WO2017069340A1 - 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법 - Google Patents

입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법 Download PDF

Info

Publication number
WO2017069340A1
WO2017069340A1 PCT/KR2015/014239 KR2015014239W WO2017069340A1 WO 2017069340 A1 WO2017069340 A1 WO 2017069340A1 KR 2015014239 W KR2015014239 W KR 2015014239W WO 2017069340 A1 WO2017069340 A1 WO 2017069340A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
particles
particle size
chromium oxide
oxide
Prior art date
Application number
PCT/KR2015/014239
Other languages
English (en)
French (fr)
Inventor
박지찬
양정일
임탁형
정헌
강신욱
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US15/138,966 priority Critical patent/US10105685B2/en
Publication of WO2017069340A1 publication Critical patent/WO2017069340A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • C01G37/033Chromium trioxide; Chromic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases

Definitions

  • the present invention provides chromium oxide particles, or composite particles of iron oxide-chromium alloy and chromium oxide, in which the particle size is controlled; Its preparation method; And uses thereof.
  • Chromium oxide particles can be very good as catalysts or supports used for high temperature reactions because they are thermally very stable and interstitial sintering rarely occurs.
  • the synthesis method is often complicated or environmentally harmful reagents, and in terms of the product it was not easy to obtain small and uniform at the nano level.
  • Iron oxide and chromium oxide materials can be used as gas sensors, electrode materials, catalysts, and the like. Catalytic reactions can be typically applied to water gas shift (WGS) reactions or reverse water gas shift (RWGS) reactions.
  • WGS water gas shift
  • RWGS reverse water gas shift
  • the reaction is more advantageous at high temperatures as a weak endothermic reaction.
  • nanoparticles used as a catalyst the smaller the size, the weaker the thermal stability and the sintering phenomenon may occur easily.
  • a metal oxide material such as porous silica may be used as a support, but silica has a disadvantage of being vulnerable to steam, and thus it is not suitable for use as a support for high temperature water gas shift reactions.
  • chromium oxide nanoparticles that are stable to steam or high temperature reaction are not only suitable as catalysts or supports for high temperature reverse water gas reactions, but also have advantages of being used as excellent catalyst materials in other high temperature catalytic reactions.
  • a method of preparing chromium oxide particles having a controlled particle size comprising: preparing a porous carbon material particle having a pore volume of 0.3 cm 3 / g or more; Step 2a of mixing the chromium hydrate salt and the porous carbon material particles; A third step of melting and impregnating the chromium hydrate salt into the pores of the porous carbon material particles at a temperature capable of melting the chromium hydrate salt; And the chromium hydrate salt and the porous carbon material are calcined at a high temperature at a temperature of 700 to 900 ° C. to form chromium oxide particles whose particle size is controlled by the pores of the porous carbon material, while the porous carbon material is thermally decomposed to remove the particle size. And a fourth step of leaving controlled chromium oxide particles.
  • the second aspect of the present invention is prepared by the method according to the first aspect, and consists of chromium oxide crystal phase, characterized in that the chromium oxide particles characterized in that the particle size is uniformly controlled on the order of tens of nanometers of 10 nm to 50 nm to provide.
  • a method for preparing composite particles of an iron oxide-chromium alloy and chromium oxide having a controlled particle size comprising: preparing a porous carbon material particle having a pore volume of 0.3 cm 3 / g or more; Step 2b of mixing the chromium hydrate salt, iron hydrate salt and the porous carbon material particles; A third step of melting and impregnating the chromium hydrate salt and the iron hydrate salt into the pores of the porous carbon material particles at a temperature capable of melting the chromium hydrate salt and the iron hydrate salt; And chromium hydrate salt, iron hydrate salt and porous carbon material at high temperature of 700 to 900 ° C.
  • the method includes a fourth step of leaving the composite particles in which the iron oxide-chromium alloy crystal phase and the chromium oxide crystal phase are mixed.
  • the fourth aspect of the present invention is prepared by the method according to the third aspect, wherein the iron oxide-chromium alloy crystal phase and the chromium oxide crystal phase are mixed, and the particle size is uniformly controlled at the level of tens of nanometers of 10 nm to 50 nm.
  • the present invention provides composite particles of an iron oxide-chromium alloy and chromium oxide.
  • the fifth aspect of the present invention provides a catalyst for the reverse water-repellent gas transition reaction comprising chromium oxide particles according to the second aspect, or composite particles of the iron oxide-chromium alloy and chromium oxide according to the fourth aspect.
  • a sixth aspect of the present invention provides a method for producing carbon monoxide from a carbon dioxide-containing gas with a carbon dioxide conversion of 40% or more, comprising the steps of: i) applying a catalyst for the reverse water gas shift reaction according to the fifth aspect to a reverse water gas shift reactor; ; And ii) supplying carbon dioxide and hydrogen containing gas to the reactor to perform a reverse water-gas shift reaction with the catalyst.
  • Chromium oxide particles have been applied to various fields such as hydrogen storage, catalysts, coating materials, dyes, electric devices, drug delivery, and so on. They are manufactured by various methods such as hydrothermal reaction, pyrolysis, combustion, sol-gel method, and precipitation method. come. However, it was not easy to obtain particles uniformly at the level of several tens of nanometers, and when using a high-porous material such as silica as a frame, a process of dissolving silica required a complicated process.
  • the salt is filled and then calcined to remove the mold substantially completely, the chromium hydrate salt is impregnated into the pores rather than the outer surface of the porous carbon material particles so that chromium oxide particles may be generated during the subsequent firing process. It has been found that particle size can be easily controlled to tens of nanometers.
  • the porous carbon material particles having a large pore volume are selected, and the chromium hydrate salt is melt-free impregnated to the pore size of the porous carbon material particles compared to the impregnation method using a conventional solvent.
  • metal hydrate salts are decomposed to produce metal oxide particles by calcining the metal hydrate salt at a high temperature
  • sintering between metal oxide particles occurs at an extremely high temperature of 700 ° C. It is difficult to have a uniform and relatively small particle size at the metric level.
  • the chromium hydrate salt is melt-impregnated with the sacrificial frame and then calcined at a high temperature of 700 to 900 ° C., the porous carbon material is completely removed and the chromium oxide particles are removed from 10 nm to no sintering. It has been found to produce a uniform particle size on the order of tens of nanometers of 50.
  • the desired particles are obtained by mixing the iron oxide-chromium alloy crystal phase and the chromium oxide crystal phase with a particle size controlled by the pore size of the porous carbon material particles. It has been found that it can be made by controlling to a size, for example, on the order of tens of nanometers of 10 nm to 50 nm. The present invention is based on this.
  • the present invention uses a porous carbon material having a large pore volume and impregnates the precursor in the form of a hydrate salt, and then calcinates at a high temperature of 700 ° C. or higher, preferably 700 to 900 ° C., thereby substantially reducing the mold.
  • a high temperature 700 ° C. or higher, preferably 700 to 900 ° C., thereby substantially reducing the mold.
  • the chromium hydrate salt and the porous carbon material are calcined at a high temperature of 700 to 900 ° C. to form chromium oxide particles whose particle size is controlled by the pores of the porous carbon material, while the porous carbon material is pyrolyzed to remove and the particle size is controlled. And a fourth step of leaving the chromium oxide particles (FIGS. 1 and 2).
  • the method for producing chromium oxide particles according to the present invention may further include a step 3a-1 of drying the porous carbon material particles in which the chromium hydrate salt is melt-impregnated between steps 3a and 4a. May be (FIG. 2).
  • chromium oxide particles consisting of a chromium oxide crystal phase, the particle size uniformly controlled to a level of several tens of nanometers of 10 nm to 50 nm.
  • Chromium oxide particles may have monodispersity.
  • the coefficient of variation (CV) of the particle size of the chromium oxide particles may be 0.3 or less, for example 0.001 to 0.3, preferably 0.01 to 0.2.
  • coefficient of variation means the standard deviation divided by the arithmetic mean. Therefore, the coefficient of variation with respect to the particle size can be defined by the following equation (1).
  • the chromium hydrate salt, the iron hydrate salt and the porous carbon material were calcined at a temperature of 700 to 900 ° C. to form iron oxide-chromium alloy particles and chromium oxide particles whose particle size was controlled by the pores of the porous carbon material.
  • the carbonaceous material is pyrolyzed to remove, and the fourth step is to leave the composite particles in which the iron oxide-chromium alloy crystal phase with controlled particle size and the chromium oxide crystal phase are mixed (FIGS. 1 and 2).
  • the method for producing a composite particle of the iron oxide-chromium alloy and chromium oxide in which the particle size is controlled comprises drying the porous carbon material particles in which the chromium hydrate salt is melt impregnated between steps 3b and 4b. It may further include a step 3b-1 to make (FIG. 2).
  • the iron oxide-chromium oxide crystal phase and the chromium oxide crystal phase are mixed, and the particle size of the iron oxide-chromium alloy and chromium oxide uniformly controlled to a level of several tens of nanometers of 10 nm to 50 nm.
  • Composite particles can be provided.
  • Composite particles may have monodispersity.
  • the coefficient of variation (CV) of the particle size of the composite particles may be 0.3 or less, for example 0.001 to 0.3, preferably 0.01 to 0.2.
  • the chromium oxide particles or the composite particles of the iron oxide-chromium alloy and chromium oxide according to the present invention can be uniformly controlled in particle size to several tens of nanometers of 10 nm to 50 nm to provide a high specific surface area for contacting the reactants. When used for various catalyst applications it is advantageous in terms of catalyst performance.
  • the iron oxide and chromium oxide material can be used as a gas sensor, electrode material, etc.
  • the chromium oxide particles or the composite particles of the iron oxide-chromium alloy and chromium oxide according to the present invention are small at the nano level when applied as a gas sensor or electrode material.
  • the uniform particle size is advantageous in terms of the contact efficiency of the reactants.
  • Porous materials are divided into microporous and mesoporous materials according to the pore size of the material.
  • the pore size is 2 nm or less, the microporous and the pore size are between 2 and 50 nm. It is called.
  • the porous carbon material of the present invention is not limited to the pore size, but is preferably a mesoporous carbon material for preparing nanoscale metal-containing particles, and particularly, an oxide having an average particle size of several tens of nanometers on the order of 10 to 50 nm.
  • the average pore size of the porous carbon material particles may be preferably 2 to 50 nm, more preferably 10 to 50 nm.
  • the pore volume of the porous carbon material particles is preferably 0.3 cm 3 / g or more, and specifically 0.3 to 30 cm 3 / g.
  • porous carbon materials include activated carbon, activated charcoal, synthetic porous carbon support CMK, mixtures thereof, and the like.
  • Specific examples of the synthetic porous carbon support CMK include CMK-3, CMK-8, and the like.
  • CMK-3 is synthesized from SBA-15, which is mesoporous silica, and is a porous carbon material having hexagonal pores and a long cylindrical shape in the axial direction.
  • CMK-8 is synthesized from KIT-6, a silica mesoporous silica, and is a porous carbon material having a cubic structure in which two kinds of mesopores are independently connected three-dimensionally.
  • Activated carbon is a highly adsorptive material, and most of the components are carbonaceous materials.
  • Graphite-shaped planar crystals are composed of amorphous carbon in a complex combination and are porous.
  • the activated carbon those having an average diameter of pores of 2 nm to 50 nm and a specific surface area of 500 m 2 / g to 1500 m 2 / g can be used.
  • the average size of the porous carbon material particles may be on a micrometer scale, such as 0.2 ⁇ m to 200 ⁇ m. By controlling the size of the porous carbon material particles, the size of the final product can be controlled.
  • chromium hydrate salts and iron hydrate salts are metal sources having a lower melting point than the metal oxides usually used as a support.
  • the second step of mixing the chromium hydrate salt or the mixture of the chromium hydrate salt and the iron hydrate salt with the porous carbon material particles is mechanically mixed and mixed.
  • the molar ratio of chromium hydrate salt: iron hydrate salt may be from 1: 0.1 to 1.
  • the third step of melt impregnation of the chromium hydrate salt or the mixture of the chromium hydrate salt and the iron hydrate salt into the pores of the porous carbon material particles is easy for the procedure, and finally advantageous for high dispersion and high support of the melt.
  • the melt of the salt can be impregnated more uniformly considering the density of the metal hydrate salt and the pore volume of the porous carbon material.
  • the hydrate salt of each metal is added in consideration of the density of each metal salt used and the pore volume of the porous carbon material, and for the uniformity of the particles formed, a chromium hydrate salt per gram of carbon, or Preference is given to melt impregnation of 0.3 to 3 grams with the mass of chromium hydrate and iron hydrate salt mixtures.
  • the melt-infiltration process can be impregnated near the melting point of the mixed salt.
  • the exact melting point of the mixed hydrate salts can be determined by differential scanning calorimetry (DSC) analysis and more easily impregnated based on the high melting point salts of the mixed salts.
  • reaction In order to melt and support the metal hydrate salt, it is important to control the temperature and maintain the pressure in the reaction vessel.
  • the reaction is preferably performed in a closed system so that the pressure due to the vapor pressure generated during the reaction does not disappear.
  • the reaction time may be 4 to 48 hours, preferably 24-48 hours, so that the salts can sufficiently melt and enter the pores.
  • the reactor used for melt impregnation is preferably a plastic container made of polypropylene or Teflon. Because it is transparent, it is easy to observe and convenient for mass production.
  • the chromium hydrate salt or a mixture of chromium hydrate salt and iron hydrate salt may be dried to melt the porous carbon material particles as in step 3-1.
  • the drying is preferably carried out at a temperature at which the impregnated hydrate salt does not decompose, for example, room temperature (15 to 35 °C).
  • the fourth step of high temperature firing at the temperature and reaction conditions at which the chromium hydrate salt, iron hydrate salt and the porous carbon material is pyrolyzed completely removes the porous carbon materials used as a template for the formation of the metal oxide particles, chromium hydrate
  • the salt, or a mixture of chromium hydrate salts and iron hydrate salts is pyrolyzed to form chromium oxide particles or composite particles in which the iron oxide-chromium alloy crystal phase and the chromium oxide crystal phase are mixed, respectively.
  • chromium oxide particles having a particle size controlled to a small size of several tens of micrometers or composite particles in which an iron oxide-chromium alloy crystal phase and a chromium oxide crystal phase are mixed are formed. do.
  • a process of high temperature baking at a temperature of 700 ° C. or higher under atmospheric or oxygen conditions is required.
  • the heat treatment temperature may be applied from 700 ° C. or higher at which metal salts may be decomposed and carbon materials may be completely removed.
  • firing at a temperature of 900 ° C. or higher agglomeration between particles may occur, which is disadvantageous for use as a catalyst.
  • Temperatures between 700 and 900 ° C are suitable.
  • the atmosphere is preferably treated in the air in consideration of cost problems and stability, but pure oxygen and mixed oxygen may be used in order to secure high reliability.
  • Non-limiting examples of firing time may be 1 to 24 hours.
  • the heat treatment time may vary somewhat depending on the calcination machine, but complete removal of carbon is possible after 1 hour at 700 ° C. or more, and after 24 hours, the additional heat treatment is not significant and may cause aggregation of particles.
  • the chromium oxide particles or the composite particles obtained in the fourth step may be composed of a crystalline phase, and thus the particles have excellent stability at high temperatures.
  • the present invention is also advantageous for producing single metal oxide particles consisting only of chromium oxide having a uniform particle size on the order of tens of nanometers, but provides a method for producing composite particles by more easily alloying iron oxide with chromium oxide. . Accordingly, not only the high temperature stability is excellent due to the characteristics of chromium oxide itself, but when iron oxide is alloyed, the iron oxide may have high temperature stability, and thus it is applicable to various applications requiring high temperature stability requiring alloy particles of chromium oxide and iron oxide. Do. For example, it may be particularly preferable when chromium oxide is used as a catalyst and iron oxide is used for the purpose of serving as a promoter for improving the catalytic activity of chromium oxide.
  • the chromium oxide particles of the present invention are hydrogen storage materials, sensor materials, adsorbents, coating materials, dyes, to which these materials can be applied according to the type of metal oxide contained in these particles. It can also be applied to electrode materials, drug carriers, and the like.
  • the particles of the present invention are effective in the diffusion of reactants due to particle size of several tens of nanometers when applied to gas phase and liquid phase catalytic reactions. It can have an advantageous advantage and can be obtained at a high temperature due to the characteristics of chromium oxide and excellent reaction even in harsh catalytic reaction environment. Specifically, local hot spots may be formed during the reversible gas transition reaction requiring a high temperature of 700 ° C. or higher during the reaction.
  • problems such as aggregation of adjacent nanoparticle catalysts may be solved. Can be.
  • the reaction when applied to the high temperature reverse water gas shift reaction, the reaction can be effectively carried out with only a small amount of catalyst, making it a highly active catalyst in a compact reactor. It is expected.
  • the present invention can effectively produce carbon monoxide on the basis of high carbon dioxide conversion (near equilibrium conversion of the corresponding temperature) using the chromium oxide particles or the composite particles of the iron oxide-chromium alloy and chromium oxide as a catalyst.
  • carbon monoxide may be prepared by injecting a chromium oxide particle or a composite particle of an iron oxide-chromium alloy and chromium oxide into a reverse water gas shift reactor as a catalyst and then injecting a carbon dioxide-containing gas. .
  • chromium oxide serves as a main catalyst and iron oxide may be used as a promoter to further improve carbon dioxide conversion.
  • the method for producing carbon monoxide from the carbon dioxide-containing gas is a method for producing carbon monoxide from the carbon dioxide-containing gas with a carbon dioxide conversion of 40% or more, i) the chromium oxide particles or the iron oxide-chromium alloy; Applying a catalyst for a reverse water gas shift reaction comprising a composite particle of chromium oxide to a reverse water gas shift reactor; And ii) supplying carbon dioxide and hydrogen-containing gas to the reverse water gas shift reactor to perform a reverse water gas shift reaction by the catalyst for reverse water gas shift reaction.
  • step ii) may be carried out under the conditions of the reaction temperature 600 to 900 °C. If the reaction temperature is lower than 600 °C carbon dioxide conversion may be lowered, if higher than 900 °C the stability of the catalyst may be lowered.
  • step ii) may be carried out under the conditions of molar ratio 1: 0.5 to 2 of carbon dioxide: hydrogen (CO 2 / H 2 ). If the molar ratio of carbon dioxide: hydrogen (CO 2 / H 2 ) is out of the above range, the carbon dioxide conversion may drop.
  • step ii) may be performed under the conditions of a gas hourly space velocity (GHSV) of 10 to 100 NL g cat ⁇ 1 h ⁇ 1 . If the space velocity is outside the range, the carbon dioxide conversion rate may drop.
  • GHSV gas hourly space velocity
  • the present invention provides simpler chromium oxide particles or composite particles of iron oxide-chromium alloy and chromium oxide having a uniform particle size on the order of tens of nanometers by using porous carbon material particles having advanced pores as sacrificial templates. It can provide a method that can be produced efficiently.
  • the uniform chromium oxide particles or the composite particles of the iron oxide-chromium alloy and chromium oxide obtained at the tens of nanometer level obtained as described above are advantageous for the diffusion of the reactants due to the particle size of the tens of nanometers when applied to gas phase and liquid phase catalytic reactions. Due to the characteristics of chromium oxide, it is possible to obtain excellent reaction results even in a stable catalytic reaction environment at high temperatures.
  • FIG. 1 is a schematic diagram of the production of chromium oxide particles or a composite particle of iron oxide-chromium alloy and chromium oxide using a porous carbon structure as a sacrificial frame according to the present invention.
  • FIG. 2 is a flow chart schematically showing a process for producing chromium oxide particles or a composite particle of iron oxide-chromium alloy and chromium oxide according to the present invention.
  • FIG. 3 is a TEM image of chromium oxide particles prepared in one embodiment of the present invention.
  • FIG. 5 is a TEM image of a composite particle of iron oxide-chromium alloy and chromium oxide prepared in one embodiment of the present invention.
  • FIG. 6 is an XRD spectrum of a composite particle of iron oxide-chromium alloy and chromium oxide prepared in one embodiment of the present invention.
  • FIG. 7 is a TEM image after high temperature heat treatment of an iron oxide-chromium alloy and chromium oxide composite particles prepared in one embodiment of the present invention at 800 ° C. for 4 hours.
  • Figure 9 shows the carbon dioxide conversion with time when performing a reverse water gas shift reaction at 700 °C using chromium oxide particles prepared in an embodiment of the present invention.
  • Figure 10 shows the carbon dioxide conversion with time when performing a reverse water gas shift reaction at 700 °C in a non-catalyst condition.
  • FIG. 3 shows a transmission electron microscopy (TEM) image of Cr 2 O 3 nanoparticles. 3, it can be seen that the size of Cr 2 O 3 nanoparticles are obtained relatively uniformly as small as 15-30 nm level.
  • TEM transmission electron microscopy
  • Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles were synthesized using the same commercially available activated carbon as that used in Example 1 as follows.
  • the mixed powder was placed in a 30 mL polypropylene (Polypropylene) container, the container was capped tightly, and then placed in a drying oven at a temperature of 60 ° C. and stored for 24 hours. After 24 hours, cool the mixture powder at room temperature at 800 °C under a dried air stream atmosphere at 300mL / min flow rate using a baking oven by ensuring the high-temperature heat treatment for 4 hours to completely remove the carbon-Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles were obtained.
  • Polypropylene Polypropylene
  • FIG. 5 shows a TEM image of the Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles.
  • Figure 5 shows a TEM image of the Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles.
  • the size of the Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles are obtained relatively uniformly as small as 15-30 nm level.
  • the through XRD spectrum analysis of Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles obtained in the Fe 2 Cr 2 O 3 / Cr 2 O 3 The analysis of the crystal phase of the composite nano-particle, the existing It was confirmed that Fe 2 Cr 2 O 3 (JCPDS No. 02-1357) crystal phase and Cr 2 O 3 crystal phase (JCPDS No. 38-1479) reported in the literature exist together (FIG. 6).
  • the Fe 2 Cr 2 O 3 / Cr 2 O 3 composite nanoparticles obtained through Example 2 were subjected to a high temperature heat treatment at 800 ° C. for 4 hours under a hydrogen flow atmosphere at a flow rate of 300 mL / min using a firing oven and then reduced. The degree of change of these particles was analyzed by TEM and XRD.
  • Example 4 Cr 2 O 3 Nanoparticles and Fe 2 Cr 2 O 3 / Cr 2 O 3 High Temperature Reversible Gas Transfer Reaction Performance Experiment Using Composite Nanoparticle Catalyst
  • the high temperature reverse water gas shift reaction was performed using a fixed bed tubular reactor (inner diameter: 4 mm).
  • a thermocouple was mounted inside the reaction tube to adjust the temperature during the reaction.
  • quartz wool was first placed inside the reaction tube under a catalyst and loaded on 0.1 g of Cr 2 O 3 nanoparticles obtained in Example 1 above.
  • CO 2 carbon dioxide
  • the actual reaction was carried out at a molar ratio of hydrogen to carbon dioxide (CO 2 ) of 1: 1 at 700 ° C.
  • the actual flow rates of hydrogen and CO 2 were 50 mL / min, respectively, and the GHSV values were 60 NL g cat -1 h -1 .
  • Analysis of the reactants and products was carried out by gas chromatography (GC) during the 4 hour reaction period, and the water incidentally generated after the reaction was recovered from the cooling trap.
  • GC gas chromatography
  • the high temperature reverse water gas shift reaction was performed in the same manner as in Example 4 without filling the catalyst.
  • the reaction was carried out at a molar ratio of hydrogen to carbon dioxide (CO 2 ) 1: 1 at 700 °C.
  • the actual flow rate values of hydrogen and CO 2 were 50 mL / min, respectively.
  • the CO 2 conversion for the reaction for 4 hours after the reaction is shown in FIG. 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들; 이의 제조방법; 및 이의 용도에 관한 것으로, 큰 기공 부피를 갖는 다공성 탄소 물질 입자를 희생틀로서 사용함으로써 원하는 입자 크기를 갖는 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들을 보다 간단하고 효율적으로 제조할 수 있으며, 상기와 같이 얻어진 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들은 기상 및 액상 촉매 반응에 적용시 입자 균일성으로 인해 반응물의 확산에 유리한 장점을 가질 수 있으며 고온에서 안정하면서도 가혹한 촉매 반응환경에서도 우수한 반응결과를 얻을 수 있다.

Description

입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법
본 발명은 입자 크기가 제어된, 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들; 이의 제조방법; 및 이의 용도에 관한 것이다.
산화크롬 입자는 열적으로 매우 안정하고 입자간 sintering 이 잘 일어나지 않기 때문에 고온 반응에 사용되는 촉매 또는 지지체로 매우 우수할 수 있다. 하지만, 그 합성 방법이 복잡하거나 환경에 유해한 시약을 사용하는 경우가 많고, 생성물의 측면에서는 나노 수준에서 작고 균일하게 얻기가 쉽지 않았다.
산화철과 산화크롬 물질의 경우 가스센서, 전극 소재, 촉매 등으로 사용될 수 있다. 촉매 반응의 경우는 아래와 같이 대표적으로 수성가스전이(water gas shift, WGS) 반응이나 역수성가스 전이 (reverse water gas shift, RWGS) 반응에 적용될 수 있다.
CO2 + H2 ↔ CO + H2O
특히, 이산화탄소와 수소 가스로부터 물과 일산화탄소를 합성하는 역수성가스 전이 반응의 경우 약한 흡열반응으로서 고온으로 반응은 더욱 유리해지는 특징이 있다. 하지만, 촉매로 사용되는 나노입자의 경우 그 크기가 작을수록 열적 안정성이 약해지고 쉽게 소결 (sintering) 현상이 발생 할 수 있다. 이러한 소결 문제점을 해결하기 위해 다공성 실리카와 같은 산화금속 물질을 지지체로 사용할 수 있는 데, 실리카는 스팀 (steam)에 취약한 단점을 가지고 있어 고온 수성가스 전이 반응에 지지체로는 사용이 적합하지 않다.
따라서, 스팀이나 고온 반응에 안정한 산화크롬 나노입자는 고온 역수성가스 반응의 촉매 또는 지지체로 적합할 뿐 만 아니라 고온의 다른 촉매반응에서도 우수한 촉매 물질로 활용될 수 있는 장점이 있다.
본 발명의 목적은 수십 나노미터 수준에서 균일한 입자 크기를 갖는 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들을 보다 간단하고 효율적으로 제조할 수 있는 방법을 제공하는 것이다.
본 발명의 제1양태는 입자 크기가 제어된 산화크롬 입자들의 제조방법에 있어서, 기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1a단계; 크롬 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2a단계; 크롬 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3a단계; 및 크롬 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어된 산화크롬 입자들을 잔류시키는 제4a단계를 포함하는 것이 특징인 방법을 제공한다.
본 발명의 제2양태는 상기 제1양태에 따른 방법으로 제조되어, 산화크롬 결정상으로 이루어져 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 것이 특징인 산화크롬 입자들을 제공한다.
본 발명의 제3양태는 입자 크기가 제어된 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법에 있어서, 기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1b단계; 크롬 수화물염, 철 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2b단계; 크롬 수화물염 및 철 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염 및 철 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3b단계; 및 크롬 수화물염, 철 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화철-크롬 합금 입자들과 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어되고, 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합 입자들을 잔류시키는 제4b단계를 포함하는 것이 특징인 방법을 제공한다.
본 발명의 제4양태는 상기 제3양태에 따른 방법으로 제조되어, 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재되어 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 것이 특징인 산화철-크롬 합금과 산화크롬의 복합 입자들을 제공한다.
본 발명의 제5양태는 상기 제2양태에 따른 산화크롬 입자들, 또는 상기 제4양태에 따른 산화철-크롬 합금과 산화크롬의 복합 입자들을 포함하는 역수성 가스 전이 반응용 촉매를 제공한다.
본 발명의 제6양태는 이산화탄소 전환율 40% 이상으로 이산화탄소 함유 가스로부터 일산화탄소를 제조하는 방법에 있어서, i) 상기 제5양태에 따른 역수성 가스 전이 반응용 촉매를 역수성 가스 전이 반응기에 적용하는 단계; 및 ii) 상기 반응기에 이산화탄소 및 수소 함유 가스를 공급하여 상기 촉매에 의해 역수성 가스 전이 반응을 수행하는 단계를 포함하는 것이 특징인 방법을 제공한다.
이하 본 발명을 자세히 설명한다.
산화크롬 입자들은 지금까지 수소저장, 촉매, 코팅물질, 염료, 전기 디바이스, 약물 전달 등 다양한 분야에 적용 되어져 왔고, 수열반응, 열분해, 연소, sol-gel 법, 침전법 등 다양한 방법에 의해 제조 되어져 왔다. 그러나, 수십 나노미터 수준에서 균일하게 입자들을 얻기가 쉽지 않았고, 실리카와 같은 고기공성 물질을 틀로 사용할 때에는 실리카를 녹이는 과정이 필요하여 공정이 복잡한 단점이 있었다.
본 발명에서는 기공 부피가 0.3 cm3/g 이상인 큰 기공 부피를 갖는 다공성 탄소 물질 입자를 희생틀(sacrificial template)(=주형)로서 사용하고, 용융함침법으로 상기 다공성 탄소 물질 입자 내부 기공에 크롬 수화물염을 가득 충진시킨 후 소성시켜 주형을 실질적으로 완전히 제거하는 방식으로 제조하는 경우, 크롬 수화물염이 다공성 탄소 물질 입자의 겉 표면이 아닌 기공 내부로 다량 함침되어 이후 소성 과정에서 산화크롬 입자들이 생성될 때 수십 나노미터 수준으로 입자 크기가 용이하게 제어될 수 있음을 발견하였다.
기존의 용매를 사용한 함침법으로 다공성 탄소 물질 입자의 기공에 크롬 수화물염을 함침시키는 경우, 용매에 의한 희석으로 원하는 양만큼 크롬 수화물염을 함침시키기 어렵고 이로 인해 소성 후에 산화크롬 입자의 크기 제어가 어렵다. 그러나, 본 발명에서는 기공 부피가 큰 다공성 탄소 물질 입자를 선택하고 크롬 수화물염을 용매 없이(solvent free) 용융함침시키는 방식을 사용하여 기존의 용매를 사용한 함침법에 비해 다공성 탄소 물질 입자의 기공 크기에 대응되는 양으로 최대한 크롬 수화물염을 채운 다음 700℃ 이상에서 고온 소성 함으로써, 수십 나노미터 수준에서 균일한 입자 크기를 갖는 산화크롬 입자들을 대량으로 제조할 수 있다.
또한, 일반적으로 금속 수화물염을 고온에서 소성시킴으로써 수화물염을 분해시켜 산화금속 입자들을 생성시키는 경우, 700℃ 이상의 극히 고온에서는 산화금속 입자들간 소결(sintering) 현상이 발생하여 입자간 뭉침으로 인해 수십 나노미터 수준으로 균일하고 비교적 작은 입자크기를 갖기 어렵다. 그러나, 본 발명에서는 크롬 수화물염의 경우 다공성 탄소 물질을 희생틀로 하여 용융함침시킨후 700 내지 900℃의 고온에서 고온 소성시키면, 다공성 탄소 물질은 완전히 제거되고 산화크롬 입자들이 입자간 소결 없이 10 ㎚ 내지 50의 수십 나노미터 수준으로 균일한 입자크기로 생성되는 것을 발견하였다. 더 나아가, 상기 크롬 수화물염과 함께 철 수화물염을 혼합하여 사용할 경우, 다공성 탄소 물질 입자의 기공 크기에 의해 제어된 입자크기를 갖는 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합입자를 원하는 입자 크기, 예컨대 10 ㎚ 내지 50의 수십 나노미터 수준으로 제어하여 제조할 수 있다는 것을 발견하였다. 본 발명은 이에 기초한다.
즉, 본 발명은 큰 기공 부피를 갖는 다공성 탄소 물질을 주형의 사용하고 여기에 수화물염 형태의 전구체를 함침시킨 뒤 700℃ 이상, 바람직하기로 700 내지 900℃의 고온에서 소성시켜 주형을 실질적으로 완전하게 제거하는 방식을 크롬 금속 함유 금속 산화물 입자의 제조에 적용하는 경우 수십 나노미터 수준에서 균일한 입자 크기, 즉 단분산성을 갖는 입자들을 보다 간단하고 효율적으로 대량의 규모로 제조할 수 있다는 것이 특징이다.
본 발명에 따라 입자 크기가 제어된 산화크롬 입자들의 제조방법은,
기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1a단계;
크롬 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2a단계;
크롬 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3a단계; 및
크롬 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어된 산화크롬 입자들을 잔류시키는 제4a단계를 포함한다(도 1 및 도 2).
바람직하기로, 본 발명에 따른 산화크롬 입자의 제조방법은, 제3a단계와 제4a단계 사이에, 크롬 수화물염이 용융함침된 다공성 탄소 물질 입자들을 건조시키는 제3a-1단계를 추가로 포함할 수 있다(도 2).
상기 본 발명에 따른 제조방법에 의해, 산화크롬 결정상으로 이루어져 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 산화크롬 입자들을 제공할 수 있다.
본 발명에서, 산화크롬 입자들은 단분산성을 가질 수 있다. 바람직하기로, 산화크롬 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하, 예를 들어 0.001 내지 0.3, 바람직하기로 0.01 내지 0.2일 수 있다.
본 발명에서 사용하는 용어, "변동 계수(coefficient of variation, CV)"는 표준 편차를 산술 평균으로 나눈 값을 의미한다. 따라서, 입자 크기에 관한 변동 계수는 하기 수학식 1로 정의될 수 있다.
[수학식 1]
CV=(입자 크기의 표준 편차/평균 입자 크기)
본 발명에 따라 입자 크기가 제어된 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법은,
기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1b단계;
크롬 수화물염, 철 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2b단계;
크롬 수화물염 및 철 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염 및 철 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3b단계; 및
크롬 수화물염, 철 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화철-크롬 합금 입자들과 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어된 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합입자들을 잔류시키는 제4b단계를 포함한다(도 1 및 도 2).
바람직하기로, 본 발명에 따른 입자 크기가 제어된 산화철-크롬 합금과 산화크롬의 복합 입자 제조방법은, 제3b단계와 제4b단계 사이에, 크롬 수화물염이 용융함침된 다공성 탄소 물질 입자들을 건조시키는 제3b-1단계를 추가로 포함할 수 있다(도 2).
상기 본 발명에 따른 제조방법에 의해, 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재되어 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 산화철-크롬 합금과 산화크롬의 복합 입자들을 제공할 수 있다.
본 발명에서, 복합 입자들은 단분산성을 가질 수 있다. 바람직하기로, 복합 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하, 예를 들어 0.001 내지 0.3, 바람직하기로 0.01 내지 0.2일 수 있다.
본 발명에 따른 산화크롬 입자 또는 산화철-크롬 합금과 산화크롬의 복합 입자는 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어되어 반응물의 접촉을 위한 높은 비표면적을 제공할 수 있어 다양한 촉매 용도로 사용되는 경우 촉매 성능면에서 유리하다. 이외에도 산화철과 산화크롬 물질이 가스센서, 전극 소재 등으로 사용될 수 있으므로 본 발명에 따른 산화크롬 입자 또는 산화철-크롬 합금과 산화크롬의 복합 입자는 가스센서, 전극 소재 등으로 적용되는 경우 나노 수준의 작고 균일한 입자 크기로 인해 반응물의 접촉 효율면에서 유리한 장점이 있다.
다공성 물질은 물질 기공(pore) 크기에 따라 마이크로포러스(microporous), 메조포러스(mesoporous) 물질로 나뉘는데, 통상 기공 크기가 2 nm 이하인 경우 마이크로포러스, 기공 크기가 2 내지 50 nm 사이인 경우를 메조포러스라고 한다. 본 발명의 다공성 탄소 물질은 기공의 크기에 제한되지 아니하나, 나노수준의 금속 함유 입자 제조를 위해 메조포러스 탄소 물질인 것이 바람직하며, 특히 10 ~ 50nm의 수십 나노미터 수준의 평균 입자크기를 갖는 산화크롬 입자 또는 산화철-크롬 합금과 산화크롬의 복합 입자를 얻기 위하여 다공성 탄소 물질 입자의 평균 기공크기는 바람직하기로 2 내지 50 nm, 더욱 바람직하기로 10 ~ 50nm일 수 있다.
전술한 바와 같이, 다공성 탄소 물질 입자의 기공 부피(pore volume)는 0.3 cm3/g 이상인 것이 바람직하며, 구체적으로 0.3 내지 30 cm3/g일 수 있다.
다공성 탄소 물질의 비제한적인 예로는 활성탄소(activated carbon), 활성탄(activated charcoal), 합성 다공성 탄소 지지체 CMK, 이의 혼합물 등이 있다. 상기 합성 다공성 탄소 지지체 CMK의 구체적인 예로는 CMK-3, CMK-8 등이 있다.
다공성 탄소 물질 입자의 기공 크기는 균일할수록 바람직하다.
"CMK-3"는 메조포러스 실리카인 SBA-15로부터 합성된 것으로, 육각모양의 기공과 축 방향으로 긴 실린더 모양을 갖는 다공성 탄소물질이다. "CMK-8"은 실리카 메조포러스 실리카인 KIT-6으로부터 합성된 것으로, 두 종류의 메조 기공들이 서로 독립적으로 삼차원적으로 연결된 입방 구조의 다공성 탄소물질이다.
"활성탄"은 흡착성이 강하고, 대부분의 구성물질이 탄소질로 된 물질이다. 흑연(Graphite)형상의 평면결정자가 복잡하게 조합된 무정형탄소로 되어 있고 다공질이다. 본 발명에서는 활성탄으로서 세공의 평균 직경이 2㎚ 내지 50㎚, 비표면적은 500㎡/g 내지 1500 ㎡/g인 것을 사용할 수 있다.
다공성 탄소 물질 입자의 평균 크기는 0.2 ㎛ 내지 200 ㎛와 같이 마이크로미터 스케일일 수 있다. 다공성 탄소 물질 입자의 크기를 조절하여, 최종 생성물의 크기를 조절할 수 있다.
한편, 크롬 수화물염 및 철 수화물염은 통상 지지체로 사용되는 산화금속 보다 융점이 낮은 금속 제공원이다. 본 발명에서 크롬 수화물염 및 철 수화물염은 용융점이 각각 독립적으로 30 ~ 100℃ 인 것을 사용하는 것이 바람직하다.
구체적으로, 본 발명에서 사용 가능한 크롬 수화물염은 Cr(NO3)3·9H2O(m.p.=60.06℃), CrCl3·6H2O(m.p.=83℃), Cr2(SO4)3·12H2O(m.p.=90℃) 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다. 또한, 본 발명에서 사용 가능한 철 수화물염은 FeSO4·7H2O(m.p.=60-64℃), Fe(NO3)3·9H2O(m.p.=47.2℃), FeCl3·6H2O(m.p.=37℃) 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.
크롬 수화물염, 또는 크롬 수화물염과 철 수화물염의 혼합물을 다공성 탄소 물질 입자들과 혼합하는 제2단계는 기계적으로 갈아 혼합하는 것이 바람직하다.
또한, 용매 없이(solvent free) 혼합하여 혼합분말을 형성하면 용매로 인한 희석 등이 발생하지 않아 기공 내 용융물의 고담지 및 고분산에 유리하다.
크롬 수화물염과 철 수화물염의 혼합물을 사용하는 경우, 크롬 수화물염:철 수화물염의 몰비는 1:0.1 내지 1일 수 있다.
한편, 크롬 수화물염, 또는 크롬 수화물염과 철 수화물염의 혼합물을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3단계는 절차가 쉬우면서, 최종적으로 용융물의 고분산 및 고담지에 유리하다.
금속의 수화물염들은 각각의 고유한 밀도 값을 가지고 있으므로, 금속의 수화물염의 밀도와 다공성 탄소 물질의 기공 부피를 고려하면 보다 균일하게 염의 용융물을 함침시킬 수 있다.
따라서, 상기 각 금속의 수화물 염은 사용된 각각의 금속염의 밀도와 다공성 탄소 물질의 기공부피를 고려하여 첨가하되, 형성되는 입자의 균일성을 위해, 탄소 단위그램(g) 당 크롬 수화물염, 또는 크롬 수화물염 및 철 수화물염 혼합물 질량으로 0.3 ~ 3 그램을 용융함침시키는 것이 바람직하다.
용융함침 과정(melt - infiltration process)은 혼합염의 융점 부근에서 함침시킬 수 있다. 혼합된 수화물염의 정확한 융점은 DSC(Differential scanning calorimetry) 분석을 통해 알 수 있으며 좀 더 수월하게는 혼합염 중 융점이 높은 염을 기준으로 함침시킬 수 있다.
금속 수화물염을 용융시켜 잘 담지하기 위해서는 반응용기 내의 온도 조절과 압력 유지가 중요하다. 또한, 반응 중 발생하는 증기압으로 인한 압력이 사라지지 않도록 반응은 닫힌계에서 이루어지는 것이 바람직하다. 반응시간은 염들이 충분히 용융되어 기공 내부에 들어갈 수 있도록 4 ~ 48시간, 바람직하기로 24-48시간 정도일 수 있다.
용융 함침에 사용되는 반응기는 폴리프로필렌(Polypropylene) 또는 테프론(Teflon) 재질의 플라스틱 용기인 것이 바람직하다. 투명해서 관찰이 쉽고 대량 제조시 편리하기 때문이다.
소성 전, 제3-1단계와 같이 크롬 수화물염, 또는 크롬 수화물염 및 철 수화물염의 혼합물이 용융함침된 다공성 탄소 물질 입자들을 건조시킬 수 있다. 이때 건조는 함침된 수화물 염이 분해되지 않는 온도, 예를 들어 상온(15 내지 35℃)에서 수행하는 것이 바람직하다.
한편, 크롬 수화물염, 철 수화물염 및 다공성 탄소 물질이 열분해되는 온도 및 반응 조건에서 고온 소성시키는 제4단계는, 산화금속 입자들의 형성시 주형틀로 사용된 다공성 탄소 물질들을 완전히 제거하고, 크롬 수화물염, 또는 크롬 수화물염 및 철 수화물염의 혼합물을 열분해시켜 이로부터 각각 산화크롬 입자들, 또는 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합 입자들을 형성시켜준다. 이때, 제4단계를 통해 다공성 탄소 물질이 완전히 열분해된 후 수십 마이크로미터 수준의 작은 크기로 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합 입자들이 형성된다.
다공성 탄소 물질에 담지된 금속염 수화물들을 분해하고 탄소를 완전히 제거하기 위해서는 대기 또는 산소 조건하에서 700℃ 이상의 온도로 고온 소성시키는 과정이 필요하다. 열처리 온도는 금속염이 분해되고 탄소 물질이 완전히 제거될 수 있는 700℃ 이상부터 적용할 수 있으며, 900℃ 이상의 온도에서 소성시에는 추후에 촉매로서 사용에 불리한 입자간 뭉침이 발생할 수 있으므로, 바람직하게는 700 ~ 900 ℃ 사이의 온도가 적합하다.
소성시 분위기는 비용적인 문제 및 안정성을 고려하여 대기 중에서 처리하는 것이 바람직하나, 높은 신뢰성 확보 차원에서 순수 산소 및 혼합 산소를 이용할 수도 있다.
소성시간의 경우 탄소가 제거되는 양에 영향을 주게 되므로, 탄소가 완전히 제거될 수 있는 시간을 선정할 수 있다.
소성시간의 비제한적인 예는 1 ~ 24시간일 수 있다. 열처리 시간은 소성기에 따라 다소 변동이 있을 수 있으나 700℃ 이상에서 1시간 후에 탄소의 완전한 제거가 가능하며 24시간을 넘어서면 추가적인 열처리는 큰 의미가 없으며 오히려 입자의 뭉침을 유발할 수 있게 된다.
제4단계에서 얻어지는 산화크롬 입자들, 또는 복합입자들은 결정상으로 이루어져 있을 수 있으며, 이에 따라 고온에서도 입자의 안정성이 우수하다.
본 발명에서는 수십 나노미터 수준으로 균일한 입자 크기를 갖는, 산화크롬만으로 이루어진 단일 금속 산화물 입자들을 제조하는데도 유리하지만, 산화크롬과 함께 산화철을 보다 쉽게 합금화시켜 복합 입자를 제조할 수 있는 방법을 제공한다. 이에 따라 산화크롬 자체의 특성상 고온 안정성이 우수할 뿐만 아니라 산화철이 합금화되는 경우 산화철도 고온 안정성을 가질 수 있어 산화크롬과 산화철의 합금 입자를 필요로 하는 고온 안정성을 필요로 하는 다양한 용도에 적용이 가능하다. 예컨대, 산화크롬이 촉매로서 사용되고 산화철이 산화크롬의 촉매 활성을 향상시켜주는 조촉매로서의 역할을 수행할 수 있는 용도로 사용하는 경우 특히 바람직할 수 있다.
본 발명의 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자는, 이들 입자에 함유된 금속 산화물의 종류에 따라 이들 물질이 적용 가능한 수소저장 재료, 센서 재료, 흡착제, 코팅재료, 염료, 전극재료, 약물 전달체 등으로도 응용이 가능하다.
특히, 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자가 촉매로서 활용될 경우, 본 발명의 입자들은 기상 및 액상 촉매 반응에 적용시 수십 나노미터 수준의 입자 크기로 인한 반응물의 확산에 유리한 장점을 가질 수 있으며 산화크롬 특성상 고온에서 안정하면서도 가혹한 촉매 반응환경에서도 우수한 반응결과를 얻을 수 있다. 구체적으로, 반응 중 700℃ 이상의 고온 조건이 필요한 역수성 가스 전이 반응에서 반응 중 국부적 열점(hot spot)이 형성될 수 있으나, 크롬 금속 함유 산화물로 이루어져 있으므로 인접한 나노 입자 촉매들의 응집과 같은 문제점을 해결할 수 있다.
또한, 수십 나노미터 수준의 균일한 입자 크기로 인해 이를 활용하여 고온 역수성가스 전이 반응에 적용하게 되면, 매우 소량의 촉매 만으로 효과적으로 반응을 진행 시킬 수 있어, 컴팩트형 반응기의 고활성 촉매로서 활용이 기대된다.
즉, 본 발명은 상기 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자를 촉매로 사용하여 높은 이산화탄소 전환율(해당 온도의 평형 전환율에 근접)을 바탕으로 하여 효과적으로 일산화탄소를 제조할 수 있다. 구체적으로, 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자를 촉매로서 역수성 가스 전이 반응기에 주입한 후, 이산화탄소 함유 가스를 주입하면 역수성 가스 전이 반응에 의해 일산화탄소가 제조될 수 있다. 이때 산화철-크롬 합금과 산화크롬의 복합 입자를 촉매로 사용하여 역수성 가스 전이 반응을 수행하는 경우 산화크롬이 주촉매로 작용하고 여기에 산화철이 조촉매로서 활용되어 이산화탄소 전환율을 더욱 향상시킬 수 있다.
바람직한 일 실시양태로서, 본 발명에 따른 이산화탄소 함유 가스로부터 일산화탄소를 제조하는 방법은 이산화탄소 전환율 40% 이상으로 이산화탄소 함유 가스로부터 일산화탄소를 제조하는 방법으로서, i) 상기 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자를 포함하는 역수성 가스 전이 반응용 촉매를 역수성 가스 전이 반응기에 적용하는 단계; 및 ii) 상기 역수성 가스 전이 반응기에 이산화탄소 및 수소 함유 가스를 공급하여 상기 역수성 가스 전이 반응용 촉매에 의해 역수성 가스 전이 반응을 수행하는 단계를 포함할 수 있다.
본 발명에서, 단계 ii)는 반응 온도 600 내지 900℃의 조건 하에서 수행될 수 있다. 만일 상기 반응 온도가 600℃보다 낮으면 이산화탄소 전환율이 떨어질 수 있고 900℃보다 높으면 촉매의 안정성이 떨어질 수 있다.
본 발명에서, 단계 ii)는 이산화탄소:수소(CO2/H2)의 몰비 1: 0.5 내지 2의 조건 하에서 수행될 수 있다. 만일 상기 이산화탄소:수소(CO2/H2)의 몰비가 상기 범위 밖이면 이산화탄소 전환율이 떨어질 수 있다.
본 발명에서, 단계 ii)는 공간속도(GHSV, Gas Hourly Space Velocity) 10 내지 100 NL·gcat -1·h-1의 조건 하에서 수행될 수 있다. 만일 상기 공간속도가 상기 범위 밖이면 이산화탄소 전환율이 떨어질 수 있다.
본 발명은 기공이 발달된 다공성 탄소 물질 입자를 희생틀(sacrificial template)로서 사용함으로써 수십 나노미터 수준에서 균일한 입자 크기를 갖는 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자를 보다 간단하고 효율적으로 제조할 수 있는 방법을 제공할 수 있다. 상기와 같이 얻어진 수십 나노미터 수준에서 균일한 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자는 기상 및 액상 촉매 반응에 적용시 수십 나노미터 수준의 입자 크기로 인한 반응물의 확산에 유리한 장점을 가질 수 있으며 산화크롬 특성상 고온에서 안정하면서도 가혹한 촉매 반응환경에서도 우수한 반응결과를 얻을 수 있다.
도 1은 본 발명에 따라 다공성 탄소 구조체를 희생틀로 이용한 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자 제조에 대한 모식도이다.
도 2는 본 발명에 따른 산화크롬 입자, 또는 산화철-크롬 합금과 산화크롬의 복합 입자 제조 공정을 개략적으로 나타낸 흐름도이다.
도 3은 본 발명의 일 실시예에서 제조한 산화크롬 입자의 TEM 이미지이다.
도 4는 본 발명의 일 실시예에서 제조한 산화크롬 입자의 XRD 스펙트럼이다.
도 5는 본 발명의 일 실시예에서 제조한 산화철-크롬 합금과 산화크롬의 복합 입자의 TEM 이미지이다.
도 6은 본 발명의 일 실시예에서 제조한 산화철-크롬 합금과 산화크롬의 복합 입자의 XRD 스펙트럼이다.
도 7은 본 발명의 일 실시예에서 제조한 산화철-크롬 합금과 산화크롬의 복합 입자를 800℃ 하에서 4시간 동안 고온 열처리한 후의 TEM 이미지이다.
도 8은 본 발명의 일 실시예에서 제조한 산화철-크롬 합금과 산화크롬의 복합 입자를 800℃ 하에서 4시간 동안 고온 열처리한 후의 XRD 스펙트럼이다.
도 9는 본 발명의 일 실시예에서 제조한 산화크롬 입자를 이용하여 700℃에서 역수성 가스 전이 반응 수행 시 시간에 따른 이산화탄소 전환율을 나타낸다.
도 10은 비교예로서 무촉매 조건으로 700℃에서 역수성 가스 전이 반응 수행 시 시간에 따른 이산화탄소 전환율을 나타낸다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: Cr 2 O 3 나노입자 합성
고분산된 나노입자들을 얻기 위해 표면적 및 기공 분석에서 BET 비표면적(specific surface area, SSA) 값이 1010 ㎡/g, 기공 부피(pore volume)가 0.85 ㎤/g로 물성이 좋은 상용 활성탄소(Sigma-Aldrich, U.S.A.)를 희생틀(sacrificial template)로 사용하였다.
먼저, Cr(NO3)3·9H2O (Aldrich, 99%, m.p. = 47℃, d=1.68 g/㎤, fw=404 g/mol) 2.5g을 2.0g의 활성탄 분말과 함께 막자 사발을 이용해서 균일하게 갈아 주었다. 이후 혼성 분말을 30 mL 용량의 폴리프로필렌(Polypropylene) 용기에 넣은 후 용기의 마개를 꽉 조인 후 60 ℃로 온도가 설정된 건조 오븐에 넣고 24시간 동안 보관하였다. 24시간 이후 혼합 분말을 상온에서 식히고 건조한 후 소성오븐을 이용하여 200mL/min 유속의 공기 흐름 분위기 하에서 800℃에서 4시간 동안 고온 열처리를 해줌으로써 탄소를 완전히 제거하여 Cr2O3 나노입자를 얻었다.
도 3에 Cr2O3 나노입자의 TEM(Transmission electron microscopy) 이미지를 나타내었다. 도 3을 통해, Cr2O3 나노입자의 크기가 15-30 nm 수준으로 작으면서 비교적 균일하게 얻어진 것을 확인할 수 있다. 또한, 상기에서 얻어진 Cr2O3 나노입자에 대한 XRD 스펙트럼 분석을 통해 상기 Cr2O3 나노입자의 결정상을 분석한 결과, 기존에 문헌에 보고된 Cr2O3의 결정상(JCPDS No. 38-1479)과 일치함을 확인할 수 있었다(도 4).
실시예 2: Fe 2 Cr 2 O 3 /Cr 2 O 3 복합 나노입자 합성
실시예 1에서 사용한 것과 동일한 상용 활성탄소를 희생틀로 사용하여 하기와 같이 Fe2Cr2O3/Cr2O3 복합 나노입자를 합성하였다.
먼저, Cr(NO3)3·9H2O (Aldrich, 99%, m.p. = 47℃, d=1.68 g/㎤, fw=404 g/mol) 1.2g (3mmol) 및 Fe(NO3)3·9H2O (Aldrich, ACS reagent =98%, m.p. = 55℃, fw=291.03 g/mol) 7.95g (1.5mmol)을 2.0g의 활성탄 분말과 함께 균일하게 혼합해 주었다. 이후 상기 혼성 분말을 30 mL 용량의 폴리프로필렌(Polypropylene) 용기에 넣은 후 용기의 마개를 꽉 조인 후 60 ℃로 온도가 설정된 건조 오븐에 넣고 24시간 동안 보관하였다. 24시간 이후 혼합 분말을 상온에서 식히고 건조한 후 소성오븐을 이용하여 300mL/min 유속의 공기 흐름 분위기 하에서 800℃에서 4시간 동안 고온 열처리를 해줌으로써 탄소를 완전히 제거하여 Fe2Cr2O3/Cr2O3 복합 나노입자를 얻었다.
도 5에 Fe2Cr2O3/Cr2O3 복합 나노입자의 TEM 이미지를 나타내었다. 도 5를 통해, Fe2Cr2O3/Cr2O3 복합 나노입자의 크기가 15-30 nm 수준으로 작으면서 비교적 균일하게 얻어진 것을 확인할 수 있다. 또한, 상기에서 얻어진 Fe2Cr2O3/Cr2O3 복합 나노입자에 대한 XRD 스펙트럼 분석을 통해 상기 Fe2Cr2O3/Cr2O3 복합 나노입자의 결정상을 분석한 결과, 기존에 문헌에 보고된 Fe2Cr2O3 (JCPDS No. 02-1357) 결정상과 Cr2O3 결정상 (JCPDS No. 38-1479)이 함께 존재함을 확인할 수 있었다(도 6).
실시예 3: Fe 2 Cr 2 O 3 /Cr 2 O 3 복합 나노입자의 열적 안정성 시험
상기 실시예 2를 통해 얻어진 Fe2Cr2O3/Cr2O3 복합 나노입자를 다시 소성오븐을 이용하여 300mL/min 유속의 수소 흐름 분위기 하에서 800℃에서 4시간 동안 고온 열처리를 해 준 뒤 환원이 된 입자의 변화 정도를 TEM과 XRD를 통해 분석해 보았다.
그 결과를 도 7 및 도 8에 나타내었다.
도 7 및 도 8을 통해, 800℃의 고온에서 4시간의 장시간 동안 열처리 후에도 Fe2Cr2O3/Cr2O3 복합 나노입자의 입자가 구조적으로 변화하지 않는 것을 확인할 수 있었다. 이를 통해, Fe2Cr2O3/Cr2O3 복합 나노입자가 고온 조건의 반응시 촉매로 적용되는 경우 장시간 동안 구조 변화없이 더욱 안정하게 유지되어 촉매 성능도 장시간 유지할 수 있음을 알 수 있다.
실시예 4: Cr 2 O 3 나노입자 및 Fe 2 Cr 2 O 3 /Cr 2 O 3 복합 나노입자 촉매를 사용한 고온 역수성 가스 전이 반응 성능 실험
고정층 관형 반응기(fixed-bed reactor, 내부 직경: 4 mm)를 이용하여 고온 역수성 가스 전이 반응을 진행하였다. 반응온도 측정 및 조절을 위해 반응관 내부에 열전대(thermocouple)를 장착하여 반응 중 온도를 맞추어 주었다. 반응을 위해 먼저 반응관 내부에 석영 섬유(quartz wool)를 촉매 아래에 두고, 상기 실시예 1에서 얻어진 Cr2O3 나노입자 0.1 g 위에 로딩하였다. 반응 전 추가적인 환원 과정은 없었으며, 실제 반응은 700 ℃에서 수소 대 이산화탄소(CO2)의 몰비를 1:1로 하여 진행하였다. 이때, 수소와 CO2의 실제 유량값은 각각 50mL/min으로 GHSV 값으로는 60 NL·gcat -1·h-1 였다. 4시간의 반응 과정 동안 반응물과 생성물의 분석은 가스크로마토그래피 (GC)를 통해 이루어졌고, 반응 후 부수적으로 발생되는 물은 냉각트랩에서 회수 되었다.
반응 전 후의 유량 분석은 실시간으로 습식 가스 미터 장치를 사용하여 정확히 분석되었으며, 이에 따른 4시간 동안의 반응에 대한 CO2의 전환율을 하기 수학식 1에 따라 계산하여 하기 표 1 및 도 9에 나타내었다.
[수학식 1]
Figure PCTKR2015014239-appb-I000001
또한, 반응 온도를 700℃ 대신 800℃로 하여 동일한 실험을 수행하고 CO2의 전환율을 조사하여 그 결과를 하기 표 1에 나타내었다.
또한, 상기 실시예 1에서 얻어진 Cr2O3 나노입자 대신 상기 실시예 2에서 얻어진 Fe2Cr2O3/Cr2O3 복합 나노입자를 사용하여 동일한 실험을 수행하고 CO2의 전환율을 조사하여 그 결과를 하기 표 1에 나타내었다.
표 1
촉매종류 반응 온도 (℃) GHSV(NL·gcat -1·h-1) CO2 반응 전환율 (%)at TOS=80 min (80분 경과 후) 평형전환율 (%)
Cr2O3 700 60 42% 45
Fe2Cr2O3/Cr2O3 700 60 43% 45
Cr2O3 800 60 50% 50
표 1 및 도 9에서 확인할 수 있듯이, GC 분석 결과 700℃에서 Cr2O3 나노입자의 CO2 전환율은 80분 경과 후 42% 수준으로 얻어졌다. 이는 700 ℃에서의 반응 평형 전환율 (Equilibrium Conversion) 인 45% 에 근접한 수치로 확인 되었고, 모두 동일한 반응 조건에서 800 ℃로 반응 온도를 높여서 반응을 진행하였을 때는 거의 평형 전환율과 일치된 50% 수준의 CO2 반응 전환율을 나타내는 것을 확인하였다.
또한, Fe2Cr2O3/Cr2O3 복합 나노입자를 이용한 실험에서는 순수 Cr2O3 나노 입자 촉매 보다 약간 높은 CO2 반응 전환율(43%)을 보여주는 것을 확인하였다.
비교예 1: 무촉매 상태의 고온 역수성 가스 전이 반응성 시험
촉매를 충진 하지 않고 상기 실시예 4와 동일하게 고온 역수성 가스 전이 반응을 진행하였다.
구체적으로, 반응은 700℃에서 수소 대 이산화탄소(CO2)의 몰비를 1:1로 하여 진행하였다. 이때, 수소와 CO2의 실제 유량값은 각각 50mL/min이었다. 반응 후 4시간 동안의 반응에 대한 CO2 전환율을 도 10에 나타내었다.
도 10을 통해 확인할 수 있듯이, 촉매가 존재하지 않을 때 CO2 전환율은 700℃에서는 15% 미만 수준으로 얻어졌다. 이러한 결과를 통해 본 발명에 따른 Cr2O3 나노 입자 및 Fe2Cr2O3/Cr2O3 복합 나노입자의 촉매로서의 성능을 확인할 수 있다.

Claims (22)

  1. 입자 크기가 제어된 산화크롬 입자들의 제조방법에 있어서,
    기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1a단계;
    크롬 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2a단계;
    크롬 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3a단계; 및
    크롬 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어된 산화크롬 입자들을 잔류시키는 제4a단계를 포함하는 것이 특징인 방법.
  2. 제1항에 있어서, 산화크롬 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하인 것이 특징인 방법.
  3. 제1항에 있어서, 제1a단계에서 다공성 탄소 물질 입자의 평균 기공크기는 2 nm 내지 50nm인 것이 특징인 방법.
  4. 제1항에 있어서, 제1a단계에서 다공성 탄소 물질 입자의 평균 입자 크기는 200 nm ~ 0.2 ㎝인 것이 특징인 방법.
  5. 제1항에 있어서, 크롬 수화물염은 용융점이 30 ~ 100℃ 인 것을 사용하는 것이 특징인 방법.
  6. 제1항에 있어서, 크롬 수화물염은 Cr(NO3)3·9H2O, CrCl3·6H2O, Cr2(SO4)3·12H2O 또는 이의 조합인 것이 특징인 방법.
  7. 제1항에 있어서, 다공성 탄소 물질은 활성탄소(activated carbon), 활성탄(activated charcoal), 합성 다공성 탄소 지지체 CMK 또는 이의 조합인 것이 특징인 방법.
  8. 제1항에 있어서, 크롬 수화물염은 이의 밀도와 다공성 탄소 물질의 기공부피를 고려하여, 탄소 단위그램(g) 당 0.3 ~ 3 그램을 용융함침시킨 것이 특징인 방법.
  9. 제1항에 있어서, 제2a단계는 기계적으로 갈아 혼합하는 것이 특징인 방법.
  10. 제1항에 있어서, 제4a단계에서 산화크롬 입자의 평균 입자크기는 10 ~ 50 nm 인 것이 특징인 방법.
  11. 제1항 내지 제10항 중 어느 한 항의 방법으로 제조되어, 산화크롬 결정상으로 이루어져 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 것이 특징인 산화크롬 입자들.
  12. 제11항에 있어서, 상기 산화크롬 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하인 것이 특징인 산화크롬 입자들.
  13. 입자 크기가 제어된 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법에 있어서,
    기공 부피가 0.3 cm3/g 이상인 다공성 탄소 물질 입자를 준비하는 제1b단계;
    크롬 수화물염, 철 수화물염 및 상기 다공성 탄소 물질 입자들을 혼합하는 제2b단계;
    크롬 수화물염 및 철 수화물염을 용융시킬 수 있는 온도에서, 크롬 수화물염 및 철 수화물염을 다공성 탄소 물질 입자의 기공에 용융 함침시키는 제3b단계; 및
    크롬 수화물염, 철 수화물염 및 다공성 탄소 물질을 700 내지 900℃의 온도에서 고온 소성시켜, 다공성 탄소 물질의 기공에 의해 입자크기가 제어된 산화철-크롬 합금 입자들과 산화크롬 입자들을 형성시키면서, 다공성 탄소 물질은 열분해하여 제거하고 입자크기가 제어되고, 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재된 복합 입자들을 잔류시키는 제4b단계를 포함하는 것이 특징인 방법.
  14. 제13항에 있어서, 복합 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하인 것이 특징인 방법.
  15. 제13항에 있어서, 제4b단계에서 복합 입자들의 평균 입자크기는 10 ~ 50 nm 인 것이 특징인 방법.
  16. 제13항에 있어서, 크롬 수화물염:철 수화물염의 몰비는 1:0.1 내지 1인 것이 특징인 방법.
  17. 제13항에 있어서, 철 수화물염은 FeSO4·7H2O, Fe(NO3)3·9H2O, FeCl3·6H2O 또는 이의 조합인 것이 특징인 방법.
  18. 제13항 내지 제17항 중 어느 한 항의 방법으로 제조되어, 산화철-크롬 합금 결정상과 산화크롬 결정상이 혼재되어 있고, 10 ㎚ 내지 50 ㎚의 수십 나노미터 수준으로 입자크기가 균일하게 제어된 것이 특징인 산화철-크롬 합금과 산화크롬의 복합 입자들.
  19. 제18항에 있어서, 상기 산화철-크롬 합금과 산화크롬의 복합 입자들의 입자 크기의 변동 계수(CV)는 0.3 이하인 것이 특징인 산화철-크롬 합금과 산화크롬의 복합 입자들.
  20. 제11항의 산화크롬 입자들, 또는 제18항의 산화철-크롬 합금과 산화크롬의 복합 입자들을 포함하는 역수성 가스 전이 반응용 촉매.
  21. 이산화탄소 전환율 40% 이상으로 이산화탄소 함유 가스로부터 일산화탄소를 제조하는 방법에 있어서,
    i) 제20항의 역수성 가스 전이 반응용 촉매를 역수성 가스 전이 반응기에 적용하는 단계; 및
    ii) 상기 반응기에 이산화탄소 및 수소 함유 가스를 공급하여 상기 촉매에 의해 역수성 가스 전이 반응을 수행하는 단계를 포함하는 것이 특징인 방법.
  22. 제21항에 있어서, 단계 ii)는 반응 온도 600 내지 900℃, 이산화탄소:수소(CO2/H2)의 몰비 1: 0.5 내지 2, 공간속도(GHSV, Gas Hourly Space Velocity) 10 내지 100 NL·gcat -1·h-1의 조건 하에서 수행되는 것이 특징인 제조방법.
PCT/KR2015/014239 2015-10-22 2015-12-24 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법 WO2017069340A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/138,966 US10105685B2 (en) 2015-10-22 2016-04-26 Preparation method of particle size-controlled, chromium oxide particles or composite particles of iron oxide-chromium alloy and chromium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0147232 2015-10-22
KR1020150147232A KR101644975B1 (ko) 2015-10-22 2015-10-22 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법

Publications (1)

Publication Number Publication Date
WO2017069340A1 true WO2017069340A1 (ko) 2017-04-27

Family

ID=56709535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014239 WO2017069340A1 (ko) 2015-10-22 2015-12-24 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법

Country Status (3)

Country Link
US (1) US10105685B2 (ko)
KR (1) KR101644975B1 (ko)
WO (1) WO2017069340A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620722A (zh) * 2022-03-17 2022-06-14 青岛华世洁环保科技有限公司 多孔炭负极材料及其制备方法、由其制得的电极、电池和电容器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202208467D0 (en) * 2022-06-09 2022-07-27 Oxccu Tech Ltd Catalyst composition, methods for its production and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003177A (ko) * 2006-01-10 2009-01-09 캐보트 코포레이션 합금 촉매 조성물 및 이의 제조 및 사용 방법
KR101272200B1 (ko) * 2012-05-23 2013-06-07 한국에너지기술연구원 다공성 탄소 주형틀을 이용한 용융함침 기반 고담지, 고분산 산화금속/탄소 나노촉매 담지체의 제조 방법 및 그 고담지, 고분산 산화금속/탄소 나노촉매 담지체
KR101272210B1 (ko) * 2012-12-17 2013-06-11 한국에너지기술연구원 탄소기반 복합계 산화금속 나노촉매 담지체의 제조 방법 및 그 복합계 산화금속 나노촉매 담지체
KR20150022050A (ko) * 2013-08-21 2015-03-04 재단법인 포항산업과학연구원 이산화탄소 자원화를 위한 cog 개질 공정

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342514B1 (ko) 2012-06-25 2013-12-17 한국에너지기술연구원 피셔-트롭쉬 합성 반응용 철/탄소 복합계 촉매의 제조 방법 및 그 촉매와, 제조 방법을 이용한 액체 탄화수소 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003177A (ko) * 2006-01-10 2009-01-09 캐보트 코포레이션 합금 촉매 조성물 및 이의 제조 및 사용 방법
KR101272200B1 (ko) * 2012-05-23 2013-06-07 한국에너지기술연구원 다공성 탄소 주형틀을 이용한 용융함침 기반 고담지, 고분산 산화금속/탄소 나노촉매 담지체의 제조 방법 및 그 고담지, 고분산 산화금속/탄소 나노촉매 담지체
KR101272210B1 (ko) * 2012-12-17 2013-06-11 한국에너지기술연구원 탄소기반 복합계 산화금속 나노촉매 담지체의 제조 방법 및 그 복합계 산화금속 나노촉매 담지체
KR20150022050A (ko) * 2013-08-21 2015-03-04 재단법인 포항산업과학연구원 이산화탄소 자원화를 위한 cog 개질 공정

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EGGENHUISEN, TAMARA M. ET AL.: "Fundamentals of Melt Infiltration for the Preparation of Supported Metal Catalysts. The Case of Co/SiO2 for Fischer-Tropsch Synthesis", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 51, 29 December 2010 (2010-12-29), pages 18318 - 18325, XP055377507 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620722A (zh) * 2022-03-17 2022-06-14 青岛华世洁环保科技有限公司 多孔炭负极材料及其制备方法、由其制得的电极、电池和电容器
CN114620722B (zh) * 2022-03-17 2023-09-19 青岛华世洁环保科技有限公司 多孔炭负极材料及其制备方法、由其制得的电极、电池和电容器

Also Published As

Publication number Publication date
US10105685B2 (en) 2018-10-23
US20170113207A1 (en) 2017-04-27
KR101644975B1 (ko) 2016-08-04

Similar Documents

Publication Publication Date Title
CN109309214A (zh) 碳包覆镍纳米复合材料的制备方法
WO2020096338A1 (ko) 탄소 담체 상에 담지된 단일원자 촉매의 제조방법
US9517452B2 (en) Metal carbide/carbon composite body having porous structure by three-dimensional connection of core-shell unit particles, preparation method thereof, and use of the composite body
WO2014098366A1 (ko) 탄소기반 복합계 산화금속 나노촉매 담지체의 제조 방법 및 그 복합계 산화금속 나노촉매 담지체
WO2021225254A1 (ko) 육방정 구조의 지지체에 촉매금속이 담지된 촉매 및 이의 제조방법
WO2016060367A1 (ko) 에그-쉘 형 고분산 나노 입자-산화금속 지지체 혼성 구조체, 이의 제조방법 및 이의 용도
CN110066175B (zh) 超轻碳化物陶瓷泡沫的制备方法
WO2015046691A1 (ko) 형상이 조절된 철 옥살레이트 수화물 입자 및 그 제조방법, 이 철 옥살레이트 수화물 입자를 이용하여 제조된 산화철/탄소 복합체 및 그 제조방법
KR20120052483A (ko) 메조기공이 형성된 다공성 탄소재료의 제조방법 및 이를 이용하여 제조된 연료전지용 촉매의 담지체
Zheng et al. Formation of Co3O4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation
WO2014129722A1 (ko) 피셔 트롭시 합성용 코발트 촉매, 제조방법 및 이를 이용한 액체 탄화수소 제조방법
WO2020075920A1 (ko) 복합 산화물 지지체와 단원자로 이루어진 복합 삼원계 촉매 및 이의 제조 방법
WO2017069340A1 (ko) 입자 크기가 제어된 산화크롬 입자들, 또는 산화철-크롬 합금과 산화크롬의 복합 입자들의 제조방법
Pudukudy et al. Production of COx free hydrogen and nanocarbon via methane decomposition over unsupported porous nickel and iron catalysts
Derakhshani et al. Novel synthesis of mesoporous crystalline γ-alumina by replication of MOF-5-derived nanoporous carbon template
WO2016060330A1 (ko) 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법 및 그 액체 탄화 수소
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
Liu et al. Low temperature synthesis of amorphous carbon nanotubes in air
Wang et al. Simple synthesis of hollow carbon spheres from glucose
CN109797459B (zh) 一种SiBCN纳米陶瓷纤维的制备方法
WO2014126296A1 (ko) 다공성 탄소물질을 이용한 금속 함유 입자 형성방법
Chen et al. Readily processed multifunctional SiC catalytic filter for industrial emissions control
WO2022108319A1 (ko) 수소 제조용 백금-텅스텐 촉매 및 이를 이용한 수소의 제조방법
Teng et al. Carbon nanotubes-templated assembly of LaCoO3 nanowires at low temperatures and its excellent catalytic properties for CO oxidation
Wu et al. Immobilization of nanofibrous A-or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906791

Country of ref document: EP

Kind code of ref document: A1