WO2017067241A1 - Système et procédé de commande de champ de température de soudage - Google Patents
Système et procédé de commande de champ de température de soudage Download PDFInfo
- Publication number
- WO2017067241A1 WO2017067241A1 PCT/CN2016/089586 CN2016089586W WO2017067241A1 WO 2017067241 A1 WO2017067241 A1 WO 2017067241A1 CN 2016089586 W CN2016089586 W CN 2016089586W WO 2017067241 A1 WO2017067241 A1 WO 2017067241A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- temperature
- point
- isotherm
- temperature field
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000005476 soldering Methods 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 238000003908 quality control method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000009529 body temperature measurement Methods 0.000 abstract 2
- 230000004044 response Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 238000011897 real-time detection Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000003079 width control Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G5/00—Weighing apparatus wherein the balancing is effected by fluid action
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/27—Control of temperature characterised by the use of electric means with sensing element responsive to radiation
Definitions
- the invention relates to the technical field of welding quality control, in particular to a welding temperature field control system and method.
- the welding process has been studied from macroscopic process control to microscopic quality control of welding.
- the main difficulty of microscopic quality control is to obtain sensing technology that characterizes these microscopic qualities.
- the distribution of the welding temperature field determines the thermal cycle of the welding, which also determines the microstructure of the welding and its changes, determines the macroscopic performance of the weld and its heat affected zone, so the real-time detection of the welding temperature field and the extraction of thermal cycling parameters It is of great significance to achieve micro-quality control of welding.
- the welding temperature field is the basic characterization of the welding heat process. Its distribution directly affects the penetration depth and melting width of the weld. Therefore, it can be said that the welding temperature field is closely related to the welding quality. Through the real-time detection and control of the welding temperature field, the welding of the weld is controlled, and the welding quality is an important research content of the current welding process automation.
- the welding process only relies on the stability of the welding specification to ensure the consistency of the weld penetration is very difficult, and the technical problem to be solved by the present invention is to provide a fast response speed, capable of welding the temperature field and welding.
- Welding temperature field control system and method for real-time detection and control of quality are very difficult.
- the technical solution adopted by the present invention is:
- the welding temperature field control system of the invention comprises a welding machine system, a molten pool temperature measuring unit and a Dalin controller, wherein the output end of the Dalin controller is connected to the welding power source of the welding machine system, and the molten pool temperature measuring unit detects the molten pool data. Send to the acquisition signal input of the Dalin controller.
- the molten pool temperature measuring unit comprises a CCD camera, a data acquisition card and an analysis display device, wherein the CCD camera is mounted on the back of the soldering surface to take a picture of the weld pool image input to the analysis display device, and the data acquisition card sends the collected data to the analysis. Display device.
- weld and heat effects are divided into three welding zones of high temperature, medium temperature and low temperature, corresponding to different sampling exposure times;
- the molten pool temperature measuring unit obtains an image of the heat radiation field of the two bands on the back side of the welding area by the CCD camera;
- the steps for processing the gray level at the same position are:
- the acquired image is represented by 3 bytes, and each byte corresponds to the brightness of the R, G, and B components.
- One pixel of the converted black and white image represents the gray value of the point by one byte, and the conversion relationship is as follows:
- Gray(i,j) 0.11R(i,j)+0.59G(i,j)+0.3B(i,j)
- Gray(i, j) is the gray value of the converted black and white image at the (i, j) point.
- the weld and heat effects are divided into three regions: high temperature, medium temperature and low temperature, which are:
- the exposure times of the high temperature, medium temperature and low temperature regions are: 1.5 ⁇ 0.3ms, 300 ⁇ 60ms, 50 ⁇ 10ms.
- the point is the edge point of the isotherm.
- the search is reversed until the first point that does not satisfy the required point, and the last point that is retrieved that satisfies the requirement is the new edge point.
- the invention obtains welding thermal cycle parameters for real-time detection of welding temperature field in welding process, realizes closed-loop control of weld isotherm and heat-affected zone back isotherm width; for welding process is hysteresis system, choose melting point based on Dalin algorithm or The isotherm width close to the melting point temperature is controlled to achieve the purpose of controlling penetration.
- the invention adopts the Dalin algorithm to control the welding power source, eliminates the residual error in the automatic welding object, performs the lag compensation on the welding object, has a fast response speed, can detect and control the welding temperature field and the welding quality in real time, and improves the working efficiency. And quality.
- the method of the invention obtains the thermal cycle parameter of the welding area from the temperature field of the molten pool detected in real time, and provides a basis for the welding quality control; for the welding process is a lag system, the Dalin algorithm is used to control and improve Production efficiency, cost saving, and fast, accurate and convenient detection and quality control.
- Figure 1 is a flow chart of the isotherm width control system of the present invention
- FIG. 2 is a block diagram of a welding temperature field measuring unit of the present invention
- Figure 3 is a block diagram of a first-order delay single-loop inertia system
- FIG. 5 is a comparison diagram of a simulation curve of a disturbance-free step response according to the present invention.
- FIG. 6 is a comparison diagram of a simulated step response simulation curve of the present invention.
- FIG. 7 is a block diagram of the controller operation program.
- the welding temperature field control system of the present invention comprises a welding machine system, a molten pool temperature measuring unit and a Dalin controller, wherein the output end of the Dalin controller is connected to the welding power supply of the welding machine system, and the molten pool temperature is measured.
- the unit sends the detected molten pool data to the acquisition signal input of the Dalin controller.
- the molten pool temperature measuring unit includes a CCD camera, a data acquisition card, and an analysis display device, wherein the CCD camera is mounted on the back of the soldering surface to take a picture of the weld pool image input to the analysis display device, and the data acquisition card will collect the image. The data is sent to the analysis display device.
- the welding machine system comprises a welding torch, a welding power source and a wire feeding machine;
- the molten pool temperature measuring system comprises a CCD camera, a data acquisition card and an analysis display system;
- the output end of the Dalin controller is connected with a welding power source to adjust the welding current.
- the invention adopts the Dalin algorithm to control the welding power source, eliminates the residual error in the automatic welding object, and performs lag compensation on the welding object.
- weld and heat effects are divided into three welding zones of high temperature, medium temperature and low temperature, corresponding to different sampling exposure times;
- the molten pool temperature measuring unit obtains an image of the heat radiation field of the two bands on the back side of the welding area by the CCD camera;
- the weld seam and the heat influence are divided into three regions of high temperature, medium temperature and low temperature, respectively: assuming that the melting point of the metal to be welded is A ° C, the detection temperature range (A-200) ° C ⁇ (A + 200 Between °C, low temperature zone: (A-200) °C ⁇ (A-50) °C, medium temperature zone: (A-50) °C ⁇ (A + 50) ° C, high temperature zone: (A + 50) ° C ⁇ ( A+200) °C; exposure times of three regions of high temperature, medium temperature and low temperature are: 1.5 ⁇ 0.3ms, 300 ⁇ 60ms, 50 ⁇ 10ms.
- the collected image is filtered, because different gray values have a corresponding relationship with temperature, and the gray level of the same position is compared, and the entire welding temperature field can be obtained by using the correspondence between the gray value and the temperature. Distribution.
- the acquired image is represented by 3 bytes, and each byte corresponds to the brightness of the R, G, and B components.
- One pixel of the converted black and white image represents the gray value of the point by one byte, and the conversion relationship is as follows:
- Gray(i,j) 0.11R(i,j)+0.59G(i,j)+0.3B(i,j)
- Gray(i, j) is the gray value of the converted black and white image at the (i, j) point.
- the point is the edge point of the isotherm.
- the search is reversed until the first point that does not satisfy the required point, and the last point that is retrieved that satisfies the requirement is the new edge point.
- the invention selects the input quantity of the control object as the welding current, and the output quantity is the welding temperature field.
- the object is approximated as a first-order delay single-loop inertial system, as shown in Figure 3:
- s is a Laplacian operator
- ⁇ is a pure lag time constant
- K is a proportional coefficient
- T D is the inertia time constant of the controlled object
- G C (s) is the transfer function of the controlled object
- G P (Z) is the Z transform of the transfer function of the controlled object
- G C (Z) is the digital controller
- Y (Z) is the output signal
- R (Z) is the input signal.
- the plasma welding method is used.
- the response curve of the system object is shown in Fig. 4.
- the welding current in Fig. 4 is controlled by the analysis display system to control the welding current from 60A step to 10 70A, the welding current changes back to 60A at 20s.
- the temperature field 1200°C isotherm width changes with the response of current time.
- the step response of the first-order inertia delay system is the exponential rise curve of the delay, which can be expressed by the following formula:
- the controlled object transfer function can be derived according to the method of deriving the transfer function in the automatic control theory (formula (1)), which will not be described here.
- the transfer function in the automatic control theory (formula (1)), which will not be described here.
- the expected closed-loop control system transfer function is:
- Figure 5 and Figure 6 are the simulation comparison diagrams of the system step response and the step response of the traditional PID algorithm and the Dalin algorithm when there is no disturbance, respectively. It can be seen from the figure that the dynamic response of the Dalin algorithm is slightly faster than the traditional PID algorithm. Before the system is stable, the Dalin algorithm has no overshoot. When the disturbance is added, the Dalin algorithm overshoot is smaller than the traditional PID algorithm.
- num(Z) is the G C (Z) molecular coefficient and den(Z) is the G C (Z) denominator coefficient, ie:
- the program operation is performed as shown in the controller operation flowchart of FIG. 7, firstly, the storage unit and the coefficient are initialized, and then the image information is collected and processed, and the Dalin algorithm calculates the output and outputs it to the welding power source by the controller. Finally repeat this process.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Radiation Pyrometers (AREA)
- Control Of Temperature (AREA)
Abstract
La présente invention concerne un système de commande de champ de température de soudage. Une extrémité de sortie d'un contrôleur Dahlin est connectée à une alimentation électrique de soudage d'un système de machine de soudage et une unité de mesure de température de groupe de soudage transmet des données de groupe de soudage détectées à une extrémité d'entrée de signal collecté du contrôleur Dahlin. L'invention concerne aussi un procédé de commande de champ de température de soudage. Le procédé consiste à : diviser un cordon de soudure et une zone d'effet de chaleur en trois zones de soudage, à savoir une zone de soudage à haute température, une zone de soudage à moyenne température et une zone de soudage à basse température ; acquérir, par une unité de mesure de température de groupe de soudage, des images de champs de rayonnement de chaleur de deux bandes d'ondes sur les côtés arrière des zones de soudage au moyen d'une caméra CCD ; effectuer un filtrage sur les images recueillies des champs de rayonnement de chaleur afin d'obtenir une correspondance entre des valeurs d'échelle de gris et des températures ; obtenir la distribution d'un champ de température de soudage entier en fonction de la correspondance ; calculer la largeur d'un isotherme ; et délivrer en sortie, par un contrôleur Dahlin, une valeur de commande à une alimentation électrique de soudage d'un système de machine de soudage. Au moyen du procédé et du système de commande de champ de température de soudage, une commande en boucle fermée sur la largeur de l'isotherme du côté arrière d'un cordon de soudure et une zone d'effet de chaleur est mise en œuvre, des erreurs résiduelles dans des objets de soudage automatique sont éliminées, l'efficacité de production est améliorée, les coûts sont réduits et un contrôle qualité et une détection rapides, précis et pratiques sont mis en œuvre.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187003278A KR102133657B1 (ko) | 2015-10-20 | 2016-07-11 | 용접 온도 필드 제어 시스템 및 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510683866.1 | 2015-10-20 | ||
CN201510683866.1A CN105234599B (zh) | 2015-10-20 | 2015-10-20 | 焊接温度场控制系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017067241A1 true WO2017067241A1 (fr) | 2017-04-27 |
Family
ID=55032549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/089586 WO2017067241A1 (fr) | 2015-10-20 | 2016-07-11 | Système et procédé de commande de champ de température de soudage |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102133657B1 (fr) |
CN (1) | CN105234599B (fr) |
WO (1) | WO2017067241A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889213A (zh) * | 2019-11-18 | 2020-03-17 | 重庆理工大学 | 一种基于切片分割加载体的热源焊接模拟方法 |
CN111460609A (zh) * | 2020-02-24 | 2020-07-28 | 中国科学院光电研究院 | 零部件受热面上关键温度点的提取方法及装置 |
CN114571037A (zh) * | 2022-03-28 | 2022-06-03 | 深圳市爱达思技术有限公司 | 焊接过程控制方法及装置 |
CN116060720A (zh) * | 2022-12-15 | 2023-05-05 | 东莞顺为半导体有限公司 | 一种电感新型焊接工艺 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234599B (zh) * | 2015-10-20 | 2018-06-12 | 沈阳富创精密设备有限公司 | 焊接温度场控制系统及方法 |
CN105945444A (zh) * | 2016-06-29 | 2016-09-21 | 中车青岛四方机车车辆股份有限公司 | 一种未焊透的实时监测方法和系统 |
CN106981084B (zh) * | 2016-10-28 | 2020-11-06 | 创新先进技术有限公司 | 一种绘制等值线的方法及装置 |
WO2018176448A1 (fr) * | 2017-04-01 | 2018-10-04 | 深圳市鑫华威机电设备有限公司 | Procédé et système de commande de soudage d'une machine de soudage électrique semi-automatique |
CN109116882B (zh) * | 2017-06-23 | 2021-07-20 | 北京化工大学 | 一种用于医用恒温箱的IMC-Dahlin温度调节器及方法 |
CN108453346A (zh) * | 2018-04-13 | 2018-08-28 | 昆明理工大学 | 一种智能式红外温度焊机 |
CN110702724B (zh) * | 2018-07-09 | 2024-02-20 | 浙江清华柔性电子技术研究院 | 高温风洞的成像方法 |
CN110398289B (zh) * | 2019-07-30 | 2020-09-01 | 清华大学 | 一种图像采集方法和图像采集装置 |
CN111443748A (zh) * | 2020-03-10 | 2020-07-24 | 江苏理工学院 | 一种增材修复过程中熔池状态的稳定性控制系统 |
CN112621005B (zh) * | 2020-12-29 | 2022-04-19 | 北京工业大学 | 一种有效改善变极性等离子弧非对称焊缝的控制方法和装置 |
CN115908410B (zh) * | 2023-01-06 | 2023-05-09 | 磐石重工(青岛)股份有限公司 | 基于机器视觉的压力容器激光焊接控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04309479A (ja) * | 1991-04-05 | 1992-11-02 | Toshiba Corp | 溶接線検出装置 |
JPH0634564A (ja) * | 1992-07-14 | 1994-02-08 | Nkk Corp | 鋼板の溶接部検査方法 |
CN2160109Y (zh) * | 1993-05-29 | 1994-03-30 | 清华大学 | 焊接温度场检测装置用传感器 |
CN102513746A (zh) * | 2011-12-09 | 2012-06-27 | 北京工业大学 | 基于温度梯度传感的焊接温度场检测装置与质量控制方法 |
CN104679061A (zh) * | 2013-11-28 | 2015-06-03 | 哈尔滨功成科技创业投资有限公司 | 一种基于大林算法的温度控制系统 |
CN105234599A (zh) * | 2015-10-20 | 2016-01-13 | 沈阳富创精密设备有限公司 | 焊接温度场控制系统及方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58205696A (ja) * | 1982-05-25 | 1983-11-30 | Nippon Steel Corp | ガスシ−ルドア−ク溶接用ステンレス鋼フラツクス入りワイヤ |
CN101344980B (zh) * | 2008-08-21 | 2011-01-19 | 中国工商银行股份有限公司 | 一种atm设备安全检测系统及方法 |
-
2015
- 2015-10-20 CN CN201510683866.1A patent/CN105234599B/zh active Active
-
2016
- 2016-07-11 KR KR1020187003278A patent/KR102133657B1/ko active IP Right Grant
- 2016-07-11 WO PCT/CN2016/089586 patent/WO2017067241A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04309479A (ja) * | 1991-04-05 | 1992-11-02 | Toshiba Corp | 溶接線検出装置 |
JPH0634564A (ja) * | 1992-07-14 | 1994-02-08 | Nkk Corp | 鋼板の溶接部検査方法 |
CN2160109Y (zh) * | 1993-05-29 | 1994-03-30 | 清华大学 | 焊接温度场检测装置用传感器 |
CN102513746A (zh) * | 2011-12-09 | 2012-06-27 | 北京工业大学 | 基于温度梯度传感的焊接温度场检测装置与质量控制方法 |
CN104679061A (zh) * | 2013-11-28 | 2015-06-03 | 哈尔滨功成科技创业投资有限公司 | 一种基于大林算法的温度控制系统 |
CN105234599A (zh) * | 2015-10-20 | 2016-01-13 | 沈阳富创精密设备有限公司 | 焊接温度场控制系统及方法 |
Non-Patent Citations (2)
Title |
---|
LIU, WENHUA ET AL.: "Welding Fuzzy Control System Based on Real-time Measurement of the Temperature Field", JOURNAL OF TSINGHUA UNIVERSITY ( SCIENCE AND TECHNOLOGY, vol. 42, no. 11, 30 November 2002 (2002-11-30), ISSN: 1000-0054 * |
ZHANG, HUA ET AL.: "Real-time Detection of Welding Temperature Field and Isotherm Width Closed-Loop Control", SCIENCE IN CHINA (SERIES E, vol. 28, no. 03, 30 June 1998 (1998-06-30), ISSN: 1674-7259 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889213A (zh) * | 2019-11-18 | 2020-03-17 | 重庆理工大学 | 一种基于切片分割加载体的热源焊接模拟方法 |
CN111460609A (zh) * | 2020-02-24 | 2020-07-28 | 中国科学院光电研究院 | 零部件受热面上关键温度点的提取方法及装置 |
CN111460609B (zh) * | 2020-02-24 | 2024-05-07 | 中国科学院光电研究院 | 零部件受热面上关键温度点的提取方法及装置 |
CN114571037A (zh) * | 2022-03-28 | 2022-06-03 | 深圳市爱达思技术有限公司 | 焊接过程控制方法及装置 |
CN114571037B (zh) * | 2022-03-28 | 2024-03-19 | 深圳市爱达思技术有限公司 | 焊接过程控制方法及装置 |
CN116060720A (zh) * | 2022-12-15 | 2023-05-05 | 东莞顺为半导体有限公司 | 一种电感新型焊接工艺 |
CN116060720B (zh) * | 2022-12-15 | 2023-11-10 | 东莞顺为半导体有限公司 | 一种电感新型焊接工艺 |
Also Published As
Publication number | Publication date |
---|---|
KR102133657B1 (ko) | 2020-07-22 |
KR20180018822A (ko) | 2018-02-21 |
CN105234599B (zh) | 2018-06-12 |
CN105234599A (zh) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017067241A1 (fr) | Système et procédé de commande de champ de température de soudage | |
CN107649804B (zh) | 一种增材制造熔深在线检测和控制系统 | |
CN110186570B (zh) | 一种增材制造激光3d打印温度梯度检测方法 | |
CN204989047U (zh) | 一种基于红外视觉的焊接质量分析装置 | |
CN104977305A (zh) | 一种基于红外视觉的焊接质量分析装置及分析方法 | |
Liu et al. | Control of human arm movement in machine-human cooperative welding process | |
CN103134599A (zh) | 激光金属直接成形中熔池状态实时监测方法和系统 | |
CN101324469A (zh) | 一种激光焊接温度场三维测量方法 | |
CN104503510A (zh) | 用于冶金性能测量装置的温度同步系统和方法 | |
CN104985298A (zh) | 一种预测旋转电弧低合金结构钢小角度焊接温度场的方法 | |
CN111337132B (zh) | 一种温度测量方法、装置以及数字图像采集设备 | |
Winkler et al. | A review of the automation of the Czochralski crystal growth process | |
LeBreux et al. | Control of the ledge thickness in high-temperature metallurgical reactors using a virtual sensor | |
CN101034052A (zh) | 二元合金成分的智能实时检测方法及检测仪 | |
CN111189541B (zh) | 一种基于红外热像扫描的在线热损失测量方法 | |
CN113172119A (zh) | 模具工作中折弯处恒温控制系统、控制方法、终端、介质 | |
CN108536968A (zh) | 一种焊接过程中的应力与变形的调控方法 | |
CN105463511B (zh) | 铝电解槽电解质温度在线监测方法及其装置 | |
CN102500626A (zh) | 一种基于测温仪的板带热连轧卷取温度控制方法 | |
CN110658082A (zh) | 一种金属板材高温拉伸各向异性r值测试系统及方法 | |
CN103586606A (zh) | 钢结构焊接收缩变形自动监测方法 | |
CN114952052B (zh) | 多牛腿复杂钢构件焊接热变形控制方法 | |
CN102538998B (zh) | 一种激光焊接温度场的实时测量方法 | |
CN104858559A (zh) | 熔化极脉冲氩弧焊熔滴滴落速度的装置及其分析方法 | |
Hua et al. | Robotic slag offloading and process improvement of magnesium smelting in pidgeon process with faster region-based convolutional neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16856676 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187003278 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16856676 Country of ref document: EP Kind code of ref document: A1 |