WO2017069005A1 - Method for manufacturing power semiconductor device and power semiconductor device - Google Patents

Method for manufacturing power semiconductor device and power semiconductor device Download PDF

Info

Publication number
WO2017069005A1
WO2017069005A1 PCT/JP2016/079968 JP2016079968W WO2017069005A1 WO 2017069005 A1 WO2017069005 A1 WO 2017069005A1 JP 2016079968 W JP2016079968 W JP 2016079968W WO 2017069005 A1 WO2017069005 A1 WO 2017069005A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
cooler
magnetic metal
semiconductor device
power semiconductor
Prior art date
Application number
PCT/JP2016/079968
Other languages
French (fr)
Japanese (ja)
Inventor
修三 荒谷
菊池 正雄
翔 熊田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017069005A1 publication Critical patent/WO2017069005A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a power semiconductor device provided with a cooler.
  • Power semiconductor devices are used to control main power of a wide range of equipment from industrial equipment to home appliances and information terminals, and high reliability is particularly required in transportation equipment. Further, in place of the conventional semiconductor element using silicon (Si), development of a semiconductor device including a semiconductor element using a wide band gap semiconductor such as silicon carbide (SiC) has been advanced. High power density and high temperature operation are progressing.
  • SiC silicon carbide
  • the power consumed by a load such as a motor connected to the power semiconductor device is controlled by the voltage and frequency of the three-phase AC power.
  • an IGBT Insulated Gate Bipolar Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistors
  • a heat radiation fin for radiating heat generated from a semiconductor element provided in a power module is provided, and an opening provided in a wall surface of a cooler through which a refrigerant such as water passes through an internal space
  • the heat dissipation from the power module is promoted by inserting the heat radiation fin in the internal space of the cooler that is the refrigerant flow path.
  • the power module is provided with a sealing member such as an O-ring between the flat fin base provided with heat radiation fins and the opening provided in the cooler, and the opening is liquid-tightly sealed.
  • a nickel layer is interposed between the other main surface of the metal base plate in which an insulating substrate including a semiconductor chip is bonded to one main surface and a heat sink that is a cooler.
  • Reactive metal foil formed by laminating an aluminum layer and solder sandwiching the reactive metal foil are provided, and current is passed through the reactive metal foil to cause self-ignition, so that the solder is melted and the metal base The plate and the heat sink were soldered together. Since the solder is instantaneously melted by the reactive metal foil, a metal bond was formed at the interface between the heat sink and the solder, and the interface between the metal base plate and the solder, and the metal base plate and the heat sink were firmly bonded ( For example, see Patent Document 2).
  • the refrigerant is allowed to flow through the internal space of the cooler to actively exhaust heat from the heat radiation fins.
  • it is necessary to reduce the size of the cooler.
  • it is necessary to increase the flow rate of the refrigerant.
  • increasing the flow rate of the refrigerant increases the pressure of the refrigerant.
  • the refrigerant easily leaks from the sealing portion sealed with a sealing member such as an O-ring. Sealing with the O-ring is performed by fastening the cooler and the fin base with bolts, and deforming the O-ring sandwiched between the cooler and the fin base by the fastening force, thereby making the O-ring into the cooler and the fin base.
  • the present invention has been made in order to solve the above-described problems.
  • the sealing portion of the cooler is made to have a high withstand voltage and high heat resistance, and there is no remelting of the bonding material joined to the semiconductor element or the insulating substrate.
  • An object of the present invention is to provide a method for manufacturing a power semiconductor device having high performance and a power semiconductor device.
  • a method for manufacturing a power semiconductor device includes a step of bonding a substrate provided with a semiconductor element on a first bonding surface of a heat sink made of a nonmagnetic metal material with a bonding material, and surrounding an opening. Forming a solder around the opening of the cooler made of metal having a side wall and having a concave cross section; and bringing the second joint surface provided on the back side of the first joint surface of the heat sink into contact with the solder And a step of melting the solder by heat generated by induction heating of the metal member included in the cooler or the metal member provided in the cooler and soldering the heat sink and the cooler.
  • the power semiconductor device includes a cooler made of a metal having a side wall provided around an opening and having a concave cross section, and a nonmagnetic material joined to the side of the opening by solder. And a substrate bonded on the heat sink and provided with a semiconductor element.
  • the sealing portion of the cooler since there is no remelting of the bonding material bonded to the semiconductor element or the insulating substrate, the sealing portion of the cooler has a high breakdown voltage and a high heat resistance, and has high reliability.
  • a method of manufacturing a power semiconductor device can be provided.
  • the sealing portion of the cooler since there is no remelting of the bonding material bonded to the semiconductor element or the insulating substrate, the sealing portion of the cooler has a high withstand voltage and a high heat resistance, and has high reliability.
  • a semiconductor device can be provided.
  • FIG. 1 is a cross-sectional view showing a power semiconductor device according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view showing the power semiconductor device according to the first embodiment of the present invention.
  • the cross-sectional view of FIG. 1 is a cross-sectional view taken along broken line AB in FIG.
  • the power semiconductor device 1 is configured by joining a power module 2 and a cooler 8 with solder 12.
  • the power module 2 includes a semiconductor element 3 formed of silicon or silicon carbide, an insulating substrate 5 in which the semiconductor element 3 is bonded to one surface via a bonding material 4 such as solder or sintered silver, A heat sink 7 formed of a nonmagnetic metal material having high thermal conductivity such as aluminum or aluminum alloy joined to the other surface via a joining material 6 such as solder is provided.
  • the heat sink 7 includes a fin base 71 having a flat surface on which the insulating substrate 5 is bonded with the bonding material 6, and heat radiating fins 72 standing upright on the opposite side of the surface of the fin base 71 to which the insulating substrate 5 is bonded, that is, on the back surface side. Composed.
  • the insulating substrate 5 is configured by providing conductive patterns 52 and 53 on both surfaces of an insulating substrate 51 such as aluminum nitride (AlN). Furthermore, the power module 2 includes a case such as a resin mold that covers the semiconductor element 3 and the insulating substrate 5 (not shown).
  • the cooler 8 is made of a non-magnetic metal material such as aluminum or aluminum alloy, has a refrigerant flow path 11 inside, and has an opening for inserting the radiating fins 72 of the heat sink 7 into the refrigerant flow path 11.
  • a jacket 9 and a magnetic metal portion 10 provided around the opening of the refrigerant jacket 9 so as to be partly exposed to the outside of the cooler 8 and in close contact with the refrigerant jacket 9 in a liquid-tight manner.
  • the inside of the cooler 8 refers to a region below the plane including the surface 10b that is the upper surface of the magnetic metal portion 10 in FIG. 1 and having the refrigerant flow path 11, and the inside of the refrigerant jacket 9 is In FIG.
  • the magnetic metal portion 10 has a surface 10 a that is a side surface and a part of the surface 10 b that is an upper surface exposed outside the cooler 8.
  • FIG. 1 is a cross-sectional view
  • the side wall 91 of the refrigerant jacket 9 seems to exist only on the left and right sides of the radiating fin 72, but the side wall 91 of the refrigerant jacket 9 is on the back side and the front side of the radiating fin 72.
  • the heat dissipating fins 72 are provided so as to surround the four sides. Therefore, the magnetic metal part 10 is also provided so as to surround the heat radiation fin 72 from four directions.
  • the surface 10 a of the magnetic metal part 10 exposed to the outside of the cooler 8 is exposed to the four sides of the cooler 8, and a part of the surface 10 b of the magnetic metal part 10 is outside the heat sink 7. It is exposed to the upper part of the paper surface so as to surround.
  • the refrigerant jacket 9 shown in FIG. 1 has a refrigerant inlet port through which the refrigerant flows into the refrigerant flow path 11 from the outside of the cooler 8 on one side of the side wall 91 on the rear side and the front side of the radiating fin 72, and the other side.
  • a refrigerant outlet for allowing the refrigerant to flow out of the cooler 8 from the refrigerant channel 11 is provided (not shown).
  • a fluid such as water is used as the refrigerant.
  • the refrigerant inlet and the refrigerant outlet are internally threaded, and a pipe having a male threaded portion at the tip is connected to the refrigerant inlet and the refrigerant outlet and is connected to an external device such as a radiator.
  • a coolant such as water flows through the coolant channel 11 in FIG. 1 in the direction perpendicular to the paper surface, the heat of the radiation fins 72 is transferred to the coolant, and the heat generated in the semiconductor element 3 of the power module 2 is exhausted.
  • the magnetic metal part 10 is made of a magnetic metal material such as iron, steel, nickel, cobalt, and ferritic stainless steel, and one surface of the magnetic metal part 10 is welded, brazed, or caulked to the refrigerant jacket 9. It is joined.
  • the heat sink 7 is provided with positioning holes 13 that are used when the heat sink 7 and the magnetic metal portion 10 are joined with the solder 12.
  • the positioning hole 13 is provided outside a case (not shown) that protects the semiconductor element 3 and the insulating substrate 5.
  • the positioning hole 13 is provided through the front and back of the heat sink 7, and the positioning hole 14 is also provided in the cooler 8 at a position corresponding to the positioning hole 13 (see FIGS. 4 and 5).
  • the positioning hole 14 provided in the cooler 8 penetrates the magnetic metal part 10 and reaches the refrigerant jacket 9.
  • the positioning hole 13 and the positioning hole 14 are located at the power semiconductor from the position where the solder 12 is provided. It is provided outside the device 1.
  • solder 12 is provided along the magnetic metal portion 10 between the heat sink 7 of the power module 2 and the magnetic metal portion 10 of the cooler 8.
  • the power semiconductor device 1 is configured by being liquid-tightly connected to the space 10. Since the space between the heat sink 7 and the solder 12 and between the magnetic metal portion 10 and the solder 12 are sealed in a liquid-tight manner by metal bonding, the opening portion of the refrigerant jacket 9 is sealed with a high pressure resistance and a high heat resistance. Is done.
  • the heat transfer coefficient from the heat radiation fins 72 to the refrigerant increases as the flow rate of the refrigerant increases, and increases as the temperature difference between the heat dissipation fins 72 and the refrigerant increases.
  • the refrigerant flow Since the pressure of the refrigerant flowing through the passage 11 can be increased to increase the flow velocity of the refrigerant, the heat transfer rate from the radiating fins 72 to the refrigerant is increased, and sufficient exhaust heat performance is achieved even if the size of the radiating fins 72 is reduced. Is obtained. Moreover, since the sealing part of the cooler 8 is soldered by the solder 12, the heat resistance is high, and the semiconductor element 3 can be operated at a high temperature. Therefore, the temperature difference between the heat radiation fin 72 and the refrigerant is increased, Since the heat transfer coefficient from the radiation fins 72 to the refrigerant can be further increased, the cooler can be reduced in size.
  • Both the heat sink 7 and the cooler 8 are for discharging and cooling the heat generated by the semiconductor element 3 to the outside.
  • the heat sink 7 and the cooler 8 are collectively referred to as a cooling mechanism.
  • the magnetic metal material means a ferromagnetic metal material at a temperature below the melting point of the solder 12, and is an iron, nickel, cobalt elemental alloy or an alloy containing these elements, and is a metal attached to the magnet.
  • the nonmagnetic metal material refers to a paramagnetic or diamagnetic metal material, which is a metal element such as copper, aluminum, chromium, or an alloy thereof, which is not attached to a magnet.
  • all metal materials are classified according to whether they are attached to magnets or not to magnets. Therefore, they are either magnetic metal materials or nonmagnetic metal materials. There is no metallic material that does not belong to any of the above.
  • both the magnetic metal material and the non-magnetic metal material are metal materials, they are conductive and have an electrical resistivity of 10 ⁇ m or less. Therefore, for example, ferrite containing iron oxide as a main component is a ceramic and an insulator, and thus is a ferromagnetic material and contains a metal element, but is not a magnetic metal material in the present invention.
  • the power semiconductor device 1 includes a step of bonding the semiconductor element 3 to the insulating substrate 5, a step of bonding the insulating substrate 5 to the heat sink 7 and manufacturing the power module 2, and a magnetic metal for the refrigerant jacket 9.
  • the molten solder 12 is solidified to join the heat sink 7 and the cooler 8, and the manufacturing method includes a step of sealing the opening provided in the cooler 8 or the refrigerant jacket 9. it can.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the power semiconductor device of the first embodiment.
  • FIG. 4 is a cross-sectional view and a top view showing the method for manufacturing the power semiconductor device of the first embodiment.
  • FIG. 5 is a cross-sectional view showing the method for manufacturing the power semiconductor device of the first embodiment.
  • FIG. 3 shows a process of manufacturing the power module 2 by joining the semiconductor element 3, the insulating substrate 5, and the heat sink 7, and
  • FIG. 4 shows a process of providing the solder 12 on the magnetic metal part 10 of the cooler 8.
  • FIG. 5 shows a process of soldering the power module 2 and the cooler 8 by induction heating of the magnetic metal part 10.
  • FIGS. 4A and 5 are taken along a broken line CD in FIG. It is sectional drawing.
  • FIG. 4B is a top view of FIG. In FIG. 5, the semiconductor element 3, the bonding material 4, the insulating substrate 5, and the bonding material 6 are also shown for easy understanding.
  • FIG. 3A shows a manufacturing method in which the step of bonding the semiconductor element 3 and the insulating substrate 5 and the step of bonding the insulating substrate 5 and the heat sink 7 are performed simultaneously. These show the manufacturing method which performs the process of joining the insulated substrate 5 and the heat sink 7 after the process of joining the semiconductor element 3 and the insulated substrate 5.
  • a plating film such as nickel plating having good wettability with solder and good corrosion resistance on the joint surface of the heat sink 7 with the insulating substrate 5 before soldering with the joining material 6.
  • a bonding material 6 made of paste solder or plate solder is disposed on the heat sink 7 and bonded.
  • a conductive pattern 53 of the insulating substrate 5 is disposed on the material 6, and a bonding material 4 made of paste solder or plate solder is disposed on the conductive pattern 52 of the insulating substrate 5.
  • the semiconductor element 3 is disposed. Then, the superposed members are heated simultaneously in a reflow furnace or the like, the bonding material 4 and the bonding material 6 are melted, and then cooled to solidify the bonding material 4 and the bonding material 6.
  • the joining material 4 joins the semiconductor element 3 and the insulating substrate 5, and the joining material 6 joins the insulating substrate 5 and the heat sink 7 to be integrated as shown in FIG.
  • the step of bonding the semiconductor element 3 to the insulating substrate 5 and the step of bonding the insulating substrate 5 to the heat sink 7 are performed simultaneously.
  • the semiconductor element is obtained when the bonding material 6 is melted. It is necessary that the bonding material 4 for bonding 3 and the insulating substrate 5 does not remelt. For this reason, sintered silver may be used for the bonding material 4, and a solder material may be used for the bonding material 6, or both the bonding material 4 and the bonding material 6 may be used as solder materials, and the bonding material 6 may be more than the bonding material 4. A solder material having a low melting point may be used.
  • Sintered silver is a bonding material that is sintered at a temperature lower than the melting point of silver using the high reactivity of nanometer-sized silver nanoparticles, and the sintering temperature for bonding is Since it is lower than the melting point after sintering, it is a joining material that can maintain the joined state of the member even when the temperature is lower than the melting point of silver after joining the members at a low temperature.
  • the semiconductor element 3 is bonded onto the conductive pattern 52 of the insulating substrate 5 by the bonding material 4 made of sintered silver or a solder material.
  • the bonding material 6 made of paste solder or plate solder is disposed on the heat sink 7, and the conductive pattern 53 of the insulating substrate 5 is disposed on the bonding material 6.
  • heating is performed in a reflow furnace or the like, the bonding material 6 is melted, and then the bonding material 6 is solidified by cooling, and the bonding material 6 bonds the insulating substrate 5 and the heat sink 7 to each other.
  • the insulating substrate 5 and the heat sink 7 are integrated as shown in FIG.
  • the step of bonding the insulating substrate 5 to the heat sink 7 is performed after the step of bonding the semiconductor element 3 to the insulating substrate 5.
  • a power module 2 is manufactured by providing a case such as a resin mold for protecting the substrate 5.
  • the case is provided such that the positioning hole 13 is outside the case.
  • 4 (a) and 4 (b) are diagrams showing a manufacturing method in which a step of providing the magnetic metal portion 10 in the refrigerant jacket 9 and a step of providing the solder 12 between the cooler 8 and the heat sink 7 are performed.
  • the refrigerant jacket 9 has a concave cross section and has an opening 11a on the upper side, and is provided with a refrigerant flow path 11 communicating with the opening 11a on the inside.
  • the magnetic metal part 10 is provided around the opening 11 a of the refrigerant jacket 9. Therefore, the cooler 8 configured by providing the magnetic metal part 10 in the refrigerant jacket 9 also has an opening 11 a communicating with the refrigerant flow path 11.
  • the magnetic metal part 10 may be formed by processing a plate material made of a magnetic metal material.
  • the magnetic metal part 10 has a part of the surface 10a of the magnetic metal part 10 exposed to the outside of the refrigerant jacket 9, and is joined around the opening 11a of the refrigerant jacket 9 by a method such as welding, brazing, or caulking. Is provided.
  • the magnetic metal part 10 is provided in close contact with the refrigerant jacket 9 in a liquid-tight manner so that the refrigerant does not leak from between the refrigerant jacket 9 and the magnetic metal part 10, and the cooler 8 is obtained.
  • coolant which is fluids, such as water flows into the refrigerant
  • the magnetic metal portion 10 is not limited to the above method, and may be formed directly around the opening 11a of the refrigerant jacket 9 by a method of forming a film such as plating or thermal spraying.
  • the thickness is preferably 0.1 mm or more.
  • the thickness of the magnetic metal part 10 is less than 0.1 mm, the magnetic metal part 10 is thin, so that the electric resistance is too large, and the induction current during induction heating sufficiently flows to the magnetic metal part 10. This is because the efficiency of induction heating of the magnetic metal part 10 is deteriorated. Therefore, for example, a nickel plating film formed for the purpose of improving the wettability of solder has a film thickness of at most several ⁇ m.
  • the magnetic metal part 10 has a thickness of at least 0.1 mm or more and preferably a thickness of 50 mm or less. More preferably, they are 1 mm or more and 10 mm or less. Since the magnetic metal part 10 is formed of iron or the like, the specific gravity is larger than that of the refrigerant jacket 9 formed of aluminum or aluminum alloy. Therefore, if the thickness of the magnetic metal part 10 exceeds 50 mm, the power semiconductor device 1 Since it becomes heavy, it is not preferable.
  • the thickness of the magnetic metal part 10 exceeds 50 mm, the heat capacity is too large, and the responsiveness of temperature control of the magnetic metal part 10 during induction heating deteriorates. This is not preferable because it is difficult to control the temperature so as not to increase to near the melting point of the bonding material 6.
  • the solder 12 is disposed on the surface 10b of the magnetic metal portion 10.
  • the solder 12 is arranged such that a positioning hole 14 provided at the upper end of the side wall of the cooler 8 is located on the outer peripheral side of the cooler 8.
  • a plating film such as nickel plating having good solder wettability is preferably formed in advance on the surface 10b of the magnetic metal portion 10 to be soldered, and at the same time as the plating film for preventing corrosion due to the above-described refrigerant. It may be formed.
  • paste solder or plate solder may be used for the solder 12.
  • the solder 12 is disposed on the surface 10b of the magnetic metal portion 10 and then heated to once melt the solder 12, and then cooled to solidify the solder 12 so that the solder 12 is solidified to the surface 10b of the magnetic metal portion 10. It may be preformed on top. If the solder 12 is preformed on the surface 10b of the magnetic metal part 10, the heat conduction between the magnetic metal part 10 and the solder 12 is improved. Therefore, the magnetic metal part 10 is induction-heated to heat the heat sink 7 and the solder. The heating time in the case of joining can be shortened.
  • the power module 2 shown in FIG. 3C is provided in the positioning hole 13 of the heat sink 7, the magnetic metal portion 10 and the refrigerant jacket 9.
  • the positioning hole 14 is aligned with the positioning hole 14 and disposed on the magnetic metal portion 10.
  • the solder 12 is provided between the cooler 8 and the heat sink 7 of the power module 2.
  • fixing pins are inserted into the positioning holes 13 and the positioning holes 14 and temporarily fixed.
  • FIG. 5 shows the induction heating of the magnetic metal part 10 by a high frequency induction heating device to melt the solder 12, and then the molten solder 12 is solidified to join the power module 2 and the cooler 8. It is a figure which shows the manufacturing method which performs the process of sealing the opening part connected.
  • the magnetic metal part 10 of the cooler 8 and the heat sink 7 of the power module 2 are provided so as to overlap each other with the solder 12 interposed therebetween, and temporarily fixed by the fixing pin 15 inserted into the positioning hole 13 and the positioning hole 14. After stopping, it is placed in the high frequency induction heating device 16 and a high frequency current is supplied to the coil of the high frequency induction heating device 16. Since the surface 10a and part of the surface 10b of the magnetic metal part 10 are exposed to the outside of the cooler 8, the high frequency magnetic flux generated by the coil of the high frequency induction heating device 16 is hindered by other nonmagnetic metal materials. Without reaching the magnetic metal part 10, the magnetic metal part 10 is induction-heated and the temperature rises.
  • the heat sink 7 and the refrigerant jacket 9 are both formed of a nonmagnetic metal material such as aluminum or an aluminum alloy, the magnetic metal portion 10 is not exposed to the outside of the cooler 8 at all.
  • the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the non-magnetic metal material, an induction current is generated in the non-magnetic metal material by electromagnetic induction so as to cancel the high-frequency magnetic flux.
  • the magnetic flux does not reach and the magnetic metal part 10 is not induction heated.
  • the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the magnetic metal part 10
  • the magnetic metal part 10 can be induction-heated.
  • the coil of the high frequency induction heating device 16 is a cylindrical coil having a width larger than the width of the cooler 8, and a part of the lower portion of the cooler 8 is below the upper end of the cylindrical coil as shown in FIG. It is preferable that it is provided so that it may be located in. If the distance between the upper end of the cylindrical coil and the lower end of the cooler 8 is greatly separated, the efficiency of induction heating of the magnetic metal portion 10 is deteriorated, and the bonding material 6 of the magnetic metal portion 10 and the heat sink 7 during induction heating is deteriorated. The temperature difference from the portion where the insulating substrate 5 is bonded becomes small, which is not preferable.
  • the magnetic metal part 10 may have a nonmagnetic metal plating film formed on the surface of the magnetic metal part 10 in order to obtain corrosion resistance.
  • the plating film formed for the purpose of improving the wettability of the solder or the corrosion resistance has a thickness of several ⁇ m at most, the electric resistance is too large and the induction heating of the magnetic metal part 10 is performed. Therefore, the high-frequency magnetic flux reaches the magnetic metal material portion of the magnetic metal portion 10 without being canceled by the induced current flowing in the plating film formed on the surface of the magnetic metal portion 10.
  • the magnetic metal material has a relative permeability of 10 times or more larger than that of the non-magnetic metal material, a magnetic flux density is large in the magnetic metal material, a large induced current flows by electromagnetic induction, and the magnetic metal portion 10 is caused by Joule heat due to the induced current. Fever.
  • the magnetic metal part 10 including the film is called. That is, when the magnetic metal portion 10 having a nonmagnetic metal plating film formed on the surface is exposed to the outside of the power semiconductor device 1, strictly speaking, it is not in contact with the space outside the cooler 8. Although it can be said that it is a magnetic metal, it is called the magnetic metal part 10 including the plating film of the nonmagnetic metal on the surface as described above. Therefore, even in such a case, the magnetic metal part 10 is exposed to the outside of the cooler 8.
  • the insulator of the nonmagnetic material has no influence on the high-frequency magnetic flux, and is the same as not existing physically. So you can ignore it.
  • the insulator covering the surface of the magnetic metal part 10 is a ferromagnetic material such as a ferrite core, the magnetic metal part 10 is prevented from being induction-heated by the high-frequency magnetic flux. It is not desirable to cover the exposed portion of the device 1 with a ferromagnetic insulator.
  • the nickel plating film having a thickness of about several ⁇ m is as described above. Since the resistance is large, it is hardly heated by induction, and may be formed of a nonmagnetic metal material.
  • the heat of the magnetic metal part 10 heated directly by induction heating is transferred to the solder 12 by heat conduction, and the temperature of the solder 12 rises as the temperature of the magnetic metal part 10 rises.
  • the solder 12 is once melted on the magnetic metal portion 10 and then solidified and preformed, the magnetic metal portion 10 and the solder 12 are in close contact with each other. This is preferable because the heat conduction is good and the temperature of the solder 12 can be raised in a short time.
  • the heat transferred from the magnetic metal part 10 to the solder 12 is also transferred to the fin base 71 of the heat sink 7 in contact with the solder 12, and the temperature of the fin base 71 also rises.
  • the temperature of the solder 12 rises above the melting point of the solder 12, the solder 12 melts.
  • the adhesion between the solder 12 and the fin base 71 is improved, and the heat transfer rate from the solder 12 to the fin base 71 is increased, so that the temperature of the portion of the fin base 71 in contact with the solder 12 rapidly increases.
  • the molten solder 12 wets the fin base 71, diffuses into the fin base 71, and forms an alloy layer. Is done. At this time, although the alloy layer is formed and soldered, the solder 12 is in a molten state and the heat sink 7 and the magnetic metal portion 10 are not fixed.
  • the solder 12 When the solder 12 is diffused into the fin base 71 and soldering is performed, the supply of the high-frequency current to the coil of the high-frequency induction heating device 16 is stopped. Then, since the high frequency magnetic flux that has reached the surface 10a of the magnetic metal portion 10 exposed outside the refrigerant jacket 9 is lost, induction heating is stopped, and the temperature of the magnetic metal portion 10, the solder 12, and the fin base 71 is lowered. To do. When the temperature of the solder 12 falls below the melting point, the molten solder 12 is solidified, and the magnetic metal portion 10 of the cooler 8 and the heat sink 7 of the power module 2 are joined and fixed by the solder 12. Then, the fixing pin 15 is removed and the power semiconductor device 1 is completed.
  • the heating of the magnetic metal part 10 by induction heating is direct heating in which the magnetic metal part 10 itself becomes a heat source, the controllability of the heating temperature is very good. Further, the portion of the fin base 71 to be soldered by the solder 12 is also close to the magnetic metal portion 10, so that the heating temperature can be controlled.
  • the high frequency current supplied to the coil of the high frequency induction heating device 16 is controlled while measuring the temperature of at least one of the magnetic metal portion 10, the solder 12, and the portion soldered by the solder 12 of the fin base 71, Solder joining with the solder 12 can be easily and reliably performed while preventing the temperature of the joint portion with the joining material 6 from exceeding the melting point of the joining material 6.
  • the temperature of the magnetic metal part 10, the solder 12, and the portion soldered by the solder 12 of the fin base 71 may be measured by non-contact temperature measuring means such as a radiation thermometer, for example.
  • the solder 12 wets the fin base 71 and diffuses into the fin base 71 and forms an alloy layer every time soldering is performed. If the time and temperature for supplying the high-frequency current to the coil are determined, and each time soldering is performed, the high-frequency current is supplied to the coil for the determined time or supplied to the coil so that the determined temperature is reached. Good.
  • the high-frequency current supplied to the coil of the high-frequency induction heating device 16 does not necessarily need to be started and stopped.
  • a coil that generates high-frequency magnetic flux is provided in a predetermined section in the traveling direction of a transport device such as a belt conveyor.
  • induction heating may be performed for a predetermined time. That is, strictly guiding by placing a solder 12 between the power module 2 and the cooler 8 and temporarily fixing with a fixing pin 15 on a conveying device and passing a predetermined section in a predetermined time. The time for heating is controlled and soldering can be performed.
  • the temperature of the part of the fin base 71 in contact with the solder 12 can be rapidly raised to a temperature equal to or higher than the melting point of the solder 12.
  • the portion of the fin base 71 in contact with the solder 12 reaches a temperature equal to or higher than the melting point of the solder 12
  • the amount of heat flowing from the magnetic metal portion 10 to the fin base 71 via the solder 12 is limited.
  • the temperature at the joint with the substrate 5 can be kept below the melting point of the solder.
  • the temperature of the bonding material 6 for bonding the insulating substrate 5 and the heat sink 7 is suppressed from being higher than the melting point, and naturally the temperature of the bonding material 4 for bonding the semiconductor element 3 and the insulating substrate 5 is the melting point. It can also be suppressed. Therefore, since the bonding material 4 and the bonding material 6 are not remelted, the reliability of the power semiconductor device 1 can be kept high.
  • the high frequency induction heating is not indirect heating but directly generates heat in the magnetic metal portion 10, so that the temperature controllability is good and the temperature of the solder 12 and its surrounding joints is not increased more than necessary.
  • the material 6 can be reliably prevented from being remelted, and the reliability of the power semiconductor device 1 can be improved.
  • the opening of the cooler 8 is sealed by metal bonding between the magnetic metal portion 10 and the solder 12 and metal bonding between the heat sink 7 and the solder 12, the pressure resistance and heat resistance can be improved.
  • the method for manufacturing a power semiconductor device of the present invention can reduce the manufacturing cost of the power semiconductor device.
  • a reflow furnace, oven, etc. are used when brazing is performed using a bonding material such as solder, as in the case of bonding between an insulating substrate and a semiconductor element, or bonding between an insulating substrate and a heat sink.
  • the entire power semiconductor device to be brazed is housed in the heating equipment and heated so that the temperature of the power semiconductor device becomes substantially uniform. For this reason, when the same method is used for joining the power module 2 and the cooler 8, the heating equipment becomes large-scale, and the heating time becomes longer, so that the power consumption of the heating equipment increases.
  • the magnetic metal portion 10 provided in the cooler 8 can be selectively heated in a short time by high-frequency induction heating. Heating equipment for soldering 2 to the cooler 8 can be made small. Moreover, since the electric power required for heating can be concentrated and supplied to the magnetic metal part 10, the time required for the solder joint between the power module 2 and the cooler 8 can be shortened, and the power consumption required for the solder joint can be suppressed. Can do.
  • the manufacturing method of the power semiconductor device of the present invention can suppress an unnecessary temperature rise of the insulating substrate 5 and the semiconductor element 3 when the power module 2 and the cooler 8 are joined, The thermal stress generated in the insulating substrate 5 and the semiconductor element 3 due to the temperature change can be reduced.
  • thermal stress is generated in the bonding material 6 between the insulating substrate 5 and the heat sink 7 and the bonding material 4 between the semiconductor element 3 and the insulating substrate 5 due to a temperature change during use.
  • These bonding materials 4 and 6 use a bonding material made of a metal material such as solder or sintered silver.
  • a crack due to metal fatigue occurs and eventually the bonding portion Peeling occurs.
  • the life design of each joint is performed in consideration of both the thermal stress due to the temperature change during manufacture and the thermal stress due to the temperature change during use.
  • the temperature change when soldering by heating the entire power semiconductor device during manufacturing is larger than the temperature change during use, the temperature change during manufacturing is a factor that shortens the life of the power semiconductor device. It was one.
  • the temperature rise during the manufacturing of the bonding material 4 and the bonding material 6 can be suppressed, so that the life of the power semiconductor device 1 can be further extended.
  • the power semiconductor device 1 has a magnetic permeability higher than that of the refrigerant jacket 9 made of a nonmagnetic metal material, and a magnetic metal part 10 that is partially exposed to the outside of the cooler 8. 8, the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the magnetic metal part 10 without being blocked by the refrigerant jacket 9 made of a non-magnetic metal, so that the magnetic metal part 10 is selectively and short-circuited. Can be heated in time.
  • the width of the fin base 71 of the heat sink 7 is described. Is the same as the width of the refrigerant jacket 9 and the high-frequency magnetic flux generated by the high-frequency induction heating device 16 is generated in the cooler 8 even when the surface 10b of the magnetic metal part 10 is not exposed to the outside of the cooler 8. It reaches the surface 10a of the magnetic metal part 10 exposed to the outside of the magnetic metal part 10, and the magnetic metal part 10 can be induction heated.
  • the heat sink 7 and the cooler 8 of the power module 2 are sealed by solder bonding with the solder 12.
  • the solder 12 may be easily corroded because it is exposed to a coolant such as water flowing through the coolant channel 11.
  • a coolant such as water flowing through the coolant channel 11.
  • the lower side from the joint surface of the fin base 71 with the solder 12, that is, the cooler 8 side is plated.
  • Corrosion resistance can be improved by dipping in the solution and applying nickel plating to the solder joint inside the cooler 8 by electrolytic nickel plating or electroless nickel plating.
  • the reliability of the bonded portion by the bonding material 4 and the bonding material 6 in the power module 2 is high, and the pressure resistance and heat resistance of the sealing portion of the cooler 8 are improved.
  • the effect that a high-power semiconductor device can be obtained is obtained.
  • FIG. FIG. 6 is a sectional view showing a power semiconductor device according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that a part of the magnetic metal portion 10 protrudes outside the refrigerant jacket 9.
  • the magnetic metal part 10 is provided around the opening of the refrigerant jacket 9 of the cooler 8 as in the first embodiment, but a part of the magnetic metal part 10 is provided.
  • the refrigerant jacket 9 protrudes outward from the side surface 9a.
  • a surface 10 a that is a side surface and a part of a surface 10 c that is a lower surface are exposed to the outside of the power semiconductor device 1.
  • the fin base 71 of the heat sink 7 has a width wider than that of the refrigerant jacket 9, and the fin base 71 and the magnetic metal part 10 are portions that protrude outward from the side surface 9 a of the refrigerant jacket 9, and are solder 12. It is joined by.
  • the power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. However, in the power semiconductor device 1 according to the second embodiment, as described above, a part of the magnetic metal portion 10 protrudes outside the side surface 9a of the refrigerant jacket 9, so that the coil of the high-frequency induction heating device 16 is The generated high-frequency magnetic flux reaches the surface 10a of the magnetic metal portion 10 and the portion of the surface 10c that protrudes outward from the side surface 9a of the refrigerant jacket 9 without being obstructed by the refrigerant jacket 9, so that the protruding portion can be efficiently used. Good induction heating. Therefore, the time required for solder joining between the heat sink 7 and the cooler 8 can be shortened as compared with the power semiconductor device shown in the first embodiment.
  • the solder 12 Since the solder 12 is provided on the protruding portion, the solder 12 can be melted in a shorter time and soldered to the heat sink 7. Therefore, the bonding material 4 and the bonding material 6 in the power module 2 are not melted again, and the reliability of the power semiconductor device 1 can be further improved.
  • the reliability of the bonded portion by the bonding material 4 and the bonding material 6 in the power module 2 is higher, and the pressure resistance and heat resistance of the sealing portion of the cooler 8 are increased.
  • the effect that a high-power semiconductor device can be obtained is obtained.
  • FIG. 7 is a sectional view showing a power semiconductor device according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the configuration in which the magnetic metal portion 10 is provided on the side surface of the refrigerant jacket 9 is different from the first embodiment of the present invention.
  • the magnetic metal part 10 is provided on the side surface 9 a of the refrigerant jacket 9 by a method such as welding, brazing, or caulking, and the surface joined to the refrigerant jacket 9 and solder A surface 10a that is a side surface and a surface 10c that is a lower surface, excluding the surface 10b to be joined, are exposed to the outside of the cooler 8.
  • the magnetic metal part 10 is provided such that the surface 10b on which the solder 12 of the magnetic metal part 10 is provided and the end face 9b having the opening of the refrigerant jacket 9 are flush and have the same plane.
  • the magnetic metal portion 10 is preferably provided in a liquid-tight manner without providing a gap between the side surface 9a of the refrigerant jacket 9, but as shown in FIG. 7, the solder 12 is attached to the magnetic metal portion 10 and the refrigerant. Since it is provided over the jacket 9, the magnetic metal part 10 and the coolant jacket 9 do not necessarily need to be liquid-tightly adhered. If there is a gap, the gap is filled with the solder 12.
  • the magnetic metal part 10 is provided separated from the refrigerant flow path 11 by the solder 12, water flowing in the refrigerant flow path 11 or the like The refrigerant does not touch the magnetic metal part 10, and corrosion of the magnetic metal part 10 can be suppressed.
  • the power semiconductor device 1 is manufactured by the same manufacturing method as in the first embodiment. However, in the power semiconductor device 1 according to the third embodiment, since the solder 12 is provided across the magnetic metal portion 10 and the refrigerant jacket 9, the phenomenon when the solder 12 is melted and joined by induction heating is different. . Hereinafter, different parts will be described.
  • a plating film such as nickel plating with good solder wettability and corrosion resistance on the surface of the magnetic metal part 10 and the coolant jacket 9 where the solder 12 is provided before the solder 12 is disposed.
  • solder composed of paste solder, plate solder, or the like over the end face 9b of the cooler 8 having the opening of the refrigerant jacket 9 and the face 10b of the magnetic metal part 10 disposed on the same plane as the end face 9b. 12 is arranged. After the solder 12 is disposed, the solder 12 is once heated to melt the solder 12, and then cooled and solidified, whereby the solder 12 is flush with the end face 9b having the opening of the coolant jacket 9, and the end face 9b is flush with the end face 9b. It may be preformed over the surface 10b of the magnetic metal part 10 disposed on the surface. It is preferable to preform the solder 12 because heat conduction from the magnetic metal part 10 heated by induction to the solder 12 becomes good and the soldering time can be shortened.
  • the heat sink 7 of the power module 2 is disposed on the solder 12, and the magnetic metal part 10 is induction heated by the high frequency magnetic flux generated by the high frequency induction heating device 16. To do.
  • the temperature of the magnetic metal part 10 rises due to induction heating, the heat of the magnetic metal part 10 is transferred to the refrigerant jacket 9 and the solder 12, and the temperature of the refrigerant jacket 9 and the solder 12 rises.
  • the temperature of the solder 12 exceeds the melting point, the solder 12 melts. The solder 12 starts to melt from the portion in contact with the magnetic metal portion 10, and the melting progresses toward the portion in contact with the refrigerant jacket 9.
  • the portion of the solder 12 in contact with the refrigerant jacket 9 is melted, and the temperature of the refrigerant jacket 9 becomes equal to or higher than the melting point of the solder 12 due to heat conduction from the magnetic metal portion 10 or the solder 12.
  • the coolant jacket 9 and the magnetic metal part 10 and the solder 12 form a metal joint.
  • the temperature of the fin base 71 of the heat sink 7 increases due to heat conduction from the solder 12 at the portion in contact with the solder 12, and when the solder 12 melts, the heat conduction further improves and the temperature rises rapidly. And if the temperature of the part which contacts the solder 12 of the fin base 71 becomes more than melting
  • the induction heating by the high frequency induction heating device 16 is stopped.
  • the temperature of the solder 12 falls below the melting point, the solder 12 is solidified, and the cooler 8 having the magnetic metal part 10 and the refrigerant jacket 9 and the power module 2 having the heat sink 7 are soldered by the solder 12.
  • the high-frequency induction heating device 16 is generated.
  • the magnetic metal part 10 is smaller in size than the magnetic metal parts of the first and second embodiments, and thus has a small heat capacity.
  • the temperature of the magnetic metal part 10 is rapidly increased by induction heating, and the cooler 8 and the power module 2 are heated. Can be soldered in a short time.
  • the bonding material 6 and the bonding material 4 in the power module 2 are not melted again, and the reliability of the power semiconductor device can be improved.
  • the cooler 8 and the heat sink 7 of the power module 2 are soldered together, a power semiconductor device with high pressure resistance and heat resistance of the sealing portion of the cooler 8 can be obtained.
  • FIG. 8 is a sectional view showing a power semiconductor device according to the fourth embodiment of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the configuration in which the refrigerant jacket also serves as a heat sink is different from the first embodiment of the present invention.
  • the power module 2 is configured using a refrigerant jacket 9 instead of a heat sink.
  • the refrigerant jacket 9 includes a fin base 71 corresponding to the fin base of the heat sink, and a heat dissipation fin 72 corresponding to the heat dissipation fin of the heat sink.
  • the refrigerant flow path 11 is provided on the inner side surrounded by the side wall 91, and an opening is provided on the end side of the side wall 91 on the side opposite to the fin base 71.
  • Such a shape can be formed by cutting a rectangular parallelepiped of aluminum or aluminum alloy, but can also be formed by die casting.
  • the refrigerant jacket 9 is not necessarily formed integrally, and the refrigerant jacket 9 is configured by providing the heat sink having the heat radiation fins 72 by joining the side wall 91 separately from the heat sink by welding, brazing, or caulking. May be.
  • the refrigerant jacket 9 includes the fin base 71 and the side wall 91, a description will be given using the cooling mechanism 81 instead of the cooler.
  • the cooling mechanism 81 is a combination of the cooler 8 and the heat sink 7 in the first to third embodiments.
  • the magnetic metal portion 10 is formed of a flat magnetic metal material, and is joined to the end surface 91a of the side wall 91 of the refrigerant jacket by the solder 12 to constitute the bottom wall of the cooling mechanism 81.
  • the end face 91a of the side wall 91 of the refrigerant jacket 9 and the magnetic metal part 10 are provided in close contact with each other in a liquid-tight manner.
  • the refrigerant jacket 9 is sealed by bonding the magnetic metal part 10 to the end face 91a of the side wall 91. Is done.
  • a surface 10 a that is a side surface and a surface 10 c that is a lower surface are exposed to the outside of the cooling mechanism 81.
  • the power semiconductor device 1 is manufactured by the same method as in the first embodiment. That is, the process until the insulating substrate 5 in which the semiconductor element 3 is bonded to the fin base 71 of the refrigerant jacket 9 by the bonding material 4 is bonded by the bonding material 6 is the same, and then the magnetic metal in which the solder 12 is disposed.
  • the end surface 91a of the side wall 91 and the magnetic metal part 10 are soldered together by inductively heating the part 10 with the high frequency induction heating device 16 and melting the solder 12.
  • the surface to be soldered of the magnetic metal portion 10 and the surface to be soldered which is the end surface 91 a of the side wall 91 are separated from each other. It is preferable to form a plating film having good solder wettability and corrosion resistance, such as nickel plating. Since the surface 10b which is the upper surface of the magnetic metal part 10 is soldered to the end face 91a of the side wall 91 and is exposed to the refrigerant flow path 11, the magnetic metal part 10 is also used to suppress corrosion by a refrigerant such as water. It is preferable to form a plating film such as nickel plating on the entire surface 10b.
  • the solder 12 made of paste solder or plate solder is disposed on the magnetic metal part 10.
  • the solder 12 is preferably preformed on the magnetic metal part 10.
  • the end surface 91 a of the side wall 91 is disposed on the solder 12 so that the magnetic metal portion 10 is induction heated by the high frequency induction heating device 16.
  • the coil of the high-frequency induction heating device 16 may be a flat coil disposed so as to face the surface 10c of the magnetic metal portion 10 that is the bottom surface of the cooler 8 and is exposed to the outside of the cooler 8. .
  • the temperature of the magnetic metal part 10 rises and the heat of the magnetic metal part 10 is transferred to the solder 12 by heat conduction.
  • the temperature of the solder 12 rises and becomes equal to or higher than the melting point of the solder 12
  • the solder 12 melts, heat conduction from the solder 12 to the end face 91a of the side wall 91 is promoted, and the temperature of the end face 91a of the side wall 91 rises rapidly.
  • the end surface 91a of the side wall 91 becomes equal to or higher than the melting point of the solder 12
  • the end surface 91a of the side wall 91 and the solder 12 form a metal bond.
  • the power semiconductor device 1 solder-joins the end surface 91a of the side wall 91 of the refrigerant jacket 9 that is the farthest from the bonding material 6 and the bonding material 4 in the power module 2 to the magnetic metal part 10, Since the opening communicating with the refrigerant flow path 11 is sealed, the temperature increase of the bonding material 6 and the bonding material 4 can be suppressed when the solder 12 is melted, and the melting can be prevented.
  • FIG. 9 is a sectional view showing another power semiconductor device according to the fourth embodiment of the present invention. 9, the same reference numerals as those in FIG. 8 denote the same or corresponding components, and the description thereof is omitted.
  • the power semiconductor device of FIG. 9 is different from the power semiconductor device of FIG. 8 in that the radiation fins 72 and the side walls 91 have the same length.
  • the radiating fins 72 and the side walls 91 provided upright on the fin base 71 of the refrigerant jacket 9 have the same length, and the end surfaces 72 a and the side walls 91 of the radiating fins 72.
  • the end face 91a is located in the same plane.
  • the end surface 72 a of the heat radiating fin 72, the end surface 91 a of the side wall 91, and the surface 10 b that is the upper surface of the magnetic metal part 10 are joined by solder 12.
  • the joining method using the solder 12 is the same as in the case of the power semiconductor device shown in FIG. In the case of the power semiconductor device 1 shown in FIG.
  • solder 12 is preferably placed and preformed at a position where the end surface 72a of the heat radiating fin 72 of the magnetic metal part 10 is soldered.
  • solder bonding for sealing the opening communicating with the refrigerant flow path 11 is performed at a position farthest from the bonding material 6 and the bonding material 4 in the power module 2.
  • the temperature rise of the bonding material 6 and the bonding material 4 can be suppressed so as not to be remelted.
  • the magnetic metal part 10 is soldered to both the end face 91a of the side wall 91 and the end face 72a of the radiating fin 72, the area to be soldered is increased, and the pressure resistance of the sealing part is further increased. it can.
  • the magnetic metal is located farthest from the fin base 71 in which the insulating substrate 5 to which the semiconductor element 3 is bonded by the bonding material 4 is bonded by the bonding material 6. Since the portion 10 is inductively heated and the solder 12 is melted and joined by heat generation of the magnetic metal portion 10, the opening communicating with the coolant channel 11 of the cooling mechanism 81 is sealed. Since the temperature rise of the bonding material 4 and the bonding material 6 can be suppressed when sealing the battery, it is possible to obtain a power semiconductor device including a cooler with high reliability and excellent pressure resistance and heat resistance. Play.
  • FIG. 10 is a cross-sectional view showing the power semiconductor device and the method for manufacturing the power semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 10A is a diagram showing a method of manufacturing a power semiconductor device
  • FIG. 10B is a diagram showing a power semiconductor device manufactured by the manufacturing method of FIG. 10A.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that the magnetic metal part is not integrated with the refrigerant jacket, the cooler is composed only of the refrigerant jacket, and the magnetic metal part is removed after the power semiconductor device 1 is manufactured. ing.
  • the power module 2 of the power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. That is, the power module 2 is manufactured by bonding the insulating substrate 5 to which the semiconductor element 3 is bonded with the bonding material 4 to the fin base 71 of the heat sink 7 with the bonding material 6.
  • a magnetic metal part 10 is provided around the refrigerant jacket 9 in contact with the refrigerant jacket 9. Therefore, in the fifth embodiment, the cooler 8 and the refrigerant jacket 9 are the same.
  • the refrigerant jacket 9 and the magnetic metal part 10 are not integrally joined and can be separated, and the refrigerant jacket 9 is inserted inside the annular magnetic metal part 10, so that the magnetic metal is surrounded around the refrigerant jacket 9.
  • the part 10 is provided in contact.
  • a solder 12 such as paste solder or plate solder is disposed on the end surface 9b of the coolant jacket 9 that is soldered to the fin base 71 of the heat sink 7.
  • solder 12 Before placing the solder 12 on the end face 9b of the refrigerant jacket 9, it is preferable to form a plating film having good solder wettability and corrosion resistance such as nickel plating. Further, it is preferable that the solder 12 is disposed on the end face 9b of the refrigerant jacket 9, and then once melted and then solidified to be preformed. The solder 12 may be disposed on the end surface 9b before the magnetic metal portion 10 is provided around the refrigerant jacket 9, or may be disposed on the end surface 9b after the magnetic metal portion 10 is provided around the refrigerant jacket 9. Good.
  • the heat sink 7 of the power module 2 is disposed on the solder 12 on the end surface 9b in contact with the solder 12.
  • the solder 12 is provided between the refrigerant jacket 9 of the cooler 8 and the heat sink 7 of the power module 2.
  • a high frequency magnetic flux is generated by the high frequency induction heating device 16 to inductively heat the magnetic metal part 10. Since the surface 10a of the annular magnetic metal portion 10 is exposed to the outside of the cooler 8, the high-frequency magnetic flux generated by the high-frequency induction heating device 16 hinders the refrigerant jacket 9 and the heat sink 7 made of non-magnetic metal. Without induction, the magnetic metal part 10 is efficiently induction-heated. When the magnetic metal part 10 is induction-heated, the temperature of the magnetic metal part 10 rises, heat is transferred from the magnetic metal part 10 to the refrigerant jacket 9, and the temperature of the refrigerant jacket 9 rises.
  • the magnetic metal part 10 When the magnetic metal part 10 is induction-heated, the magnetic metal part 10 expands thermally, but the refrigerant jacket 9 is made of aluminum or aluminum alloy having a higher thermal expansion coefficient than the magnetic metal part 10 made of a magnetic metal material such as iron. Therefore, even if the temperature rise of the refrigerant jacket 9 is smaller than that of the magnetic metal part 10, the refrigerant jacket 9 thermally expands to the same level or more, and the contact between the refrigerant jacket 9 and the magnetic metal part 10 is maintained.
  • the solder 12 When the temperature of the refrigerant jacket 9 rises and the temperature of the end surface 9b of the refrigerant jacket 9 becomes equal to or higher than the melting point of the solder 12, the solder 12 is melted. When the solder 12 melts, the adhesion between the solder 12 and the fin base 71 of the heat sink 7 increases, and the heat transfer rate from the solder 12 to the fin base 71 increases, so the temperature of the portion of the fin base 71 in contact with the solder 12 increases rapidly. To rise. When the temperature of the portion of the fin base 71 in contact with the solder 12 becomes equal to or higher than the melting point of the solder 12, the solder 12 and the fin base 71 form an alloy layer.
  • the generation of the high-frequency magnetic flux by the high-frequency induction heating device 16 is stopped, and the induction heating of the magnetic metal part 10 is stopped, so that the temperature of the solder 12 is lowered below the melting point, and the solder 12 is solidified, whereby the refrigerant jacket. 9 and the heat sink 7 are joined by solder 12.
  • the opening of the refrigerant jacket 9 is liquid-tightly sealed by the fin base 71 of the heat sink 7 joined by the solder 12.
  • the power semiconductor device 1 can be obtained.
  • the power semiconductor device 1 can be reduced in weight because it does not have the magnetic metal portion 10 as compared with the power semiconductor device of the first embodiment in which the magnetic metal portion 10 is joined to the refrigerant jacket 9. Since the process of joining the part 10 by welding or brazing can be omitted, an effect that the manufacturing cost of the power semiconductor device 1 can be reduced is obtained.
  • the solder 12 is not disposed on the magnetic metal portion 10 but on the refrigerant jacket 9, it is magnetic by induction heating. Since the heat generated in the metal part 10 is transferred from the magnetic metal part 10 to the refrigerant jacket 9 and from the refrigerant jacket 9 to the solder 12, compared with the manufacturing method of the power semiconductor device of the first to fourth embodiments, The temperature rise of the solder 12 takes time, and the temperature control response is slow. In the power semiconductor devices 1 according to the first to fourth embodiments, since the solder 12 is disposed on the magnetic metal portion 10, heat is directly transferred from the magnetic metal portion 10 to the solder 12.
  • the power semiconductor device 1 is preferably manufactured by the manufacturing method described above.
  • the manufacturing method of the power semiconductor device according to the fifth embodiment can reduce the manufacturing cost of the power semiconductor device 1 because the step of joining the magnetic metal part 10 to the refrigerant jacket 9 by welding or brazing can be omitted. it can. Therefore, in order to obtain the power semiconductor device 1 at a lower cost, the power semiconductor device 1 may be manufactured by the manufacturing method shown in the fifth embodiment.
  • FIG. 11 is a sectional view showing a power semiconductor device and a method for manufacturing the power semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 11A is a diagram showing a method for manufacturing a power semiconductor device
  • FIG. 11B is a diagram showing a power semiconductor device manufactured by the manufacturing method in FIG. 11A.
  • the same reference numerals as those in FIGS. 1 and 5 denote the same or corresponding components, and the description thereof is omitted.
  • the cooler does not have a magnetic metal part, and is configured by a refrigerant jacket made of a nonmagnetic metal material. The structure for soldering the heat sink is different.
  • the power module 2 of the power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. That is, the power module 2 is manufactured by bonding the insulating substrate 5 to which the semiconductor element 3 is bonded with the bonding material 4 to the fin base 71 of the heat sink 7 with the bonding material 6.
  • the cooler 8 is composed only of a refrigerant jacket 9 made of a nonmagnetic metal material.
  • the refrigerant jacket 9 is manufactured by cutting or casting of aluminum or aluminum alloy, for example.
  • the refrigerant jacket 9 is provided with the side wall 91 surrounding the opening into which the heat dissipating fins 72 of the heat sink 7 are inserted, and the side wall 91 extends over the entire periphery of the opening. It is provided continuously.
  • the side wall 91 of the refrigerant jacket 9 is provided with a refrigerant inflow port and a refrigerant outflow port, but the end surface 91a side of the side wall 91 has a continuous annular shape and is electrically closed circuit.
  • the side wall 91 is a conductive path through which an induced current flows in an annular shape around the opening when high-frequency induction heating is performed.
  • the coolant jacket 9 has a plating film such as nickel plating on the surface, which has good solder wettability and good corrosion resistance.
  • the plating film of nickel plating may be, for example, about 3 ⁇ m to 5 ⁇ m, and may have a thickness that does not cause induction heating of the nickel plating film by high-frequency magnetic flux.
  • the solder 12 After forming a plating film that improves solder wettability on the end surface 9b of the side wall 91 of the refrigerant jacket 9 constituting the cooler 8, the solder 12 is disposed on the end surface 9b. As described in the above embodiments, the solder 12 may be paste solder or plate solder. Further, it is preferable that after the solder 12 is disposed on the end face 9b, the solder 12 is melted at one end and then solidified and preformed. As shown in FIG. 4B of the first embodiment, the solder 12 is continuously provided all around the opening of the refrigerant jacket 9 that is the cooler 8.
  • the heat sink 7 of the power module 2 is disposed on the solder 12 on the end surface 9b in contact with the solder 12.
  • the solder 12 is provided between the refrigerant jacket 9 constituting the cooler 8 and the heat sink 7 of the power module 2.
  • the coil of the high-frequency induction heating device 16 is arranged around the refrigerant jacket 9 constituting the cooler 8.
  • the coil of the high-frequency induction heating device 16 is a cylindrical coil having a width larger than the width of the cooler 8, and the coil winding is a plan view when the refrigerant jacket 9 is viewed from above.
  • the line is arranged so as to surround the side wall 91.
  • the coil of the high-frequency induction heating device 16 is preferably a cylindrical coil having a square cross section so that the coil winding is substantially parallel to the side wall 91 in accordance with the shape of the refrigerant jacket 9 in plan view.
  • the distance between the coil winding and the side wall 91 of the refrigerant jacket 9 can be shortened so that an induced current can flow efficiently through the side wall 91. Induction heating can be performed efficiently.
  • a part of the lower part of the cooler 8 is provided below the upper end of the cylindrical coil of the high-frequency induction heating device 16. If the distance between the upper end of the cylindrical coil and the lower end of the cooler 8 is greatly separated, the efficiency of induction heating of the refrigerant jacket 9 is deteriorated, and the end surface 9b of the side wall 91 of the refrigerant jacket 9 during induction heating and the heat sink 7 are reduced. This is not preferable because the temperature difference from the portion where the bonding material 6 is bonded becomes small.
  • a high frequency current is supplied from the high frequency induction heating device 16 to the coil.
  • the frequency of the high-frequency current supplied to the coil is preferably higher than the frequency in the case of induction heating the magnetic metal part of the first to fifth embodiments, and may be 60 to 100 kHz, for example.
  • a high frequency magnetic flux generated by the high frequency current flowing through the coil is linked to the refrigerant jacket 9 made of a nonmagnetic metal material, and an induction current is generated in the refrigerant jacket 9.
  • the refrigerant jacket 9 is formed such that the side wall 91 forms a closed circuit, and the closed circuit formed by the side wall 91 has a coil disposed so as to be substantially parallel to the coil winding of the high-frequency induction heating device 16. Therefore, the closed circuit formed by the side wall 91 is easily interlinked with the high-frequency magnetic flux generated by the coil of the high-frequency induction heating device 16. For this reason, as shown in FIG. 11A, a large induced current flows annularly around the opening on the side wall 91 of the refrigerant jacket 9.
  • the refrigerant jacket 9 that is the cooler 8 has a side wall made of metal that is annularly continuous around the opening portion into which the heat radiation fin 72 of the heat sink 7 is inserted. Therefore, even if the cooler 8 is composed only of a non-magnetic metal material, the cooler 8 is induction-heated to melt the solder 12 disposed between the cooler 8 and the heat sink 7, 8 and the heat sink 7 can be soldered together.
  • the manufacturing method of the power semiconductor device described in the first embodiment is the same. Since the melted solder 12 has a high heat transfer coefficient with the fin base 71 of the heat sink 7, the temperature of the fin base 71 efficiently rises. When the temperature of the portion of the fin base 71 in contact with the solder 12 becomes equal to or higher than the melting point of the solder 12, the solder 12 wets and spreads on the fin base 71 to form an alloy layer.
  • the cooler 8 is composed only of the non-magnetic metal material refrigerant jacket 9, and the opening of the cooler 8 is formed by the nonmagnetic metal material heat sink 7. It is configured to be liquid-tightly sealed by solder bonding. For this reason, similarly to the power semiconductor device described in the first embodiment, the power semiconductor device 1 having high pressure resistance and heat resistance of the sealing portion of the cooler 8 can be obtained. And since the refrigerant jacket 9 made of a nonmagnetic metal material is induction-heated to melt and solder the solder 12, the temperature control of the refrigerant jacket 9 for heating the solder 12 can be performed with high accuracy. The reliability of the joint part by the joining material 4 and the joining material 6 in the power module 2 can be increased.
  • the power of the high-frequency current supplied to the coil of the high-frequency induction heating device 16 may be a constant value from the start to the end of induction heating, but it is preferable to control the power according to the heating situation.
  • the power of the high-frequency current supplied to the coil of the high-frequency induction heating device 16 may be changed in steps in several steps, or may be changed smoothly using automatic control such as PID control.
  • a large amount of electric power is input to the coil of the high frequency induction heating device 16, and when the temperature of the end surface 9 b provided with the solder 12 of the cooler 8 reaches the vicinity of the melting point of the solder 12, the electric power is reduced, When the solder 12 starts to melt, power control may be performed such that the power is further reduced.
  • the power of the high-frequency current input to the coil is 100% from the start of induction heating until the end surface 9b of the cooler 8 reaches the melting point of the solder 12, and after the end surface 9b reaches the melting point of the solder 12, the solder 12
  • the power control may be 25% until the melting starts, 10% until the solder 12 starts to melt and gets wet with the fin base 71 of the heat sink 7, and 0% when the solder 12 gets wet with the fin base 71. .
  • the solder 12 is more surely wetted by the fin base 71 to form a strong alloy layer, and the temperature of the joint portion between the heat sink 7 and the insulating substrate 5 is equal to or higher than the melting point of the joint material 6. Can be suppressed.
  • Controlling the power of the high-frequency current supplied to the coil at the time of induction heating is performed by induction heating and soldering the cooler 8 made of a nonmagnetic metal material, as shown in the sixth embodiment.
  • it is preferable to control the power of the high-frequency current also when the magnetic metal material is induction-heated and soldered as shown in the first to fifth embodiments.
  • the cooler 8 even when the cooler 8 is made of a non-magnetic metal material, the cooler 8 has an induced current that continues in an annular shape around the opening. Since the side wall is provided so as to form a conductive path, the cooler 8 can be induction heated by flowing a large induction current, and the cooler 8 and the heat sink 7 can be soldered by induction heating. . For this reason, when the opening of the cooler 8 is sealed with the heat sink 7 of the power module 2, the temperature rise of the bonding material 4 and the bonding material 6 bonded to the insulating substrate 5 can be suppressed.
  • the power semiconductor device including the cooler having a high pressure resistance and heat resistance is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A method for manufacturing a power semiconductor device (1) comprises: a step for joining a substrate (5) to a first joining surface of a heat sink (7) using a joining member (6), the substrate (5) being provided with a semiconductor element (3), and the heat sink (7) comprising a non-magnetic metal material; a step for forming solder (12) around the opening of a cooler (8) comprising metal and having a cross section assuming a concave shape, the cooler (8) having a side wall (91) provided around the opening; and a step for melting the solder using heat generated by induction heating of a metal member included in the cooler (8) while a second joining surface provided on the rear side of the first joining surface of the heat sink (7) is caused to contact the solder (12), so that the heat sink (7) and the cooler (8) are soldered together. It is possible to increase the pressure resistance and heat resistance of a sealing part of the cooler (8) of the power semiconductor device (1) and to increase reliability without remelting of the joining member (6) with which the substrate (5) was joined.

Description

電力半導体装置の製造方法および電力半導体装置Power semiconductor device manufacturing method and power semiconductor device
 本発明は、冷却器を備えた電力半導体装置に関するものである。 The present invention relates to a power semiconductor device provided with a cooler.
 電力半導体装置は、産業用機器から、家電、情報端末まで幅広い機器の主電力の制御に用いられており、特に輸送機器等においては高い信頼性が求められている。また、従来のシリコン(Si)を用いた半導体素子に代えて、炭化珪素(SiC)等のワイドバンドギャップ半導体を用いた半導体素子を備えた半導体装置の開発も進められており、電力半導体装置の高パワー密度化と高温動作化が進んでいる。 Power semiconductor devices are used to control main power of a wide range of equipment from industrial equipment to home appliances and information terminals, and high reliability is particularly required in transportation equipment. Further, in place of the conventional semiconductor element using silicon (Si), development of a semiconductor device including a semiconductor element using a wide band gap semiconductor such as silicon carbide (SiC) has been advanced. High power density and high temperature operation are progressing.
 電力半導体装置に接続されたモータなどの負荷が消費する電力は、三相交流電力の電圧と周波数とで制御され、この制御には電力半導体装置内に設けられたIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)、MOSFET(Metal-oxcide-semiconductor Field-effect Transistor:金属酸化物半導体電界効果トランジスタ)等の半導体素子のスイッチング動作が利用されている。半導体素子はスイッチング動作により発熱するため、電力半導体装置には、発熱体である半導体素子の過熱を防止するために排熱を促進する冷却器が備えられている。 The power consumed by a load such as a motor connected to the power semiconductor device is controlled by the voltage and frequency of the three-phase AC power. For this control, an IGBT (Insulated Gate Bipolar Transistor) provided in the power semiconductor device is insulated. Switching operations of semiconductor elements such as gate bipolar transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are used. Since the semiconductor element generates heat by a switching operation, the power semiconductor device is provided with a cooler that promotes exhaust heat in order to prevent overheating of the semiconductor element that is a heating element.
 従来の電力半導体装置では、パワーモジュールに備えられた半導体素子から発生する熱を放熱するための放熱フィンを、内部空間を水などの流体である冷媒が通る冷却器の壁面に設けられた開口部に挿入し、放熱フィンを冷媒の流路である冷却器の内部空間に配置することでパワーモジュールからの排熱を促進していた。パワーモジュールは、放熱フィンが設けられた平板状のフィンベースと、冷却器に設けられた開口部との間にOリングなどのシール部材を設けて開口部を液密に封止して、冷却器に取付けられていた(例えば、特許文献1参照)。 In a conventional power semiconductor device, a heat radiation fin for radiating heat generated from a semiconductor element provided in a power module is provided, and an opening provided in a wall surface of a cooler through which a refrigerant such as water passes through an internal space The heat dissipation from the power module is promoted by inserting the heat radiation fin in the internal space of the cooler that is the refrigerant flow path. The power module is provided with a sealing member such as an O-ring between the flat fin base provided with heat radiation fins and the opening provided in the cooler, and the opening is liquid-tightly sealed. (See, for example, Patent Document 1).
 また、他の従来の電力半導体装置では、半導体チップを備えた絶縁基板が一方の主面に接合された金属ベース板の他方の主面と、冷却器であるヒートシンクとの間に、ニッケル層とアルミ層とを積層して形成した反応性金属箔と、反応性金属箔を挟んだはんだとを設け、反応性金属箔に電流を流して自己発火させることで、はんだを溶融させて、金属ベース板とヒートシンクとをはんだ接合していた。反応性金属箔によりはんだが瞬時に溶融するため、ヒートシンクとはんだとの界面、金属ベース板とはんだとの界面に、それぞれ金属接合が形成され、金属ベース板とヒートシンクを強固に接合されていた(例えば、特許文献2参照)。 In another conventional power semiconductor device, a nickel layer is interposed between the other main surface of the metal base plate in which an insulating substrate including a semiconductor chip is bonded to one main surface and a heat sink that is a cooler. Reactive metal foil formed by laminating an aluminum layer and solder sandwiching the reactive metal foil are provided, and current is passed through the reactive metal foil to cause self-ignition, so that the solder is melted and the metal base The plate and the heat sink were soldered together. Since the solder is instantaneously melted by the reactive metal foil, a metal bond was formed at the interface between the heat sink and the solder, and the interface between the metal base plate and the solder, and the metal base plate and the heat sink were firmly bonded ( For example, see Patent Document 2).
特開2012-146759号公報JP 2012-146759 A 特開2013-16525号公報JP 2013-16525 A
 特許文献1に記された従来の電力半導体装置にあっては、冷却器の内部空間に冷媒を流して、放熱フィンからの排熱を積極的に行っているが、近年の電力半導体装置の小型化や軽量化の要求に対応するためには、冷却器も小型化する必要があり、そのためには冷媒の流速を増加する必要があるが、冷媒の流速を増加すると冷媒の圧力が増大するため、Oリングなどのシール部材で封止した封止部から冷媒が漏れやすくなる。Oリングによる封止は、冷却器とフィンベースとをボルトで締結し、その締結力により冷却器とフィンベースとの間に挟まれたOリングを変形させて、Oリングを冷却器およびフィンベースに密着させることで行っている。従って、冷却器内部の冷媒の圧力が高い場合には、冷媒の漏れを防止するために更に高いボルト締結力が必要となるが、更に高い締結力を印加することで、冷却器やフィンベースが変形するといった問題点があった。また、電力半導体装置を高温環境で動作させたり、大電力を入力して半導体素子の発熱が大きいような条件で動作させたりすると、冷媒温度や冷却器が高温になり、Oリングを変質させて、Oリングによる封止部から冷媒が漏れやすくなるといった問題点があった。 In the conventional power semiconductor device described in Patent Document 1, the refrigerant is allowed to flow through the internal space of the cooler to actively exhaust heat from the heat radiation fins. In order to meet the demand for reduction in size and weight, it is necessary to reduce the size of the cooler. To that end, it is necessary to increase the flow rate of the refrigerant. However, increasing the flow rate of the refrigerant increases the pressure of the refrigerant. The refrigerant easily leaks from the sealing portion sealed with a sealing member such as an O-ring. Sealing with the O-ring is performed by fastening the cooler and the fin base with bolts, and deforming the O-ring sandwiched between the cooler and the fin base by the fastening force, thereby making the O-ring into the cooler and the fin base. It is done by sticking to. Therefore, when the pressure of the refrigerant inside the cooler is high, a higher bolt fastening force is required to prevent the refrigerant from leaking, but by applying a higher fastening force, the cooler and fin base There was a problem of deformation. Also, if the power semiconductor device is operated in a high temperature environment, or if the semiconductor device is operated under a condition where a large amount of power is input and the heat generation of the semiconductor element is large, the refrigerant temperature or the cooler becomes high temperature, and the O-ring is altered. There is a problem that the refrigerant is liable to leak from the sealing portion by the O-ring.
 一方、特許文献2に記載された従来の電力半導体装置にあっては、放熱用の金属ベース板と冷却器であるヒートシンクとをはんだ接合しており、金属ベース板およびヒートシンクとはんだとの界面にそれぞれ金属接合を形成しているため、これを特許文献1に記された電力半導体装置に適用すれば、耐圧性の高い封止を実現することができ、また封止部の耐熱性も向上する。しかし、反応性金属箔は、反応時の最高温度が1350℃~1500℃にも達するため、反応性金属箔を自己発火させて金属ベース板とヒートシンクとをはんだ接合する際に、パワーモジュール内部の半導体素子と絶縁基板との間のはんだ、および絶縁基板と金属ベース板との間のはんだが再溶融する場合があり、電力半導体装置の製造歩留りの低下や信頼性の低下が起こるといった問題点があった。 On the other hand, in the conventional power semiconductor device described in Patent Document 2, a metal base plate for heat dissipation and a heat sink as a cooler are solder-joined, and the metal base plate and the interface between the heat sink and the solder are connected. Since each metal junction is formed, if this is applied to the power semiconductor device described in Patent Document 1, sealing with high pressure resistance can be realized, and the heat resistance of the sealing portion is also improved. . However, since the reactive metal foil reaches a maximum temperature of 1350 ° C. to 1500 ° C. at the time of reaction, when the reactive metal foil is self-ignited and the metal base plate and the heat sink are soldered together, There is a problem that the solder between the semiconductor element and the insulating substrate and the solder between the insulating substrate and the metal base plate may be remelted, resulting in a decrease in manufacturing yield and reliability of the power semiconductor device. there were.
 本発明は、上述のような問題を解決するためになされたもので、冷却器の封止部を高耐圧化および高耐熱化し、半導体素子や絶縁基板を接合した接合材の再溶融が無く信頼性の高い電力半導体装置の製造方法および電力半導体装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. The sealing portion of the cooler is made to have a high withstand voltage and high heat resistance, and there is no remelting of the bonding material joined to the semiconductor element or the insulating substrate. An object of the present invention is to provide a method for manufacturing a power semiconductor device having high performance and a power semiconductor device.
 本発明に係る電力半導体装置の製造方法は、非磁性金属材料から成るヒートシンクの第1の接合面に半導体素子が設けられた基板を接合材によって接合する工程と、開口部を囲って設けられた側壁を有し断面が凹状を呈する金属から成る冷却器の開口部の周囲にはんだを形成する工程と、ヒートシンクの第1の接合面の裏側に設けられた第2の接合面をはんだに接触させつつ、冷却器に含まれる金属部材または冷却器に設けられた金属部材を誘導加熱して発生した熱によりはんだを溶融させてヒートシンクと冷却器とをはんだ接合する工程と、を備える A method for manufacturing a power semiconductor device according to the present invention includes a step of bonding a substrate provided with a semiconductor element on a first bonding surface of a heat sink made of a nonmagnetic metal material with a bonding material, and surrounding an opening. Forming a solder around the opening of the cooler made of metal having a side wall and having a concave cross section; and bringing the second joint surface provided on the back side of the first joint surface of the heat sink into contact with the solder And a step of melting the solder by heat generated by induction heating of the metal member included in the cooler or the metal member provided in the cooler and soldering the heat sink and the cooler.
 また、本発明に係る電力半導体装置は、開口部を囲って設けられた側壁を有し断面が凹状を呈する金属から成る冷却器と、側壁の開口部側にはんだで接合された非磁性材料から成るヒートシンクと、ヒートシンク上に接合され、半導体素子が設けられた基板と、を備える。 The power semiconductor device according to the present invention includes a cooler made of a metal having a side wall provided around an opening and having a concave cross section, and a nonmagnetic material joined to the side of the opening by solder. And a substrate bonded on the heat sink and provided with a semiconductor element.
 本発明に係る電力半導体装置の製造方法によれば、半導体素子や絶縁基板を接合した接合材の再溶融が無いため、冷却器の封止部を高耐圧化および高耐熱化し、信頼性の高い電力半導体装置の製造方法を提供できる。 According to the method for manufacturing a power semiconductor device according to the present invention, since there is no remelting of the bonding material bonded to the semiconductor element or the insulating substrate, the sealing portion of the cooler has a high breakdown voltage and a high heat resistance, and has high reliability. A method of manufacturing a power semiconductor device can be provided.
 また、本発明に係る電力半導体装置によれば、半導体素子や絶縁基板を接合した接合材の再溶融が無いため、冷却器の封止部を高耐圧化および高耐熱化し、信頼性の高い電力半導体装置を提供できる。 In addition, according to the power semiconductor device of the present invention, since there is no remelting of the bonding material bonded to the semiconductor element or the insulating substrate, the sealing portion of the cooler has a high withstand voltage and a high heat resistance, and has high reliability. A semiconductor device can be provided.
本発明の実施の形態1における電力半導体装置を示す断面図である。It is sectional drawing which shows the electric power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における電力半導体装置を示す上面図である。It is a top view which shows the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における電力半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における電力半導体装置の製造方法を示す断面図および上面図である。It is sectional drawing and the top view which show the manufacturing method of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態1における電力半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態2における電力半導体装置を示す断面図である。It is sectional drawing which shows the electric power semiconductor device in Embodiment 2 of this invention. 本発明の実施の形態3における電力半導体装置を示す断面図である。It is sectional drawing which shows the electric power semiconductor device in Embodiment 3 of this invention. 本発明の実施の形態4における電力半導体装置を示す断面図である。It is sectional drawing which shows the electric power semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態4における他の電力半導体装置を示す断面図である。It is sectional drawing which shows the other power semiconductor device in Embodiment 4 of this invention. 本発明の実施の形態5における電力半導体装置および電力半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the power semiconductor device and power semiconductor device in Embodiment 5 of this invention. 本発明の実施の形態6における電力半導体装置および電力半導体装置の製造方法を示す断面図である。It is sectional drawing which shows the power semiconductor device in Embodiment 6 of this invention, and the manufacturing method of a power semiconductor device.
実施の形態1.
 まず、本発明の実施の形態1における電力半導体装置の構成を説明する。図1は、本発明の実施の形態1における電力半導体装置を示す断面図である。また、図2は本発明の実施の形態1における電力半導体装置を示す上面図である。図1の断面図は、図2の破線A-Bにおける断面図である。
Embodiment 1 FIG.
First, the configuration of the power semiconductor device according to the first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a power semiconductor device according to Embodiment 1 of the present invention. FIG. 2 is a top view showing the power semiconductor device according to the first embodiment of the present invention. The cross-sectional view of FIG. 1 is a cross-sectional view taken along broken line AB in FIG.
 図1に示すように、電力半導体装置1は、パワーモジュール2と冷却器8とがはんだ12により接合されて構成されている。 As shown in FIG. 1, the power semiconductor device 1 is configured by joining a power module 2 and a cooler 8 with solder 12.
 パワーモジュール2は、シリコンや炭化珪素で形成された半導体素子3と、はんだや焼結銀などの接合材4を介して一方の面に半導体素子3を接合した絶縁基板5と、絶縁基板5の他方の面にはんだなどの接合材6を介して接合されたアルミやアルミ合金などの熱伝導率が高い非磁性金属材料で形成したヒートシンク7とを備えている。ヒートシンク7は絶縁基板5が接合材6で接合される平面を有するフィンベース71と、フィンベース71の絶縁基板5が接合される面とは反対側、すなわち裏面側に直立した放熱フィン72とにより構成される。絶縁基板5は、窒化アルミ(AlN)などの絶縁物基板51の両面に導電パターン52、53を設けて構成される。さらに、パワーモジュール2は、半導体素子3と絶縁基板5とを覆う樹脂モールドなどのケースを備えている(図示せず)。 The power module 2 includes a semiconductor element 3 formed of silicon or silicon carbide, an insulating substrate 5 in which the semiconductor element 3 is bonded to one surface via a bonding material 4 such as solder or sintered silver, A heat sink 7 formed of a nonmagnetic metal material having high thermal conductivity such as aluminum or aluminum alloy joined to the other surface via a joining material 6 such as solder is provided. The heat sink 7 includes a fin base 71 having a flat surface on which the insulating substrate 5 is bonded with the bonding material 6, and heat radiating fins 72 standing upright on the opposite side of the surface of the fin base 71 to which the insulating substrate 5 is bonded, that is, on the back surface side. Composed. The insulating substrate 5 is configured by providing conductive patterns 52 and 53 on both surfaces of an insulating substrate 51 such as aluminum nitride (AlN). Furthermore, the power module 2 includes a case such as a resin mold that covers the semiconductor element 3 and the insulating substrate 5 (not shown).
 冷却器8は、アルミやアルミ合金などの非磁性金属材料で形成され、内側に冷媒流路11を備え、ヒートシンク7の放熱フィン72を、冷媒流路11に挿入するための開口部を有する冷媒ジャケット9と、冷媒ジャケット9の開口部の周囲に、冷却器8の外側に一部を露出させて、冷媒ジャケット9との間を液密に密着して設けられた磁性金属部10とを備えている。なお、冷却器8の内側とは、図1において磁性金属部10の上面である面10bを含む平面より下側であって冷媒流路11を有する領域を言い、冷媒ジャケット9の内側とは、図1において磁性金属部10の下面を含む平面より下側であって冷媒流路11を有する領域を言う。図1に示すように、磁性金属部10は、側面である面10aと上面である面10bの一部とが冷却器8の外側に露出している。 The cooler 8 is made of a non-magnetic metal material such as aluminum or aluminum alloy, has a refrigerant flow path 11 inside, and has an opening for inserting the radiating fins 72 of the heat sink 7 into the refrigerant flow path 11. A jacket 9 and a magnetic metal portion 10 provided around the opening of the refrigerant jacket 9 so as to be partly exposed to the outside of the cooler 8 and in close contact with the refrigerant jacket 9 in a liquid-tight manner. ing. In addition, the inside of the cooler 8 refers to a region below the plane including the surface 10b that is the upper surface of the magnetic metal portion 10 in FIG. 1 and having the refrigerant flow path 11, and the inside of the refrigerant jacket 9 is In FIG. 1, it refers to a region below the plane including the lower surface of the magnetic metal part 10 and having the refrigerant flow path 11. As shown in FIG. 1, the magnetic metal portion 10 has a surface 10 a that is a side surface and a part of the surface 10 b that is an upper surface exposed outside the cooler 8.
 図1は断面図であるため、冷媒ジャケット9の側壁91が放熱フィン72の紙面左右側にしか存在しないように見えるが、冷媒ジャケット9の側壁91は放熱フィン72の紙面奥側および紙面手前側にも存在し、放熱フィン72を四方から囲うように設けられている。従って、磁性金属部10も放熱フィン72を四方から囲うように設けられている。図2に示すように、冷却器8の外側に露出した磁性金属部10の面10aは冷却器8の四方に露出しており、磁性金属部10の面10bの一部は、ヒートシンク7の外側を囲うように紙面上方に対して露出している。 Since FIG. 1 is a cross-sectional view, the side wall 91 of the refrigerant jacket 9 seems to exist only on the left and right sides of the radiating fin 72, but the side wall 91 of the refrigerant jacket 9 is on the back side and the front side of the radiating fin 72. The heat dissipating fins 72 are provided so as to surround the four sides. Therefore, the magnetic metal part 10 is also provided so as to surround the heat radiation fin 72 from four directions. As shown in FIG. 2, the surface 10 a of the magnetic metal part 10 exposed to the outside of the cooler 8 is exposed to the four sides of the cooler 8, and a part of the surface 10 b of the magnetic metal part 10 is outside the heat sink 7. It is exposed to the upper part of the paper surface so as to surround.
 図1に示す冷媒ジャケット9の、放熱フィン72の紙面奥側および紙面手前側の側壁91には、一方に、冷却器8の外部から冷媒流路11に冷媒を流入させる冷媒流入口と、他方に、冷媒流路11から冷却器8の外部に冷媒を流出させる冷媒流出口とが設けられている(図示せず)。冷媒には、例えば、水などの流体が使用される。また、冷媒流入口および冷媒流出口は雌ねじ切りされており、先端に雄ねじ切り部を有する配管を冷媒流入口および冷媒流出口に接続して、ラジエータなどの外部装置に接続される。図1の冷媒流路11に紙面垂直方向に水などの冷媒が流れることで、放熱フィン72の熱が冷媒に熱伝達し、パワーモジュール2の半導体素子3で発生した熱が排熱される。 The refrigerant jacket 9 shown in FIG. 1 has a refrigerant inlet port through which the refrigerant flows into the refrigerant flow path 11 from the outside of the cooler 8 on one side of the side wall 91 on the rear side and the front side of the radiating fin 72, and the other side. In addition, a refrigerant outlet for allowing the refrigerant to flow out of the cooler 8 from the refrigerant channel 11 is provided (not shown). For example, a fluid such as water is used as the refrigerant. The refrigerant inlet and the refrigerant outlet are internally threaded, and a pipe having a male threaded portion at the tip is connected to the refrigerant inlet and the refrigerant outlet and is connected to an external device such as a radiator. When a coolant such as water flows through the coolant channel 11 in FIG. 1 in the direction perpendicular to the paper surface, the heat of the radiation fins 72 is transferred to the coolant, and the heat generated in the semiconductor element 3 of the power module 2 is exhausted.
 磁性金属部10は、鉄や鋼、ニッケル、コバルト、フェライト系ステンレスなどの磁性金属材料で形成されており、磁性金属部10の一面が冷媒ジャケット9に、熔接、ろう付け、あるいは、かしめなどによって接合されている。 The magnetic metal part 10 is made of a magnetic metal material such as iron, steel, nickel, cobalt, and ferritic stainless steel, and one surface of the magnetic metal part 10 is welded, brazed, or caulked to the refrigerant jacket 9. It is joined.
 また、図2に示すように、ヒートシンク7には、ヒートシンク7と磁性金属部10とをはんだ12で接合する際に用いられる位置決め用穴13が設けられている。位置決め用穴13は、半導体素子3と絶縁基板5とを保護する図示しないケースの外側に設けられている。位置決め用穴13は、ヒートシンク7の表裏を貫通して設けられ、冷却器8にも位置決め用穴13に対応する位置に位置決め用穴14が設けられている(図4、図5参照)。冷却器8に設けられた位置決め用穴14は、磁性金属部10を貫通し、冷媒ジャケット9に到達して設けられる。冷媒流路11に流れる水などの冷媒が位置決め用穴13および位置決め用穴14から漏れないようにするために、位置決め用穴13および位置決め用穴14は、はんだ12が設けられる位置より、電力半導体装置1の外側に設けられる。 Further, as shown in FIG. 2, the heat sink 7 is provided with positioning holes 13 that are used when the heat sink 7 and the magnetic metal portion 10 are joined with the solder 12. The positioning hole 13 is provided outside a case (not shown) that protects the semiconductor element 3 and the insulating substrate 5. The positioning hole 13 is provided through the front and back of the heat sink 7, and the positioning hole 14 is also provided in the cooler 8 at a position corresponding to the positioning hole 13 (see FIGS. 4 and 5). The positioning hole 14 provided in the cooler 8 penetrates the magnetic metal part 10 and reaches the refrigerant jacket 9. In order to prevent the refrigerant such as water flowing in the refrigerant flow path 11 from leaking from the positioning hole 13 and the positioning hole 14, the positioning hole 13 and the positioning hole 14 are located at the power semiconductor from the position where the solder 12 is provided. It is provided outside the device 1.
 図1に示すように、パワーモジュール2のヒートシンク7と冷却器8の磁性金属部10との間には、磁性金属部10に沿ってはんだ12が設けられ、はんだ12によってヒートシンク7と磁性金属部10との間が液密に接合されて、電力半導体装置1は構成される。ヒートシンク7とはんだ12との間および磁性金属部10とはんだ12との間は、それぞれ金属接合により液密に封止されるため、冷媒ジャケット9の開口部が高耐圧、且つ高耐熱に封止される。放熱フィン72から冷媒への熱伝達率は、冷媒の流速が大きいほど高くなり、放熱フィン72と冷媒との温度差が大きいほど高くなるので、本実施の形態1の電力半導体装置では、冷媒流路11に流す冷媒の圧力を高くして冷媒の流速を速くすることができるため、放熱フィン72から冷媒への熱伝達率が高まり、放熱フィン72のサイズを小さくしても十分な排熱性能が得られる。また、冷却器8の封止部がはんだ12によりはんだ接合されているため耐熱性が高く、半導体素子3を高温動作させることができるため、放熱フィン72と冷媒との温度差を大きくして、放熱フィン72から冷媒への熱伝達率をさらに高くすることができるため、冷却器を小型化することができる。 As shown in FIG. 1, solder 12 is provided along the magnetic metal portion 10 between the heat sink 7 of the power module 2 and the magnetic metal portion 10 of the cooler 8. The power semiconductor device 1 is configured by being liquid-tightly connected to the space 10. Since the space between the heat sink 7 and the solder 12 and between the magnetic metal portion 10 and the solder 12 are sealed in a liquid-tight manner by metal bonding, the opening portion of the refrigerant jacket 9 is sealed with a high pressure resistance and a high heat resistance. Is done. The heat transfer coefficient from the heat radiation fins 72 to the refrigerant increases as the flow rate of the refrigerant increases, and increases as the temperature difference between the heat dissipation fins 72 and the refrigerant increases. In the power semiconductor device of the first embodiment, the refrigerant flow Since the pressure of the refrigerant flowing through the passage 11 can be increased to increase the flow velocity of the refrigerant, the heat transfer rate from the radiating fins 72 to the refrigerant is increased, and sufficient exhaust heat performance is achieved even if the size of the radiating fins 72 is reduced. Is obtained. Moreover, since the sealing part of the cooler 8 is soldered by the solder 12, the heat resistance is high, and the semiconductor element 3 can be operated at a high temperature. Therefore, the temperature difference between the heat radiation fin 72 and the refrigerant is increased, Since the heat transfer coefficient from the radiation fins 72 to the refrigerant can be further increased, the cooler can be reduced in size.
 ヒートシンク7と冷却器8とは、共に半導体素子3が発生する熱を外部に排出して冷却するものであり、以下、ヒートシンク7と冷却器8とを合わせて冷却機構と呼ぶ。 Both the heat sink 7 and the cooler 8 are for discharging and cooling the heat generated by the semiconductor element 3 to the outside. Hereinafter, the heat sink 7 and the cooler 8 are collectively referred to as a cooling mechanism.
 なお、本発明において、磁性金属材料とは、はんだ12の融点以下の温度において強磁性体の金属材料を言い、鉄、ニッケル、コバルト単体あるいはこれらの元素を含む合金であって、磁石につく金属材料を言う。また、非磁性金属材料とは、常磁性体あるいは反磁性体の金属材料を言い、銅、アルミ、クロムなどの金属元素単体あるいはこれらの合金であって、磁石につかない金属材料を言う。本発明においては、全ての金属材料は、磁石につくか磁石につかないかで分類されるので、磁性金属材料あるいは非磁性金属材料のいずれか一方であり、磁性金属材料にも非磁性金属材料にも属さない金属材料は存在しない。また、磁性金属材料、非磁性金属材料ともに、金属材料であるから導電性を有し、10μΩm以下の電気抵抗率を有する。従って、例えば、酸化鉄を主成分とするフェライトはセラミックスであり絶縁物であるため、強磁性体であり金属元素を含んでいるものの、本発明で言う磁性金属材料ではない。 In the present invention, the magnetic metal material means a ferromagnetic metal material at a temperature below the melting point of the solder 12, and is an iron, nickel, cobalt elemental alloy or an alloy containing these elements, and is a metal attached to the magnet. Say the material. Further, the nonmagnetic metal material refers to a paramagnetic or diamagnetic metal material, which is a metal element such as copper, aluminum, chromium, or an alloy thereof, which is not attached to a magnet. In the present invention, all metal materials are classified according to whether they are attached to magnets or not to magnets. Therefore, they are either magnetic metal materials or nonmagnetic metal materials. There is no metallic material that does not belong to any of the above. Further, since both the magnetic metal material and the non-magnetic metal material are metal materials, they are conductive and have an electrical resistivity of 10 μΩm or less. Therefore, for example, ferrite containing iron oxide as a main component is a ceramic and an insulator, and thus is a ferromagnetic material and contains a metal element, but is not a magnetic metal material in the present invention.
 次に、本実施の形態1の電力半導体装置の製造方法について説明する。 Next, a method for manufacturing the power semiconductor device according to the first embodiment will be described.
 本実施の形態1の電力半導体装置1は、半導体素子3を絶縁基板5に接合する工程と、絶縁基板5をヒートシンク7に接合してパワーモジュール2を作製する工程と、冷媒ジャケット9に磁性金属部10を設けて冷却器8を作製する工程と、冷却器8とヒートシンク7との間にはんだ12を設ける工程と、高周波誘導加熱装置で磁性金属部10を誘導加熱してはんだ12を溶融した後、溶融したはんだ12を凝固させてヒートシンク7と冷却器8とを接合し、冷却器8あるいは冷媒ジャケット9に設けられた開口部を封止する工程とを備えた製造方法により製造することができる。 The power semiconductor device 1 according to the first embodiment includes a step of bonding the semiconductor element 3 to the insulating substrate 5, a step of bonding the insulating substrate 5 to the heat sink 7 and manufacturing the power module 2, and a magnetic metal for the refrigerant jacket 9. The step of preparing the cooler 8 by providing the portion 10, the step of providing the solder 12 between the cooler 8 and the heat sink 7, and the induction heating of the magnetic metal portion 10 by a high-frequency induction heating device melted the solder 12. Thereafter, the molten solder 12 is solidified to join the heat sink 7 and the cooler 8, and the manufacturing method includes a step of sealing the opening provided in the cooler 8 or the refrigerant jacket 9. it can.
 図3は、本実施の形態1の電力半導体装置の製造方法を示す断面図である。また、図4は、本実施の形態1の電力半導体装置の製造方法を示す断面図および上面図である。さらに、図5は、本実施の形態1の電力半導体装置の製造方法を示す断面図である。図3は、半導体素子3と絶縁基板5とヒートシンク7とを接合してパワーモジュール2を製造する工程を示しており、図4は、冷却器8の磁性金属部10にはんだ12を設ける工程を示している。また、図5は磁性金属部10を誘導加熱してパワーモジュール2と冷却器8とをはんだ接合する工程を示している。図3(a)、(b)、(c)は図2における破線A-Bの位置での断面図であり、図4(a)および図5は図2における破線C-Dの位置での断面図である。また、図4(b)は図4(a)の上面図である。なお、図5では分かりやすくするために、半導体素子3、接合材4、絶縁基板5および接合材6も合わせて示した。 FIG. 3 is a cross-sectional view showing the method for manufacturing the power semiconductor device of the first embodiment. FIG. 4 is a cross-sectional view and a top view showing the method for manufacturing the power semiconductor device of the first embodiment. FIG. 5 is a cross-sectional view showing the method for manufacturing the power semiconductor device of the first embodiment. FIG. 3 shows a process of manufacturing the power module 2 by joining the semiconductor element 3, the insulating substrate 5, and the heat sink 7, and FIG. 4 shows a process of providing the solder 12 on the magnetic metal part 10 of the cooler 8. Show. FIG. 5 shows a process of soldering the power module 2 and the cooler 8 by induction heating of the magnetic metal part 10. FIGS. 3A, 3B, and 3C are cross-sectional views taken along a broken line AB in FIG. 2, and FIGS. 4A and 5 are taken along a broken line CD in FIG. It is sectional drawing. FIG. 4B is a top view of FIG. In FIG. 5, the semiconductor element 3, the bonding material 4, the insulating substrate 5, and the bonding material 6 are also shown for easy understanding.
 半導体素子3と絶縁基板5とヒートシンク7とは、接合材4および接合材6によって、同時あるいは別々に接合される。図3(a)は、半導体素子3と絶縁基板5とを接合する工程と、絶縁基板5とヒートシンク7とを接合する工程とを同時に行う製造方法を示したものであり、図3(b)は、半導体素子3と絶縁基板5とを接合する工程の後に、絶縁基板5とヒートシンク7とを接合する工程を行う製造方法を示したものである。なお、ヒートシンク7の絶縁基板5との接合面には、接合材6ではんだ接合する前に、はんだとの濡れ性が良く耐食性の良いニッケルめっき等のめっき膜を形成しておくのが良い。 The semiconductor element 3, the insulating substrate 5, and the heat sink 7 are bonded simultaneously or separately by the bonding material 4 and the bonding material 6. FIG. 3A shows a manufacturing method in which the step of bonding the semiconductor element 3 and the insulating substrate 5 and the step of bonding the insulating substrate 5 and the heat sink 7 are performed simultaneously. These show the manufacturing method which performs the process of joining the insulated substrate 5 and the heat sink 7 after the process of joining the semiconductor element 3 and the insulated substrate 5. FIG. In addition, it is preferable to form a plating film such as nickel plating having good wettability with solder and good corrosion resistance on the joint surface of the heat sink 7 with the insulating substrate 5 before soldering with the joining material 6.
 図3(a)のように、半導体素子3と絶縁基板5とヒートシンク7とを同時に接合する場合には、ヒートシンク7上にペーストはんだや板はんだなどで構成された接合材6を配置し、接合材6の上に絶縁基板5の導電パターン53を配置し、さらに絶縁基板5の導電パターン52の上にペーストはんだや板はんだなどで構成された接合材4を配置し、接合材4の上に半導体素子3を配置する。そして、このようにそれぞれの部材を重ね合わせたものをリフロー炉などで同時に加熱し、接合材4および接合材6を溶融し、その後、冷却することで接合材4および接合材6を凝固させて、接合材4が半導体素子3と絶縁基板5とを接合し、接合材6が絶縁基板5とヒートシンク7とを接合して、図3(c)のように一体化される。以上のように、図3(a)に示す製造方法では、半導体素子3を絶縁基板5に接合する工程と、絶縁基板5をヒートシンク7に接合する工程とが同時に行われる。 As shown in FIG. 3A, when the semiconductor element 3, the insulating substrate 5, and the heat sink 7 are bonded at the same time, a bonding material 6 made of paste solder or plate solder is disposed on the heat sink 7 and bonded. A conductive pattern 53 of the insulating substrate 5 is disposed on the material 6, and a bonding material 4 made of paste solder or plate solder is disposed on the conductive pattern 52 of the insulating substrate 5. The semiconductor element 3 is disposed. Then, the superposed members are heated simultaneously in a reflow furnace or the like, the bonding material 4 and the bonding material 6 are melted, and then cooled to solidify the bonding material 4 and the bonding material 6. The joining material 4 joins the semiconductor element 3 and the insulating substrate 5, and the joining material 6 joins the insulating substrate 5 and the heat sink 7 to be integrated as shown in FIG. As described above, in the manufacturing method shown in FIG. 3A, the step of bonding the semiconductor element 3 to the insulating substrate 5 and the step of bonding the insulating substrate 5 to the heat sink 7 are performed simultaneously.
 一方、図3(b)のように、半導体素子3と絶縁基板5とを接合した後に、絶縁基板5とヒートシンク7とを接合する場合には、接合材6を溶融させた場合に、半導体素子3と絶縁基板5とを接合している接合材4が再溶融しないことが必要である。このため、接合材4に焼結銀を用いて、接合材6にはんだ材を用いてもよく、あるいは接合材4と接合材6とを共にはんだ材として、接合材6に接合材4よりも融点が低いはんだ材を用いてもよい。なお、焼結銀とは、ナノメートルサイズの銀ナノ粒子の反応性の高さを利用して銀の融点よりも低い温度で焼結させる接合材料であり、接合させるための焼結温度が、焼結後の融点よりも低いため、低温で部材を接合させた後、銀の融点以下であれば高温になっても部材の接合状態を維持できる接合材料である。 On the other hand, when the insulating substrate 5 and the heat sink 7 are bonded after the semiconductor element 3 and the insulating substrate 5 are bonded as shown in FIG. 3B, the semiconductor element is obtained when the bonding material 6 is melted. It is necessary that the bonding material 4 for bonding 3 and the insulating substrate 5 does not remelt. For this reason, sintered silver may be used for the bonding material 4, and a solder material may be used for the bonding material 6, or both the bonding material 4 and the bonding material 6 may be used as solder materials, and the bonding material 6 may be more than the bonding material 4. A solder material having a low melting point may be used. Sintered silver is a bonding material that is sintered at a temperature lower than the melting point of silver using the high reactivity of nanometer-sized silver nanoparticles, and the sintering temperature for bonding is Since it is lower than the melting point after sintering, it is a joining material that can maintain the joined state of the member even when the temperature is lower than the melting point of silver after joining the members at a low temperature.
 まず、図3(b)に示すように焼結銀やはんだ材からなる接合材4により、絶縁基板5の導電パターン52上に半導体素子3が接合される。次に、ヒートシンク7の上にペーストはんだや板はんだなどで構成された接合材6を配置し、接合材6の上に絶縁基板5の導電パターン53を配置する。そして、リフロー炉などで加熱し、接合材6を溶融し、その後、冷却することで接合材6を凝固させて、接合材6が絶縁基板5とヒートシンク7とを接合して、半導体素子3と絶縁基板5とヒートシンク7とが図3(c)のように一体化される。以上のように、図3(b)に示す製造方法では、半導体素子3を絶縁基板5に接合する工程の後に、絶縁基板5をヒートシンク7に接合する工程が行われる。 First, as shown in FIG. 3B, the semiconductor element 3 is bonded onto the conductive pattern 52 of the insulating substrate 5 by the bonding material 4 made of sintered silver or a solder material. Next, the bonding material 6 made of paste solder or plate solder is disposed on the heat sink 7, and the conductive pattern 53 of the insulating substrate 5 is disposed on the bonding material 6. Then, heating is performed in a reflow furnace or the like, the bonding material 6 is melted, and then the bonding material 6 is solidified by cooling, and the bonding material 6 bonds the insulating substrate 5 and the heat sink 7 to each other. The insulating substrate 5 and the heat sink 7 are integrated as shown in FIG. As described above, in the manufacturing method illustrated in FIG. 3B, the step of bonding the insulating substrate 5 to the heat sink 7 is performed after the step of bonding the semiconductor element 3 to the insulating substrate 5.
 図3(a)の製造方法または図3(b)の製造方法により、図3(c)のように半導体素子3と絶縁基板5とヒートシンク7とが一体化された後、半導体素子3と絶縁基板5とを保護する樹脂モールドなどのケースを設けてパワーモジュール2が作製される。なお、ケースは位置決め用穴13がケースの外側になるように設けられる。 After the semiconductor element 3, the insulating substrate 5, and the heat sink 7 are integrated as shown in FIG. 3C by the manufacturing method of FIG. 3A or the manufacturing method of FIG. A power module 2 is manufactured by providing a case such as a resin mold for protecting the substrate 5. The case is provided such that the positioning hole 13 is outside the case.
 図4(a)、(b)は、冷媒ジャケット9に磁性金属部10を設ける工程と、冷却器8とヒートシンク7との間にはんだ12を設ける工程とを行う製造方法を示す図である。 4 (a) and 4 (b) are diagrams showing a manufacturing method in which a step of providing the magnetic metal portion 10 in the refrigerant jacket 9 and a step of providing the solder 12 between the cooler 8 and the heat sink 7 are performed.
 まず、冷媒ジャケット9に磁性金属部10を設ける工程について説明する。図4(a)および図4(b)に示すように、冷媒ジャケット9は断面が凹形状で上方に開口部11aを有し、開口部11aと連通する冷媒流路11を内側に備えており、冷媒ジャケット9の開口部11aの周囲に磁性金属部10が設けられる。従って、冷媒ジャケット9に磁性金属部10を設けて構成した冷却器8も冷媒流路11に連通する開口部11aを有する。磁性金属部10は、磁性金属材料で形成された板材を加工して形成してよい。磁性金属部10は、磁性金属部10の一部の面10aを冷媒ジャケット9の外側に露出させて、溶接、ろう付け、あるいは、かしめなどの方法により冷媒ジャケット9の開口部11aの周囲に接合されて設けられる。磁性金属部10は、冷媒ジャケット9と磁性金属部10との間から冷媒が漏れないように液密に、冷媒ジャケット9に密着して設けられ、冷却器8が得られる。なお、冷媒流路11には、水などの流体である冷媒が流れるため、冷媒流路11の内壁を構成する部分、すなわち冷媒ジャケット9の内側と磁性金属部10の内側にはニッケルめっきなど耐食性が良いめっき膜を形成しておくことが好ましい。ニッケルめっき膜は冷媒ジャケット9の外側にも形成されていても構わないので、冷媒ジャケット9に磁性金属部10を接合した後に、全体をめっき液に浸漬させてニッケルめっき膜を形成してもよい。 First, the process of providing the magnetic metal part 10 on the refrigerant jacket 9 will be described. As shown in FIGS. 4 (a) and 4 (b), the refrigerant jacket 9 has a concave cross section and has an opening 11a on the upper side, and is provided with a refrigerant flow path 11 communicating with the opening 11a on the inside. The magnetic metal part 10 is provided around the opening 11 a of the refrigerant jacket 9. Therefore, the cooler 8 configured by providing the magnetic metal part 10 in the refrigerant jacket 9 also has an opening 11 a communicating with the refrigerant flow path 11. The magnetic metal part 10 may be formed by processing a plate material made of a magnetic metal material. The magnetic metal part 10 has a part of the surface 10a of the magnetic metal part 10 exposed to the outside of the refrigerant jacket 9, and is joined around the opening 11a of the refrigerant jacket 9 by a method such as welding, brazing, or caulking. Is provided. The magnetic metal part 10 is provided in close contact with the refrigerant jacket 9 in a liquid-tight manner so that the refrigerant does not leak from between the refrigerant jacket 9 and the magnetic metal part 10, and the cooler 8 is obtained. In addition, since the refrigerant | coolant which is fluids, such as water, flows into the refrigerant | coolant flow path 11, the part which comprises the inner wall of the refrigerant | coolant flow path 11, ie, the inner side of the refrigerant | coolant jacket 9, and the inner side of the magnetic metal part 10, corrosion resistance, such as nickel plating, is carried out. It is preferable to form a good plating film. Since the nickel plating film may also be formed outside the refrigerant jacket 9, after joining the magnetic metal part 10 to the refrigerant jacket 9, the whole may be immersed in a plating solution to form the nickel plating film. .
 なお、磁性金属部10は、上記の方法に限らず、めっき、あるいは溶射などの膜を形成する方法で、冷媒ジャケット9の開口部11aの周囲に直接形成してもよいが、磁性金属部10の厚さは0.1mm以上とすることが好ましい。磁性金属部10の厚さが0.1mm未満の場合には、磁性金属部10の厚さが薄いために電気抵抗が大き過ぎて、誘導加熱時の誘導電流が十分に磁性金属部10に流れないので、磁性金属部10を誘導加熱する効率が悪くなるためである。従って、例えば、はんだの濡れ性を良くする目的で形成するニッケルめっき膜は、膜厚がせいぜい数μmであるので、例え、形成したニッケルめっき膜が磁性を有する場合であっても、このような薄い膜では十分に誘導加熱を行うことができず、本発明の目的を達し得ない。すなわち、磁性金属部10は少なくとも0.1mm以上の厚さであり、50mm以下の厚さであることが好ましい。より好ましくは、1mm以上10mm以下である。磁性金属部10は、鉄などで形成されているので、アルミやアルミ合金で形成された冷媒ジャケット9よりも比重が大きいため、磁性金属部10の厚さが50mmを超えると電力半導体装置1が重くなるため好ましくない。また、磁性金属部10の厚さが50mmを超えると熱容量が大き過ぎて、誘導加熱時の磁性金属部10の温度制御の応答性が悪くなるため、ヒートシンク7の接合材6との接合部の温度が接合材6の融点近くまで上昇しないように制御することが困難になるので好ましくない。 The magnetic metal portion 10 is not limited to the above method, and may be formed directly around the opening 11a of the refrigerant jacket 9 by a method of forming a film such as plating or thermal spraying. The thickness is preferably 0.1 mm or more. When the thickness of the magnetic metal part 10 is less than 0.1 mm, the magnetic metal part 10 is thin, so that the electric resistance is too large, and the induction current during induction heating sufficiently flows to the magnetic metal part 10. This is because the efficiency of induction heating of the magnetic metal part 10 is deteriorated. Therefore, for example, a nickel plating film formed for the purpose of improving the wettability of solder has a film thickness of at most several μm. Therefore, even if the formed nickel plating film has magnetism, A thin film cannot sufficiently perform induction heating, and the object of the present invention cannot be achieved. That is, the magnetic metal part 10 has a thickness of at least 0.1 mm or more and preferably a thickness of 50 mm or less. More preferably, they are 1 mm or more and 10 mm or less. Since the magnetic metal part 10 is formed of iron or the like, the specific gravity is larger than that of the refrigerant jacket 9 formed of aluminum or aluminum alloy. Therefore, if the thickness of the magnetic metal part 10 exceeds 50 mm, the power semiconductor device 1 Since it becomes heavy, it is not preferable. Further, if the thickness of the magnetic metal part 10 exceeds 50 mm, the heat capacity is too large, and the responsiveness of temperature control of the magnetic metal part 10 during induction heating deteriorates. This is not preferable because it is difficult to control the temperature so as not to increase to near the melting point of the bonding material 6.
 冷媒ジャケット9に磁性金属部10を設けた後に、磁性金属部10の面10bに、はんだ12を配置する。はんだ12は冷却器8の側壁の上端部に設けられた位置決め用穴14が、冷却器8の外周側に位置するように配置される。磁性金属部10のはんだ接合される面10bには、予めはんだの濡れ性が良いニッケルめっき等のめっき膜を形成しておくのが良く、上述の冷媒による腐食を防止するためのめっき膜と同時に形成してもよい。はんだ12には、ペーストはんだや板はんだを使用してもよい。また、磁性金属部10の面10bにはんだ12を配置した後に加熱して、はんだ12を一旦溶融させて、その後、冷却してはんだ12を凝固させて、はんだ12を磁性金属部10の面10b上にプリフォームしてもよい。はんだ12を磁性金属部10の面10b上にプリフォームしておくと、磁性金属部10とはんだ12との間の熱伝導が良くなるので、磁性金属部10を誘導加熱してヒートシンク7とはんだ接合する場合の加熱時間を短くすることができる。 After the magnetic metal portion 10 is provided on the refrigerant jacket 9, the solder 12 is disposed on the surface 10b of the magnetic metal portion 10. The solder 12 is arranged such that a positioning hole 14 provided at the upper end of the side wall of the cooler 8 is located on the outer peripheral side of the cooler 8. A plating film such as nickel plating having good solder wettability is preferably formed in advance on the surface 10b of the magnetic metal portion 10 to be soldered, and at the same time as the plating film for preventing corrosion due to the above-described refrigerant. It may be formed. For the solder 12, paste solder or plate solder may be used. In addition, the solder 12 is disposed on the surface 10b of the magnetic metal portion 10 and then heated to once melt the solder 12, and then cooled to solidify the solder 12 so that the solder 12 is solidified to the surface 10b of the magnetic metal portion 10. It may be preformed on top. If the solder 12 is preformed on the surface 10b of the magnetic metal part 10, the heat conduction between the magnetic metal part 10 and the solder 12 is improved. Therefore, the magnetic metal part 10 is induction-heated to heat the heat sink 7 and the solder. The heating time in the case of joining can be shortened.
 このように磁性金属部10の面10bにはんだ12を配置した後に、図3(c)で示したパワーモジュール2を、ヒートシンク7の位置決め用穴13と磁性金属部10および冷媒ジャケット9に設けた位置決め用穴14との位置を揃えて、磁性金属部10の上に配置する。これにより、冷却器8とパワーモジュール2のヒートシンク7との間に、はんだ12が設けられる。その後、位置決め用穴13と位置決め用穴14に固定ピンを挿入し仮止めする。 After the solder 12 is arranged on the surface 10b of the magnetic metal portion 10 in this way, the power module 2 shown in FIG. 3C is provided in the positioning hole 13 of the heat sink 7, the magnetic metal portion 10 and the refrigerant jacket 9. The positioning hole 14 is aligned with the positioning hole 14 and disposed on the magnetic metal portion 10. Thereby, the solder 12 is provided between the cooler 8 and the heat sink 7 of the power module 2. Thereafter, fixing pins are inserted into the positioning holes 13 and the positioning holes 14 and temporarily fixed.
 図5は、高周波誘導加熱装置で磁性金属部10を誘導加熱してはんだ12を溶融した後、溶融したはんだ12を凝固させてパワーモジュール2と冷却器8とを接合し、冷媒流路11に連通する開口部を封止する工程を行う製造方法を示す図である。 FIG. 5 shows the induction heating of the magnetic metal part 10 by a high frequency induction heating device to melt the solder 12, and then the molten solder 12 is solidified to join the power module 2 and the cooler 8. It is a figure which shows the manufacturing method which performs the process of sealing the opening part connected.
 上記のように、冷却器8の磁性金属部10とパワーモジュール2のヒートシンク7とを、はんだ12を挟んで重ねて設け、位置決め用穴13と位置決め用穴14とに挿入した固定ピン15により仮止めした後、高周波誘導加熱装置16に配置し、高周波誘導加熱装置16のコイルに高周波電流を供給する。磁性金属部10の面10aおよび面10bの一部が、冷却器8の外側に露出しているので、高周波誘導加熱装置16のコイルが発生する高周波磁束は、他の非磁性金属材料に妨げられることなく磁性金属部10に到達し、磁性金属部10が誘導加熱され温度が上昇する。 As described above, the magnetic metal part 10 of the cooler 8 and the heat sink 7 of the power module 2 are provided so as to overlap each other with the solder 12 interposed therebetween, and temporarily fixed by the fixing pin 15 inserted into the positioning hole 13 and the positioning hole 14. After stopping, it is placed in the high frequency induction heating device 16 and a high frequency current is supplied to the coil of the high frequency induction heating device 16. Since the surface 10a and part of the surface 10b of the magnetic metal part 10 are exposed to the outside of the cooler 8, the high frequency magnetic flux generated by the coil of the high frequency induction heating device 16 is hindered by other nonmagnetic metal materials. Without reaching the magnetic metal part 10, the magnetic metal part 10 is induction-heated and the temperature rises.
 電力半導体装置1は、ヒートシンク7と冷媒ジャケット9とが共にアルミやアルミ合金などの非磁性金属材料で形成されているため、磁性金属部10が冷却器8の外側に全く露出していないと、高周波誘導加熱装置16により発生した高周波磁束は、非磁性金属材料に到達した際に、電磁誘導により非磁性金属材料内に高周波磁束を打ち消す向きの誘導電流を発生させるため、磁性金属部10に高周波磁束が到達しなくなり、磁性金属部10は誘導加熱されなくなる。しかし、本発明の電力半導体装置1では、磁性金属部10の一部が冷却器8の外側に露出しているため、高周波誘導加熱装置16により発生した高周波磁束は磁性金属部10に到達し、磁性金属部10を誘導加熱することができる。 In the power semiconductor device 1, since the heat sink 7 and the refrigerant jacket 9 are both formed of a nonmagnetic metal material such as aluminum or an aluminum alloy, the magnetic metal portion 10 is not exposed to the outside of the cooler 8 at all. When the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the non-magnetic metal material, an induction current is generated in the non-magnetic metal material by electromagnetic induction so as to cancel the high-frequency magnetic flux. The magnetic flux does not reach and the magnetic metal part 10 is not induction heated. However, in the power semiconductor device 1 of the present invention, since a part of the magnetic metal part 10 is exposed to the outside of the cooler 8, the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the magnetic metal part 10, The magnetic metal part 10 can be induction-heated.
 なお、高周波誘導加熱装置16のコイルは冷却器8の幅より、幅が大きい筒状コイルであって、図5に示すように、冷却器8の下方の一部が筒状コイルの上端より下方に位置するように設けられるのが好ましい。筒状コイルの上端と冷却器8の下端との距離が大きく離れていると、磁性金属部10を誘導加熱する効率が悪くなり、誘導加熱時の磁性金属部10とヒートシンク7の接合材6で絶縁基板5を接合した部分との温度差が小さくなり好ましくない。一方、筒状コイルの上端を磁性金属部10と水平な位置より上方に設けても、誘導加熱時の磁性金属部10とヒートシンク7の接合材6で絶縁基板5を接合した部分との温度差が小さくなり好ましくない。 The coil of the high frequency induction heating device 16 is a cylindrical coil having a width larger than the width of the cooler 8, and a part of the lower portion of the cooler 8 is below the upper end of the cylindrical coil as shown in FIG. It is preferable that it is provided so that it may be located in. If the distance between the upper end of the cylindrical coil and the lower end of the cooler 8 is greatly separated, the efficiency of induction heating of the magnetic metal portion 10 is deteriorated, and the bonding material 6 of the magnetic metal portion 10 and the heat sink 7 during induction heating is deteriorated. The temperature difference from the portion where the insulating substrate 5 is bonded becomes small, which is not preferable. On the other hand, even if the upper end of the cylindrical coil is provided above the horizontal position with respect to the magnetic metal part 10, the temperature difference between the part where the insulating substrate 5 is joined by the joining material 6 of the magnetic metal part 10 and the heat sink 7 during induction heating. Becomes smaller, which is not preferable.
 なお、磁性金属部10は耐食性を得るために、磁性金属部10の表面に非磁性金属のめっき膜が形成されていてもよい。上述のように、はんだの濡れ性を良くしたり耐食性を良くしたりする目的で形成するめっき膜はせいぜい厚さが数μmであるから、電気抵抗が大き過ぎて、磁性金属部10の誘導加熱を妨げるような誘導電流が流れないので、高周波磁束は磁性金属部10の表面に形成されためっき膜に流れる誘導電流に打ち消されることなく、磁性金属部10の磁性金属材料部分に到達する。磁性金属材料は非磁性金属材料に比べ比透磁率が10倍以上大きいので、磁性金属材料内では磁束密度が大きく、電磁誘導により大きな誘導電流が流れ、誘導電流によるジュール熱により磁性金属部10が発熱する。 The magnetic metal part 10 may have a nonmagnetic metal plating film formed on the surface of the magnetic metal part 10 in order to obtain corrosion resistance. As described above, since the plating film formed for the purpose of improving the wettability of the solder or the corrosion resistance has a thickness of several μm at most, the electric resistance is too large and the induction heating of the magnetic metal part 10 is performed. Therefore, the high-frequency magnetic flux reaches the magnetic metal material portion of the magnetic metal portion 10 without being canceled by the induced current flowing in the plating film formed on the surface of the magnetic metal portion 10. Since the magnetic metal material has a relative permeability of 10 times or more larger than that of the non-magnetic metal material, a magnetic flux density is large in the magnetic metal material, a large induced current flows by electromagnetic induction, and the magnetic metal portion 10 is caused by Joule heat due to the induced current. Fever.
 以上のように、磁性金属部10の表面に非磁性金属のめっき膜が形成されていても、磁性金属部10が誘導加熱されることを妨げないので、表面に形成された非磁性金属のめっき膜を含めて磁性金属部10と呼ぶ。すなわち、表面に非磁性金属のめっき膜が形成された磁性金属部10が電力半導体装置1の外側に露出している場合、厳密に言えば冷却器8の外側の空間と接しているのは非磁性金属と言えるが、上記のように表面の非磁性金属のめっき膜を含めて磁性金属部10と呼ぶので、このような場合であっても磁性金属部10が冷却器8の外側に露出していることを意味する。さらに、磁性金属部10が非磁性材料の絶縁物で表面を覆われている場合も、非磁性材料の絶縁物は高周波磁束に対して何ら影響せず、物理現象的には存在しないことと同じなので無視して考えてよい。ただし、磁性金属部10の表面を覆う絶縁物がフェライトコアなどの強磁性体である場合には、高周波磁束により磁性金属部10が誘導加熱されるのを妨げるため、磁性金属部10の電力半導体装置1の外側に露出した部分を強磁性体の絶縁物で覆うのは望ましくない。 As described above, even if a nonmagnetic metal plating film is formed on the surface of the magnetic metal portion 10, it does not prevent the magnetic metal portion 10 from being induction-heated. Therefore, the nonmagnetic metal plating formed on the surface is not disturbed. The magnetic metal part 10 including the film is called. That is, when the magnetic metal portion 10 having a nonmagnetic metal plating film formed on the surface is exposed to the outside of the power semiconductor device 1, strictly speaking, it is not in contact with the space outside the cooler 8. Although it can be said that it is a magnetic metal, it is called the magnetic metal part 10 including the plating film of the nonmagnetic metal on the surface as described above. Therefore, even in such a case, the magnetic metal part 10 is exposed to the outside of the cooler 8. Means that Further, even when the surface of the magnetic metal part 10 is covered with an insulator of a nonmagnetic material, the insulator of the nonmagnetic material has no influence on the high-frequency magnetic flux, and is the same as not existing physically. So you can ignore it. However, in the case where the insulator covering the surface of the magnetic metal part 10 is a ferromagnetic material such as a ferrite core, the magnetic metal part 10 is prevented from being induction-heated by the high-frequency magnetic flux. It is not desirable to cover the exposed portion of the device 1 with a ferromagnetic insulator.
 一方、非磁性金属材料で形成された冷媒ジャケット9やヒートシンク7の表面に磁性のニッケルめっきが設けられている場合であっても、上述したように数μm程度の厚さのニッケルめっき膜は、抵抗が大きいためほとんど誘導加熱されないので、非磁性金属材料で形成されているとしてよい。 On the other hand, even when a magnetic nickel plating is provided on the surface of the refrigerant jacket 9 or the heat sink 7 made of a nonmagnetic metal material, the nickel plating film having a thickness of about several μm is as described above. Since the resistance is large, it is hardly heated by induction, and may be formed of a nonmagnetic metal material.
 誘導加熱により直接加熱された磁性金属部10の熱は、熱伝導によりはんだ12に伝熱し、磁性金属部10の温度が上昇するに従ってはんだ12の温度も上昇する。なお、はんだ12を磁性金属部10の上で一旦溶融した後、凝固させてプリフォームした場合には、磁性金属部10とはんだ12とが密着しているため、磁性金属部10からはんだ12への熱伝導が良く、短時間にはんだ12の温度を上昇させることができるので好ましい。 The heat of the magnetic metal part 10 heated directly by induction heating is transferred to the solder 12 by heat conduction, and the temperature of the solder 12 rises as the temperature of the magnetic metal part 10 rises. When the solder 12 is once melted on the magnetic metal portion 10 and then solidified and preformed, the magnetic metal portion 10 and the solder 12 are in close contact with each other. This is preferable because the heat conduction is good and the temperature of the solder 12 can be raised in a short time.
 磁性金属部10からはんだ12に伝熱した熱は、はんだ12と接しているヒートシンク7のフィンベース71にも伝熱され、フィンベース71の温度も上昇する。はんだ12の温度がはんだ12の融点以上まで上昇すると、はんだ12が溶融する。この結果、はんだ12とフィンベース71との密着性が向上し、はんだ12からフィンベース71への熱伝達率が高くなるので、フィンベース71のはんだ12と接する部分の温度が急速に上昇する。そして、フィンベース71のはんだ12と接する部分の温度が、はんだ12の融点以上になると、溶融したはんだ12がフィンベース71を濡らし、フィンベース71に拡散し、合金層を形成することではんだ接合が行われる。なお、この時点では合金層が形成されはんだ接合された状態ではあるものの、はんだ12は溶融した状態であり、ヒートシンク7と磁性金属部10とは固着されていない。 The heat transferred from the magnetic metal part 10 to the solder 12 is also transferred to the fin base 71 of the heat sink 7 in contact with the solder 12, and the temperature of the fin base 71 also rises. When the temperature of the solder 12 rises above the melting point of the solder 12, the solder 12 melts. As a result, the adhesion between the solder 12 and the fin base 71 is improved, and the heat transfer rate from the solder 12 to the fin base 71 is increased, so that the temperature of the portion of the fin base 71 in contact with the solder 12 rapidly increases. When the temperature of the portion of the fin base 71 in contact with the solder 12 becomes equal to or higher than the melting point of the solder 12, the molten solder 12 wets the fin base 71, diffuses into the fin base 71, and forms an alloy layer. Is done. At this time, although the alloy layer is formed and soldered, the solder 12 is in a molten state and the heat sink 7 and the magnetic metal portion 10 are not fixed.
 はんだ12がフィンベース71に拡散してはんだ接合が行われると、高周波誘導加熱装置16のコイルへの高周波電流の供給を停止する。すると、冷媒ジャケット9の外側に露出した磁性金属部10の面10aに到達していた高周波磁束が無くなるので誘導加熱は停止され、磁性金属部10、はんだ12、および、フィンベース71の温度が低下する。はんだ12の温度が融点を下回ると、溶融したはんだ12が凝固して、冷却器8の磁性金属部10とパワーモジュール2のヒートシンク7とがはんだ12により接合され固着される。そして、固定ピン15を取り外し電力半導体装置1が完成する。 When the solder 12 is diffused into the fin base 71 and soldering is performed, the supply of the high-frequency current to the coil of the high-frequency induction heating device 16 is stopped. Then, since the high frequency magnetic flux that has reached the surface 10a of the magnetic metal portion 10 exposed outside the refrigerant jacket 9 is lost, induction heating is stopped, and the temperature of the magnetic metal portion 10, the solder 12, and the fin base 71 is lowered. To do. When the temperature of the solder 12 falls below the melting point, the molten solder 12 is solidified, and the magnetic metal portion 10 of the cooler 8 and the heat sink 7 of the power module 2 are joined and fixed by the solder 12. Then, the fixing pin 15 is removed and the power semiconductor device 1 is completed.
 誘導加熱による磁性金属部10の加熱は、磁性金属部10自身が発熱源となる直接加熱であるので、加熱温度の制御性が極めてよい。また、フィンベース71のはんだ12によりはんだ接合される部分も、磁性金属部10からの距離が近いので加熱温度の制御性が良い。磁性金属部10、はんだ12、フィンベース71のはんだ12によりはんだ接合される部分の少なくともいずれか一つの温度を測定しながら高周波誘導加熱装置16のコイルへ供給する高周波電流を制御すると、ヒートシンク7の接合材6との接合部の温度が接合材6の融点以上にならないようにしながら、はんだ12によるはんだ接合を容易且つ確実に行うことができる。磁性金属部10、はんだ12、フィンベース71のはんだ12によりはんだ接合される部分の温度は、例えば、放射温度計などの非接触温度測定手段により測定してもよい。 Since the heating of the magnetic metal part 10 by induction heating is direct heating in which the magnetic metal part 10 itself becomes a heat source, the controllability of the heating temperature is very good. Further, the portion of the fin base 71 to be soldered by the solder 12 is also close to the magnetic metal portion 10, so that the heating temperature can be controlled. When the high frequency current supplied to the coil of the high frequency induction heating device 16 is controlled while measuring the temperature of at least one of the magnetic metal portion 10, the solder 12, and the portion soldered by the solder 12 of the fin base 71, Solder joining with the solder 12 can be easily and reliably performed while preventing the temperature of the joint portion with the joining material 6 from exceeding the melting point of the joining material 6. The temperature of the magnetic metal part 10, the solder 12, and the portion soldered by the solder 12 of the fin base 71 may be measured by non-contact temperature measuring means such as a radiation thermometer, for example.
 なお、はんだ接合を行う毎に、はんだ12がフィンベース71を濡らし、フィンベース71に拡散し、合金層を形成したことを確認する必要はなく、予備試作などによる検討で予め高周波誘導加熱装置16のコイルに高周波電流を供給する時間や温度を決定しておき、はんだ接合を行う毎に、高周波電流をその決定した時間コイルに供給する、あるいはその決定した温度になるようにコイルに供給すればよい。 Note that it is not necessary to confirm that the solder 12 wets the fin base 71 and diffuses into the fin base 71 and forms an alloy layer every time soldering is performed. If the time and temperature for supplying the high-frequency current to the coil are determined, and each time soldering is performed, the high-frequency current is supplied to the coil for the determined time or supplied to the coil so that the determined temperature is reached. Good.
 また、高周波誘導加熱装置16のコイルに供給する高周波電流は必ずしも開始および停止される必要はなく、例えば、ベルトコンベアなどの搬送装置の進行方向の所定の区間に高周波磁束を発生するコイルを設け、その区間を予め定めた時間で通過させることにより、誘導加熱が予め定めた時間行われるようにしてもよい。すなわち、搬送装置上にパワーモジュール2と冷却器8との間にはんだ12を設け固定ピン15で仮止めしたものを配置し、所定の区間を予め定めた時間で通過することにより、厳密に誘導加熱する時間が管理されて、はんだ接合を行うことができる。 Further, the high-frequency current supplied to the coil of the high-frequency induction heating device 16 does not necessarily need to be started and stopped. For example, a coil that generates high-frequency magnetic flux is provided in a predetermined section in the traveling direction of a transport device such as a belt conveyor. By passing the section at a predetermined time, induction heating may be performed for a predetermined time. That is, strictly guiding by placing a solder 12 between the power module 2 and the cooler 8 and temporarily fixing with a fixing pin 15 on a conveying device and passing a predetermined section in a predetermined time. The time for heating is controlled and soldering can be performed.
 高周波誘導加熱装置16により磁性金属部10を誘導加熱すると、フィンベース71のはんだ12と接する部分の温度を急速に上昇させて、局所的にはんだ12の融点以上の温度にすることができる。しかし、フィンベース71のはんだ12と接する部分がはんだ12の融点以上の温度になっても、磁性金属部10からはんだ12を介してフィンベース71に流入する熱量は限られるため、ヒートシンク7の絶縁基板5との接合部の温度をはんだの融点以下に抑えることができる。この結果、絶縁基板5とヒートシンク7とを接合する接合材6の温度が融点以上になるのを抑制し、また、当然ながら半導体素子3と絶縁基板5とを接合する接合材4の温度が融点以上になることも抑制することができる。従って、接合材4および接合材6が再溶融することが無いので、電力半導体装置1の信頼性を高く保つことができる。 When the magnetic metal part 10 is induction-heated by the high-frequency induction heating device 16, the temperature of the part of the fin base 71 in contact with the solder 12 can be rapidly raised to a temperature equal to or higher than the melting point of the solder 12. However, even if the portion of the fin base 71 in contact with the solder 12 reaches a temperature equal to or higher than the melting point of the solder 12, the amount of heat flowing from the magnetic metal portion 10 to the fin base 71 via the solder 12 is limited. The temperature at the joint with the substrate 5 can be kept below the melting point of the solder. As a result, the temperature of the bonding material 6 for bonding the insulating substrate 5 and the heat sink 7 is suppressed from being higher than the melting point, and naturally the temperature of the bonding material 4 for bonding the semiconductor element 3 and the insulating substrate 5 is the melting point. It can also be suppressed. Therefore, since the bonding material 4 and the bonding material 6 are not remelted, the reliability of the power semiconductor device 1 can be kept high.
 また、高周波誘導加熱は、間接加熱ではなく、磁性金属部10を直接発熱させるため温度制御性が良く、必要以上にはんだ12およびその周囲の接合箇所の温度を上昇させないので、接合材4および接合材6を確実に再溶融させないようにすることができ、電力半導体装置1の信頼性を高めることができる。 In addition, the high frequency induction heating is not indirect heating but directly generates heat in the magnetic metal portion 10, so that the temperature controllability is good and the temperature of the solder 12 and its surrounding joints is not increased more than necessary. The material 6 can be reliably prevented from being remelted, and the reliability of the power semiconductor device 1 can be improved.
 さらに、冷却器8の開口部が、磁性金属部10とはんだ12との金属接合およびヒートシンク7とはんだ12との金属接合により封止されるため、耐圧性および耐熱性を高めることができる。 Furthermore, since the opening of the cooler 8 is sealed by metal bonding between the magnetic metal portion 10 and the solder 12 and metal bonding between the heat sink 7 and the solder 12, the pressure resistance and heat resistance can be improved.
 また、本発明の電力半導体装置の製造方法は、電力半導体装置の製造コストを低減することができる。電力半導体装置の製造においては、絶縁基板と半導体素子との接合や、絶縁基板とヒートシンクとの接合と同様に、はんだなどの接合材を用いてろう付けを行う場合には、リフロー炉やオーブンなどの加熱設備に、ろう付けを行う電力半導体装置の全体を収めて、電力半導体装置の温度がほぼ均一温度となるように加熱することが多い。このためパワーモジュール2と冷却器8との接合に同様の手法を用いると、加熱設備が大規模なものとなり、加熱時間も長くなるため加熱設備の消費電力が大きくなる。 Moreover, the method for manufacturing a power semiconductor device of the present invention can reduce the manufacturing cost of the power semiconductor device. In the manufacture of power semiconductor devices, a reflow furnace, oven, etc. are used when brazing is performed using a bonding material such as solder, as in the case of bonding between an insulating substrate and a semiconductor element, or bonding between an insulating substrate and a heat sink. In many cases, the entire power semiconductor device to be brazed is housed in the heating equipment and heated so that the temperature of the power semiconductor device becomes substantially uniform. For this reason, when the same method is used for joining the power module 2 and the cooler 8, the heating equipment becomes large-scale, and the heating time becomes longer, so that the power consumption of the heating equipment increases.
 これに対して本発明の電力半導体装置の製造方法では、高周波誘導加熱により冷却器8に設けた磁性金属部10を選択的かつ短時間で加熱することができるため、電力半導体装置1のパワーモジュール2と冷却器8とをはんだ接合するための加熱設備を小型なものにすることができる。また、加熱に要する電力を磁性金属部10に集中して投入することができるため、パワーモジュール2と冷却器8とのはんだ接合に要する時間を短縮でき、はんだ接合に要する消費電力を抑制することができる。 On the other hand, in the method for manufacturing the power semiconductor device of the present invention, the magnetic metal portion 10 provided in the cooler 8 can be selectively heated in a short time by high-frequency induction heating. Heating equipment for soldering 2 to the cooler 8 can be made small. Moreover, since the electric power required for heating can be concentrated and supplied to the magnetic metal part 10, the time required for the solder joint between the power module 2 and the cooler 8 can be shortened, and the power consumption required for the solder joint can be suppressed. Can do.
 また、本発明の電力半導体装置の製造方法は、パワーモジュール2と冷却器8とを接合する際に、絶縁基板5や半導体素子3の不必要な温度上昇を抑制することができるため、加熱時の温度変化によって絶縁基板5や半導体素子3に生じる熱応力を低減することができる。 Moreover, since the manufacturing method of the power semiconductor device of the present invention can suppress an unnecessary temperature rise of the insulating substrate 5 and the semiconductor element 3 when the power module 2 and the cooler 8 are joined, The thermal stress generated in the insulating substrate 5 and the semiconductor element 3 due to the temperature change can be reduced.
 電力半導体装置1では、使用時の温度変化によって、絶縁基板5とヒートシンク7との間の接合材6や半導体素子3と絶縁基板5との間の接合材4に熱応力が生じる。これらの接合材4、6には、はんだや焼結銀などの金属材料の接合材を用いるが、金属材料に熱応力を繰り返し与え続けると、金属疲労による亀裂が生じ、最終的には接合部で剥離が生じる。このため、電力半導体装置では、製造時の温度変化による熱応力と使用時の温度変化による熱応力との両方を考慮して各接合部の寿命設計を行っている。しかし、製造時に電力半導体装置の全体を加熱してはんだ接合を行う際の温度変化は、使用時の温度変化に比べて大きいので、製造時の温度変化が電力半導体装置の寿命を短くする要因の一つとなっていた。本発明の電力半導体装置の製造方法では、接合材4や接合材6の製造時の温度上昇を抑制することができるので、電力半導体装置1の寿命をより長くすることができる。 In the power semiconductor device 1, thermal stress is generated in the bonding material 6 between the insulating substrate 5 and the heat sink 7 and the bonding material 4 between the semiconductor element 3 and the insulating substrate 5 due to a temperature change during use. These bonding materials 4 and 6 use a bonding material made of a metal material such as solder or sintered silver. However, if thermal stress is repeatedly applied to the metal material, a crack due to metal fatigue occurs and eventually the bonding portion Peeling occurs. For this reason, in the power semiconductor device, the life design of each joint is performed in consideration of both the thermal stress due to the temperature change during manufacture and the thermal stress due to the temperature change during use. However, since the temperature change when soldering by heating the entire power semiconductor device during manufacturing is larger than the temperature change during use, the temperature change during manufacturing is a factor that shortens the life of the power semiconductor device. It was one. In the method for manufacturing the power semiconductor device of the present invention, the temperature rise during the manufacturing of the bonding material 4 and the bonding material 6 can be suppressed, so that the life of the power semiconductor device 1 can be further extended.
 そして、本実施の形態1の電力半導体装置1は、非磁性金属材料で構成される冷媒ジャケット9よりも透磁率が高く、一部が冷却器8の外側に露出した磁性金属部10を冷却器8に有しているので、高周波誘導加熱装置16が発生した高周波磁束が、非磁性金属からなる冷媒ジャケット9に遮られることなく磁性金属部10に到達し、磁性金属部10を選択的且つ短時間で加熱することができる。 The power semiconductor device 1 according to the first embodiment has a magnetic permeability higher than that of the refrigerant jacket 9 made of a nonmagnetic metal material, and a magnetic metal part 10 that is partially exposed to the outside of the cooler 8. 8, the high-frequency magnetic flux generated by the high-frequency induction heating device 16 reaches the magnetic metal part 10 without being blocked by the refrigerant jacket 9 made of a non-magnetic metal, so that the magnetic metal part 10 is selectively and short-circuited. Can be heated in time.
 なお、本実施の形態では図1に示すように、磁性金属部10の面10aと面10bとが冷却器8の外側に露出している場合について説明したが、ヒートシンク7のフィンベース71の幅が冷媒ジャケット9の幅と同じであり、磁性金属部10の面10bが冷却器8の外側に露出していない場合であっても、高周波誘導加熱装置16が発生した高周波磁束は、冷却器8の外側に露出した磁性金属部10の面10aに到達して、磁性金属部10を誘導加熱することができる。従って、上記のように電力半導体装置1の磁性金属部10は少なくとも面10aが冷却器8の外側に露出していればよい。ただし、図1に示すように磁性金属部10の面10aと面10bとの両方が冷却器8の外側に露出している方が、磁性金属部10を誘導加熱する効率がよくなるので好ましい。 In the present embodiment, as shown in FIG. 1, the case where the surfaces 10 a and 10 b of the magnetic metal part 10 are exposed to the outside of the cooler 8 has been described. However, the width of the fin base 71 of the heat sink 7 is described. Is the same as the width of the refrigerant jacket 9 and the high-frequency magnetic flux generated by the high-frequency induction heating device 16 is generated in the cooler 8 even when the surface 10b of the magnetic metal part 10 is not exposed to the outside of the cooler 8. It reaches the surface 10a of the magnetic metal part 10 exposed to the outside of the magnetic metal part 10, and the magnetic metal part 10 can be induction heated. Therefore, it is only necessary that at least the surface 10 a of the magnetic metal part 10 of the power semiconductor device 1 is exposed to the outside of the cooler 8 as described above. However, as shown in FIG. 1, it is preferable that both the surface 10 a and the surface 10 b of the magnetic metal portion 10 are exposed to the outside of the cooler 8 because the efficiency of induction heating of the magnetic metal portion 10 is improved.
 また、本実施の形態では図1に示すように、パワーモジュール2のヒートシンク7と冷却器8とが、はんだ12によるはんだ接合により封止されるが、電力半導体装置1の動作時には、はんだ12は冷媒流路11を流れる水などの冷媒に曝されるため、はんだ12が腐食しやすくなる場合がある。このような場合には、パワーモジュール2のヒートシンク7と冷却器8とをはんだ12ではんだ接合した後に、フィンベース71のはんだ12との接合面から下側、すなわち、冷却器8側を、めっき液に浸漬して、電解ニッケルめっきや無電解ニッケルめっきにより冷却器8の内側のはんだ接合部にニッケルめっきを施すことによって耐食性を向上させることができる。 Further, in the present embodiment, as shown in FIG. 1, the heat sink 7 and the cooler 8 of the power module 2 are sealed by solder bonding with the solder 12. The solder 12 may be easily corroded because it is exposed to a coolant such as water flowing through the coolant channel 11. In such a case, after the heat sink 7 and the cooler 8 of the power module 2 are soldered together with the solder 12, the lower side from the joint surface of the fin base 71 with the solder 12, that is, the cooler 8 side is plated. Corrosion resistance can be improved by dipping in the solution and applying nickel plating to the solder joint inside the cooler 8 by electrolytic nickel plating or electroless nickel plating.
 以上のように本実施の形態1によれば、パワーモジュール2内の接合材4および接合材6による接合部の信頼性が高く、且つ、冷却器8の封止部の耐圧性と耐熱性とが高い電力半導体装置を得ることができるといった効果が得られる。 As described above, according to the first embodiment, the reliability of the bonded portion by the bonding material 4 and the bonding material 6 in the power module 2 is high, and the pressure resistance and heat resistance of the sealing portion of the cooler 8 are improved. The effect that a high-power semiconductor device can be obtained is obtained.
実施の形態2.
 図6は、本発明の実施の形態2における電力半導体装置を示す断面図である。図6において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、磁性金属部10の一部が冷媒ジャケット9の外側に突出した構成が相違している。
Embodiment 2. FIG.
FIG. 6 is a sectional view showing a power semiconductor device according to the second embodiment of the present invention. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted. The first embodiment of the present invention is different from the first embodiment in that a part of the magnetic metal portion 10 protrudes outside the refrigerant jacket 9.
 図6に示すように、電力半導体装置1は、実施の形態1と同様、磁性金属部10が冷却器8の冷媒ジャケット9の開口部の周囲に設けられるが、磁性金属部10の一部が冷媒ジャケット9の側面9aよりも外側に突出している。磁性金属部10は、側面である面10aと下面である面10cの一部とが、電力半導体装置1の外側に露出している。また、ヒートシンク7のフィンベース71は、幅が冷媒ジャケット9の幅より広くなっており、フィンベース71と磁性金属部10とは、冷媒ジャケット9の側面9aから外側に突出した部分で、はんだ12により接合されている。 As shown in FIG. 6, in the power semiconductor device 1, the magnetic metal part 10 is provided around the opening of the refrigerant jacket 9 of the cooler 8 as in the first embodiment, but a part of the magnetic metal part 10 is provided. The refrigerant jacket 9 protrudes outward from the side surface 9a. In the magnetic metal part 10, a surface 10 a that is a side surface and a part of a surface 10 c that is a lower surface are exposed to the outside of the power semiconductor device 1. Further, the fin base 71 of the heat sink 7 has a width wider than that of the refrigerant jacket 9, and the fin base 71 and the magnetic metal part 10 are portions that protrude outward from the side surface 9 a of the refrigerant jacket 9, and are solder 12. It is joined by.
 電力半導体装置1は、実施の形態1に記した製造方法により製造される。しかし、本実施の形態2の電力半導体装置1は、上記のように磁性金属部10の一部が、冷媒ジャケット9の側面9aよりも外側に突出しているので、高周波誘導加熱装置16のコイルが発生する高周波磁束が冷媒ジャケット9に妨げられることなく、磁性金属部10の面10aと面10cの冷媒ジャケット9の側面9aよりも外側に突出した部分とに到達するので、この突出した部分を効率良く誘導加熱することができる。従って、実施の形態1で示した電力半導体装置よりも、ヒートシンク7と冷却器8とのはんだ接合に要する時間を短くすることができる。はんだ12は、この突出した部分の上に設けられるので、はんだ12をより短時間で溶融させて、ヒートシンク7とはんだ接合することができる。従って、パワーモジュール2内の接合材4および接合材6を再溶融させることがより一層無くなり、電力半導体装置1の信頼性をさらに高めることができる。 The power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. However, in the power semiconductor device 1 according to the second embodiment, as described above, a part of the magnetic metal portion 10 protrudes outside the side surface 9a of the refrigerant jacket 9, so that the coil of the high-frequency induction heating device 16 is The generated high-frequency magnetic flux reaches the surface 10a of the magnetic metal portion 10 and the portion of the surface 10c that protrudes outward from the side surface 9a of the refrigerant jacket 9 without being obstructed by the refrigerant jacket 9, so that the protruding portion can be efficiently used. Good induction heating. Therefore, the time required for solder joining between the heat sink 7 and the cooler 8 can be shortened as compared with the power semiconductor device shown in the first embodiment. Since the solder 12 is provided on the protruding portion, the solder 12 can be melted in a shorter time and soldered to the heat sink 7. Therefore, the bonding material 4 and the bonding material 6 in the power module 2 are not melted again, and the reliability of the power semiconductor device 1 can be further improved.
 以上のように本実施の形態2によれば、パワーモジュール2内の接合材4および接合材6による接合部の信頼性がより高く、且つ、冷却器8の封止部の耐圧性と耐熱性とが高い電力半導体装置を得ることができるといった効果が得られる。 As described above, according to the second embodiment, the reliability of the bonded portion by the bonding material 4 and the bonding material 6 in the power module 2 is higher, and the pressure resistance and heat resistance of the sealing portion of the cooler 8 are increased. The effect that a high-power semiconductor device can be obtained is obtained.
実施の形態3.
 図7は、本発明の実施の形態3における電力半導体装置を示す断面図である。図7において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、磁性金属部10が冷媒ジャケット9の側面に設けられた構成が相違している。
Embodiment 3 FIG.
FIG. 7 is a sectional view showing a power semiconductor device according to the third embodiment of the present invention. In FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted. The configuration in which the magnetic metal portion 10 is provided on the side surface of the refrigerant jacket 9 is different from the first embodiment of the present invention.
 図7に示すように、電力半導体装置1は、磁性金属部10が冷媒ジャケット9の側面9aに溶接、ろう付け、あるいは、かしめなどの方法により設けられ、冷媒ジャケット9と接合される面とはんだ接合される面10bとを除いた、側面である面10aと下面である面10cとが冷却器8の外側に露出している。磁性金属部10は、磁性金属部10のはんだ12が設けられる面10bと、冷媒ジャケット9の開口部を有する端面9bとが、段差が無く同一平面となるように設けられる。磁性金属部10は、冷媒ジャケット9の側面9aとの間に隙間を設けず、液密に密着して設けられるのが好ましいが、図7に示すように、はんだ12が磁性金属部10と冷媒ジャケット9とに亘って設けられるため、必ずしも磁性金属部10と冷媒ジャケット9との間を液密に密着させなくてもよく、隙間がある場合には、隙間ははんだ12によって埋められる。 As shown in FIG. 7, in the power semiconductor device 1, the magnetic metal part 10 is provided on the side surface 9 a of the refrigerant jacket 9 by a method such as welding, brazing, or caulking, and the surface joined to the refrigerant jacket 9 and solder A surface 10a that is a side surface and a surface 10c that is a lower surface, excluding the surface 10b to be joined, are exposed to the outside of the cooler 8. The magnetic metal part 10 is provided such that the surface 10b on which the solder 12 of the magnetic metal part 10 is provided and the end face 9b having the opening of the refrigerant jacket 9 are flush and have the same plane. The magnetic metal portion 10 is preferably provided in a liquid-tight manner without providing a gap between the side surface 9a of the refrigerant jacket 9, but as shown in FIG. 7, the solder 12 is attached to the magnetic metal portion 10 and the refrigerant. Since it is provided over the jacket 9, the magnetic metal part 10 and the coolant jacket 9 do not necessarily need to be liquid-tightly adhered. If there is a gap, the gap is filled with the solder 12.
 また、図7に示すように、本実施の形態3の電力半導体装置1は、磁性金属部10が冷媒流路11とははんだ12により隔てて設けられるため、冷媒流路11内に流れる水などの冷媒が磁性金属部10に触れることが無く、磁性金属部10の腐食を抑制することができる。 Further, as shown in FIG. 7, in the power semiconductor device 1 according to the third embodiment, since the magnetic metal part 10 is provided separated from the refrigerant flow path 11 by the solder 12, water flowing in the refrigerant flow path 11 or the like The refrigerant does not touch the magnetic metal part 10, and corrosion of the magnetic metal part 10 can be suppressed.
 電力半導体装置1は、実施の形態1と同様の製造方法により製造される。しかし、本実施の形態3の電力半導体装置1は、はんだ12が磁性金属部10と冷媒ジャケット9とに亘って設けられるため、誘導加熱ではんだ12を溶融してはんだ接合する際の現象が異なる。以下、異なる部分について説明する。 The power semiconductor device 1 is manufactured by the same manufacturing method as in the first embodiment. However, in the power semiconductor device 1 according to the third embodiment, since the solder 12 is provided across the magnetic metal portion 10 and the refrigerant jacket 9, the phenomenon when the solder 12 is melted and joined by induction heating is different. . Hereinafter, different parts will be described.
 磁性金属部10および冷媒ジャケット9のはんだ12が設けられる面には、はんだ12を配置する前に、はんだの濡れ性が良く耐食性の良いニッケルめっきなどのめっき膜を形成しておくのが良い。 It is preferable to form a plating film such as nickel plating with good solder wettability and corrosion resistance on the surface of the magnetic metal part 10 and the coolant jacket 9 where the solder 12 is provided before the solder 12 is disposed.
 冷却器8の、冷媒ジャケット9の開口部を有する端面9bと、この端面9bと同一平面に配置された磁性金属部10の面10bとに亘って、ペーストはんだや板はんだ等で構成されたはんだ12を配置する。はんだ12は、はんだ12を配置した後に、一旦加熱してはんだ12を溶融させ、冷却して凝固させることにより、はんだ12を冷媒ジャケット9の開口部を有する端面9bと、この端面9bと同一平面に配置された磁性金属部10の面10bとに亘って、プリフォームしてもよい。はんだ12をプリフォームしておくと、誘導加熱された磁性金属部10からはんだ12への熱伝導が良好になり、はんだ接合時間を短くできるので好ましい。 Solder composed of paste solder, plate solder, or the like over the end face 9b of the cooler 8 having the opening of the refrigerant jacket 9 and the face 10b of the magnetic metal part 10 disposed on the same plane as the end face 9b. 12 is arranged. After the solder 12 is disposed, the solder 12 is once heated to melt the solder 12, and then cooled and solidified, whereby the solder 12 is flush with the end face 9b having the opening of the coolant jacket 9, and the end face 9b is flush with the end face 9b. It may be preformed over the surface 10b of the magnetic metal part 10 disposed on the surface. It is preferable to preform the solder 12 because heat conduction from the magnetic metal part 10 heated by induction to the solder 12 becomes good and the soldering time can be shortened.
 上記のように冷却器8の上にはんだ12を配置した後、はんだ12の上にパワーモジュール2のヒートシンク7を配置し、高周波誘導加熱装置16が発生する高周波磁束で磁性金属部10を誘導加熱する。誘導加熱されて磁性金属部10の温度が上昇すると、磁性金属部10の熱が冷媒ジャケット9およびはんだ12に伝熱し、冷媒ジャケット9およびはんだ12の温度が上昇する。はんだ12の温度が融点以上になると、はんだ12は溶融する。はんだ12は磁性金属部10と接した部分から溶融し始め、冷媒ジャケット9と接する部分に向かって溶融が進展する。はんだ12がプリフォームされていない場合には、はんだ12の冷媒ジャケット9と接する部分が溶融し、冷媒ジャケット9の温度が磁性金属部10やはんだ12からの熱伝導によりはんだ12の融点以上になると、冷媒ジャケット9および磁性金属部10とはんだ12とが金属接合を形成する。 After the solder 12 is disposed on the cooler 8 as described above, the heat sink 7 of the power module 2 is disposed on the solder 12, and the magnetic metal part 10 is induction heated by the high frequency magnetic flux generated by the high frequency induction heating device 16. To do. When the temperature of the magnetic metal part 10 rises due to induction heating, the heat of the magnetic metal part 10 is transferred to the refrigerant jacket 9 and the solder 12, and the temperature of the refrigerant jacket 9 and the solder 12 rises. When the temperature of the solder 12 exceeds the melting point, the solder 12 melts. The solder 12 starts to melt from the portion in contact with the magnetic metal portion 10, and the melting progresses toward the portion in contact with the refrigerant jacket 9. When the solder 12 is not preformed, the portion of the solder 12 in contact with the refrigerant jacket 9 is melted, and the temperature of the refrigerant jacket 9 becomes equal to or higher than the melting point of the solder 12 due to heat conduction from the magnetic metal portion 10 or the solder 12. The coolant jacket 9 and the magnetic metal part 10 and the solder 12 form a metal joint.
 一方、ヒートシンク7のフィンベース71は、はんだ12と接する部分がはんだ12からの熱伝導によって温度が上昇し、はんだ12が溶融すると熱伝導が更に良くなり急速に温度上昇する。そして、フィンベース71のはんだ12と接する部分の温度がはんだ12の融点以上になると、フィンベース71とはんだ12とが金属接合を形成する。 On the other hand, the temperature of the fin base 71 of the heat sink 7 increases due to heat conduction from the solder 12 at the portion in contact with the solder 12, and when the solder 12 melts, the heat conduction further improves and the temperature rises rapidly. And if the temperature of the part which contacts the solder 12 of the fin base 71 becomes more than melting | fusing point of the solder 12, the fin base 71 and the solder 12 will form a metal joint.
 フィンベース71とはんだ12とが金属接合を形成すると、高周波誘導加熱装置16による誘導加熱を停止する。はんだ12の温度が融点未満に低下すると、はんだ12は凝固し、磁性金属部10と冷媒ジャケット9とを有する冷却器8と、ヒートシンク7を有するパワーモジュール2とがはんだ12によりはんだ接合される。 When the fin base 71 and the solder 12 form a metal joint, the induction heating by the high frequency induction heating device 16 is stopped. When the temperature of the solder 12 falls below the melting point, the solder 12 is solidified, and the cooler 8 having the magnetic metal part 10 and the refrigerant jacket 9 and the power module 2 having the heat sink 7 are soldered by the solder 12.
 本実施の形態3の電力半導体装置1は、磁性金属部10の側面である面10aと下面である面10cとが、冷却器8の外側に露出しているため、高周波誘導加熱装置16が発生する高周波磁束が冷媒ジャケット9およびヒートシンク7に妨げられることなく磁性金属部10に到達し、磁性金属部10を誘導加熱する。磁性金属部10は実施の形態1や実施の形態2の磁性金属部と比べサイズが小さくいため熱容量が小さく、誘導加熱による磁性金属部10の温度上昇を急速に行い、冷却器8とパワーモジュール2とのはんだ接合を短時間に行うことができる。この結果、パワーモジュール2内の接合材6と接合材4とが再溶融することが無くなり電力半導体装置の信頼性を高めることができる。また、冷却器8とパワーモジュール2のヒートシンク7とがはんだ接合されるので、冷却器8の封止部の耐圧性と耐熱性とが高い電力半導体装置を得ることができる。 In the power semiconductor device 1 according to the third embodiment, since the surface 10a that is the side surface of the magnetic metal part 10 and the surface 10c that is the lower surface are exposed to the outside of the cooler 8, the high-frequency induction heating device 16 is generated. The high frequency magnetic flux to reach the magnetic metal part 10 without being obstructed by the refrigerant jacket 9 and the heat sink 7, and induction heat the magnetic metal part 10. The magnetic metal part 10 is smaller in size than the magnetic metal parts of the first and second embodiments, and thus has a small heat capacity. The temperature of the magnetic metal part 10 is rapidly increased by induction heating, and the cooler 8 and the power module 2 are heated. Can be soldered in a short time. As a result, the bonding material 6 and the bonding material 4 in the power module 2 are not melted again, and the reliability of the power semiconductor device can be improved. Moreover, since the cooler 8 and the heat sink 7 of the power module 2 are soldered together, a power semiconductor device with high pressure resistance and heat resistance of the sealing portion of the cooler 8 can be obtained.
実施の形態4.
 図8は、本発明の実施の形態4における電力半導体装置を示す断面図である。図8において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、冷媒ジャケットがヒートシンクの役割を兼ねた構成が相違している。
Embodiment 4 FIG.
FIG. 8 is a sectional view showing a power semiconductor device according to the fourth embodiment of the present invention. 8, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted. The configuration in which the refrigerant jacket also serves as a heat sink is different from the first embodiment of the present invention.
 図8に示すように、電力半導体装置1は、パワーモジュール2がヒートシンクの代わりに冷媒ジャケット9を用いて構成されている。冷媒ジャケット9は、ヒートシンクのフィンベースに相当するフィンベース71と、ヒートシンクの放熱フィンに相当する放熱フィン72とを備えており、さらにフィンベース71から直立し、放熱フィン72より長い側壁91と、側壁91で囲われた内側に冷媒流路11と、フィンベース71の反対側の側壁91の端部側に開口部とを備えている。このような形状はアルミやアルミ合金の直方体等を切削加工することでも形成できるが、ダイキャストにより形成することもできる。また、必ずしも一体として形成する必要はなく、放熱フィン72を有するヒートシンクに、ヒートシンクとは別に作製した側壁91を溶接、ろう付け、あるいは、かしめ等により接合して設けることで冷媒ジャケット9を構成してもよい。 As shown in FIG. 8, in the power semiconductor device 1, the power module 2 is configured using a refrigerant jacket 9 instead of a heat sink. The refrigerant jacket 9 includes a fin base 71 corresponding to the fin base of the heat sink, and a heat dissipation fin 72 corresponding to the heat dissipation fin of the heat sink. The refrigerant flow path 11 is provided on the inner side surrounded by the side wall 91, and an opening is provided on the end side of the side wall 91 on the side opposite to the fin base 71. Such a shape can be formed by cutting a rectangular parallelepiped of aluminum or aluminum alloy, but can also be formed by die casting. The refrigerant jacket 9 is not necessarily formed integrally, and the refrigerant jacket 9 is configured by providing the heat sink having the heat radiation fins 72 by joining the side wall 91 separately from the heat sink by welding, brazing, or caulking. May be.
 なお、本実施の形態4では、冷媒ジャケット9がフィンベース71と側壁91とを備えているため、冷却器の代わりに冷却機構81を用いて説明する。冷却機構81は、上記実施の形態1~3では冷却器8とヒートシンク7とを合わせてものである。 In the fourth embodiment, since the refrigerant jacket 9 includes the fin base 71 and the side wall 91, a description will be given using the cooling mechanism 81 instead of the cooler. The cooling mechanism 81 is a combination of the cooler 8 and the heat sink 7 in the first to third embodiments.
 磁性金属部10は平板状の磁性金属材料で形成されており、冷媒ジャケットの側壁91の端面91aにはんだ12により接合されて、冷却機構81の底壁を構成している。冷媒ジャケット9の側壁91の端面91aと磁性金属部10との間は液密に密着して設けられており、冷媒ジャケット9は、側壁91の端面91aに磁性金属部10が接合されて封止される。磁性金属部10は、側面である面10aと下面である面10cとが冷却機構81の外側に露出されている。 The magnetic metal portion 10 is formed of a flat magnetic metal material, and is joined to the end surface 91a of the side wall 91 of the refrigerant jacket by the solder 12 to constitute the bottom wall of the cooling mechanism 81. The end face 91a of the side wall 91 of the refrigerant jacket 9 and the magnetic metal part 10 are provided in close contact with each other in a liquid-tight manner. The refrigerant jacket 9 is sealed by bonding the magnetic metal part 10 to the end face 91a of the side wall 91. Is done. In the magnetic metal part 10, a surface 10 a that is a side surface and a surface 10 c that is a lower surface are exposed to the outside of the cooling mechanism 81.
 電力半導体装置1は、実施の形態1と同様の方法により製造される。すなわち、冷媒ジャケット9のフィンベース71に、半導体素子3が接合材4で接合された絶縁基板5を接合材6で接合するまでの工程は同じであり、その後、はんだ12が配置された磁性金属部10を高周波誘導加熱装置16により誘導加熱して、はんだ12を溶融することで、側壁91の端面91aと磁性金属部10とがはんだ接合される。 The power semiconductor device 1 is manufactured by the same method as in the first embodiment. That is, the process until the insulating substrate 5 in which the semiconductor element 3 is bonded to the fin base 71 of the refrigerant jacket 9 by the bonding material 4 is bonded by the bonding material 6 is the same, and then the magnetic metal in which the solder 12 is disposed. The end surface 91a of the side wall 91 and the magnetic metal part 10 are soldered together by inductively heating the part 10 with the high frequency induction heating device 16 and melting the solder 12.
 実施の形態1で述べたように、磁性金属部10にはんだ12を配置する前に、磁性金属部10のはんだ接合される面と、側壁91の端面91aであるはんだ接合される面とには、ニッケルめっきなどはんだの濡れ性が良く耐食性の良いめっき膜を形成しておくのが良い。磁性金属部10の上面である面10bは、側壁91の端面91aとはんだ接合されると共に、冷媒流路11に露出するので、水などの冷媒による腐食を抑制するためにも、磁性金属部10の面10bの全面にニッケルめっきなどのめっき膜を形成しておくのが良い。 As described in the first embodiment, before the solder 12 is disposed on the magnetic metal portion 10, the surface to be soldered of the magnetic metal portion 10 and the surface to be soldered which is the end surface 91 a of the side wall 91 are separated from each other. It is preferable to form a plating film having good solder wettability and corrosion resistance, such as nickel plating. Since the surface 10b which is the upper surface of the magnetic metal part 10 is soldered to the end face 91a of the side wall 91 and is exposed to the refrigerant flow path 11, the magnetic metal part 10 is also used to suppress corrosion by a refrigerant such as water. It is preferable to form a plating film such as nickel plating on the entire surface 10b.
 まず、磁性金属部10にペーストはんだや板はんだからなるはんだ12を配置する。なお、はんだ12は磁性金属部10にプリフォームしておくのが好ましい。磁性金属部10上にはんだ12を配置した後、はんだ12の上に側壁91の端面91aを接触させて配置し、磁性金属部10を高周波誘導加熱装置16により誘導加熱する。なお、高周波誘導加熱装置16のコイルは、冷却器8の底面であり冷却器8の外側に露出した磁性金属部10の面10cに対向するように配置された平板状のコイルであってもよい。 First, the solder 12 made of paste solder or plate solder is disposed on the magnetic metal part 10. The solder 12 is preferably preformed on the magnetic metal part 10. After the solder 12 is disposed on the magnetic metal portion 10, the end surface 91 a of the side wall 91 is disposed on the solder 12 so that the magnetic metal portion 10 is induction heated by the high frequency induction heating device 16. Note that the coil of the high-frequency induction heating device 16 may be a flat coil disposed so as to face the surface 10c of the magnetic metal portion 10 that is the bottom surface of the cooler 8 and is exposed to the outside of the cooler 8. .
 高周波誘導加熱装置16が発生する高周波磁束により磁性金属部10が誘導加熱されると、磁性金属部10の温度が上昇し、磁性金属部10の熱が熱伝導によりはんだ12に伝熱される。はんだ12の温度が上昇し、はんだ12の融点以上になるとはんだ12が溶融し、はんだ12から側壁91の端面91aへの熱伝導が促進され、側壁91の端面91aの温度が急速に上昇する。側壁91の端面91aの温度がはんだ12の融点以上になると、側壁91の端面91aとはんだ12とが金属結合を形成する。その後、高周波誘導加熱装置16による磁性金属部10の誘導加熱を停止すると、はんだ12の温度が低下し、はんだ12が凝固して、磁性金属部10と冷媒ジャケット9の側壁91の端面91aとがはんだ接合される。 When the magnetic metal part 10 is induction-heated by the high-frequency magnetic flux generated by the high-frequency induction heating device 16, the temperature of the magnetic metal part 10 rises and the heat of the magnetic metal part 10 is transferred to the solder 12 by heat conduction. When the temperature of the solder 12 rises and becomes equal to or higher than the melting point of the solder 12, the solder 12 melts, heat conduction from the solder 12 to the end face 91a of the side wall 91 is promoted, and the temperature of the end face 91a of the side wall 91 rises rapidly. When the temperature of the end surface 91a of the side wall 91 becomes equal to or higher than the melting point of the solder 12, the end surface 91a of the side wall 91 and the solder 12 form a metal bond. Thereafter, when induction heating of the magnetic metal part 10 by the high-frequency induction heating device 16 is stopped, the temperature of the solder 12 is lowered, the solder 12 is solidified, and the end face 91a of the side wall 91 of the magnetic metal part 10 and the refrigerant jacket 9 is connected. Soldered.
 以上のように、電力半導体装置1は、パワーモジュール2内の接合材6および接合材4から最も遠い位置である冷媒ジャケット9の側壁91の端面91aを、磁性金属部10とはんだ接合させて、冷媒流路11に連通する開口部の封止を行うので、はんだ12の溶融時に接合材6および接合材4の温度上昇を抑制し再溶融しないようにすることができる。 As described above, the power semiconductor device 1 solder-joins the end surface 91a of the side wall 91 of the refrigerant jacket 9 that is the farthest from the bonding material 6 and the bonding material 4 in the power module 2 to the magnetic metal part 10, Since the opening communicating with the refrigerant flow path 11 is sealed, the temperature increase of the bonding material 6 and the bonding material 4 can be suppressed when the solder 12 is melted, and the melting can be prevented.
 図9は、本発明の実施の形態4における他の電力半導体装置を示す断面図である。図9において、図8と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図9の電力半導体装置は、図8の電力半導体装置とは、放熱フィン72と側壁91とが同じ長さである点が相違する。 FIG. 9 is a sectional view showing another power semiconductor device according to the fourth embodiment of the present invention. 9, the same reference numerals as those in FIG. 8 denote the same or corresponding components, and the description thereof is omitted. The power semiconductor device of FIG. 9 is different from the power semiconductor device of FIG. 8 in that the radiation fins 72 and the side walls 91 have the same length.
 図9に示すように、電力半導体装置1は、冷媒ジャケット9のフィンベース71に直立して設けられた放熱フィン72と側壁91とが同じ長さであり、放熱フィン72の端面72aと側壁91の端面91aとが同一平面内に位置する。放熱フィン72の端面72aおよび側壁91の端面91aと磁性金属部10の上面である面10bとは、それぞれはんだ12により接合されている。はんだ12による接合方法は、上述の図8に示す電力半導体装置の場合と同様である。図9に示す電力半導体装置1の場合は、放熱フィン72の端面72aにも、はんだ接合前にニッケルめっき等のはんだの濡れ性が良く耐食性の良いめっき膜を形成しておくのが良く、また磁性金属部10の放熱フィン72の端面72aとはんだ接合される位置に、はんだ12を配置し、プリフォームしておくのが良い。 As shown in FIG. 9, in the power semiconductor device 1, the radiating fins 72 and the side walls 91 provided upright on the fin base 71 of the refrigerant jacket 9 have the same length, and the end surfaces 72 a and the side walls 91 of the radiating fins 72. The end face 91a is located in the same plane. The end surface 72 a of the heat radiating fin 72, the end surface 91 a of the side wall 91, and the surface 10 b that is the upper surface of the magnetic metal part 10 are joined by solder 12. The joining method using the solder 12 is the same as in the case of the power semiconductor device shown in FIG. In the case of the power semiconductor device 1 shown in FIG. 9, it is preferable to form a plating film having good wettability of solder such as nickel plating and good corrosion resistance on the end surface 72a of the radiating fin 72 before soldering. The solder 12 is preferably placed and preformed at a position where the end surface 72a of the heat radiating fin 72 of the magnetic metal part 10 is soldered.
 図9に示す電力半導体装置1は、冷媒流路11に連通する開口部を封止するためのはんだ接合が、パワーモジュール2内の接合材6および接合材4から最も遠い位置で行われるため、はんだ12を溶融する際に、接合材6および接合材4の温度上昇を抑制し再溶融しないようにすることができる。また、磁性金属部10が、側壁91の端面91aと放熱フィン72の端面72aとの両方とはんだ接合されるため、はんだ接合される面積が大きくなり、封止部の耐圧性をさらに高めることができる。 In the power semiconductor device 1 shown in FIG. 9, solder bonding for sealing the opening communicating with the refrigerant flow path 11 is performed at a position farthest from the bonding material 6 and the bonding material 4 in the power module 2. When the solder 12 is melted, the temperature rise of the bonding material 6 and the bonding material 4 can be suppressed so as not to be remelted. In addition, since the magnetic metal part 10 is soldered to both the end face 91a of the side wall 91 and the end face 72a of the radiating fin 72, the area to be soldered is increased, and the pressure resistance of the sealing part is further increased. it can.
 以上のように、本実施の形態4の電力半導体装置によれば、半導体素子3が接合材4により接合された絶縁基板5を接合材6で接合したフィンベース71から最も遠い位置で、磁性金属部10を誘導加熱して、磁性金属部10の発熱によりはんだ12を溶融してはんだ接合することで、冷却機構81の冷媒流路11に連通する開口部を封止しているので、開口部を封止する際に接合材4および接合材6の温度上昇を抑制することができるので、信頼性が高く、耐圧性および耐熱性に優れた冷却器を備えた電力半導体装置が得られるといった効果を奏する。 As described above, according to the power semiconductor device of the fourth embodiment, the magnetic metal is located farthest from the fin base 71 in which the insulating substrate 5 to which the semiconductor element 3 is bonded by the bonding material 4 is bonded by the bonding material 6. Since the portion 10 is inductively heated and the solder 12 is melted and joined by heat generation of the magnetic metal portion 10, the opening communicating with the coolant channel 11 of the cooling mechanism 81 is sealed. Since the temperature rise of the bonding material 4 and the bonding material 6 can be suppressed when sealing the battery, it is possible to obtain a power semiconductor device including a cooler with high reliability and excellent pressure resistance and heat resistance. Play.
実施の形態5.
 図10は本発明の実施の形態5の電力半導体装置および電力半導体装置の製造方法を示す断面図である。図10(a)は電力半導体装置の製造方法を示す図であり、図10(b)は図10(a)の製造方法により製造される電力半導体装置を示す図である。図10において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、磁性金属部が冷媒ジャケットに一体化されておらず、冷却器が冷媒ジャケットのみから成り、電力半導体装置1を製造した後に磁性金属部を取り外す構成が相違している。
Embodiment 5 FIG.
FIG. 10 is a cross-sectional view showing the power semiconductor device and the method for manufacturing the power semiconductor device according to the fifth embodiment of the present invention. FIG. 10A is a diagram showing a method of manufacturing a power semiconductor device, and FIG. 10B is a diagram showing a power semiconductor device manufactured by the manufacturing method of FIG. 10A. 10, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted. The first embodiment of the present invention is different from the first embodiment in that the magnetic metal part is not integrated with the refrigerant jacket, the cooler is composed only of the refrigerant jacket, and the magnetic metal part is removed after the power semiconductor device 1 is manufactured. ing.
 まず、図10(a)を用いて電力半導体装置1の製造方法について説明する。電力半導体装置1のパワーモジュール2は実施の形態1で説明した製造方法により作製される。すなわち、接合材4で半導体素子3が接合された絶縁基板5を接合材6でヒートシンク7のフィンベース71に接合してパワーモジュール2が作製される。 First, a method for manufacturing the power semiconductor device 1 will be described with reference to FIG. The power module 2 of the power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. That is, the power module 2 is manufactured by bonding the insulating substrate 5 to which the semiconductor element 3 is bonded with the bonding material 4 to the fin base 71 of the heat sink 7 with the bonding material 6.
 冷媒ジャケット9の周囲には、磁性金属部10が冷媒ジャケット9に接触して設けられる。従って、本実施の形態5では、冷却器8と冷媒ジャケット9とは同一のものである。冷媒ジャケット9と磁性金属部10とは一体に接合されておらず分離可能であり、環状の磁性金属部10の内側に冷媒ジャケット9が挿入されることで、冷媒ジャケット9の周囲には磁性金属部10が接触して設けられる。また、ヒートシンク7のフィンベース71とはんだ接合される冷媒ジャケット9の端面9bには、ペーストはんだや板はんだ等のはんだ12が配置される。冷媒ジャケット9の端面9bにははんだ12を配置する前に、ニッケルめっきなどはんだの濡れ性が良く耐食性が良いめっき膜を形成しておくのが良い。また、はんだ12は冷媒ジャケット9の端面9bに配置した後、一旦溶融させた後凝固させてプリフォームしておくのが好ましい。なお、はんだ12は、冷媒ジャケット9の周囲に磁性金属部10を設ける前に端面9bに配置してもよく、冷媒ジャケット9の周囲に磁性金属部10を設けた後に端面9bに配置してもよい。 A magnetic metal part 10 is provided around the refrigerant jacket 9 in contact with the refrigerant jacket 9. Therefore, in the fifth embodiment, the cooler 8 and the refrigerant jacket 9 are the same. The refrigerant jacket 9 and the magnetic metal part 10 are not integrally joined and can be separated, and the refrigerant jacket 9 is inserted inside the annular magnetic metal part 10, so that the magnetic metal is surrounded around the refrigerant jacket 9. The part 10 is provided in contact. A solder 12 such as paste solder or plate solder is disposed on the end surface 9b of the coolant jacket 9 that is soldered to the fin base 71 of the heat sink 7. Before placing the solder 12 on the end face 9b of the refrigerant jacket 9, it is preferable to form a plating film having good solder wettability and corrosion resistance such as nickel plating. Further, it is preferable that the solder 12 is disposed on the end face 9b of the refrigerant jacket 9, and then once melted and then solidified to be preformed. The solder 12 may be disposed on the end surface 9b before the magnetic metal portion 10 is provided around the refrigerant jacket 9, or may be disposed on the end surface 9b after the magnetic metal portion 10 is provided around the refrigerant jacket 9. Good.
 冷媒ジャケット9の端面9bにはんだ12を配置し、周囲に磁性金属部10を設けた後に、端面9bのはんだ12の上にパワーモジュール2のヒートシンク7をはんだ12と接触させて配置する。これにより冷却器8の冷媒ジャケット9とパワーモジュール2のヒートシンク7との間にはんだ12が設けられる。なお、ヒートシンク7のフィンベース71とはんだ12と接触させる部分には、ニッケルめっきなどのはんだの濡れ性が良く耐食性の良いめっき膜を形成しておくのが良い。 After disposing the solder 12 on the end surface 9b of the refrigerant jacket 9 and providing the magnetic metal part 10 around the coolant jacket 9, the heat sink 7 of the power module 2 is disposed on the solder 12 on the end surface 9b in contact with the solder 12. As a result, the solder 12 is provided between the refrigerant jacket 9 of the cooler 8 and the heat sink 7 of the power module 2. In addition, it is good to form the plating film | membrane with good wettability of solder, such as nickel plating, and corrosion resistance in the part which the fin base 71 and the solder 12 of the heat sink 7 contact.
 次に、高周波誘導加熱装置16により高周波磁束を発生させて、磁性金属部10を誘導加熱する。環状の磁性金属部10は、面10aが冷却器8の外側に露出しているので、高周波誘導加熱装置16が発生した高周波磁束は、非磁性金属で形成された冷媒ジャケット9やヒートシンク7に妨げられることなく、効率良く磁性金属部10を誘導加熱する。磁性金属部10が誘導加熱されると、磁性金属部10の温度が上昇し、磁性金属部10から冷媒ジャケット9に伝熱し、冷媒ジャケット9の温度が上昇する。 Next, a high frequency magnetic flux is generated by the high frequency induction heating device 16 to inductively heat the magnetic metal part 10. Since the surface 10a of the annular magnetic metal portion 10 is exposed to the outside of the cooler 8, the high-frequency magnetic flux generated by the high-frequency induction heating device 16 hinders the refrigerant jacket 9 and the heat sink 7 made of non-magnetic metal. Without induction, the magnetic metal part 10 is efficiently induction-heated. When the magnetic metal part 10 is induction-heated, the temperature of the magnetic metal part 10 rises, heat is transferred from the magnetic metal part 10 to the refrigerant jacket 9, and the temperature of the refrigerant jacket 9 rises.
 磁性金属部10が誘導加熱されると、磁性金属部10は熱膨張するが、冷媒ジャケット9は、鉄などの磁性金属材料から成る磁性金属部10よりも熱膨張率が大きいアルミやアルミ合金で形成されているため、冷媒ジャケット9の方が磁性金属部10よりも温度上昇が小さくても同等以上に熱膨張し、冷媒ジャケット9と磁性金属部10との接触は保持される。 When the magnetic metal part 10 is induction-heated, the magnetic metal part 10 expands thermally, but the refrigerant jacket 9 is made of aluminum or aluminum alloy having a higher thermal expansion coefficient than the magnetic metal part 10 made of a magnetic metal material such as iron. Therefore, even if the temperature rise of the refrigerant jacket 9 is smaller than that of the magnetic metal part 10, the refrigerant jacket 9 thermally expands to the same level or more, and the contact between the refrigerant jacket 9 and the magnetic metal part 10 is maintained.
 冷媒ジャケット9の温度が上昇し、冷媒ジャケット9の端面9bの温度がはんだ12の融点以上になると、はんだ12が溶融する。はんだ12が溶融すると、はんだ12とヒートシンク7のフィンベース71との密着性が高まり、はんだ12からフィンベース71への熱伝達率が高まるので、フィンベース71のはんだ12と接する部分の温度が急速に上昇する。フィンベース71のはんだ12と接する部分の温度が、はんだ12の融点以上になると、はんだ12とフィンベース71とが合金層を形成する。その後、高周波誘導加熱装置16による高周波磁束の発生を停止し、磁性金属部10の誘導加熱を停止することで、はんだ12の温度が融点未満に低下し、はんだ12が凝固することで、冷媒ジャケット9とヒートシンク7とがはんだ12により接合される。この結果、冷媒ジャケット9の開口部がはんだ12で接合されたヒートシンク7のフィンベース71により液密に封止される。 When the temperature of the refrigerant jacket 9 rises and the temperature of the end surface 9b of the refrigerant jacket 9 becomes equal to or higher than the melting point of the solder 12, the solder 12 is melted. When the solder 12 melts, the adhesion between the solder 12 and the fin base 71 of the heat sink 7 increases, and the heat transfer rate from the solder 12 to the fin base 71 increases, so the temperature of the portion of the fin base 71 in contact with the solder 12 increases rapidly. To rise. When the temperature of the portion of the fin base 71 in contact with the solder 12 becomes equal to or higher than the melting point of the solder 12, the solder 12 and the fin base 71 form an alloy layer. Thereafter, the generation of the high-frequency magnetic flux by the high-frequency induction heating device 16 is stopped, and the induction heating of the magnetic metal part 10 is stopped, so that the temperature of the solder 12 is lowered below the melting point, and the solder 12 is solidified, whereby the refrigerant jacket. 9 and the heat sink 7 are joined by solder 12. As a result, the opening of the refrigerant jacket 9 is liquid-tightly sealed by the fin base 71 of the heat sink 7 joined by the solder 12.
 高周波誘導加熱装置16による誘導加熱を停止して、磁性金属部10および冷媒ジャケット9の温度が低下した後に、冷媒ジャケット9の周囲に設けた磁性金属部10を取り外し、図10(b)に示すように電力半導体装置1を得ることができる。電力半導体装置1は冷媒ジャケット9に磁性金属部10を接合した実施の形態1の電力半導体装置に比べ、磁性金属部10を有しないため軽量化が可能であり、また、冷媒ジャケット9に磁性金属部10を溶接やろう付などにより接合する工程を省くことができるので、電力半導体装置1の製造コストを低減できるといった効果が得られる。 After the induction heating by the high-frequency induction heating device 16 is stopped and the temperatures of the magnetic metal part 10 and the refrigerant jacket 9 are lowered, the magnetic metal part 10 provided around the refrigerant jacket 9 is removed and shown in FIG. Thus, the power semiconductor device 1 can be obtained. The power semiconductor device 1 can be reduced in weight because it does not have the magnetic metal portion 10 as compared with the power semiconductor device of the first embodiment in which the magnetic metal portion 10 is joined to the refrigerant jacket 9. Since the process of joining the part 10 by welding or brazing can be omitted, an effect that the manufacturing cost of the power semiconductor device 1 can be reduced is obtained.
 一方、本実施の形態5の電力半導体装置の製造方法は、はんだ12が磁性金属部10の上には配置されておらず、冷媒ジャケット9の上に配置されているために、誘導加熱により磁性金属部10で発熱した熱は、磁性金属部10から冷媒ジャケット9に伝熱し、冷媒ジャケット9からはんだ12に伝熱するため、実施の形態1~4の電力半導体装置の製造方法と比較すると、はんだ12の温度上昇に時間がかかり温度制御の応答性が遅い。実施の形態1~4の電力半導体装置1では、磁性金属部10の上にはんだ12が配置されているために、磁性金属部10からはんだ12に直接伝熱するので、はんだ12の温度上昇を短時間で行え、はんだ12およびはんだ12の周辺部の温度制御の応答性が速く、はんだ12やフィンベース71のはんだ12が接合される部分の温度制御を高精度に行える。従って、半導体素子3が搭載された絶縁基板5とヒートシンク7とを接合する接合材6の温度を融点以上に上昇させずに、高い信頼性を得るためには、実施の形態1~4に示した製造方法により電力半導体装置1を製造するのが良い。一方、本実施の形態5の電力半導体装置の製造方法は、冷媒ジャケット9に磁性金属部10を溶接やろう付などにより接合する工程を省くことができるので、電力半導体装置1の製造コストを低減できる。従って、より安価に電力半導体装置1を得るには、本実施の形態5に示した製造方法により電力半導体装置1を製造してもよい。 On the other hand, in the method of manufacturing the power semiconductor device according to the fifth embodiment, since the solder 12 is not disposed on the magnetic metal portion 10 but on the refrigerant jacket 9, it is magnetic by induction heating. Since the heat generated in the metal part 10 is transferred from the magnetic metal part 10 to the refrigerant jacket 9 and from the refrigerant jacket 9 to the solder 12, compared with the manufacturing method of the power semiconductor device of the first to fourth embodiments, The temperature rise of the solder 12 takes time, and the temperature control response is slow. In the power semiconductor devices 1 according to the first to fourth embodiments, since the solder 12 is disposed on the magnetic metal portion 10, heat is directly transferred from the magnetic metal portion 10 to the solder 12. It can be performed in a short time, the responsiveness of the temperature control of the solder 12 and the peripheral part of the solder 12 is fast, and the temperature control of the part where the solder 12 and the solder 12 of the fin base 71 are joined can be performed with high accuracy. Therefore, in order to obtain high reliability without increasing the temperature of the bonding material 6 for bonding the insulating substrate 5 on which the semiconductor element 3 is mounted and the heat sink 7 to the melting point or higher, it is shown in the first to fourth embodiments. The power semiconductor device 1 is preferably manufactured by the manufacturing method described above. On the other hand, the manufacturing method of the power semiconductor device according to the fifth embodiment can reduce the manufacturing cost of the power semiconductor device 1 because the step of joining the magnetic metal part 10 to the refrigerant jacket 9 by welding or brazing can be omitted. it can. Therefore, in order to obtain the power semiconductor device 1 at a lower cost, the power semiconductor device 1 may be manufactured by the manufacturing method shown in the fifth embodiment.
実施の形態6.
 図11は本発明の実施の形態6の電力半導体装置および電力半導体装置の製造方法を示す断面図である。図11(a)は電力半導体装置の製造方法を示す図であり、図11(b)は図11(a)の製造方法により製造される電力半導体装置を示す図である。図11において、図1および図5と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、冷却器が磁性金属部を有さず、非磁性金属材料からなる冷媒ジャケットで構成され、非磁性金属材料からなる冷媒ジャケットを誘導加熱して、冷媒ジャケットとヒートシンクとをはんだ接合する構成が相違している。
Embodiment 6 FIG.
FIG. 11 is a sectional view showing a power semiconductor device and a method for manufacturing the power semiconductor device according to the sixth embodiment of the present invention. FIG. 11A is a diagram showing a method for manufacturing a power semiconductor device, and FIG. 11B is a diagram showing a power semiconductor device manufactured by the manufacturing method in FIG. 11A. 11, the same reference numerals as those in FIGS. 1 and 5 denote the same or corresponding components, and the description thereof is omitted. In the first embodiment of the present invention, the cooler does not have a magnetic metal part, and is configured by a refrigerant jacket made of a nonmagnetic metal material. The structure for soldering the heat sink is different.
 まず、図11(a)を用いて電力半導体装置1の製造方法について説明する。電力半導体装置1のパワーモジュール2は実施の形態1で説明した製造方法により作製される。すなわち、接合材4で半導体素子3が接合された絶縁基板5を接合材6でヒートシンク7のフィンベース71に接合してパワーモジュール2が作製される。 First, a method for manufacturing the power semiconductor device 1 will be described with reference to FIG. The power module 2 of the power semiconductor device 1 is manufactured by the manufacturing method described in the first embodiment. That is, the power module 2 is manufactured by bonding the insulating substrate 5 to which the semiconductor element 3 is bonded with the bonding material 4 to the fin base 71 of the heat sink 7 with the bonding material 6.
 冷却器8は、非磁性金属材料からなる冷媒ジャケット9のみで構成される。冷媒ジャケット9は、例えば、アルミやアルミ合金などの切削加工や鋳造などにより製造される。冷媒ジャケット9には、実施の形態1で説明したように、ヒートシンク7の放熱フィン72が挿入される開口部を囲って側壁91が設けられており、側壁91は開口部の全周囲に亘って連続して設けられている。冷媒ジャケット9の側壁91には、冷媒流入口と冷媒流出口が設けられるが、側壁91の端面91a側は連続した環状になっており、電気的には閉回路となっている。すなわち、側壁91は、高周波誘導加熱された場合に、誘導電流が開口部の周囲に環状に流れる導電経路となっている。冷媒ジャケット9は、表面にはんだの濡れ性が良く耐食性が良いニッケルめっきなどのめっき膜が形成されている。ニッケルめっきのめっき膜は、例えば3μm~5μm程度であってよく、高周波磁束によってニッケルめっき膜が誘導加熱されない厚さであってよい。 The cooler 8 is composed only of a refrigerant jacket 9 made of a nonmagnetic metal material. The refrigerant jacket 9 is manufactured by cutting or casting of aluminum or aluminum alloy, for example. As described in the first embodiment, the refrigerant jacket 9 is provided with the side wall 91 surrounding the opening into which the heat dissipating fins 72 of the heat sink 7 are inserted, and the side wall 91 extends over the entire periphery of the opening. It is provided continuously. The side wall 91 of the refrigerant jacket 9 is provided with a refrigerant inflow port and a refrigerant outflow port, but the end surface 91a side of the side wall 91 has a continuous annular shape and is electrically closed circuit. That is, the side wall 91 is a conductive path through which an induced current flows in an annular shape around the opening when high-frequency induction heating is performed. The coolant jacket 9 has a plating film such as nickel plating on the surface, which has good solder wettability and good corrosion resistance. The plating film of nickel plating may be, for example, about 3 μm to 5 μm, and may have a thickness that does not cause induction heating of the nickel plating film by high-frequency magnetic flux.
 冷却器8を構成する冷媒ジャケット9の側壁91の端面9bにはんだの濡れ性を良くするめっき膜を形成した後に、端面9b上にはんだ12を配置する。はんだ12には、上記の各実施の形態で説明したように、ペーストはんだや板はんだを用いてよい。また、端面9b上にはんだ12を配置した後に、一端溶融させた後、凝固させてプリフォームしておくのが好ましい。はんだ12は、実施の形態1の図4(b)で示したように、冷却器8である冷媒ジャケット9の開口部の全周囲に連続して設けられる。 After forming a plating film that improves solder wettability on the end surface 9b of the side wall 91 of the refrigerant jacket 9 constituting the cooler 8, the solder 12 is disposed on the end surface 9b. As described in the above embodiments, the solder 12 may be paste solder or plate solder. Further, it is preferable that after the solder 12 is disposed on the end face 9b, the solder 12 is melted at one end and then solidified and preformed. As shown in FIG. 4B of the first embodiment, the solder 12 is continuously provided all around the opening of the refrigerant jacket 9 that is the cooler 8.
 図11(a)に示すように、冷媒ジャケット9の端面9bにはんだ12を配置した後に、端面9bのはんだ12上にパワーモジュール2のヒートシンク7をはんだ12と接触させて配置する。これにより冷却器8を構成する冷媒ジャケット9とパワーモジュール2のヒートシンク7との間にはんだ12が設けられる。なお、ヒートシンク7のフィンベース71のはんだ12と接触させる部分には、ニッケルめっきなどのはんだの濡れ性が良く耐食性の良いめっき膜を形成しておくのが好ましい。 11A, after the solder 12 is disposed on the end surface 9b of the refrigerant jacket 9, the heat sink 7 of the power module 2 is disposed on the solder 12 on the end surface 9b in contact with the solder 12. Thus, the solder 12 is provided between the refrigerant jacket 9 constituting the cooler 8 and the heat sink 7 of the power module 2. In addition, it is preferable to form a plating film having good wettability of solder such as nickel plating and good corrosion resistance on the portion of the heat sink 7 that contacts the solder 12 of the fin base 71.
 次に、図11(a)に示すように、冷却器8を構成する冷媒ジャケット9の周囲に高周波誘導加熱装置16のコイルを配置する。実施の形態1で説明したように、高周波誘導加熱装置16のコイルは、冷却器8の幅より幅が大きい筒状コイルであって、冷媒ジャケット9を上方から見た平面視で、コイルの巻線が側壁91の周囲を取り囲むように配置される。また、高周波誘導加熱装置16のコイルは、冷媒ジャケット9の平面視の形状に合わせて、コイル巻線が側壁91とほぼ平行になるような断面が四角形状の筒状コイルが好ましい。コイルの断面形状を四角形状にすることによって、コイルの巻線と冷媒ジャケット9の側壁91との間の距離を短くして、側壁91に効率よく誘導電流を流すことができ、冷媒ジャケット9を効率よく誘導加熱することができる。 Next, as shown in FIG. 11A, the coil of the high-frequency induction heating device 16 is arranged around the refrigerant jacket 9 constituting the cooler 8. As described in the first embodiment, the coil of the high-frequency induction heating device 16 is a cylindrical coil having a width larger than the width of the cooler 8, and the coil winding is a plan view when the refrigerant jacket 9 is viewed from above. The line is arranged so as to surround the side wall 91. The coil of the high-frequency induction heating device 16 is preferably a cylindrical coil having a square cross section so that the coil winding is substantially parallel to the side wall 91 in accordance with the shape of the refrigerant jacket 9 in plan view. By making the cross-sectional shape of the coil quadrangular, the distance between the coil winding and the side wall 91 of the refrigerant jacket 9 can be shortened so that an induced current can flow efficiently through the side wall 91. Induction heating can be performed efficiently.
 図11(a)に示すように、冷却器8の下方の一部が高周波誘導加熱装置16の筒状コイルの上端より下方に位置するように設けられるのが好ましい。筒状コイルの上端と冷却器8の下端との距離が大きく離れていると、冷媒ジャケット9を誘導加熱する効率が悪くなり、誘導加熱時の冷媒ジャケット9の側壁91の端面9bと、ヒートシンク7の接合材6が接合された部分との温度差が小さくなり好ましくない。一方、筒状コイルの上端を冷媒ジャケット9の端面9bと水平な位置より上方に設けても、誘導加熱時の冷媒ジャケット9の端面9bと、ヒートシンク7の接合材6が接合された部分との温度差が小さくなり好ましくない。 As shown in FIG. 11 (a), it is preferable that a part of the lower part of the cooler 8 is provided below the upper end of the cylindrical coil of the high-frequency induction heating device 16. If the distance between the upper end of the cylindrical coil and the lower end of the cooler 8 is greatly separated, the efficiency of induction heating of the refrigerant jacket 9 is deteriorated, and the end surface 9b of the side wall 91 of the refrigerant jacket 9 during induction heating and the heat sink 7 are reduced. This is not preferable because the temperature difference from the portion where the bonding material 6 is bonded becomes small. On the other hand, even if the upper end of the cylindrical coil is provided above the horizontal position with the end surface 9b of the refrigerant jacket 9, the end surface 9b of the refrigerant jacket 9 during induction heating and the portion where the bonding material 6 of the heat sink 7 is bonded. The temperature difference is small, which is not preferable.
 図11(a)に示すように、高周波誘導加熱装置16のコイルを配置したら、高周波誘導加熱装置16からコイルに高周波電流を供給する。コイルに供給する高周波電流の周波数は、上記実施の形態1~5の磁性金属部を誘導加熱する場合の周波数より高いことが好ましく、例えば、60~100kHzであってよい。高周波電流の周波数を磁性金属材料の場合よりも高くすることによって、非磁性金属材料からなる冷媒ジャケット9に流れる誘導電流が、表皮効果によって冷媒ジャケット9の表面側のより浅い領域を流れるようになる。このため、冷媒ジャケット9内の誘導電流の導電経路の抵抗値が大きくなるので、効率よく冷媒ジャケット9を誘導加熱することができる。 As shown in FIG. 11A, when the coil of the high frequency induction heating device 16 is disposed, a high frequency current is supplied from the high frequency induction heating device 16 to the coil. The frequency of the high-frequency current supplied to the coil is preferably higher than the frequency in the case of induction heating the magnetic metal part of the first to fifth embodiments, and may be 60 to 100 kHz, for example. By making the frequency of the high frequency current higher than that of the magnetic metal material, the induced current flowing through the refrigerant jacket 9 made of a nonmagnetic metal material flows in a shallower region on the surface side of the refrigerant jacket 9 due to the skin effect. . For this reason, since the resistance value of the conductive path of the induced current in the refrigerant jacket 9 is increased, the refrigerant jacket 9 can be induction-heated efficiently.
 高周波誘導加熱装置16のコイルに高周波電流を供給すると、コイルに流れる高周波電流によって発生する高周波磁束が、非磁性金属材料からなる冷媒ジャケット9と鎖交し、冷媒ジャケット9に誘導電流が発生する。冷媒ジャケット9は、側壁91が閉回路を構成するように形成されており、側壁91が構成する閉回路は、高周波誘導加熱装置16のコイル巻線とほぼ平行になるようにコイルが配置されているので、側壁91が構成する閉回路は、高周波誘導加熱装置16のコイルが発生する高周波磁束と鎖交し易くなっている。このため、図11(a)に示すように、冷媒ジャケット9の側壁91には、開口部の周囲を環状に大きな誘導電流が流れる。 When a high frequency current is supplied to the coil of the high frequency induction heating device 16, a high frequency magnetic flux generated by the high frequency current flowing through the coil is linked to the refrigerant jacket 9 made of a nonmagnetic metal material, and an induction current is generated in the refrigerant jacket 9. The refrigerant jacket 9 is formed such that the side wall 91 forms a closed circuit, and the closed circuit formed by the side wall 91 has a coil disposed so as to be substantially parallel to the coil winding of the high-frequency induction heating device 16. Therefore, the closed circuit formed by the side wall 91 is easily interlinked with the high-frequency magnetic flux generated by the coil of the high-frequency induction heating device 16. For this reason, as shown in FIG. 11A, a large induced current flows annularly around the opening on the side wall 91 of the refrigerant jacket 9.
 冷媒ジャケット9の側壁91に流れる誘導電流は表皮効果により表面近傍を流れるため、側壁91の表面近傍が発熱源となる。すなわち、側壁91の端面9bを効率よく誘導加熱することができるため、端面9b上に設けられたはんだ12を効率よく溶融させることができる。つまり、本実施の形態6の電力半導体装置は、冷却器8である冷媒ジャケット9が、ヒートシンク7の放熱フィン72が挿入される開口部の周囲に、環状に連続した金属からなる側壁を有しているため、冷却器8が非磁性金属材料のみで構成されていても、冷却器8を誘導加熱して、冷却器8とヒートシンク7との間に配置したはんだ12を溶融させて、冷却器8とヒートシンク7とをはんだ接合することができる。 Since the induced current flowing in the side wall 91 of the refrigerant jacket 9 flows in the vicinity of the surface due to the skin effect, the vicinity of the surface of the side wall 91 becomes a heat generation source. That is, since the end surface 9b of the side wall 91 can be efficiently induction-heated, the solder 12 provided on the end surface 9b can be efficiently melted. That is, in the power semiconductor device of the sixth embodiment, the refrigerant jacket 9 that is the cooler 8 has a side wall made of metal that is annularly continuous around the opening portion into which the heat radiation fin 72 of the heat sink 7 is inserted. Therefore, even if the cooler 8 is composed only of a non-magnetic metal material, the cooler 8 is induction-heated to melt the solder 12 disposed between the cooler 8 and the heat sink 7, 8 and the heat sink 7 can be soldered together.
 冷媒ジャケット9の側壁91を誘導加熱してはんだ12を溶融させた後は、実施の形態1で説明した電力半導体装置の製造方法と同様である。溶融したはんだ12は、ヒートシンク7のフィンベース71との熱伝達率が高くなるので、フィンベース71の温度が効率よく上昇するようになる。フィンベース71のはんだ12に接する部分の温度が、はんだ12の融点以上になると、はんだ12がフィンベース71に濡れ広がり合金層を形成する。そして、高周波誘導加熱装置16のコイルへの高周波電流の供給を停止すると、冷媒ジャケット9、はんだ12、フィンベース71の温度が低下し、はんだ12が凝固するのではんだ接合が完了する。これにより、図11(b)に示すように、本実施の形態6の電力半導体装置1が製造される。 After the side wall 91 of the refrigerant jacket 9 is induction-heated and the solder 12 is melted, the manufacturing method of the power semiconductor device described in the first embodiment is the same. Since the melted solder 12 has a high heat transfer coefficient with the fin base 71 of the heat sink 7, the temperature of the fin base 71 efficiently rises. When the temperature of the portion of the fin base 71 in contact with the solder 12 becomes equal to or higher than the melting point of the solder 12, the solder 12 wets and spreads on the fin base 71 to form an alloy layer. When the supply of the high-frequency current to the coil of the high-frequency induction heating device 16 is stopped, the temperatures of the refrigerant jacket 9, the solder 12, and the fin base 71 are lowered and the solder 12 is solidified, so that the solder joint is completed. Thereby, as shown in FIG.11 (b), the power semiconductor device 1 of this Embodiment 6 is manufactured.
 図11(b)に示す本実施の形態6の電力半導体装置1は、冷却器8が非磁性金属材料の冷媒ジャケット9のみからなり、冷却器8の開口部を非磁性金属材料のヒートシンク7ではんだ接合により液密に封止して構成されている。このため、実施の形態1で説明した電力半導体装置と同様に、冷却器8の封止部の耐圧性と耐熱性とが高い電力半導体装置1を得ることができる。そして、非磁性金属材料からなる冷媒ジャケット9を誘導加熱して、はんだ12を溶融し、はんだ接合しているので、はんだ12を加熱する冷媒ジャケット9の温度制御を高精度に行うことができ、パワーモジュール2内の接合材4および接合材6による接合部の信頼性を高くすることができる。 In the power semiconductor device 1 of the sixth embodiment shown in FIG. 11B, the cooler 8 is composed only of the non-magnetic metal material refrigerant jacket 9, and the opening of the cooler 8 is formed by the nonmagnetic metal material heat sink 7. It is configured to be liquid-tightly sealed by solder bonding. For this reason, similarly to the power semiconductor device described in the first embodiment, the power semiconductor device 1 having high pressure resistance and heat resistance of the sealing portion of the cooler 8 can be obtained. And since the refrigerant jacket 9 made of a nonmagnetic metal material is induction-heated to melt and solder the solder 12, the temperature control of the refrigerant jacket 9 for heating the solder 12 can be performed with high accuracy. The reliability of the joint part by the joining material 4 and the joining material 6 in the power module 2 can be increased.
 高周波誘導加熱装置16のコイルに供給される高周波電流の電力は、誘導加熱の開始から終了まで一定値の電力であってもよいが、加熱状況に応じて電力を制御することが好ましい。例えば、高周波誘導加熱装置16のコイルに供給される高周波電流の電力を数段階にステップ状に変化させてもよく、PID制御などの自動制御を用いて滑らかに変化させてもよい。例えば、誘導加熱の開始時には高周波誘導加熱装置16のコイルに大きな電力を入力し、冷却器8のはんだ12を設けた端面9bの温度がはんだ12の融点近傍に達したら、電力を低下させて、はんだ12が溶融し始めたら、さらに電力を低下させるといった電力制御を行ってもよい。 The power of the high-frequency current supplied to the coil of the high-frequency induction heating device 16 may be a constant value from the start to the end of induction heating, but it is preferable to control the power according to the heating situation. For example, the power of the high-frequency current supplied to the coil of the high-frequency induction heating device 16 may be changed in steps in several steps, or may be changed smoothly using automatic control such as PID control. For example, at the start of induction heating, a large amount of electric power is input to the coil of the high frequency induction heating device 16, and when the temperature of the end surface 9 b provided with the solder 12 of the cooler 8 reaches the vicinity of the melting point of the solder 12, the electric power is reduced, When the solder 12 starts to melt, power control may be performed such that the power is further reduced.
 例えば、コイルに入力する高周波電流の電力を、誘導加熱の開始から冷却器8の端面9bがはんだ12の融点になるまでは100%とし、端面9bがはんだ12の融点になってからはんだ12が溶融し始めるまでは25%とし、はんだ12が溶融し始めてからヒートシンク7のフィンベース71に濡れるまでは10%とし、はんだ12がフィンベース71に濡れたら0%にするといった電力制御をしてよい。このような電力制御を行うことにより、はんだ12がより確実にフィンベース71に濡れて強固な合金層を形成させつつ、ヒートシンク7の絶縁基板5との接合部の温度が接合材6の融点以上に上昇するのを抑制することができる。 For example, the power of the high-frequency current input to the coil is 100% from the start of induction heating until the end surface 9b of the cooler 8 reaches the melting point of the solder 12, and after the end surface 9b reaches the melting point of the solder 12, the solder 12 The power control may be 25% until the melting starts, 10% until the solder 12 starts to melt and gets wet with the fin base 71 of the heat sink 7, and 0% when the solder 12 gets wet with the fin base 71. . By performing such power control, the solder 12 is more surely wetted by the fin base 71 to form a strong alloy layer, and the temperature of the joint portion between the heat sink 7 and the insulating substrate 5 is equal to or higher than the melting point of the joint material 6. Can be suppressed.
 このような、誘導加熱時のコイルに供給される高周波電流の電力を制御することは、本実施の形態6に示すように、非磁性金属材料からなる冷却器8を誘導加熱してはんだ接合する場合に限らず、実施の形態1~5で示したように磁性金属材料を誘導加熱してはんだ接合を行う場合にも高周波電流の電力を制御する方が好ましい。 Controlling the power of the high-frequency current supplied to the coil at the time of induction heating is performed by induction heating and soldering the cooler 8 made of a nonmagnetic metal material, as shown in the sixth embodiment. In addition to the case, it is preferable to control the power of the high-frequency current also when the magnetic metal material is induction-heated and soldered as shown in the first to fifth embodiments.
 以上のように、本実施の形態6の電力半導体装置によれば、冷却器8が非磁性金属材料からなる場合であっても、冷却器8は、開口部の周囲に環状に連続した誘導電流の導電経路を形成するように側壁が設けられているので、大きな誘導電流を流して冷却器8を誘導加熱することができ、冷却器8とヒートシンク7とを誘導加熱によりはんだ接合することができる。このため、冷却器8の開口部をパワーモジュール2のヒートシンク7で封止する際に、絶縁基板5に接合された接合材4および接合材6の温度上昇を抑制することができるので、信頼性が高く、耐圧性および耐熱性に優れた冷却器を備えた電力半導体装置が得られるといった効果を奏する。 As described above, according to the power semiconductor device of the sixth embodiment, even when the cooler 8 is made of a non-magnetic metal material, the cooler 8 has an induced current that continues in an annular shape around the opening. Since the side wall is provided so as to form a conductive path, the cooler 8 can be induction heated by flowing a large induction current, and the cooler 8 and the heat sink 7 can be soldered by induction heating. . For this reason, when the opening of the cooler 8 is sealed with the heat sink 7 of the power module 2, the temperature rise of the bonding material 4 and the bonding material 6 bonded to the insulating substrate 5 can be suppressed. The power semiconductor device including the cooler having a high pressure resistance and heat resistance is obtained.
 1 電力半導体装置
 2 パワーモジュール
 3 半導体素子
 4 接合材
 5 絶縁基板
 6 接合材
 7 ヒートシンク、71 フィンベース、72 放熱フィン
 8 冷却器
 9 冷媒ジャケット
 10 磁性金属部
 11 冷媒流路
 12 はんだ
DESCRIPTION OF SYMBOLS 1 Power semiconductor device 2 Power module 3 Semiconductor element 4 Bonding material 5 Insulating substrate 6 Bonding material 7 Heat sink, 71 Fin base, 72 Radiation fin 8 Cooler 9 Refrigerant jacket 10 Magnetic metal part 11 Refrigerant flow path 12 Solder

Claims (15)

  1.  非磁性金属材料から成るヒートシンクの第1の接合面に半導体素子が設けられた基板を接合材によって接合する工程と、
     開口部を囲って設けられた側壁を有し断面が凹状を呈する金属から成る冷却器の前記開口部の周囲にはんだを形成する工程と、
     前記ヒートシンクの前記第1の接合面の裏側に設けられた第2の接合面を前記はんだに接触させつつ、前記冷却器に含まれる金属部材または前記冷却器に設けられた金属部材を誘導加熱して発生した熱により前記はんだを溶融させて前記ヒートシンクと前記冷却器とをはんだ接合する工程と、
    を備える電力半導体装置の製造方法。
    Bonding a substrate provided with a semiconductor element on a first bonding surface of a heat sink made of a nonmagnetic metal material with a bonding material;
    Forming solder around the opening of the cooler made of metal having a side wall provided surrounding the opening and having a concave cross section;
    The metal member included in the cooler or the metal member provided in the cooler is induction-heated while the second joint surface provided on the back side of the first joint surface of the heat sink is in contact with the solder. Melting the solder with the heat generated and soldering the heat sink and the cooler; and
    A method for manufacturing a power semiconductor device.
  2.  前記冷却器に含まれる金属部材は、前記冷却器の前記側壁である請求項1に記載の電力半導体装置の製造方法。 The method of manufacturing a power semiconductor device according to claim 1, wherein the metal member included in the cooler is the side wall of the cooler.
  3.  前記冷却器は、前記側壁の一部を有する非磁性金属材料から成る冷媒ジャケットを有し、
     前記冷却器に含まれる金属部材は、前記側壁における前記冷却器の前記開口部が設けられた面側に設けられ、前記側壁の残部を有する磁性金属部である請求項2に記載の電力半導体装置の製造方法。
    The cooler has a refrigerant jacket made of a non-magnetic metal material having a part of the side wall;
    3. The power semiconductor device according to claim 2, wherein the metal member included in the cooler is a magnetic metal part that is provided on a side of the side wall of the cooler where the opening of the cooler is provided and has a remaining part of the side wall. Manufacturing method.
  4.  前記磁性金属部は、前記冷媒ジャケットに含まれる前記側壁の上端部に設けられる請求項3に記載の電力半導体装置の製造方法。 4. The method of manufacturing a power semiconductor device according to claim 3, wherein the magnetic metal portion is provided at an upper end portion of the side wall included in the refrigerant jacket.
  5.  前記磁性金属部は、前記冷媒ジャケットに含まれる前記側壁の側周部に設けられる請求項3に記載の電力半導体装置の製造方法。 The method of manufacturing a power semiconductor device according to claim 3, wherein the magnetic metal part is provided on a side peripheral part of the side wall included in the refrigerant jacket.
  6.  前記冷却器は、非磁性金属材料から成る請求項2に記載の電力半導体装置の製造方法。 The method for manufacturing a power semiconductor device according to claim 2, wherein the cooler is made of a nonmagnetic metal material.
  7.  前記ヒートシンクと前記冷却器とをはんだ接合する工程の前に、
     前記金属部材を前記冷却器の前記側壁に設ける工程をさらに備える請求項1に記載の電力半導体装置の製造方法。
    Before soldering the heat sink and the cooler,
    The method for manufacturing a power semiconductor device according to claim 1, further comprising a step of providing the metal member on the side wall of the cooler.
  8.  開口部を囲って設けられた側壁を有し断面が凹状を呈する非磁性金属材料から成る冷媒ジャケットの前記開口部が設けられた面とは反対側の面に半導体素子が設けられた基板を接合材によって接合する工程と、
     前記冷媒ジャケットの前記開口部が設けられた面側の前記側壁の端部に接合される磁性金属材料から成る金属板の前記端部との接合領域にはんだを形成する工程と、
     前記端部を前記はんだに接触させつつ、前記金属板を誘導加熱して発生した熱により前記はんだを溶融させて前記金属板と前記冷媒ジャケットとをはんだ接合する工程と、
    を備える電力半導体装置の製造方法。
    A substrate provided with a semiconductor element is bonded to a surface opposite to the surface provided with the opening of a refrigerant jacket made of a nonmagnetic metal material having a side wall provided surrounding the opening and having a concave cross section. Joining with a material;
    Forming solder in a joining region with the end of the metal plate made of a magnetic metal material to be joined to the end of the side wall on the surface side where the opening of the refrigerant jacket is provided;
    Melting the solder by heat generated by induction heating the metal plate while bringing the end portion into contact with the solder, and soldering the metal plate and the refrigerant jacket;
    A method for manufacturing a power semiconductor device.
  9.  開口部を囲って設けられた側壁を有し断面が凹状を呈する金属から成る冷却器と、
     前記側壁の前記開口部が設けられた面側にはんだで接合された非磁性材料から成るヒートシンクと、
     前記ヒートシンク上に接合され、半導体素子が設けられた基板と、
    を備えた電力半導体装置。
    A cooler made of a metal having a side wall provided around the opening and having a concave cross section;
    A heat sink made of a non-magnetic material joined by solder to the side of the side wall where the opening is provided;
    A substrate bonded on the heat sink and provided with a semiconductor element;
    A power semiconductor device comprising:
  10.  前記冷却器は、前記側壁の一部を有する非磁性金属から成る冷媒ジャケットと、前記側壁における前記冷却器の前記開口部が設けられた面側に設けられ、前記側壁の残部を有する磁性金属部とを有し、前記磁性金属部と前記ヒートシンクとがはんだで接合された請求項9に記載の電力半導体装置。 The cooler is provided with a refrigerant jacket made of a nonmagnetic metal having a part of the side wall, and a magnetic metal part having a remaining part of the side wall provided on the side of the side wall where the opening of the cooler is provided. The power semiconductor device according to claim 9, wherein the magnetic metal part and the heat sink are joined by solder.
  11.  前記磁性金属部は、前記冷媒ジャケットに含まれる前記側壁の上端部に設けられた請求項10に記載の電力半導体装置。 The power semiconductor device according to claim 10, wherein the magnetic metal part is provided at an upper end part of the side wall included in the refrigerant jacket.
  12.  前記磁性金属部は、前記冷媒ジャケットに含まれる前記側壁の側周部に設けられた請求項10に記載の電力半導体装置。 The power semiconductor device according to claim 10, wherein the magnetic metal part is provided on a side peripheral part of the side wall included in the refrigerant jacket.
  13.  前記磁性金属部は、表面の一部が前記冷却器の外側に露出した請求項10から12のいずれか1項に記載の電力半導体装置。 The power semiconductor device according to any one of claims 10 to 12, wherein a part of the surface of the magnetic metal part is exposed to the outside of the cooler.
  14.  前記冷却器は、非磁性金属から成る請求項9に記載の電力半導体装置。 The power semiconductor device according to claim 9, wherein the cooler is made of a nonmagnetic metal.
  15.  磁性金属材料から成る金属板と、
     前記金属板の上面に開口部を囲む側壁の端部がはんだで接合された断面が凹状を呈する非磁性金属材料から成る冷媒ジャケットと、
     前記冷媒ジャケットの前記開口部が設けられた面とは反対側の面に接合され、半導体素子が設けられた基板と、
    を備えた電力半導体装置。
    A metal plate made of a magnetic metal material;
    A refrigerant jacket made of a non-magnetic metal material having a concave cross section in which the end of the side wall surrounding the opening is joined to the upper surface of the metal plate with solder;
    A substrate provided with a semiconductor element, bonded to a surface opposite to the surface provided with the opening of the refrigerant jacket;
    A power semiconductor device comprising:
PCT/JP2016/079968 2015-10-20 2016-10-07 Method for manufacturing power semiconductor device and power semiconductor device WO2017069005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206317 2015-10-20
JP2015206317A JP2018200908A (en) 2015-10-20 2015-10-20 Manufacturing method for power semiconductor device and power semiconductor device

Publications (1)

Publication Number Publication Date
WO2017069005A1 true WO2017069005A1 (en) 2017-04-27

Family

ID=58557353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079968 WO2017069005A1 (en) 2015-10-20 2016-10-07 Method for manufacturing power semiconductor device and power semiconductor device

Country Status (2)

Country Link
JP (1) JP2018200908A (en)
WO (1) WO2017069005A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668128A (en) * 2019-03-04 2019-04-23 上海应用技术大学 A kind of great power LED cooling system to be radiated using ferrofluid
WO2019111751A1 (en) * 2017-12-05 2019-06-13 昭和電工株式会社 Semiconductor cooling device
EP3734646A1 (en) * 2019-05-02 2020-11-04 Audi AG Semiconductor component, motor vehicle and method for producing a semiconductor component
CN112750600A (en) * 2020-12-29 2021-05-04 华进半导体封装先导技术研发中心有限公司 Adjustable inductor based on micro-channel and manufacturing method thereof
CN114144878A (en) * 2019-07-26 2022-03-04 三菱电机株式会社 Semiconductor module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131051B1 (en) * 2019-06-03 2020-07-07 성균관대학교산학협력단 Method of transient liquid phase bonding for metal material bonding using magnetic force
JP7459163B2 (en) 2022-04-19 2024-04-01 三菱電機株式会社 Semiconductor device and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112609A (en) * 1992-09-25 1994-04-22 Yokogawa Electric Corp Printed wiring device
JPH0969683A (en) * 1995-08-30 1997-03-11 Sony Corp Method and apparatus for soldering metal component
JPH11135895A (en) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd Circuit substrate and method for mounting part thereon
JP2008166680A (en) * 2006-12-05 2008-07-17 Toyota Industries Corp Semiconductor device and method of manufacturing the same
JP2009164303A (en) * 2007-12-28 2009-07-23 Toyota Motor Corp Soldering device and soldering method
WO2014045766A1 (en) * 2012-09-19 2014-03-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2014136249A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Soldering device and semiconductor device manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112609A (en) * 1992-09-25 1994-04-22 Yokogawa Electric Corp Printed wiring device
JPH0969683A (en) * 1995-08-30 1997-03-11 Sony Corp Method and apparatus for soldering metal component
JPH11135895A (en) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd Circuit substrate and method for mounting part thereon
JP2008166680A (en) * 2006-12-05 2008-07-17 Toyota Industries Corp Semiconductor device and method of manufacturing the same
JP2009164303A (en) * 2007-12-28 2009-07-23 Toyota Motor Corp Soldering device and soldering method
WO2014045766A1 (en) * 2012-09-19 2014-03-27 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2014136249A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Soldering device and semiconductor device manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111751A1 (en) * 2017-12-05 2019-06-13 昭和電工株式会社 Semiconductor cooling device
JP2019102677A (en) * 2017-12-05 2019-06-24 昭和電工株式会社 Semiconductor cooling device
CN111164748A (en) * 2017-12-05 2020-05-15 昭和电工株式会社 Semiconductor cooling device
JP7033443B2 (en) 2017-12-05 2022-03-10 昭和電工株式会社 Semiconductor cooling device
CN111164748B (en) * 2017-12-05 2024-01-02 株式会社力森诺科 Semiconductor cooling device
CN109668128A (en) * 2019-03-04 2019-04-23 上海应用技术大学 A kind of great power LED cooling system to be radiated using ferrofluid
EP3734646A1 (en) * 2019-05-02 2020-11-04 Audi AG Semiconductor component, motor vehicle and method for producing a semiconductor component
US11848252B2 (en) 2019-05-02 2023-12-19 Audi Ag Semiconductor component, motor vehicle, and method for producing a semiconductor component
CN114144878A (en) * 2019-07-26 2022-03-04 三菱电机株式会社 Semiconductor module
CN112750600A (en) * 2020-12-29 2021-05-04 华进半导体封装先导技术研发中心有限公司 Adjustable inductor based on micro-channel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018200908A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2017069005A1 (en) Method for manufacturing power semiconductor device and power semiconductor device
JP4640170B2 (en) Soldering method, semiconductor module manufacturing method, and soldering apparatus
CN104134636B (en) Substrate and corresponding manufacturing method are directly cooled down for semiconductor module
US7731079B2 (en) Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
US11552502B2 (en) Induction charging device
US8730674B2 (en) Magnetic fluid cooling devices and power electronics assemblies
JP4308161B2 (en) Die mounting method
US9852962B2 (en) Waterproof electronic device and manufacturing method thereof
EP1954110A1 (en) Soldering apparatus and soldering method
CN110621533B (en) Induction charging device with cooling means
JP5029139B2 (en) In-vehicle semiconductor device and method for manufacturing in-vehicle semiconductor device
JPWO2017188246A1 (en) Power circuit device
WO2007077877A1 (en) Soldering method, soldering apparatus and method for manufacturing semiconductor device
KR101933810B1 (en) Cooling device, method for producing a cooling device and power circuit
CN113597825A (en) Electronic converter constructed based on welding technology
EP1968107A1 (en) Soldering method and semiconductor module manufacturing method
JP6460921B2 (en) Cooling device for power semiconductor device and manufacturing method thereof
JP2008112955A (en) Semiconductor device, metal bonding material, soldering method, and manufacturing method of electronic apparatus
JP4935783B2 (en) Semiconductor device and composite semiconductor device
US10785861B2 (en) Vibration-resistant circuit arrangement for electrically connecting two terminal regions
JP4985536B2 (en) Positioning jig
JP2008141188A (en) Joining method of electronic part, and manufacturing method of electronic apparatus
JP2008147555A (en) Soldering method and weight, and method for fabricating electronic apparatus
US20220418088A1 (en) Power module with housed power semiconductors for controllable electrical power supply of a consumer, and method for producing same
JP5029279B2 (en) Soldering apparatus, soldering method, and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP