WO2017070809A1 - 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法 - Google Patents

一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法 Download PDF

Info

Publication number
WO2017070809A1
WO2017070809A1 PCT/CN2015/000870 CN2015000870W WO2017070809A1 WO 2017070809 A1 WO2017070809 A1 WO 2017070809A1 CN 2015000870 W CN2015000870 W CN 2015000870W WO 2017070809 A1 WO2017070809 A1 WO 2017070809A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
tib
mass
intermediate alloy
earth element
Prior art date
Application number
PCT/CN2015/000870
Other languages
English (en)
French (fr)
Inventor
陆海荣
孙飞
赵勇
Original Assignee
苏州天兼新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天兼新材料科技有限公司 filed Critical 苏州天兼新材料科技有限公司
Publication of WO2017070809A1 publication Critical patent/WO2017070809A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the present invention relates to a Mg-Al-TiB 2 -rare earth element intermediate alloy, and a method for preparing the same.
  • Magnesium-aluminum alloy is an alloy based on magnesium and aluminum and added with other elements. It has the advantages of low density, high specific strength and specific stiffness, good shock absorption performance, good electrical and thermal conductivity, good processing performance, etc. Widely used in the spacecraft and rocket missile manufacturing industries, it is a lightweight metal structural material with excellent performance. However, magnesium-aluminum alloys also have defects such as oxidative combustion, poor heat resistance, poor corrosion resistance, and easy oxidation and corrosion in humid air. Therefore, the parts made of magnesium-aluminum alloy need to be chemically treated or painted before use. In addition, the strength of magnesium-aluminum alloy is also low, only 200 ⁇ 300MPa, so it is mainly used to manufacture parts with low bearing capacity. Therefore, in order to expand the utilization of the magnesium-aluminum intermediate alloy material in a wider range of industrial fields, it is necessary to improve the mechanical properties such as the strength of the magnesium-aluminum alloy to fully exert its advantages.
  • TiB 2 has a melting point of up to 2980 ° C, has a high hardness, is excellent in corrosion resistance, and is stable even in HCl acid and HF acid, and is mainly used for preparing composite ceramic articles. Because it can resist the corrosion of molten metal, it can be used in the manufacture of molten metal crucible and electrolytic cell electrodes. It can also be combined with TiC, TiN, SiC and other materials to make various high temperature resistant parts and functional parts, such as high temperature ⁇ , Engine parts, etc.
  • rare earth elements are called “vitamins" of alloys.
  • the properties of the alloys can be significantly improved, especially in certain aspects, such as sound and light electromagnetics. Widely used in electronics, petrochemical, metallurgy, machinery, energy, light industry, environmental protection, agriculture and other fields.
  • reports on the use of rare earth elements to improve the mechanical properties of magnesium-aluminum intermediate alloys are rare.
  • the inventors of the present invention have proposed to improve the mechanical properties of the magnesium-aluminum alloy by adding TiB 2 and a rare earth element to the magnesium-aluminum alloy in a powder metallurgy manner.
  • the present invention solves the technical problem by the following embodiments:
  • Mg-Al-TiB 2 - rare earth element intermediate alloy composed of the following:
  • Mg 20-25% by mass
  • TiB 2 3-5.5 mass%
  • rare earth 0.1-0.25 mass%
  • the balance is Al and unavoidable impurities.
  • the Mg content in the Mg-Al-TiB 2 - rare earth element master alloy is from 69 to 77% by mass.
  • the total content of La and Ce in the rare earth of the Mg-Al-TiB 2 - rare earth element intermediate alloy is 20 to 30% by mass.
  • a method for producing a Mg-Al-TiB 2 -rare earth element intermediate alloy as described above comprising the steps of:
  • Step 1 preparing magnesium powder, aluminum powder, rare earth and TiB 2 particles according to the above ratio
  • Step 2 mixing and stirring the four kinds of powders of a predetermined mass ratio under a temperature condition of 15 to 25 ° C, adding an appropriate amount of absolute ethanol while stirring, and stirring for 8 to 12 minutes;
  • Step 3 Put the uniformly stirred powder into a mold of 1.5 kg capacity, press it into a compact and dry it.
  • the temperature at the time of pressing is about 20-30 ° C, and the pressure is 50-55 KN;
  • Step 4 Place the finished compact in a vacuum heating furnace and fill with argon gas to keep the heating furnace under vacuum, keep the pressure below 5.0 ⁇ 10 -3 Pa, and heat the furnace to 400-500. °C, heat preservation for 3.5-4.5 hours;
  • Step 5 The alloy ingot after the heating is completed is naturally cooled with the heating furnace.
  • the magnesium powder in the method of preparing the intermediate alloy, is 50 to 100 mesh.
  • the TiB 2 in the method of preparing the intermediate alloy, has a particle diameter of 400 ⁇ m to 500 ⁇ m.
  • a total content of Ce and La in the rare earth is 20 to 30% by mass.
  • the temperature in the second step is 20 °C.
  • the stirring time in the second step is 10 minutes.
  • the mechanical properties such as strength, hardness and elongation of the intermediate alloy obtained by the invention are significantly improved compared with the conventional magnesium-aluminum alloy materials, and can be widely applied to requirements requiring high mechanical properties, such as higher load.
  • Figure 1 is a process flow diagram of a process for preparing a Mg-Al-TiB 2 -rare earth intermediate alloy of the present invention.
  • the present invention obtains an intermediate alloy blank by the following steps:
  • Step 1 at room temperature, 75 parts of magnesium powder, 150 mesh aluminum powder, 25% rare earth having La and Ce content, and TiB 2 particles having a particle diameter of 450 ⁇ m as shown in Table 1 below;
  • Step 2 mixing and stirring the four kinds of powders under the condition of about 20 ° C, adding an appropriate amount of absolute ethanol while stirring, and stirring time is about 10 minutes;
  • Step 3 Put the evenly stirred powder into a mold of 1.5 kg capacity, press it into small pieces and dry; the temperature at the time of pressing is about 25 ° C, and the pressure is 50-55 KN;
  • Step 4 Place the finished small piece in a vacuum heating furnace and fill it with 99.999% pure inert gas Ar, so that the heating furnace is under vacuum, and the pressure should be kept below 5.0 ⁇ 10 -3 Pa; The temperature is raised to 400-500 ° C and the temperature is maintained for 3.5-4.5 hours.
  • Step 5 The alloy ingot after the heating is completed is naturally cooled with the heating furnace and packaged into the warehouse.
  • the specific composition of the magnesium-aluminum intermediate alloy ingot designed in the present invention is as follows:
  • Table 1 Composition of Mg-Al-TiB 2 -rare earth element intermediate alloys of Examples 1 to 3 of the present invention
  • the present invention further prepares the Mg-Al-TiB 2 - rare earth element intermediate alloy shown in the following Table 2 by the method as described above, and its composition content is the same as that of the embodiment 3, except that the embodiment 4 is employed.
  • 50-mesh magnesium powder and 100-mesh aluminum powder, rare earth having a content of La and Ce of 20%, and TiB 2 particles having a particle diameter of 400 ⁇ m are used as raw materials, and stirred in a step 2 at a temperature of 15 ° C for 8 minutes.
  • step 3 pressing at a temperature of 20 ° C; and in Example 5, using 100 mesh magnesium powder and 200 mesh aluminum powder, La and Ce content of 30% rare earth, and 500 ⁇ m TiB 2 particles.
  • stirring was carried out in the step 2 at a temperature of 25 ° C for 12 minutes, and in the third step, at a temperature of 30 ° C.
  • Table 2 Composition of Mg-Al-TiB 2 -rare rare earth intermediate alloy of 4 to 5 of the examples of the present invention
  • the middle material of the obtained material is subjected to XRF (X-ray fluorescence spectrometry) test of S2PUMA by Bruker, Germany to ensure that the content of the component meets the requirements within the error range.
  • Sampling was carried out by means of electric spark cutting to obtain tensile specimens, and the electrospark cutting influence layer was ground by sandpaper, and further polished by 400 mesh, 600 mesh, 800 mesh, 1200 mesh, 2000 mesh sandpaper, respectively. .
  • tensile strength and elongation were respectively measured for the above alloys using a WDW-500E/600E microcomputer-controlled electronic universal testing machine at a tensile speed of 3 mm/min.
  • the Vickers hardness measurement was performed using a Vickers hardness meter with HV10/20 (pressure applied at 10 kg force for 20 seconds).
  • Comparative Example 1 and Example 1 Comparative Example 1 and Example 1, Comparative Example 2 and Example 2, Comparative Example 3 and Example 3, it is understood that the intermediate alloy to which TiB 2 particles are added is compared with the alloy material containing no TiB 2 .
  • the elongation, Vickers hardness and strength are all significantly improved, and the strength and hardness are further improved after further addition of the rare earth element.

Abstract

一种Mg-Al-TiB2-稀土元素中间合金,其包含Mg : 20-25质量%,TiB2 : 3-5.5质量%,稀土 : 0.1-0.25质量%,余量为AI及不可避免的杂质。该镁铝中间合金材料可将强度由200~300MPa提高至330~415MPa,并使硬度和拉伸率也得到明显改善,此外还涉及一种用于生产该镁铝中间合金的方法。

Description

一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法 技术领域
本发明涉及一种Mg-Al-TiB2-稀土元素中间合金,及用于制备该中间合金的方法。
背景技术
镁铝合金是以镁和铝为基础并添加其他元素而成的合金,其具有密度低、比强度和比刚度高、减震性能好、导电导热性能良好、加工性能良好等优点,因此在航空器、航天器和火箭导弹制造工业中得到广泛应用,是一种性能优异的轻质金属结构材料。但是镁铝合金也存在易于氧化燃烧、耐热性差、耐蚀性能差、在潮湿空气中容易氧化和腐蚀等缺陷。因此镁铝合金制成的零部件在使用前,表面需要经过化学处理或涂漆。另外,镁铝合金的强度也较低,只有200~300MPa,因此主要用于制造低承力的零件。因此,为了在更大范围内,不同工业领域中扩大镁铝中间合金材料的利用,需要提高镁铝合金的强度等力学性能,以充分发挥其优势。
常规的熔炼法在生产制造镁铝合金部件过程中,由于Mg和Al元素性质均比较活泼,在高温下易氧化、燃烧,且蒸汽压高,存在容易蒸发损失等问题,需要进行氩气保护,通过控制压力来避免Mg和Al元素的损伤,操作过程复杂。近年来兴起的粉末冶金方法具有能够最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织,且生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品等优势,日益受到青睐。
TiB2熔点高达2980℃,具有很高的硬度,耐蚀性优异,即使在HCl酸和HF酸中仍然稳定,主要用于制备复合陶瓷制品。由于其可抗熔融金属的腐蚀,可用于熔融金属坩锅和电解池电极的制造,也可与TiC、TiN、 SiC等材料组成复合材料,制作各种耐高温部件及功能部件,如高温坩埚、引擎部件等。
另外,稀土元素被称为合金的“维生素”,通过向合金中加入不同种类的适量合金元素,能够显著提高合金的性能,特别是取得某些方面,例如声光电磁等方面的特殊性能,因此广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。但目前采用稀土元素来改善镁铝中间合金力学性能的报道鲜见。
发明内容
鉴于以上所述,本发明的发明人提出了以粉末冶金的方式,通过向镁铝合金中添加TiB2和稀土元素,以改善镁铝合金的力学性能。
具体地,本发明通过如下实施方案解决了所述技术问题:
根据本发明的一个实施方式,提供了一种Mg-Al-TiB2-稀土元素中间合金,其由以下组成:
Mg:20-25质量%,TiB2:3-5.5质量%,稀土:0.1-0.25质量%,余量为Al及不可避免的杂质。
根据本发明的一个实施例,所述Mg-Al-TiB2-稀土元素中间合金中Al含量为69-77质量%。
根据本发明第一个实施例,所述Mg-Al-TiB2-稀土元素中间合金的稀土中La和Ce的合计含量为20-30质量%。
根据本发明的一个实施方式,提供了一种用于制备如上所述的Mg-Al-TiB2-稀土元素中间合金的方法,其包含如下步骤:
步骤一:按照上述配比准备镁粉、铝粉、稀土及TiB2颗粒;
步骤二:在15~25℃的温度条件下将预定质量比的所述4种粉末混合搅拌,在搅拌的同时添加适量的无水乙醇,搅拌时间为8~12分钟;
步骤三:将搅拌均匀的粉末置入1.5公斤容量的模具中,压制成坯块并烘干,压制时温度为20~30℃左右,压力为50~55KN;
步骤四:将制作完成的坯块置于真空加热炉中,并充入氩气,使加热炉处于真空状态下,将压力保持在5.0×10-3Pa以下,将加热炉升温至400-500℃,保温3.5-4.5小时;
步骤五:将加热完成之后的合金锭随加热炉自然冷却。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述镁粉为50~100目。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述TiB2粒径为400μm~500μm。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述稀土中Ce和La的合计含量为20~30质量%。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述步骤二中的温度为20℃。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述步骤三中的温度为25℃。
根据本发明的一个实施例,所述制备所述中间合金的方法中,所述步骤二中的搅拌时间为10分钟
通过以上实施方案,本发明获得的中间合金强度、硬度、拉伸率等力学性能均比传统的镁铝合金材料相比得到明显改善,可广泛应用于需要较高力学性能要求,例如较高承载力要求的汽车零部件的制造。
附图说明
图1为制备本发明的Mg-Al-TiB2-稀土元素中间合金的方法的工艺流程图。
具体实施方式
本发明通过如下步骤获得了中间合金坯料:
步骤一:在室温条件下,准备如下表1所示的质量百分比的75目的 镁粉、150目的铝粉、La和Ce的含量为25%的稀土及粒径450μm的TiB2颗粒;
步骤二:在20℃左右的条件下将所述4种粉末混合搅拌,在搅拌的同时添加适量的无水乙醇,搅拌时间为10分钟左右;
步骤三:将搅拌均匀的粉末置入1.5公斤容量的模具中,压制成小块并烘干;压制时温度在25℃左右,压力在50-55KN;
步骤四:将制作完成的小块放置在真空加热炉中,并充入99.999%纯度惰性气体Ar,使加热炉处于真空状态下,将压力应保持在5.0×10-3Pa以下;将加热炉升温至400-500℃,保温3.5-4.5小时。
步骤五:将加热完成之后的合金锭随加热炉自然冷却,并包装入库。
本发明中所设计的镁铝中间合金锭的具体成分如下:
表1:本发明的实施例1~3的Mg-Al-TiB2-稀土元素中间合金的成分组成
Figure PCTCN2015000870-appb-000001
另外,本发明通过如上所述的方法进一步制备了下表2所示的Mg-Al-TiB2-稀土元素中间合金,其组成含量与实施例3相同,所不同的是,实施例4中采用了50目的镁粉和100目的铝粉、La和Ce的含量为20%的稀土、粒径400μm的TiB2颗粒为原料,在步骤2中在15℃的温度下进行搅拌,搅拌时间为8分钟,在步骤三中在20℃的温度下进行压制;而实施例5中则采用了100目的镁粉和200目的铝粉、La和Ce的含量为30%的稀土、粒径500μm的TiB2颗粒为原料,在步骤2中在25℃的温度下进 行搅拌,搅拌时间为12分钟,在步骤三中在30℃的温度下进行压制。
表2:本发明的实施例的4~5的Mg-Al-TiB2-稀土元素中间合金的成分组成
Figure PCTCN2015000870-appb-000002
在按照以上成分制得镁合金材料之后,对所得材料的中部取材,经德国布鲁克公司产型号为S2PUMA的XRF(X射线荧光光谱分析)检验确保其成分含量在误差范围内符合要求之后,对其采用电火花切割的方式进行取样,得到拉伸试样,并采用砂纸磨去电火花切割影响层,并进一步分别采用400目、600目、800目、1200目、2000目砂纸打磨之后进行抛光处理。之后,采用WDW-500E/600E微机控制电子万能试验机以3mm/min的拉伸速度对上述合金分别测拉伸强度与拉伸率。另外,采用维氏硬度计,以HV10/20(在10kg力下施压20秒)进行维氏硬度测量。
所得力学性能具体结果如下表3所示:
表3:所得镁合金的力学性能
Figure PCTCN2015000870-appb-000003
由表3中分别比较例1和实施例1,比较例2和实施例2,比较例3进而实施例3可知,与不含TiB2的合金材料相比,添加了TiB2颗粒的中间合金的拉伸率、维氏硬度和强度均得到明显改善,且进一步添加稀土元素之后,强度和硬度得到进一步提高。
同时,比较实施例3和4、5可知,在本发明的范围内改变原料和加工过程的某些参数,性质基本不受影响。
综上,通过在镁铝中间合金中添加TiB2和稀土元素,拉伸强度从传统镁铝合金的200~300MPa提高至330~415MPa。
关于以上所述的仪器及操作步骤和参数,应理解的是,其为描述性而非限定性的,可通过等价置换的方式在以上说明书及权利要求所述的范围内做出修改。即,本发明的范围应参照所附权利要求的全部范围而确定,而不是参照上面的说明而确定。总之,应理解的是本发明能够进行多种修正和变化。
产业上的实用性
本发明获得的Mg-Al-TiB2-稀土元素中间合金,与传统的镁铝合金材料相比,强度从200~300MPa提高至330~415MPa,硬度和拉伸率也得到明显改善,可应用于汽车零部件的生产,具有广阔的应用前景。

Claims (10)

  1. 一种Mg-Al-TiB2-稀土元素中间合金,其特征在于,由以下组分组成:
    Mg:20-25质量%,TiB2:3-5.5质量%,稀土:0.1-0.25质量%,余量为Al及不可避免的杂质。
  2. 根据权利要求1所述的Mg-Al-TiB2-稀土元素中间合金,其特征在于,Al含量为69-77质量%。
  3. 根据权利要求1所述的Mg-Al-TiB2-稀土元素中间合金,其特征在于,所述稀土中La和Ce的合计含量为20-30质量%。
  4. 一种用于制备如权利要求1-3中任一项所述的Mg-Al-TiB2-稀土元素中间合金的方法,其包含如下步骤:
    步骤一:根据权利要求1-3中任一项所述的组分配比准备镁粉、铝粉、稀土及TiB2颗粒;
    步骤二:在15~25℃的温度条件下将预定质量比的所述4种粉末混合搅拌,在搅拌的同时添加适量的无水乙醇,搅拌时间为8~12分钟;
    步骤三:将搅拌均匀的所述粉末置入1.5公斤容量的模具中,压制成坯块并烘干,压制时温度为20~30℃,压力为50~55KN;
    步骤四:将制作完成的所述坯块置于真空加热炉中,并充入氩气,使加热炉处于真空状态下,将压力保持在5.0×10-3Pa以下,将加热炉升温至400-500℃,保温3.5-4.5小时;
    步骤五:将加热完成之后的合金锭随加热炉自然冷却。
  5. 根据权利要求4所述的方法,其特征在于,所述镁粉为50~100目。
  6. 根据权利要求4所述的方法,其特征在于,所述TiB2粒径为400μm~500μm。
  7. 根据权利要求4所述的方法,其特征在于,所述稀土中Ce和La 的合计含量为20~30质量%。
  8. 根据权利要求4所述的方法,其特征在于,所述步骤二中的温度为20℃。
  9. 根据权利要求4所述的方法,其特征在于,所述步骤三中的温度为25℃。
  10. 根据权利要求4所述的方法,其特征在于,所述步骤二中的搅拌时间为10分钟。
PCT/CN2015/000870 2015-10-30 2015-12-04 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法 WO2017070809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510727394.5A CN105200282A (zh) 2015-10-30 2015-10-30 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法
CN201510727394.5 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017070809A1 true WO2017070809A1 (zh) 2017-05-04

Family

ID=54948234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000870 WO2017070809A1 (zh) 2015-10-30 2015-12-04 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法

Country Status (2)

Country Link
CN (1) CN105200282A (zh)
WO (1) WO2017070809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652658A (zh) * 2021-08-25 2021-11-16 湖南稀土金属材料研究院有限责任公司 一种La-Zr合金靶及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111155009A (zh) * 2020-01-16 2020-05-15 深圳市新星轻合金材料股份有限公司 镁铝钛铬合金制备方法
CN111235415A (zh) * 2020-01-16 2020-06-05 深圳市新星轻合金材料股份有限公司 镁铝钛钒合金制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE349331B (zh) * 1970-04-28 1972-09-25 Svenska Aluminiumkompaniet Ab
CN1851010A (zh) * 2006-04-25 2006-10-25 清华大学 铝钛硼稀土细化剂及其制备方法
CN102424923A (zh) * 2011-11-29 2012-04-25 黄冈华尔铝合金有限公司 A1-Ti-B-稀土RE晶粒细化剂及其制备方法
CN103589916A (zh) * 2013-12-03 2014-02-19 河北工业大学 一种快速凝固Al-Ti-B-Sc中间合金细化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101280378B (zh) * 2008-02-27 2010-12-22 中国科学院长春应用化学研究所 一种20-100Hz频段高阻尼铝镁合金及其制备方法
CN103484731A (zh) * 2013-08-12 2014-01-01 安徽环宇铝业有限公司 一种汽车轮毂用铝合金及其制备方法
CN103993191B (zh) * 2014-03-13 2016-09-07 淮北津奥铝业有限公司 一种高强高韧铝合金型材的制备方法
CN104651682A (zh) * 2014-05-26 2015-05-27 章建平 一种铸造Al-10Mg合金的性能优化工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE349331B (zh) * 1970-04-28 1972-09-25 Svenska Aluminiumkompaniet Ab
CN1851010A (zh) * 2006-04-25 2006-10-25 清华大学 铝钛硼稀土细化剂及其制备方法
CN102424923A (zh) * 2011-11-29 2012-04-25 黄冈华尔铝合金有限公司 A1-Ti-B-稀土RE晶粒细化剂及其制备方法
CN103589916A (zh) * 2013-12-03 2014-02-19 河北工业大学 一种快速凝固Al-Ti-B-Sc中间合金细化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652658A (zh) * 2021-08-25 2021-11-16 湖南稀土金属材料研究院有限责任公司 一种La-Zr合金靶及其制备方法

Also Published As

Publication number Publication date
CN105200282A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
JP6261618B2 (ja) チタン素材および窒素固溶チタン粉末材料の製造方法
Průša et al. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion
EP3026135A1 (en) Alloy casting material and method for manufacturing alloy object
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
CN107338387A (zh) 一种铝合金气缸盖的制备方法
WO2017070809A1 (zh) 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法
WO2016179733A1 (zh) 一种中间合金材料及其制备方法
Průša et al. Mechanical properties and thermal stability of Al-23Si-8Fe-1Cr and Al-23Si-8Fe-5Mn alloys prepared by powder metallurgy
WO2016179734A1 (zh) 一种镁-铝-碳化硅中间合金材料及其制备方法
TWI518183B (zh) Corrosion resistant high nickel alloy and its manufacturing method
CN111455329B (zh) 一种铝钛硼靶材及其粉末固相合金化烧结方法
CN102912203A (zh) 晶粒细化型镁锂合金及其制备方法
CN113798488B (zh) 铝基粉末冶金材料及其制备方法
CN105714169A (zh) 一种Mo-Si-B-Hf-Al合金棒材及其制备方法
CN108672702A (zh) 减震器转向节支架
Sercombe et al. The sintering of an Fe–Cr–Ni–B–C powder
US20180105901A1 (en) Method of making a molybdenum alloy having a high titanium content
KR101481909B1 (ko) 마그네슘 합금의 제조 방법
KR101858856B1 (ko) 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법
CN108048713B (zh) 一种铝锌镁铜系高强细晶铝合金及其制备方法
JP5688744B2 (ja) 高強度高靱性銅合金鍛造材
KR102010307B1 (ko) 알루미늄-티타늄 복합재료의 제조방법 및 이에 의해 제조된 알루미늄-티타늄 복합재료
TWI720111B (zh) Cu-Ga合金濺鍍靶材之製造方法以及Cu-Ga合金濺鍍靶材
RU2557117C1 (ru) Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него
CN115927932B (zh) 一种高强度压铸铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906875

Country of ref document: EP

Kind code of ref document: A1