cover 11 (Cover Lens).
  • the Out-Cell touch component is composed of one of OGS (One Glass Solution), GG (Glass-Glass), GFF (Glass-Film-Film), and G1F (Glass-Film).
  • the secondary liquid crystal display device 50 can be composed of one of liquid crystal and OLED.
  • the ultra-thin cylindrical mirror assembly 130 includes a concave cylindrical mirror array layer structure 132 and a lenticular glue layer structure 131.
  • the concave cylindrical mirror array layer structure 132 is composed of an ultraviolet light curing resin material and has a refractive index n2 after ultraviolet curing.
  • the concave cylindrical mirror array layer structure 132 has a concave cylindrical mirror structure 133, a bank structure (Dam) 134, and a bottom structure 135.
  • the concave cylindrical mirror structure 133 includes a plurality of circular concave cylindrical mirrors or a plurality of multi-sided concave cylindrical mirrors, and the cylindrical mirror surface 133' faces the secondary image display assembly 50.
  • the dyke structure (Dam) 134 is disposed on the four periphery of the concave cylindrical mirror structure 133 and has a height higher than the concave cylindrical mirror structure 133 for preventing the cylindrical mirror bonding layer structure 131 from being cured before photocuring.
  • Out-Flow that is, an overflow phenomenon that occurs when the liquid ultraviolet light-curable resin material is injected into the concave cylindrical mirror array layer structure 132, as will be described later.
  • the bottom layer structure 135 has a suitable thickness for connecting the concave cylindrical mirror structure 133 to the bank structure (Dam) 134 and being fixed on the touch component 10 (or the cover 11 of the touch component 10). .
  • the lenticular gluing layer structure 131 is composed of an ultraviolet curable resin material and has a refractive index n1 after photocuring of an external line.
  • the concave cylindrical mirror array layer structure 132 and the lenticular glue layer structure 131 have a relationship of n1>n2.
  • the concave cylindrical mirror array layer structure 132 can be directly mounted on the touch component 10 (or the cover 11 of the touch component 10) by a plane-to-plane ultraviolet light curing cylindrical mirror array forming process;
  • the process of planar alignment bonding, that is, by the structure of the lenticular layer structure 131, the concave cylindrical mirror array layer structure 132 can be connected and fixed to the secondary image display assembly 50. Therefore, for the touch and three-dimensional image display function device, the purpose of thinning and improving image quality can be achieved.
  • FIGS. 9 to 15 are schematic views showing a molding process of a plane-to-plane ultraviolet curing lens array according to the present invention.
  • the process is mainly to form a concave cylindrical mirror array layer structure 132 composed of an ultraviolet light curing resin material on the touch component 50 by a planar mold and ultraviolet light curing process.
  • FIG. 9 is a schematic view of a planar mold for forming a concave cylindrical mirror array layer structure.
  • the Plane Mold 140 has a geometry opposite to that of the concave cylindrical array layer structure 132 and can be fabricated by an ultra-precision planar die processing machine (see: www.toshiba-machine.co.jp)
  • FIG. 10 it is a schematic diagram of a process for filling a planar mold with a liquid ultraviolet light curing resin.
  • the planar mold 140 can be filled with a liquid ultraviolet light curable resin 142 by precision alignment and Inkjet Printing. After the liquid ultraviolet curable resin 142 is photocured, it becomes the concave cylindrical mirror array layer structure 132.
  • FIG. 11 to FIG. 12 it is a schematic diagram of a pressing and covering process of the touch component and the planar mold.
  • the touch component 10 can be accurately pressed against the planar mold 140 by the optical alignment (High Alignment with High Positioning Accuracy) of the touch component 10 and the touch control component
  • the assembly 10 is precisely aligned and overlaid on the liquid ultraviolet curable resin 142. Further, in order to avoid the incorporation of air bubbles, the above-described press-fitting and covering processes are generally carried out in a vacuum chamber.
  • FIG. 13 it is a schematic diagram of a curing process of a liquid ultraviolet light curing resin in a planar mold.
  • the liquid ultraviolet light curing resin 142 in the planar mold 140 is irradiated for a suitable time by a parallel UV light source 141 having a suitable wavelength and light intensity to cure the liquid ultraviolet curing resin 142 and formed into a concave column.
  • Mirror array layer structure 132 Mirror array layer structure 132.
  • FIG. 14 it is a schematic diagram of a stripping process of the concave cylindrical mirror array layer.
  • the recessed mirror array layer structure 132 is directly formed on the touch component 10 (or the cover of the touch component 10). 11) On.
  • the component of the concave mirror array layer structure 132 and the touch component 10 (or the cover 11 of the touch component 10) is a concave cylindrical mirror array layer structure molding assembly 10'.
  • FIG. 15 it is a schematic diagram of a 3D structure of a concave cylindrical mirror array layer structure molding assembly.
  • the concave cylindrical mirror array layer structure 132 is built on the touch component 10 (or the cover 11 of the touch component 10 ), and the bank structure 134 It is surrounded by the concave cylindrical mirror structure 133 and a wall slightly higher than the height of the concave cylindrical mirror structure 133 is constructed to prevent the occurrence of an overflow phenomenon when the liquid ultraviolet light curing resin material is injected.
  • FIG. 16 to 19 are schematic views of a plane-to-plane alignment process of the present invention.
  • the process is mainly a process of precision glue coating, alignment bonding and ultraviolet light curing, and the concave cylindrical mirror array layer forming assembly 10' is connected and fixed to the secondary element by the cylindrical mirror bonding layer structure 131.
  • the image display assembly 50 is on.
  • FIG. 16 it is a schematic diagram of a precision glue coating process for the secondary image display assembly.
  • the liquid ultraviolet curable resin 131' can be applied to the secondary image display unit 50 by a process of precision alignment and slit coating.
  • the liquid ultraviolet light-curable resin 131' is photocured to form the lenticular gel layer structure 131.
  • the liquid ultraviolet light-curable resin 131' and the assembly of the secondary image display unit 50 are a two-dimensional image display unit 50' after the glue coating.
  • FIG. 17 to FIG. 18 it is a schematic diagram of pressing and covering the concave cylindrical mirror array layer forming assembly and the glue coated secondary image display assembly.
  • the concave cylindrical mirror array layer structure forming assembly 10' is precisely optically aligned with the glue-coated secondary image display assembly 50', and the concave cylindrical mirror array layer structure forming assembly 10' can be accurately pressed
  • the glued coated secondary image display assembly 50' is precisely aligned and overlaid on the secondary image display assembly 50.
  • the above-described press-fitting and covering processes are generally carried out in a vacuum chamber.
  • FIG. 19 it is a schematic diagram of a curing process of the liquid ultraviolet light curing resin in the concave cylindrical mirror array layer structure assembly.
  • the liquid ultraviolet light curing resin 131' pressed into the concave cylindrical mirror array layer structure assembly 132 is irradiated for a suitable time by a parallel UV light source 141 having a suitable wavelength and light intensity to cure the
  • the liquid ultraviolet curing resin 131' is formed into a lenticular bonding layer structure 131, and achieves the purpose of connecting and fixing the concave cylindrical mirror array layer structure forming assembly 10' and the secondary image display assembly 50.
  • FIG. 7 the purpose of the device with touch and three-dimensional image display functions of the present invention is achieved.
  • 20 to 23 are schematic views of another plane-to-plane alignment process of the present invention.
  • the process is mainly through a process of precision glue dispensing, alignment bonding and ultraviolet light curing, and the cylindrical mirror array layer forming assembly 10' is connected and fixed to the secondary element by the cylindrical mirror bonding layer structure 131.
  • the image display assembly 50 is on.
  • FIG. 20 it is a schematic diagram of a precision glue dispensing process for the concave cylindrical mirror array layer forming assembly.
  • the concave cylindrical mirror array layer structure assembly 132 in the concave cylindrical mirror array layer structure molding assembly 10' can be filled with a liquid ultraviolet light curing resin 131' by precise alignment and precision printing.
  • the liquid ultraviolet light-curable resin 131' is photocured to form the lenticular gel layer structure 131.
  • the assembly of the liquid ultraviolet curable resin 131' and the concave cylindrical mirror array layer structure forming assembly 10' is a lenticular gluing layer structure forming assembly 10".
  • FIG. 21 to FIG. 22 it is a schematic diagram of a press-fit and cover process for the lenticular glue layer structure forming component and the secondary image display component.
  • the cylindrical mirror-glued layer structure forming assembly 10" can be accurately pressed against the secondary image display assembly. 50, and the concave cylindrical mirror array layer structure assembly 132 is precisely aligned and overlaid on the secondary image display assembly 50.
  • the above-described press-fitting and covering processes are generally carried out in a vacuum chamber.
  • FIG. 23 it is a schematic diagram of a curing process of the liquid ultraviolet light curing resin in the concave cylindrical mirror array layer structure assembly.
  • the liquid ultraviolet light curing resin 131' pressed into the concave cylindrical mirror array layer structure assembly 132 is irradiated for a suitable time by a parallel UV light source 141 having a suitable wavelength and light intensity to cure the
  • the liquid ultraviolet light curing resin 131 is formed into a lenticular glue layer structure 131, and achieves the purpose of connecting and fixing the cylindrical mirror bonding layer forming assembly 10" and the secondary image display assembly 50.
  • An apparatus having a touch and three-dimensional image display function includes a touch component.
  • the touch component 10 includes an Out-Cell touch component, an On-Cell touch component, or an In.
  • One of the core touch components further comprising an ultra-thin cylindrical mirror assembly 130 and a secondary image display assembly 50, the ultra-thin cylindrical mirror assembly 130 comprising a stacked concave cylindrical mirror array layer structure 132 And the cylindrical mirror layer structure 131;
  • the secondary image display component is composed of one of an LCD component and an OLED component, and when the touch component is an Out-Cell touch component, the ultra-thin cylindrical mirror component is directly fixedly connected to the touch Between the component and the secondary image display component; when the touch component is an On-Cell touch component or an In-Cell touch component, the ultra-thin cylindrical lens assembly is directly fixedly connected between the cover and the secondary image display component.
  • the ultra-thin cylindrical mirror assembly 130 of the device having the above structure has a concave cylindrical mirror glue layer structure 131, so that the ultra-thin cylindrical mirror assembly can be directly used with the touch component or the secondary image display component by using the concave cylindrical mirror glue layer structure 131.
  • the thickness of the device is greatly reduced compared to existing methods of bonding with two layers of glue and setting the substrate in the lenticular assembly.
  • the concave cylindrical mirror array layer structure 132 has an underlying structure 135 and a concave cylindrical mirror.
  • Structure 133 and bank structure 134 The bottom structure 135 has opposite first and second surfaces, the first surface is disposed on the touch component 10 or the secondary image display assembly 50; the concave mirror structure 133 is disposed on the second surface of the bottom structure 135; A column structure 134 is disposed on the second surface of the underlying structure 135 about the concave cylindrical mirror structure 133.
  • the vertical distance of the top of the bank structure 134 from the second surface is greater than the vertical distance between the top of the concave mirror structure 133 and the second surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种具有触控与三次元影像显示功能的装置(7),包括触控组件(10)、超薄柱镜组件(130)与二次元影像显示组件(50)。超薄柱镜组件(130)具有凹柱镜阵列层结构(132)与柱镜胶合层结构(131)。通过平面对平面紫外线光固化柱镜阵列成型的工艺,可将凹柱镜阵列层结构(132),直接装置于触控组件(10)上;另外,通过平面对平面对位贴合的工艺,可藉由柱镜胶合层结构(131),将凹柱镜阵列层结构(132)与二次元影像显示组件(50)连接及固定,从而达到薄化与提高影像质量的目的。

Description

具有触控与三次元影像显示功能的装置 技术领域
本发明属于影像显示领域,尤其是具有触控与三次元影像显示的领域。
背景技术
如图1所示,为公知具Out-Cell触控与三次元影像显示功能装置构成的示意图。对于公知具Out-Cell触控与三次元影像显示功能装置1,一般是使用Out-Cell触控组件10、柱镜组件30、与二次元影像显示器组件50,藉由两胶合结构20、40,并通过两次公知对位贴合的工艺,由上而下依次连接及固定该Out-Cell触控组件10、柱镜组件30、与二次元显示器组件50,以达到整合为一具触控与三次元影像显示功能装置的目的。
其中,该Out-Cell触控组件10,是可为公知OGS(One Glass Solution)、GG(Glass-Glass)、GFF(Glass-Film-Film)、G1F(Glass-Film)等结构中的一种结构所构成。该二次元液晶显示器组件50,是可为公知液晶、OLED等显示器中的一种显示器所构成。
另外,该柱镜组件30,由上而下依次是由平面层31、凸柱镜阵列层32与基材33所构成。
该平面层31与凸柱镜阵列层32,各别具有约10~20um的厚度,是由紫外线光固化树脂材料所构成,各别具有外线光固化后折射率n1与n2、且n1<n2。
该凸柱镜阵列层32,则由多数个公知的圆柱镜、或多数个公知的多面柱镜所构成,其柱镜面32’是朝向该Out-Cell触控组件10。该基材33则由PET膜所构成。通过两次公知卷对卷紫外光固化柱镜阵列成型的工艺(Art of Lens Array Replication Based on Roll-to-Roll UV Cured Process),可先将该凸柱镜阵列层32装置于该基材33上后,再将该平面层31装置于该凸柱镜阵列层32上,以构成卷材状的凸柱镜阵列薄膜,之后,再通过精密激光裁切的工艺,以完成适当大小且为片状的柱镜组件30。
通常,考虑卷对卷紫外光固化柱镜阵列成型的制程稳定性与生产良率,该PET基材33膜厚,一般,采用125um以上的厚度。另外,上述该两胶合结构20、40,是可为公知的OCA胶、与OCR胶等光学胶中的一种胶材所构成,一般,具有50um以上的厚度。
综上所述,该柱镜组件30、与该两胶合结构20、40的加总厚度,约为250um,对于整机厚度要求严刻的智能型手机而言,该250um的厚度,不利于轻薄短小的外观需求。另外,多了该两胶合结构20、40与该PET基材33的材料,大幅降低了透光率与影像质量,不利于高画质的影像需求。
关于上述该凸柱镜阵列层的结构,请参阅US专利案号:6064424:上述该柱镜组件30的结构,请参阅中国专利案号:CN 102047169 B;上述多面柱镜的结构,请参阅US专利案号:US8780188B2;另外,关于上述卷对卷紫外光固化的制程,则参阅中国台湾专利案号:I491925、I491926。
如图2所示,为另一公知具Out-Cell触控与三次元影像显示功能装置构成的示意图。该具Out-Cell触控与三次元影像显示功能装置2与图1所示的装置1,具有相同的结构与制程,唯一的不同处,只在该柱镜面32’是朝向该二次元影像显示器组件50。
如图3所示,为公知具On-Cell触控与三次元影像显示功能装置构成的示意图。对于公知具On-Cell触控与三次元影像显示功能装置3,一般是使用Cover Lens组件11、柱镜组件30、与具On-Cell触控功能的二次元影像显示器组件51。如前述,藉由两胶合结构20、40,并通过两次公知对位贴合的工艺,由上而下依次连接及固定该Cover Lens组件11、柱镜组件30、与具On-Cell触控功能的二次元显示器组件51,以达到整合为一具触控与三次元影像显示功能装置3的目的。其中,该柱镜面32’是朝向该Cover Lens组件11。
如图4所示,为另一公知具On-Cell触控与三次元影像显示功能装置构成的示意图。该具On-Cell触控与三次元影像显示功能装置4与图3所示的装置3,具有相同的结构与制程,唯一的不同处,只在该柱镜面32’是朝向该具On-Cell触控功能的二次元显示器组件51。
如图5所示,为公知具In-Cell触控与三次元影像显示功能装置构成的示意图。对于公知具In-Cell触控与三次元影像显示功能装置5,一般是使用Cover Lens组件11、柱镜组件30、与具In-Cell触控功能的二次元影像显示器组件52。如前述,藉由两胶合结构20、40,并通过两次公知对位贴合的工艺,由上而下依次连接及固定该Cover Lens组件11、柱镜组件30、与具In-Cell触控功能的二次元显示器组件52,以达到整合为一具触控与三次元影像显示功能装置5的目的。其中,该柱镜面32’是朝向该Cover Lens组件11。
如图6所示,为另一公知具In-Cell触控与三次元影像显示功能装置构成的示意图。该具In-Cell触控与三次元影像显示功能装置6与图5所示的装置5,具有相同的结构与制程,唯一的不同处,只在该柱镜面32’是朝向该具In-Cell触控功能的二次元显示器组件52。
综上所述,不论是该公知具On-Cell触控与三次元影像显示功能装置3、4,或是该公知具In-Cell触控与三次元影像显示功能装置5、6,对于该柱镜组件30、与该两胶合结构20、40的加总厚度,约为250um,对于整机厚度要求严刻的智能型手机而言,该250um的厚度,不利于轻薄短小的外观需求。另外,多了该两胶合结构20、40与该PET基材33的材料,大幅降低了透光率与影像质量,不利于高画质的影像需求。
发明内容
针对上述厚度的增加、透光率与影像质量的恶化等缺失,本发明公开了一种具触控与三次元影像显示功能的装置,包括触控组件、超薄柱镜组件与二次元影像显示组件所构成。该超薄柱镜组件包括凹柱镜阵列层与柱镜胶合层的结构,通过平面对平面紫外线光固化柱镜阵列成型的工艺(Art of Lens Array Replication Based on Plate-to-Plate UV Cured Process),对于Out-Cell触控领域的应用,是可将凹柱镜阵列层的结构,直接装置于该Out-Cell触控组件上;对于On-Cell与In-Cell触控领域的应用,则可将凹柱镜阵列层的结构,直接装置于该触控模组的盖板(Cover Lens)上。另外,通过平面对平面对位贴合的工艺(Art of Plate-to-Plate Alignment and Lamination Process),对于Out-Cell触控领域的应用,是可藉由柱镜胶合层结构,将该凹阵列柱镜层结构与该二次元影像显示 组件连接及固定;对于On-Cell与In-Cell触控领域的应用,则可藉由柱镜胶合层结构,将该凹阵列柱镜层结构与该具On-Cell或In-Cell触控功能的二次元影像显示组件连接及固定。亦即,相较于公知的结构,如图1所示,本发明藉由移除原有的两个胶合层20、40及移除原有柱镜组件30中的基材33,另外,让柱镜胶合层,以取代原有平面层31的结构,以大幅缩减厚度、并改善透光率与影像质量的恶化的缺失,对于该具触控与三次元影像显示功能装置,达到薄化与提高影象质量的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图及实施方式。
图1所示,为为公知具Out-Cell触控与三次元影像显示功能装置构成的示意图;
图2所示,为另一公知具Out-Cell触控与三次元影像显示功能装置构成的示意图;
图3所示,为公知具On-Cell触控与三次元影像显示功能装置构成的示意图;
图4所示,为另一公知具On-Cell触控与三次元影像显示功能装置构成的示意图;
图5所示,为公知具In-Cell触控与三次元影像显示功能装置构成的示意图。
图6所示,为另一公知具In-Cell触控与三次元影像显示功能装置构成的示意图;
图7所示,为本发明具触控与三次元影像显示功能装置构成的示意图;
图8所示,为本发明凹柱镜阵列层结构的示意图;
图9所示,为本发明凹柱镜阵列层结构成型用平面模具结构的示意图;
图10所示,为本发明对平面模具填充液态紫外线光固化树脂制程的示意图;
图11~12所示,为本发明对触控组件与平面模具进行压合与覆盖制程的示意图;
图13所示,为本发明对平面模具中的液态紫外线光固化树脂进行固化制程的示意图;
图14所示,为本发明凹柱镜阵列层结构脱膜制程的示意图;
图15所示,为本发明凹柱镜阵列层结构成型组件3D结构的示意图;
图16所示,为本发明对二次元影像显示组件作精密胶水涂布制程的示意图;
图17~18所示,为本发明对凹柱镜阵列层结构成型组件与胶水涂布后的二次元影像显示组件进行压合与覆盖制程的示意图;
图19所示,为本发明对凹柱镜阵列层结构组件中的液态紫外线光固化树脂进行固化制程的示意图;
图20所示,为本发明对凹柱镜阵列层结构成型组件作精密胶水点胶制程的示意图;
图21~22所示,为本发明对柱镜胶合层结构成型组件与二次元影像显示组件进行压合与覆盖制程的示意图;
图23所示,为本发明对凹柱镜阵列层结构组件中的液态紫外线光固化树脂进行固化制程的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。如图7所示,为本发明具触控与三次元影像显示功能装置构成的示意图。对于本发明具触控与三次元影像显示功能装置7,包括触控组件10、超薄柱镜组件130与二次元影像显示组件50。
其中,该触控组件10,是可为Out-Cell触控组件、On-Cell触控组件或是In-Cell触控组件,所述触控组件还包括盖板11(Cover Lens)。该Out-Cell触控组件,则由OGS(One Glass Solution)、GG(Glass-Glass)、GFF(Glass-Film-Film)、G1F(Glass-Film)中的一种结构所构成。该二次元液晶显示器组件50,是可为液晶、OLED中的一种显示器所构成。
该超薄柱镜组件130包括凹柱镜阵列层结构132与柱镜胶合层结构131所构成。
其中,如图8所示,该凹柱镜阵列层结构132,是由紫外线光固化树脂材料所构成,具有一紫外线光固化后折射率n2。另外,该凹柱镜阵列层结构132,具有凹柱镜结构133、堤栏结构(Dam)134、底层结构135。该凹柱镜结构133包括多个圆凹柱镜、或多个多面凹柱镜所构成,其柱镜面133’是朝向该二次元影像显示组件50。
该堤栏结构(Dam)134,是装置于该凹柱镜结构133的四周边上,具有高于该凹柱镜结构133的高度,用以防止该柱镜胶合层结构131于光固化前的溢胶(Out-Flow),亦即,防止液态紫外线光固化树脂材料注入该凹柱镜阵列层结构132时,所发生的溢胶现象,如后述。
该底层结构135,具有适当的厚度,用以将该凹柱镜结构133、与该堤栏结构(Dam)134连接并固定于该触控组件10(或触控组件10的盖板11)上。
另外,如图7所示,该柱镜胶合层结构131,是由紫外线光固化树脂材料所构成,具有一外线光固化后折射率n1。该凹柱镜阵列层结构132与柱镜胶合层结构131间,具有n1>n2的关系。
通过平面对平面紫外线光固化柱镜阵列成型的工艺,可将该凹柱镜阵列层结构132,直接装置于该触控组件10(或触控组件10的盖板11)上;另外,通过平面对平面对位贴合的工艺,即藉由柱镜胶合层结构131结构,可将该凹柱镜阵列层结构132与该二次元影像显示组件50连接及固定。是以,对于该具触控与三次元影像显示功能装置,可达到薄化与提高影象质量的目的。
如图9~15所示,为本发明平面对平面紫外线光固化柱镜阵列成型工艺的示意图。该制程,主要是通过一平面模具与紫外线光固化的工艺,将由紫外线光固化树脂材料所构成的凹柱镜阵列层结构132,成型于该触控组件50上。
首先,如图9所示,为凹柱镜阵列层结构成型用平面模具的示意图。该平面模具(Plane Mold)140具有与该凹柱镜阵列层结构132相反的几何结构,可通过超精密平面模具加工机以制作完成(请参阅:www.toshiba-machine.co.jp)
如图10所示,为对平面模具填充液态紫外线光固化树脂制程的示意图。通过精密对位与精密喷印(Inkjet Printing),可对该平面模具140填充液态紫外线光固化树脂142。该液态紫外线光固化树脂142进行光固化后,即成为凹柱镜阵列层结构132。
如图11~12所示,为对触控组件与平面模具进行压合与覆盖制程的示意图。通过对该触控组件10与该平面模具140进行精密光学对位(Optical Alignment with High Positioning Accuracy),可将该触控组件10,精确地压合于该平面模具140,并让该该触控组件10,精确地对准且覆盖于该液态紫外线光固化树脂142上。另外,为了避免气泡的混入,上述的压合与覆盖的制程,一般,是在一真空腔体中进行。
如图13所示,为对平面模具中的液态紫外线光固化树脂进行固化制程的示意图。一般,通过一具适当波长与光强度的平行UV光源141,对该平面模具内140的液态紫外线光固化树脂142做适当时间的照射,可固化该液态紫外线光固化树脂142、并成型为凹柱镜阵列层结构132。
如图14所示,为凹柱镜阵列层脱膜制程的示意图。上述该固化后的液态紫外线光固化树脂142,再通过脱膜的作业后,最终,可达到将该凹柱镜阵列层结构132直接成型于该触控组件10(或触控组件10的盖板11)上。为了方便下文的说明,令该凹柱镜阵列层结构132与该触控组件10(或触控组件10的盖板11)所构成的组件为凹柱镜阵列层结构成型组件10’。
如图15所示,为凹柱镜阵列层结构成型组件3D结构的示意图。对于该凹柱镜阵列层结构成型组件10’的构成,该凹柱镜阵列层结构132,是构建于该触控组件10(或触控组件10的盖板11)上,该堤栏结构134是围绕在该凹柱镜结构133的四周,并筑起一道略高于该凹柱镜结构133高度的墙,以防止液态紫外线光固化树脂材料注入时溢胶现象的发生。
如图16~19所示,为本发明平面对平面对位贴合工艺的示意图。该制程,主要是通过精密胶水涂布、对位贴合与紫外线光固化的工艺,藉由该柱镜胶合层结构131,将该凹柱镜阵列层成型组件10’连接与固定于该二次元影像显示组件50上。
如图16所示,为对二次元影像显示组件作精密胶水涂布制程的示意图。通过精密对位与狭缝涂布(Slit Coating)的工艺,可将液态紫外线光固化树脂131’,涂布于该二次元影像显示组件50上。该液态紫外线光固化树脂131’进行光固化后,即成为该柱镜胶合层结构131。为了方便下文的说明,令该液态紫外线光固化树脂131’与该二次元影像显示组件50所构成的组件为胶水涂布后的二次元影像显示组件50’。
如图17~18所示,为对凹柱镜阵列层成型组件与胶水涂布后的二次元影像显示组件进行压合与覆盖制程的示意图。通过该凹柱镜阵列层结构成型组件10’与该胶水涂布后的二次元影像显示组件50’进行精密光学对位,可将该凹柱镜阵列层结构成型组件10’,精确地压合于该胶水涂布后的二次元影像显示组件50’,并让该凹柱镜阵列层结构组件132,精确地对准且覆盖于该二次元影像显示组件50上。另外,为了避免气泡的混入,上述的压合与覆盖的制程,一般,是在一真空腔体中进行。
如图19所示,为对凹柱镜阵列层结构组件中的液态紫外线光固化树脂进行固化制程的示意图。如前述,通过一具适当波长与光强度的平行UV光源141,对被压合于该凹柱镜阵列层结构组件132中的该液态紫外线光固化树脂131’做适当时间的照射,可固化该液态紫外线光固化树脂131’、成型为柱镜胶合层结构131,并达到连接与固定该凹柱镜阵列层结构成型组件10’与该二次元影像显示组件50的目的。最终,如图7所示,即达到完成本发明具触控与三次元影像显示功能装置的目的。
如图20~23所示,为本发明另一平面对平面对位贴合工艺的示意图。该制程,主要是通过精密胶水点胶、对位贴合与紫外线光固化的工艺,藉由该柱镜胶合层结构131,将该凹柱镜阵列层成型组件10’连接与固定于该二次元影像显示组件50上。
如图20所示,为对凹柱镜阵列层成型组件作精密胶水点胶制程的示意图。通过精密对位与精密喷印,可对该凹柱镜阵列层结构成型组件10’中的凹柱镜阵列层结构组件132,填充液态紫外线光固化树脂131’。该液态紫外线光固化树脂131’光固化后,即成为该柱镜胶合层结构131。为了方便下文的说明,令该液态紫外线光固化树脂131’与该凹柱镜阵列层结构成型组件10’所构成的组件为柱镜胶合层结构成型组件10”。
如图21~22所示,为对柱镜胶合层结构成型组件与二次元影像显示组件进行压合与覆盖制程的示意图。通过对该柱镜胶合层结构成型组件10”与该二次元影像显示组件50进行精密光学对位,可将该柱镜胶合层结构成型组件10”,精确地压合于该二次元影像显示组件50,并让该凹柱镜阵列层结构组件132,精确地对准且覆盖于该二次元影像显示组件50上。另外,为了避免气泡的混入,上述的压合与覆盖的制程,一般,是在一真空腔体中进行。
如图23所示,为对凹柱镜阵列层结构组件中的液态紫外线光固化树脂进行固化制程的示意图。如前述,通过一具适当波长与光强度的平行UV光源141,对被压合于该凹柱镜阵列层结构组件132中的该液态紫外线光固化树脂131’做适当时间的照射,可固化该液态紫外线光固化树脂131、成型为柱镜胶合层结构131,并达到连接与固定该柱镜胶合层结构成型组件10”与该二次元影像显示组件50的目的。最终,如图7所示,即达到完成本发明具触控与三次元影像显示功能装置的目的。
本申请提供的一种具有触控与三次元影像显示功能的装置包括触控组件,如图7所示,该触控组件10由Out-Cell触控组件、On-Cell触控组件或是In-Cell触控组件中的一种所构成,进一步地,该装置还包括超薄柱镜组件130和二次元影像显示组件50,超薄柱镜组件130包括叠置的凹柱镜阵列层结构132和柱镜胶合层结构131;二次元影像显示组件由LCD组件、OLED组件中的一种所构成,当触控组件为Out-Cell触控组件时,超薄柱镜组件直接固定连接至触控组件和二次元影像显示组件之间;当触控组件为On-Cell触控组件或In-Cell触控组件时,超薄柱镜组件直接固定连接至盖板和二次元影像显示组件之间。
具有上述结构的装置的超薄柱镜组件130具有凹柱镜胶合层结构131,因此可以直接利用该凹柱镜胶合层结构131将超薄柱镜组件与触控组件或二次元影像显示组件相连接,相较于现有的利用两层胶合层粘接以及在柱镜组件中设置基材的方式,该装置的厚度大大减小。
进一步地,如图8所示,为了防止在制作时,作为柱镜胶合层结构131的原料进入柱镜阵列结构层132中,优选上述凹柱镜阵列层结构132具有底层结构135、凹柱镜结构133和堤栏结构134, 底层结构135具有相对设置的第一表面和第二表面,第一表面设置在触控组件10或二次元影像显示组件50上;凹柱镜结构133设置在底层结构135的第二表面上;堤栏结构134围绕凹柱镜结构133设置在底层结构135的第二表面上。
进一步优选上述堤栏结构134的顶部与第二表面的垂直距离大于凹柱镜结构133的顶部与第二表面的垂直距离。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种具有触控与三次元影像显示功能装置,其特征在于包括:
    触控组件,由Out-Cell触控组件、On-Cell触控组件或In-Cell触控组件所构成,所述触控组件还包括盖板(Cover Lens);
    超薄柱镜组件,包括凹柱镜阵列层结构与柱镜胶合层结构;
    二次元影像显示组件,由LCD、OLED中的一种所构成;
    当触控组件为Out-Cell触控组件时,所述超薄柱镜组件直接固定连接至触控组件和二次元影像显示组件之间;
    当触控组件为On-Cell触控组件或In-Cell触控组件时,超薄柱镜组件直接固定连接至盖板和二次元影像显示组件之间。
  2. 根据权利要求1所述的具触控与三次元影像显示功能装置,其特征在于所述该Out-Cell触控组件,是由OGS(One Glass Solution)、GG(Glass-Glass)、GFF(Glass-Film-Film)、G1F(Glass-Film)中的一种触控组件所构成。
  3. 根据权利要求1所述的具触控与三次元影像显示功能装置,其特征在于该凹柱镜阵列层结构,是由紫外线光固化树脂材料所构成,具有一紫外线光固化后折射率n2;所述该柱镜胶合层结构,是由紫外线光固化树脂材料所构成,具有一外线光固化后折射率n1。
  4. 根据权利要求1所述的具触控与三次元影像显示功能装置,其特征在于所述该凹柱镜阵列层结构,具有凹柱镜结构、堤栏结构、底层结构。
  5. 根据权利要求4所述的具触控与三次元影像显示功能装置,其特征在于所述该凹柱镜结构结构,包括多数个圆凹柱镜、或多数个多面凹柱镜。
  6. 根据权利要求4所述的具触控与三次元影像显示功能装置,其特征在于所述该凹柱镜结构的柱镜面,是朝向该二次元影像显示组件。
  7. 根据权利要求4所述的具触控与三次元影像显示功能装置,其特征在于所述该堤栏结构,设置于该凹柱镜结构的四周边上,具有高于该凹柱镜结构的高度。
  8. 根据权利要求4所述的具触控与三次元影像显示功能装置,其特征在于所述该底层结构,用以将该凹柱镜结构、与该堤栏结构连接并固定于该触控组件上。
  9. 根据权利要求3所述的具触控与三次元影像显示功能装置,其特征在于所述该凹柱镜阵列层结构与柱镜胶合层结构的折射率,具有n2<n1的关系。
  10. 根据权利要求1所述的具触控与三次元影像显示功能装置,其特征在于所述该凹柱镜阵列层结构,是通过平面对平面紫外线光固化柱镜阵列成型的工艺,直接装置于该触控组件上。
  11. 根据权利要求1所述的具触控与三次元影像显示功能装置,其特征在于所述该柱镜胶合层结构,是通过平面对平面对位贴合的工艺,可将该柱镜胶合层结构与该二次元影像显示组件连接及固定。
  12. 根据权利要求11所述的具触控与三次元影像显示功能装置,其特征在于所述该平面对平面紫外线光固化成型的工艺包括:
    第一步骤,通过超精密平面模具加工机,以制作完成凹柱镜阵列层结构成型用平面模具,该平面模具具有与该凹柱镜阵列层结构相反的几何结构;
    第二步骤,通过精密对位与精密喷印,可对该平面模具填充液态紫外线光固化树脂;
    第三步骤,通过精密光学对位,将该触控组件压合于该平面模具,并让该触控组件对准且覆盖于该液态紫外线光固化树脂;
    第四步骤,通过UV光源对该平面模具内的液态紫外线光固化树脂进行照射,以固化该液态紫外线光固化树脂、并成型为凹柱镜阵列层结构;第五步骤,通过脱膜的作业,将直接成型于该触控组件上的该凹柱镜阵列层结构从模具中脱离。
  13. 根据权利要求11所述的具触控与三次元影像显示功能装置,其特征在于所述该平面对平面对位贴合的工艺,包括:
    第一步骤,通过精密对位与狭缝涂布的工艺,将液态紫外线光固化树脂,涂布于该二次元影像显示组件上,形成胶水涂布后的二次元影像显示组件;
    第二步骤,通过精密光学对位,将该凹柱镜阵列层结构,压合于该胶水涂布后的二次元影像显示组件;
    第三步骤,通过UV光源对胶水涂布后的二次元影像显示组件中的该液态紫外线光固化树脂进行照射,以固化该液态紫外线光固化树脂、并成型为柱镜胶合层结构,将该凹柱镜阵列层结构与该二次元影像显示组件连接固定。
  14. 根据权利要求11所述的具触控与三次元影像显示功能装置,其特征在于所述该平面对平面对位贴合的工艺包括:
    第一步骤,通过精密对位与精密喷印,对该凹柱镜阵列层结构填充液态紫外线光固化树脂,形成柱镜胶合层结构成型组件;
    第二步骤,通过精密光学对位,将该二次元影像显示组件压合于该柱镜胶合层结构成型组件;
    第三步骤,通过UV光源对柱镜胶合层结构成型组件中的该液态紫外线光固化树脂进行照射,以固化该液态紫外线光固化树脂、并成型为柱镜胶合层结构,将该柱镜胶合层结构成型组件与该二次元影像显示组件连接固定。
  15. 根据权利要求4所述的装置,其特征在于,所述凹柱镜阵列层结构具有:
    所述底层结构,具有相对设置的第一表面和第二表面,所述第一表面设置在所述触控组件或所述二次元影像显示组件上;
    所述凹柱镜结构,设置在所述底层结构的第二表面上;
    所述堤栏结构,围绕所述凹柱镜结构设置在所述底层结构的第二表面上。
  16. 根据权利要求15所述的装置,其特征在于,所述堤栏结构的顶部与所述第二表面的垂直距离大于所述凹柱镜结构的顶部与所述第二表面的垂直距离。
PCT/CN2015/096719 2015-10-28 2015-12-08 具有触控与三次元影像显示功能的装置 WO2017071008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510711163.5A CN105223702B (zh) 2015-10-28 2015-10-28 具有触控与三次元影像显示功能的装置
CN201510711163.5 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017071008A1 true WO2017071008A1 (zh) 2017-05-04

Family

ID=54992749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096719 WO2017071008A1 (zh) 2015-10-28 2015-12-08 具有触控与三次元影像显示功能的装置

Country Status (2)

Country Link
CN (1) CN105223702B (zh)
WO (1) WO2017071008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180762A1 (de) * 2020-03-13 2021-09-16 3D Global Holding Gmbh Lentikularlinsen-baugruppe zum anbringen an einer anzeigefläche und methode der anbringung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223703B (zh) * 2015-10-28 2018-06-29 张家港康得新光电材料有限公司 具有触控与三次元影像显示功能的装置
KR102643635B1 (ko) * 2016-12-06 2024-03-06 삼성디스플레이 주식회사 디스플레이 장치
CN111061025A (zh) * 2019-12-18 2020-04-24 江西宏欣光学科技有限公司 一种光学镜头的胶合固化工艺
CN111834544B (zh) * 2020-06-30 2022-08-23 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN111834545B (zh) * 2020-06-30 2022-10-14 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529496A (zh) * 2013-10-22 2014-01-22 宁波维真显示科技有限公司 平整柱镜光学器件及其制造装置和制造方法
CN103926697A (zh) * 2013-04-17 2014-07-16 上海天马微电子有限公司 一种立体显示装置及其制备方法
CN104216131A (zh) * 2014-09-22 2014-12-17 张家港康得新光电材料有限公司 带对位标靶的3d柱镜膜
CN204101764U (zh) * 2014-08-13 2015-01-14 郑州恒昊玻璃技术有限公司 一种光栅
CN105158916A (zh) * 2015-10-16 2015-12-16 宁波维真显示科技有限公司 手持裸眼3d显示终端的封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926697A (zh) * 2013-04-17 2014-07-16 上海天马微电子有限公司 一种立体显示装置及其制备方法
CN103529496A (zh) * 2013-10-22 2014-01-22 宁波维真显示科技有限公司 平整柱镜光学器件及其制造装置和制造方法
CN204101764U (zh) * 2014-08-13 2015-01-14 郑州恒昊玻璃技术有限公司 一种光栅
CN104216131A (zh) * 2014-09-22 2014-12-17 张家港康得新光电材料有限公司 带对位标靶的3d柱镜膜
CN105158916A (zh) * 2015-10-16 2015-12-16 宁波维真显示科技有限公司 手持裸眼3d显示终端的封装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021180762A1 (de) * 2020-03-13 2021-09-16 3D Global Holding Gmbh Lentikularlinsen-baugruppe zum anbringen an einer anzeigefläche und methode der anbringung

Also Published As

Publication number Publication date
CN105223702B (zh) 2018-02-09
CN105223702A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017071008A1 (zh) 具有触控与三次元影像显示功能的装置
WO2017071007A1 (zh) 具触控与三次元影像显示功能的装置
WO2020125387A1 (zh) 液晶显示屏、电子设备及液晶显示屏的制作方法
JP2019158956A (ja) 表示デバイス
US8144409B2 (en) Prism system and method for producing the same
US7760445B2 (en) Compound lens and compound lens array
JP6083925B2 (ja) 光学構造を備えた基板及びそれを用いた光学素子
TW201722720A (zh) 觸控顯示裝置
JP2009301061A (ja) ウエハレンズ集合体の製造方法及びウエハレンズ集合体
US20130098548A1 (en) Lamination method of optical substrates
TW201940937A (zh) 軟性顯示模組及其製造方法、電子設備
JP2013020162A (ja) 液晶表示装置及びその製造方法
JP6362215B2 (ja) タッチパネル付き表示装置およびその製造方法
KR20120081857A (ko) 렌즈 제조 방법
TW201209461A (en) Light guide plate with light entrance structure and manufacture method for manufacturing the same
US20130101827A1 (en) Optical curable resin composite for laminating optical substrates and method thereof
WO2020151250A1 (zh) 柔性准直器及其制备方法、指纹识别模组以及电子设备
TWI502234B (zh) 光波導的製法
US10175462B2 (en) Wafer level lens system and method of fabricating the same
US10175416B2 (en) Method of manufacturing a light guide plate and display apparatus including the same
TW201342825A (zh) 導光板及其製作方法
JP6582699B2 (ja) 前面板および前面板付き表示装置
TW201531409A (zh) 面板貼合方法、面板總成及電子裝置
US11072045B2 (en) Method and structure for compensating tolerances in assembling modules
JP2019191415A (ja) 光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907069

Country of ref document: EP

Kind code of ref document: A1