WO2017070976A1 - 全节能动力机 - Google Patents

全节能动力机 Download PDF

Info

Publication number
WO2017070976A1
WO2017070976A1 PCT/CN2015/093759 CN2015093759W WO2017070976A1 WO 2017070976 A1 WO2017070976 A1 WO 2017070976A1 CN 2015093759 W CN2015093759 W CN 2015093759W WO 2017070976 A1 WO2017070976 A1 WO 2017070976A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnets
group
permanent magnet
rotor
coil group
Prior art date
Application number
PCT/CN2015/093759
Other languages
English (en)
French (fr)
Inventor
刘庆华
董广臣
Original Assignee
刘庆华
董广臣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘庆华, 董广臣 filed Critical 刘庆华
Publication of WO2017070976A1 publication Critical patent/WO2017070976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection

Definitions

  • the invention relates to an electric motor, and more particularly to a fully energy efficient power machine.
  • the current motor has the following disadvantages: 1. The energy consumption is low and the efficiency is low. The high-power motors are bulky and heavy and difficult to handle; 2. The heat dissipation effect is poor, and the motor is easily damaged by overheating.
  • the object of the present invention is to provide a fully energy-saving power machine, which has low energy consumption and high efficiency, and has a unique water circulation heat dissipation system, which can prevent the occurrence of burnout of the motor, thereby solving the problems existing in the prior art.
  • a fully energy-saving power machine including a casing, and a stator and a rotor mounted therein, wherein the rotor structure is as follows: a rotating shaft, a rotor surrounding the outer circumference of the rotating shaft, and a periphery of the rotor skeleton Install several electromagnets evenly.
  • the number of electromagnets is 4n, n is a positive integer. All electromagnets are divided into two groups. The two adjacent electromagnets are different groups. The two electromagnets are in the same group.
  • a permanent magnet bracket is disposed between each of the adjacent two electromagnets, and a permanent magnet is mounted on each of the outer sides of each permanent magnet bracket, and a support member is connected to the rotor skeleton on the inner side of each permanent magnet bracket, and the permanent magnet bracket and
  • the support members are magnetically permeable materials;
  • a first annular water pipe and a second annular water pipe are installed on the outer circumference of the rotating shaft, and each of the heat dissipation boxes is provided with a second water pipe and a first water pipe, and all the second water pipes are connected to the second annular water pipe
  • the first water pipe is connected to the first annular water pipe, the second water channel and the first water channel are arranged on the rotating shaft, and one end of the second water channel is connected with the second annular water pipe, One end of the water channel is connected to the first annular water pipe;
  • each electromagnet is composed of a set of magnetic conductive sheets, a heat dissipation box, a first coil group and a
  • a set of magnetic conductive sheets are mounted on the outer circumference of the heat dissipation box, and the heat dissipation box is matched with the holes of all the magnetic conductive sheets of the same group, and the outer circumference of the same group of magnetic conductive sheets is wound around the first coil group and the second coil group, first The winding direction of the coil group and the second coil group are opposite; a multi-channel conductive slip ring is mounted on the rotating shaft, and a passage of the multi-channel conductive slip ring passes through the wire and the first A first coil set of a set of electromagnets is coupled to a second coil set of the second set of electromagnets, and the other passage of the multi-path conductive slip ring is passed through the lead and the second coil set of the first set of electromagnets and the second set of electromagnets The first coil set is connected; the turntable is mounted on the rotating shaft, and the outer circumference of the turntable is evenly provided with a plurality of bumps, the number of the
  • the sensor and the controller are installed in the housing.
  • the signal is transmitted to the controller, and the controller controls the first coil group of the first group of electromagnets and the first coil group.
  • the second coil group of the two groups is powered, the second coil group of the first group of electromagnets and the first coil group of the second group of electromagnets are powered off, at this time, the first group of electromagnets corresponds to the permanent magnet;
  • the sensor detects When the groove is sent to the controller, the controller controls the first coil group of the second group of electromagnets and the second coil group of the first group to be electrified, the second coil group of the second group of electromagnets and the first group of electromagnetics
  • the first coil set of the iron is de-energized, at this time, the second group
  • the magnet corresponds to the permanent magnet; when the first coil group is energized, the polarity of the electromagnet is the same as the polarity of the permanent magnet, the heat dissipation water tank, the second annular water tank
  • a spacer is disposed in the heat dissipation box.
  • a cooling fan is mounted on the rotating shaft.
  • a water pump driving wheel is mounted on the rotating shaft, and the water pump driving wheel is connected to the power input wheel of the first coil group through a driving belt.
  • the upper end of the magnetic conductive sheet is provided with a rectangular portion, and the lower end is provided with a trapezoidal portion.
  • the distance H from the midpoint of the permanent magnet to the center of the rotor is greater than or equal to two-thirds of the radius of the rotor.
  • a second sealing ring is disposed on each side of the second annular water tank on the rotating shaft; and a first sealing ring is disposed on each side of the first annular water tank on the rotating shaft.
  • the magnetically isolating material is iron or stainless steel.
  • the surface of the permanent magnet corresponding to the rotor is a curved surface.
  • the number of permanent magnets is 2n, and the permanent magnets can correspond one-to-one with a set of electromagnets.
  • the invention has the advantages that the stator of the permanent magnet is matched with the rotor with two sets of alternating polarity electromagnets, and the permanent magnet on the rotor cooperates with the stator to provide the deflection force, and the rotor is driven to rotate, so that the electromagnetic conversion can be realized more efficiently. Converting electrical energy into mechanical energy is more efficient. Its rotor has a structure The simple and highly efficient heat dissipation system can effectively solve the problem of heat dissipation during motor operation, which can effectively ensure the normal operation of the power machine. The invention also has the advantages of simple structure, low manufacturing cost and convenient handling and installation.
  • FIG. 1 is a front view of a full-energy-saving power machine according to the present invention, and the sensor 22 is omitted;
  • FIG. 2 is a schematic cross-sectional view of the AA cross-sectional view of FIG. 1;
  • FIG. 3 is a three-dimensional structure of the magnetic conductive sheet 3 and the heat-dissipating box 4. Schematic diagram of the structure;
  • FIG. 4 is a schematic enlarged view of the turntable 27.
  • the fully energy-saving power machine of the present invention comprises a housing 1 in which a stator and a rotor are mounted.
  • the rotor structure is as follows: a rotating shaft 9 is included, and a rotor frame 8 is attached to the outer circumference of the rotating shaft 9, and a plurality of electromagnets 2 are uniformly mounted on the outer circumference of the rotor frame 8.
  • the number of electromagnets 2 is 4n, and n is a positive integer, that is, the number of electromagnets 2 is at least 4, and may be 8, 12, 16, 20, 24, 28, 32. . . . . . According to many years of practice, when the number of electromagnets 2 is 8, the power machine has the highest efficiency at the same manufacturing cost.
  • All the electromagnets 2 are divided into two groups, and the two adjacent electromagnets 2 are different groups, and the two electromagnets 2 are in the same group.
  • a permanent magnet bracket 5 is disposed between each adjacent two electromagnets 2, and a permanent magnet 6 is disposed on each of the outer sides of each permanent magnet bracket 5, and a support member 11 is disposed on each inner side of each permanent magnet bracket 5
  • the rotor bobbin 8 is connected.
  • the position setting of the permanent magnet bracket 5 and the support member 11 is not only a necessary design for realizing the rotation of the rotor, but also assists the rotor frame 8 to further strengthen the electromagnet 2 to ensure that the electromagnet 2 and the rotor frame 8 further become an organic whole. .
  • the permanent magnet holder 5, the rotor bobbin 8 and the support member 11 are both magnetically permeable materials.
  • the magnetically isolating material is iron or stainless steel.
  • the outer circumference of the rotating shaft 9 is mounted with a first annular water pipe 12 and a Two annular water pipes 29.
  • Each of the heat dissipation boxes 4 is provided with a second water pipe 19 and a first water pipe 15, and all of the second water pipes 19 communicate with the second annular water pipe 29, and all of the first water pipes 15 communicate with the first annular water pipe 12.
  • the rotating shaft 9 is provided with a second water channel 31 and a first water channel 25.
  • Each of the electromagnets 2 is composed of a set of magnetic conductive sheets 3, a heat dissipating box 4, a first coil group 17, and a second coil group 18.
  • Each of the magnetic conductive sheets 3 is sequentially arranged by a plurality of magnetic sheets 3. .
  • a set of magnetic conductive sheets 3 are mounted on the outer circumference of the heat dissipation box 4. As shown in FIG. 3, the heat dissipation box 4 is engaged with the holes 40 of all the magnetic conductive sheets 3 of the same group. As shown in FIGS.
  • the outer circumference of the magnetically permeable sheets 3 of the same group is wound around the first coil group 17 and the second coil group 18, and the winding directions of the first coil group 17 and the second coil group 18 are opposite, thereby ensuring When the first coil group 17 and the second coil group 18 are respectively energized, the polarities of the electromagnets 2 are opposite.
  • a multi-channel conductive slip ring 35 is mounted on the rotating shaft 9. One passage of the multi-path conductive slip ring 35 is connected to the first coil group 17 of the first group of electromagnets 2 and the second coil group 18 of the second group of electromagnets 2 by wires.
  • the other passage of the multi-path conductive slip ring 35 is connected by wires to the second coil group 18 of the first group of electromagnets 2 and the first coil group 17 of the second group of electromagnets 2.
  • the first coil group 17 on all the electromagnets 2 of the same group is connected in series, and the second coil group 18 on all the electromagnets 2 of the same group is connected in series, and the first coil group 17 on the same group of electromagnets 2 In series with the second coil set 18 on the hetero-group electromagnet 2.
  • the turntable 27 is mounted on the rotating shaft 9, and as shown in FIG. 4, the outer circumference of the turntable 27 is uniformly provided with a plurality of bumps 28, and the number of the bumps 28 is 2n.
  • a groove 21 is formed between any two adjacent bumps 28.
  • the bumps 28 are in one-to-one correspondence with the first group of electromagnets 2, and the recesses 21 are in one-to-one correspondence with the second group of electromagnets 2.
  • the magnetic conductive sheet may be made of an amorphous alloy or a silicon steel sheet, but the silicon steel sheet generates excessive heat and has a lower electrical utilization than a quarter of the amorphous alloy.
  • a bearing can be mounted on the rotating shaft 9.
  • the stator is a permanent magnet 7, and the permanent magnet 6 is turned to the same pole as the permanent magnet 7. As shown in FIG. 1 , for the eight electromagnets 2, four permanent magnets 7 are installed together, which can more effectively increase the electrical mechanical energy conversion rate and output power.
  • the sensor 1 and the controller 14 are mounted in the housing 1.
  • a signal is transmitted to the controller 14, and the controller 14 controls the first coil group 17 of the first group of electromagnets 2 and the second group.
  • the second coil group 18 is energized, and the second coil group 18 of the first group of electromagnets 2 and the first coil group 17 of the second group of electromagnets 2 are powered off.
  • the first group of electromagnets 2 corresponds to the permanent magnets 7;
  • the controller 14 controls the first coil group 17 of the second group of electromagnets 2 and the second coil group 18 of the first group.
  • the second coil group 18 of the second group of electromagnets 2 and the first coil group 17 of the first group of electromagnets 2 are deenergized.
  • the second group of electromagnets 2 corresponds to the permanent magnets 7;
  • the first coil group 17 When energized, the polarity of the electromagnet 2 is the same as the polarity of the permanent magnet 7.
  • the controller 14 can be a PLC or a DC motor controller. After the machine is connected to the direct current, the controller 14 cooperates with the sensor 22 to ensure that when a certain electromagnet 2 is rotated to a position corresponding to the permanent magnet 7, as shown in FIG. 1, the polarity of the electromagnet 2 is inevitably matched with the permanent magnet 7.
  • the polarity is the same, thereby generating a strong repulsive force.
  • the repulsive force of the permanent magnet 6 adjacent to the left side of the electromagnet 2 and the permanent magnet 7 generates a tangential component
  • another set of electromagnets 2 The polarity is opposite to that of the permanent magnet 7, and the attraction force is generated.
  • the tangential component and the attraction force are superimposed to cause the rotor to generate the initial starting power.
  • the strong repulsive force generated by the electromagnet 2 corresponding to the permanent magnet 7 will be generated. Further, rotational power is generated to rotate the rotor at a high speed.
  • the sensor 22 can be a proximity switch.
  • the heat dissipation water tank 13 the second annular water tank 33 and the first annular water tank 24 are installed in the casing 1, and the second annular water tank 33 communicates with the other end of the second water channel 31, and the first annular water tank 24 communicates with the other end of the first water channel 25.
  • the heat dissipation water tank 13 is in communication with the second annular water tank 33 and the first annular water tank 24 through the fourth water pipe 32 and the third water pipe 26, respectively. As shown in FIG. 1 and FIG.
  • the heat dissipation water tank 13, the fourth water pipe 32, the second annular water tank 33, the second water channel 31, the second annular water pipe 29, the second water pipe 19, the heat dissipation box 4, the first water pipe 15, and the first An annular water pipe 12, a first water channel 25, a first annular water tank 24 and a third water pipe 26 are sequentially connected to form a closed heat dissipation circulation system, and the first coil group 17 is mounted on the heat dissipation water tank 13 to provide power to the heat dissipation circulation system for cooling cycle .
  • the heat sink 4 can be made of copper or aluminum.
  • a partition 20 is disposed in the heat dissipation box 4, and the partition 20 can extend a path of water flowing in the heat dissipation box 4 to increase the heat absorption effect.
  • the cooling fan 16 is mounted on the rotating shaft 9.
  • the water pump driving wheel 30 is mounted on the rotating shaft 9, and the water pump driving wheel 30 is connected to the power input wheel of the first coil group 17 through a transmission belt.
  • the upper end of the magnetic conductive sheet 3 is provided with a rectangular portion 37, and the lower end is provided with a trapezoidal portion 36.
  • the arrangement of the magnetic sheets 3 of this specific shape can constitute a coil groove, and the coil group can be stably fixed.
  • the distance H from the midpoint o of the permanent magnet 7 to the center of the rotor is greater than or equal to two-thirds of the radius of the rotor.
  • a second sealing ring 34 is disposed on each side of the second annular water tank 33; a first sealing ring 23 is disposed on each side of the first annular water tank 24 on the rotating shaft 9.
  • the surface of the permanent magnet 7 corresponding to the rotor is a curved surface.
  • the number of the permanent magnets 7 is 2n, and the permanent magnets 7 can be in one-to-one correspondence with the set of electromagnets 2. For example, when there are four electromagnets 2, there are two permanent magnets 7, or as shown in Fig. 1, when there are eight electromagnets 2, four permanent magnets 7 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种全节能动力机,包括壳体(1),壳体(1)内安装定子和转子,转子结构如下:包括转轴(9),转轴(9)的外周安装转子骨架(8),转子骨架(8)的外周均匀安装数个电磁铁(2),电磁铁(2)的数量为4n,n是正整数;所有电磁铁(2)共分为两组,相邻的两个电磁铁(2)为异组,间隔的两个电磁铁(2)为同组,每相邻的两个电磁铁(2)之间各设置一个永磁体支架(5),每个永磁体支架(5)的外侧各安装一块永磁体(6),每个永磁体支架(5)的内侧各设有一个支撑件(11)与转子骨架(8)连接。该动力机利用永磁铁的定子和具有两组交替变换极性电磁铁的转子配合,并用转子上的永磁体与定子配合提供偏转力,驱动转子旋转,可更加高效地实现电磁转换并将电能转化成机械能,效率更高。该动力机还具有结构简单、制造成本低廉和搬运安装方便的优点。

Description

全节能动力机 技术领域
本发明涉及一种电动机,确切地说是一种全节能动力机。
背景技术
现在的电动机具有以下不足:1、能耗大效率低,大功率的电动机均体积庞大,沉重难以搬运;2、散热效果差,易发生电动机过热损坏的情况。
问题的解决方案
技术解决方案
本发明的目的是提供一种全节能动力机,它能耗小效率高,且具有独特的水循环散热系统,可杜绝电机被烧坏的情况出现,从而,可解决现有技术存在的问题。
本发明为实现上述目的,通过以下技术方案实现:全节能动力机,包括壳体,壳体内安装定子和转子,其特征在于:转子结构如下:包括转轴,转轴的外周安装转子骨架,转子骨架的外周均匀安装数个电磁铁,电磁铁的数量为4n,n是正整数;所有电磁铁共分为两组,相邻的两个电磁铁为异组,间隔的两个电磁铁为同组,每相邻的两个电磁铁之间各设置一个永磁体支架,每个永磁体支架的外侧各安装一块永磁体,每个永磁体支架的内侧各设有一个支撑件与转子骨架连接,永磁体支架和支撑件均为隔磁材料;转轴的外周安装第一环形水管和第二环形水管,每个散热盒上各设有一根第二水管和第一水管,所有的第二水管与第二环形水管相通,所有的第一水管与第一环形水管相通,转轴上设有第二水道和第一水道,第二水道的一端与第二环形水管联通,第一水道的一端与第一环形水管联通;每个电磁铁由一组导磁片、一个散热盒、一个第一线圈组和一个第二线圈组连接构成,每组导磁片由数片导磁片依次排列构成,散热盒的外周安装一组导磁片,散热盒与同组的所有导磁片的孔配合,同组的导磁片外周绕缠第一线圈组和第二线圈组,第一线圈组和第二线圈组的缠绕方向相反;转轴上安装多通路导电滑环,多通路导电滑环的一个通路通过导线与第 一组电磁铁的第一线圈组和第二组电磁铁的第二线圈组连接,多通路导电滑环的另一个通路通过导线与第一组电磁铁的第二线圈组和第二组电磁铁的第一线圈组连接;转轴上安装转盘,转盘的外周均匀设有数个凸块,凸块的数量为2n,任两个相邻的凸块之间各构成一个凹槽;定子是永磁铁,永磁体转至与永磁铁对应时为同极相对,壳体内安装传感器和控制器,传感器检测到凸块时发信号传给控制器,控制器控制第一组电磁铁的第一线圈组和第二组的第二线圈组得电,第一组电磁铁的第二线圈组和第二组电磁铁的第一线圈组断电,此时,第一组电磁铁与永磁铁对应;传感器检测到凹槽时发信号传给控制器,控制器控制第二组电磁铁的第一线圈组和第一组的第二线圈组得电,第二组电磁铁的第二线圈组和第一组电磁铁的第一线圈组断电,此时,第二组电磁铁与永磁铁对应;第一线圈组通电时,电磁铁的极性与永磁铁的极性相同,壳体内安装散热水箱、第二环形水槽和第一环形水槽,第二环形水槽与第二水道的另一端相通,第一环形水槽与第一水道的另一端相通,散热水箱通过第四水管和第三水管分别与第二环形水槽和第一环形水槽对应相通,散热水箱上安装第一线圈组实现水循环。
为进一步实现本发明的目的,还可以采用以下技术方案:所述散热盒内设有隔板。所述转轴上安装散热风扇。所述转轴上安装水泵驱动轮,水泵驱动轮通过传动带与第一线圈组的动力输入轮连接。所述导磁片的上端设置矩形部,下端设置梯形部。所述永磁铁的中点到转子中心的距离H大于等于转子半径三分之二。所述转轴上位于第二环形水槽两侧各设置一个第二密封圈;所述转轴上位于第一环形水槽两侧各设置一个第一密封圈。所述隔磁材料为铁或不锈钢。所述永磁铁与转子对应的面为弧面。所述永磁铁的数量为2n,永磁铁能与一组电磁铁一一对应。
发明的有益效果
有益效果
本发明的优点在于:它利用永磁铁的定子和具有两组交替变换极性电磁铁的转子配合,并用转子上的永磁体与定子配合提供偏转力,驱动转子旋转,可更加高效地实现电磁转换并将电能转化成机械能,效率更高。它的转子内设有结构 简单且散热效果极高的散热系统,可有效解决电动机运行过程中散热难的问题,可有效确保动力机的正常运行。本发明还具有结构简单、制造成本低廉和搬运安装方便的优点。
对附图的简要说明
附图说明
图1是本发明所述全节能动力机的主视结构示意图,图中省略了传感器22;图2是图1的A-A剖视放大结构示意图;图3是导磁片3与散热盒4配合的立体结构示意图;图4是所述转盘27的放大结构示意图。
附图标记:1壳体 2电磁铁 3导磁片 4散热盒 5永磁体支架 6永磁体 7永磁铁 8转子骨架 9转轴 10键 11支撑件 12第一环形水管 13散热水箱 14控制器 15第一水管 16散热风扇 17第一线圈组 18第二线圈组 19第二水管 20隔板 21凹槽 22传感器 23第一密封圈 24第一环形水槽 25第一水道 26第三水管 27转盘 28凸块 29第二环形水管 30水泵驱动轮 31第二水道 32第四水管 33第二环形水槽 34第二密封圈 35多通路导电滑环 36梯形部 37矩形部 38键槽 39轴孔 40孔o中点。
发明实施例
本发明的实施方式
如图1所示,本发明所述的全节能动力机,包括壳体1,壳体1内安装定子和转子。转子结构如下:包括转轴9,转轴9的外周安装转子骨架8,转子骨架8的外周均匀安装数个电磁铁2。电磁铁2的数量为4n,n是正整数,即电磁铁2的数量至少为4,还可以为8、12、16、20、24、28、32。。。。。。根据多年的实践得知,电磁铁2的数量为8时,其动力机在制造成本相同的情况下效率最高。所有电磁铁2共分为两组,相邻的两个电磁铁2为异组,间隔的两个电磁铁2为同组。每相邻的两个电磁铁2之间各设置一个永磁体支架5,每个永磁体支架5的外侧各安装一块永磁体6,每个永磁体支架5的内侧各设有一个支撑件11与转子骨架8连接。永磁体支架5和支撑件11的位置设定,不仅是实现转子旋转的必要设计,同时,还可辅助转子骨架8对电磁铁2进一步加固,确保电磁铁2与转子骨架8进一步成为有机的整体。永磁体支架5、转子骨架8和支撑件11均为隔磁材料。所述隔磁材料为铁或不锈钢。如图2所示,转轴9的外周安装第一环形水管12和第 二环形水管29。每个散热盒4上各设有一根第二水管19和第一水管15,所有的第二水管19与第二环形水管29相通,所有的第一水管15与第一环形水管12相通。转轴9上设有第二水道31和第一水道25,第二水道31的一端与第二环形水管29联通,第一水道25的一端与第一环形水管12联通。每个电磁铁2由一组导磁片3、一个散热盒4、一个第一线圈组17和一个第二线圈组18连接构成,每组导磁片3由数片导磁片3依次排列构成。散热盒4的外周安装一组导磁片3。如图3所示,散热盒4与同组的所有导磁片3的孔40配合。如图1和图2所示,同组的导磁片3外周绕缠第一线圈组17和第二线圈组18,第一线圈组17和第二线圈组18的缠绕方向相反,从而可确保第一线圈组17和第二线圈组18分别通电时,电磁铁2的极性相反。转轴9上安装多通路导电滑环35。多通路导电滑环35的一个通路通过导线与第一组电磁铁2的第一线圈组17和第二组电磁铁2的第二线圈组18连接。多通路导电滑环35的另一个通路通过导线与第一组电磁铁2的第二线圈组18和第二组电磁铁2的第一线圈组17连接。同组所有电磁铁2上的第一线圈组17之间是串联,同组所有电磁铁2上的第二线圈组18之间是串联,并且,同组电磁铁2上的第一线圈组17与异组电磁铁2上的第二线圈组18的串联。如图2所示,转轴9上安装转盘27,如图4所示,转盘27的外周均匀设有数个凸块28,凸块28的数量为2n。任两个相邻的凸块28之间构成一个凹槽21。凸块28与第一组电磁铁2一一对应,凹槽21与第二组电磁铁2一一对应。所述导磁片可由非晶合金制成,也可以是硅钢片,但硅钢片产热过大,其电利用率小于非晶合金的四分之一。为减小转轴9转动的阻力,转轴9上可安装轴承。
定子是永磁铁7,永磁体6转至与永磁铁7对应时为同极相对。如图1所示,针对八个电磁铁2,配合安装四个永磁铁7,可更有效加大电能机械能转化率有输出功率。
壳体1内安装传感器22和控制器14,传感器22检测到凸块28时发信号传给控制器14,控制器14控制第一组电磁铁2的第一线圈组17和第二组的第二线圈组18得电,第一组电磁铁2的第二线圈组18和第二组电磁铁2的第一线圈组17断电,此时,第一组电磁铁2与永磁铁7对应;传感器22检测到凹槽21时发信号传给控制器14,控制器14控制第二组电磁铁2的第一线圈组17和第一组的第二线圈组18得 电,第二组电磁铁2的第二线圈组18和第一组电磁铁2的第一线圈组17断电,此时,第二组电磁铁2与永磁铁7对应;第一线圈组17通电时,电磁铁2的极性与永磁铁7的极性相同。所述控制器14可以是PLC或直流电机控器。本机通直流电后,控制器14与传感器22配合,可确保当某个电磁铁2转至与永磁铁7对应位置时,如图1所示,该电磁铁2的极性必然与永磁铁7的极性相同,从而产生强大的斥力,同时,一方面,该电磁铁2左侧相邻的永磁体6与永磁铁7的斥力产生切向分力,另一方面,另一组电磁铁2的极性与永磁铁7相反,产生吸引力,切向分力与吸引力叠加使转子产生最初的起动力,一旦转子偏转,与永磁铁7正对应的电磁铁2所产生的强大斥力便会进一步产生旋转动力,使转子高速旋转。所述传感器22可以是接近开关。
壳体1内安装散热水箱13、第二环形水槽33和第一环形水槽24,第二环形水槽33与第二水道31的另一端相通,第一环形水槽24与第一水道25的另一端相通,散热水箱13通过第四水管32和第三水管26分别与第二环形水槽33和第一环形水槽24对应相通。如图1和图2所示,散热水箱13、第四水管32、第二环形水槽33、第二水道31、第二环形水管29、第二水管19、散热盒4、第一水管15、第一环形水管12、第一水道25、第一环形水槽24和第三水管26依次联通成闭合的散热循环系统,散热水箱13上安装第一线圈组17,为上述散热循环系统提供动力实现冷却循环。散热盒4可由铜或铝制成。
如图2所示,所述散热盒4内设有隔板20,隔板20可延长水在散热盒4内流动的路径,以增加吸热效果。为进一步增强散热效果,所述转轴9上安装散热风扇16。
为精减所述动力机的机构,缩小其体积和重量,如图2所示,所述转轴9上安装水泵驱动轮30,水泵驱动轮30通过传动带与第一线圈组17的动力输入轮连接。
所述导磁片3的上端设置矩形部37,下端设置梯形部36。该特定形状的导磁片3排列可构成线圈槽,可以稳定地固定线圈组。
所述永磁铁7的中点o到转子中心的距离H大于等于转子半径三分之二。
为增强密效果,确保散热水循环系统绝对不会泄漏,如图2所示,所述转轴9 上位于第二环形水槽33两侧各设置一个第二密封圈34;所述转轴9上位于第一环形水槽24两侧各设置一个第一密封圈23。
所述永磁铁7与转子对应的面为弧面。
为增加旋转的稳定性,同时增强电磁作功的效率,提高所述动力机的输出功率,所述永磁铁7的数量为2n,永磁铁7能与一组电磁铁2一一对应。例如:电磁铁2为4个时,永磁铁7为2个,或如图1所示,电磁铁2为8个时,永磁铁7为四个。
本发明的技术方案并不限制于本发明所述的实施例的范围内。

Claims (10)

  1. 全节能动力机,包括壳体(1),壳体(1)内安装定子和转子,其特征在于:转子结构如下:包括转轴(9),转轴(9)的外周安装转子骨架(8),转子骨架(8)的外周均匀安装数个电磁铁(2),电磁铁(2)的数量为4n,n是正整数;所有电磁铁(2)共分为两组,相邻的两个电磁铁(2)为异组,间隔的两个电磁铁(2)为同组,每相邻的两个电磁铁(2)之间各设置一个永磁体支架(5),每个永磁体支架(5)的外侧各安装一块永磁体(6),每个永磁体支架(5)的内侧各设有一个支撑件(11)与转子骨架(8)连接,永磁体支架(5)和支撑件(11)均为隔磁材料;转轴(9)的外周安装第一环形水管(12)和第二环形水管(29),每个散热盒(4)上各设有一根第二水管(19)和第一水管(15),所有的第二水管(19)与第二环形水管(29)相通,所有的第一水管(15)与第一环形水管(12)相通,转轴(9)上设有第二水道(31)和第一水道(25),第二水道(31)的一端与第二环形水管(29)联通,第一水道(25)的一端与第一环形水管(12)联通;每个电磁铁(2)由一组导磁片(3)、一个散热盒(4)、一个第一线圈组(17)和一个第二线圈组(18)连接构成,每组导磁片(3)由数片导磁片(3)依次排列构成,散热盒(4)的外周安装一组导磁片(3),散热盒(4)与同组的所有导磁片(3)的孔(40)配合,同组的导磁片(3)外周绕缠第一线圈组(17)和第二线圈组(18),第一线圈组(17)和第二线圈组(18)的缠绕方向相反;转轴(9)上安装多通路导电滑环(35),多通路导电滑环(35)的一个通路通过导线与第一组电磁铁(2)的第一线圈组(17)和第二组电磁铁(2)的第二线圈组(18)连接,多通路导电滑环(35)的另一个通路通过导线与第一组电磁铁(2)的第二线圈组(18)和第二组电磁铁(2)的第一线圈组(17)连接;转轴(9)上安装转盘(27),转盘(27)的外周均匀设有数个凸块(28),凸块(28)的数量为2n,任两个相邻的凸块(28)之间各构成一个凹槽(21);
    定子是永磁铁(7),永磁体(6)转至与永磁铁(7)对应时为同极相对 ,
    壳体(1)内安装传感器(22)和控制器(14),传感器(22)检测到凸块(28)时发信号传给控制器(14),控制器(14)控制第一组电磁铁(2)的第一线圈组(17)和第二组的第二线圈组(18)得电,第一组电磁铁(2)的第二线圈组(18)和第二组电磁铁(2)的第一线圈组(17)断电,此时,第一组电磁铁(2)与永磁铁(7)对应;传感器(22)检测到凹槽(21)时发信号传给控制器(14),控制器(14)控制第二组电磁铁(2)的第一线圈组(17)和第一组的第二线圈组(18)得电,第二组电磁铁(2)的第二线圈组(18)和第一组电磁铁(2)的第一线圈组(17)断电,此时,第二组电磁铁(2)与永磁铁(7)对应;第一线圈组(17)通电时,电磁铁(2)的极性与永磁铁(7)的极性相同,壳体(1)内安装散热水箱(13)、第二环形水槽(33)和第一环形水槽(24),第二环形水槽(33)与第二水道(31)的另一端相通,第一环形水槽(24)与第一水道(25)的另一端相通,散热水箱(13)通过第四水管(32)和第三水管(26)分别与第二环形水槽(33)和第一环形水槽(24)对应相通,散热水箱(13)上安装第一线圈组(17)实现水循环。
  2. 根据权利要求1所述的全节能动力机,其特征在于:所述散热盒(4)内设有隔板(20)。
  3. 根据权利要求1所述的全节能动力机,其特征在于:所述转轴(9)上安装散热风扇(16)。
  4. 根据权利要求1所述的全节能动力机,其特征在于:所述转轴(9)上安装水泵驱动轮(30),水泵驱动轮(30)通过传动带与第一线圈组(17)的动力输入轮连接。
  5. 根据权利要求1所述的全节能动力机,其特征在于:所述导磁片(3)的上端设置矩形部(37),下端设置梯形部(36)。
  6. 根据权利要求1所述的全节能动力机,其特征在于:所述永磁铁(7)的中点(o)到转子中心的距离H大于等于转子半径三分之二。
  7. 根据权利要求1所述的全节能动力机,其特征在于:所述转轴(9)上 位于第二环形水槽(33)两侧各设置一个第二密封圈(34);所述转轴(9)上位于第一环形水槽(24)两侧各设置一个第一密封圈(23)。
  8. 根据权利要求7所述的全节能动力机,其特征在于:所述隔磁材料为铁或不锈钢。
  9. 根据权利要求1所述的全节能动力机,其特征在于:所述永磁铁(7)与转子对应的面为弧面。
  10. 根据权利要求1所述的全节能动力机,其特征在于:所述永磁铁(7)的数量为2n,永磁铁(7)能与一组电磁铁(2)一一对应。
PCT/CN2015/093759 2015-10-26 2015-11-04 全节能动力机 WO2017070976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510699721.0A CN105226856B (zh) 2015-10-26 2015-10-26 全节能动力机
CN201510699721.0 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017070976A1 true WO2017070976A1 (zh) 2017-05-04

Family

ID=54995631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093759 WO2017070976A1 (zh) 2015-10-26 2015-11-04 全节能动力机

Country Status (2)

Country Link
CN (1) CN105226856B (zh)
WO (1) WO2017070976A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550728B (zh) * 2020-04-22 2022-02-01 湖南城市学院 一种家用感应式太阳能路灯
CN114552934A (zh) * 2021-10-27 2022-05-27 厦门腾威胜检测科技有限公司 一种电磁控制式高频疲劳测试机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB880262A (en) * 1958-02-21 1961-10-18 English Electric Co Ltd Improvements relating to dynamo electric machines
US3753013A (en) * 1970-07-30 1973-08-14 Siemens Ag Liquid-cooled electric machine, particularly turbo-generator
JP2008167609A (ja) * 2006-12-28 2008-07-17 Mitsubishi Motors Corp 電動機
CN101645632A (zh) * 2009-09-10 2010-02-10 华中科技大学 一种外转子永磁同步电机的定子水冷装置
CN101651374A (zh) * 2009-01-13 2010-02-17 陈国宝 永磁模块式自冷却直流节能电机
CN103580417A (zh) * 2012-07-30 2014-02-12 英泰集团有限公司 一种增程式电动汽车用增程发电机
CN205051463U (zh) * 2015-10-26 2016-02-24 刘庆华 全节能动力机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10298A (en) * 1853-12-06 Improvement in cleaning machine-cards
CH640089A5 (en) * 1980-11-26 1983-12-15 Forces Motrices Neuchateloises Alternating electric current generator and method of manufacturing same
US5189325A (en) * 1990-06-15 1993-02-23 General Electric Company Liquid cooling the rotor of an electrical machine
JP2010093906A (ja) * 2008-10-06 2010-04-22 Fuji Electric Systems Co Ltd 永久磁石式回転機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB880262A (en) * 1958-02-21 1961-10-18 English Electric Co Ltd Improvements relating to dynamo electric machines
US3753013A (en) * 1970-07-30 1973-08-14 Siemens Ag Liquid-cooled electric machine, particularly turbo-generator
JP2008167609A (ja) * 2006-12-28 2008-07-17 Mitsubishi Motors Corp 電動機
CN101651374A (zh) * 2009-01-13 2010-02-17 陈国宝 永磁模块式自冷却直流节能电机
CN101645632A (zh) * 2009-09-10 2010-02-10 华中科技大学 一种外转子永磁同步电机的定子水冷装置
CN103580417A (zh) * 2012-07-30 2014-02-12 英泰集团有限公司 一种增程式电动汽车用增程发电机
CN205051463U (zh) * 2015-10-26 2016-02-24 刘庆华 全节能动力机

Also Published As

Publication number Publication date
CN105226856B (zh) 2017-12-19
CN105226856A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
CN103762765A (zh) 切向与径向合成磁场内嵌永磁转子驱动电机
WO2019033696A1 (zh) 一种Halbach型阵列永磁盘式无铁芯空心轴电机
CN103944336A (zh) 转子内嵌径向与切向永磁钢轮毂驱动电机
CN105119454A (zh) Halbach阵列式永磁直流无刷电机
WO2017177740A1 (zh) 一种永磁电动机
KR20090129705A (ko) 고효율 영구자석 모터
WO2017070976A1 (zh) 全节能动力机
CN108288881B (zh) 一种永磁电机
CN101436816A (zh) 新式永磁能机
CN203193469U (zh) 无铁芯盘式直流无刷电机
CN102843012B (zh) 拨动式节能型电动机
CN205051463U (zh) 全节能动力机
WO2017107723A1 (zh) 无刷直流电动机
CN101282067B (zh) 一种无刷化的双机械端口电机
TW201439449A (zh) 發電回授制動系統
CN102647038A (zh) 合成磁场的转子
CN114421654B (zh) 一种横向磁通c型内嵌式定子永磁无刷风力发电机
TWI810646B (zh) 盤式磁極線圈模組
CN204103723U (zh) 电动汽车永磁混合磁路电机
TWM450910U (zh) 具有高效率磁浮之小型電動機及風力發電機之組合裝置
CN105048755A (zh) 双极做功式永磁直流无刷电机
CN102386732A (zh) 一种嵌套式低速外转子永磁电机
CN208174510U (zh) 电动车用永磁无刷电机
CN102237736A (zh) 新永磁电机
WO2020147117A1 (zh) 具有栅栏式定子的外盘式马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907037

Country of ref document: EP

Kind code of ref document: A1