WO2017064930A1 - 放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体 - Google Patents

放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体 Download PDF

Info

Publication number
WO2017064930A1
WO2017064930A1 PCT/JP2016/074890 JP2016074890W WO2017064930A1 WO 2017064930 A1 WO2017064930 A1 WO 2017064930A1 JP 2016074890 W JP2016074890 W JP 2016074890W WO 2017064930 A1 WO2017064930 A1 WO 2017064930A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
condition
storage
storage container
piece
Prior art date
Application number
PCT/JP2016/074890
Other languages
English (en)
French (fr)
Inventor
知久 岡本
登 黒川
敏也 小室
俊光 馬越
小松 直隆
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2990372A priority Critical patent/CA2990372C/en
Priority to US15/739,400 priority patent/US20190074097A1/en
Priority to KR1020177036539A priority patent/KR20180008773A/ko
Priority to EP16855184.4A priority patent/EP3300083B1/en
Publication of WO2017064930A1 publication Critical patent/WO2017064930A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/003Nuclear facilities decommissioning arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present disclosure relates to a method for efficiently storing a waste piece obtained by cutting radioactive waste into a storage container, and a waste manufactured by the method.
  • Radioactive waste discharged from nuclear facilities etc. is permanently stored in a completely sealed state. Therefore, the amount of radioactive waste stored year by year is increasing, and the storage cost is also increasing. Under these circumstances, it is desirable to reduce the volume of radioactive waste generated as much as possible.
  • Patent Document 1 in order to enable safe recovery of control rod cluster guide tubes provided in the reactor vessel, the control rod cluster guide tubes are divided into a plurality of pieces, and each divided body is stored in a separate storage container.
  • a cutting volume reduction device is disclosed.
  • Patent Document 2 a thin board is placed on a cartridge containing radioactive waste, and pressed from above by a compression device, and the next radioactive waste is contained while maintaining the state, There is disclosed a volume reduction process in which the process of pressing from the top is sequentially repeated and the top is fixed with a lid and accommodated.
  • Patent Document 3 discloses a volume-reduction processing device that crushes radioactive waste and evacuates and compresses a storage bag filled with the crush material.
  • the cutting and volume reduction method described in Patent Document 2 requires cutting out radioactive waste in accordance with the volume of the storage container (so as not to be too large or too small compared to the volume of the storage container). There are significant limitations imposed on them and they are inflexible.
  • radioactive waste such as core structures with extremely high radioactive levels is not suitable for finely shredding (for example, in the form of powder) from the viewpoint of preventing radioactive contamination and diffusion, the cutting and volume reduction method described in Patent Document 3 It is difficult to handle by
  • an object of at least one embodiment of the present invention is to efficiently store a plurality of waste pieces in a storage container, thereby satisfying the physical constraints required for each waste body.
  • the plurality of waste pieces obtained by at least cutting radioactive waste are stored in at least one storage container to obtain the at least one waste body.
  • the container accommodation condition determination method for determining the accommodation condition of the waste piece of each of the storage container of each storage destination of the waste piece and a plurality of arrangement condition candidates for defining the accommodation position in the storage container, The step of selecting one or more of the candidate arrangement conditions satisfying the constraints required of the waste body for each of the storage containers, assuming that the waste pieces are arranged in the storage containers according to the candidate arrangement conditions.
  • a necessary storage container which is the number of the storage containers required to store the plurality of waste pieces according to the selected candidate for the placement condition Calculating a employs a configuration including a step of identifying the arrangement condition candidates the required storage container number is minimized.
  • the storage container to which each waste piece is stored and the storage position in the storage container are defined by the arrangement condition candidates. Then, in at least one embodiment of the present invention, one or more placement condition candidates satisfying the constraint conditions are selected from the plurality of placement condition candidates, and a plurality of waste pieces are selected from the selected placement condition candidates.
  • a candidate arrangement condition capable of reducing the number of storage containers required to store the container is determined as the storage condition of the waste piece in the storage container.
  • the storage condition of the waste piece thus obtained is a condition that satisfies the constraints of the individual wastes among the plurality of arrangement condition candidates, and the required number of storage containers is minimized. Therefore, according to at least one embodiment of the present invention, a plurality of waste pieces can be efficiently stored in the storage container, and the required number of storage containers can be satisfied while satisfying the physical constraints required for each waste body. Can be reduced.
  • the method of (1) selecting the arrangement condition candidate for each of the plurality of cutting conditions of the radioactive waste and the number of required storage containers Calculating a combination of the cutting condition and the placement condition candidate that minimize the number of required storage containers.
  • various ways of cutting when cutting radioactive waste to obtain plural waste pieces are defined as plural cutting conditions, and each of plural cutting conditions is specified.
  • the storage condition which can reduce the number of waste bodies obtained by storing the waste pieces in the storage container can be calculated.
  • the combination of the most efficient cutting condition and the arrangement condition as the accommodation condition capable of reducing the number of waste bodies by efficiently accommodating the waste pieces in the storage container It can be identified.
  • the method further includes the step of acquiring a radiation dose distribution of the radioactive waste, and selecting the arrangement condition candidate
  • the step is characterized in that, on the basis of the radiation dose distribution, the placement condition candidate satisfying the restriction condition which at least defines that the surface dose rate of the waste body becomes equal to or less than a threshold value is selected.
  • the method (3) is useful in such a case because it may be necessary to ensure the safety and efficiency in discarding or storing the waste.
  • the method of (1) or (2) further includes the step of measuring the radiation dose of each of the waste pieces, and selecting the placement condition candidate
  • the candidate arrangement conditions may be selected to satisfy the restriction condition which at least defines that the surface dose rate of the waste becomes equal to or less than a threshold.
  • the method (4) is useful in such a case because it may be necessary to ensure the safety and efficiency in discarding or storing the waste. According to the method of the above (4), by setting the surface dose rate for each waste to a threshold value or less based on the radiation dose distribution of radioactive waste, safety and efficiency in discarding or storing the waste can be improved. At the same time, the required number of storage containers can be reduced while ensuring.
  • the step of storing, in the database, the characteristic description information indicating the respective characteristics of the plurality of waste pieces is further included.
  • the step of selecting the placement condition candidate when the waste piece is placed in the storage container according to the placement condition candidate based on the characteristic description information stored in the database, each of the storage containers It may be determined whether or not the restriction condition required for the waste body is satisfied.
  • the operation of selecting the arrangement condition candidate for determining the arrangement method when arranging the waste piece in the storage container is a characteristic description showing the characteristic of each waste piece Based on the information, efficient volume reduction processing can be performed according to the characteristics of each waste piece.
  • the characterization information includes at least one of the shape, weight, or dose of each of the waste pieces.
  • the placement condition candidate can be selected in consideration of the shape, weight, or dose of the waste piece.
  • At least one type of compression treatment is performed on a plurality of divided bodies obtained by cutting the radioactive waste. And forming the plurality of waste pieces having a standardized shape.
  • the plurality of waste pieces obtained by cutting the radioactive waste is formed into a waste piece having a standardized shape (including the size) and then stored. Contained in a container. Therefore, according to the configuration of the above (7), it is possible to greatly simplify the calculation process for determining the storage condition for reducing the amount of waste obtained by storing the waste piece in the storage container. Further, in the configuration of (7) above, by appropriately designing the standardized shape, it is possible to calculate the storage condition in which the waste piece can be packed into the storage container as closely as possible.
  • the constraints required for the wastes are the weight, surface dose rate or surface dose rate of each of the wastes. It includes the condition that at least one of the calorific value falls within the allowable range.
  • at least one of the dose rate, weight and calorific value for each waste body is made within the allowable limit based on the radiation dose distribution of radioactive waste. This makes it possible to reduce the number of storage containers required while at the same time ensuring the safety and efficiency of waste transfer operations.
  • the plurality of arrangement condition candidates include a first waste piece in each storage container, The second waste is stored in a first area located in the center of the storage container, and a second waste piece having a radiation dose lower than that of the first waste piece surrounds the first waste piece. At least one candidate arrangement condition is stored in the second area surrounding the first area in the storage container.
  • the high-dose in the storage container Even if the first waste piece is stored, the low-dose second waste piece surrounding it functions as a radiation shield to reduce the radiation amount reaching the waste body surface. Therefore, if a plurality of arrangement condition candidates include arrangement condition candidates that define how to arrange waste pieces according to the above method (9), the number of available storage containers should be small and the containers should be accommodated. Even in situations where there are a large number of high-dose waste pieces, it is possible to increase the likelihood that such placement condition candidates will satisfy the constraints.
  • the waste piece is accommodated in the storage container according to the accommodation condition determined by any of the methods (1) to (9) above.
  • Obtaining at least one waste body may be provided.
  • the configuration of the above (10) by using the method of determining the container storage condition described in the above (1) to (9), a plurality of waste pieces are stored in one or more storage containers.
  • the embodiment according to the present invention can be implemented as a storage method of
  • a method of containing a plurality of waste pieces obtained by at least cutting radioactive waste in at least one storage container to obtain at least one waste body is the first waste Storing the object piece in a first area located at the center of the storage container, and a second waste piece having a radiation dose lower than that of the first waste piece surrounding the first waste piece Storing the second waste piece in a second area surrounding the first area in the storage container.
  • the waste having a relatively low radiation dose may be disposed around the waste piece having a relatively high radiation dose housed in the central portion of the storage container.
  • the pieces are arranged to surround as a radiation shield.
  • At least one waste body obtained by storing a plurality of waste pieces obtained by at least cutting radioactive waste in at least one storage container is A first waste piece housed in a first area located at a central portion, and a second area surrounding the first area in the storage container, the first waste piece being stored so as to surround the first waste piece; A second waste piece whose radiation dose is lower than that of the first waste piece; To provide a configuration.
  • the waste piece having a low dose is a radiation shielding material around the waste piece having a high dose stored in the central part of the storage container. It is generated in the form of being arranged as surrounding. Therefore, the waste according to the above embodiment (12) is a waste that is capable of containing more pieces of waste with a higher radiation dose at a higher filling rate in the storage container as compared with the conventional accommodation method. can do.
  • the low dose waste piece surrounding the high dose waste piece functions as a radiation shield in the storage container. Thereby, the waste according to the embodiment of the above (12) can effectively reduce the surface dose rate and the calorific value on the surface of the waste even if waste pieces of high radiation dose are accommodated. Waste disposal and storage can be facilitated.
  • the need for the storage container is satisfied while satisfying the physical constraints required for each waste body.
  • the number can be reduced.
  • FIG. 1 shows a computer system according to an embodiment of the present invention. It is a flow chart which shows a flow of a series of processing operations concerning one embodiment of the present invention.
  • it illustrates the process of shaping the waste piece into a standardized shape.
  • It is a figure showing a computer system concerning this embodiment.
  • It is a flowchart which shows the flow of a series of processing operation which concerns on this embodiment.
  • It is a figure which shows a mode that the waste piece was accommodated in the storage container in this embodiment.
  • FIG. 1 is a diagram showing an entire flow of a method of treating radioactive waste according to an embodiment. As shown in FIG.
  • the storage condition of at least one storage container 91 (91A to 91C) of the plurality of waste pieces 900 obtained by at least cutting the radioactive waste 9 is determined According to the storage condition, the waste piece 900 is stored in the storage container 91 (91A to 91C) to obtain the waste body 950 (950A to 950C).
  • the radioactive waste 9 is illustrated as the reactor internals 9 a in the reactor vessel 1, but in other embodiments, the radioactive waste 9 is a reactor. It is good also as reactor containers other than internals, a steam generator, piping etc. In yet another embodiment, the radioactive waste 9 may be low-level radioactive waste emitted from nuclear related facilities.
  • FIG. 2 and FIG. 3 are diagrams each showing an example of a plurality of arrangement condition candidates used in the waste disposal method shown in FIG.
  • FIG. 4 is a figure which shows the correspondence between the set of arrangement condition candidates, the sufficiency of a constraint condition, and the required number of storage containers 91 in one Embodiment of this invention.
  • the placement condition candidate is a condition for specifying this pattern. That is, the placement condition candidate is a condition that defines the storage container 91 (91A to 91C) of the storage destination of each waste piece 900 and the storage position in the storage container 91 (91A to 91C).
  • the shape (including the dimensions) of the waste piece 900 is non-uniform and random three-dimensional.
  • each waste piece 900 is represented in a simple two-dimensional shape, and in the space in the box-shaped container represented by a rectangular two-dimensional area, in order to simplify the explanation and simplification.
  • a schematic example of dimensional accommodation is shown.
  • the shape of the waste piece 900 is also different between the example shown in FIG. 2 and the example shown in FIG.
  • the specific accommodation position of the waste piece 900 in a container is illustrated only about the first three storage containers 91-1 to 91-3, and the fourth and subsequent ones.
  • the specific storage position in the storage container 91 is omitted.
  • positioning conditions which determine the method of accommodation at the time of accommodating the several waste piece 900 in the one or more storage containers 91, other arbitrary arrangement
  • the constraints mean constraints on the characteristics of the waste body 950 that must be satisfied as the waste body 950 as a whole.
  • the constraint includes the condition that at least one of the weight, surface dose rate or calorific value of each waste body 950 falls within an acceptable range.
  • the constraint includes the condition that all of the weight, surface dose rate and calorific value of each waste body 950 fall within an acceptable range.
  • waste pieces 900 in the storage container 91 according to each of N arrangement condition candidates A i (1 ⁇ i ⁇ N, where N is an integer of 2 or more). It is determined on the assumption that the storage containers 91 (91A to 91C) satisfy the constraints required for the wastes. Then, from among the i arrangement condition candidates, one or more arrangement condition candidates satisfying the restriction condition required for the waste body are selected for each storage container 91 (91A to 91C). Note that FIG. 4 shows, as an illustrative embodiment, a case where placement condition candidates A 1 , A 2 , A 5 , A 6 , and A 8 are selected as the condition that satisfies the constraint condition.
  • a constraint that at least the surface dose rate of the waste body 950 (950A to 950C) becomes equal to or less than the threshold based on the radiation dose distribution of the radioactive waste 9 J (1 ⁇ j ⁇ N) placement condition candidates that satisfy the condition are selected.
  • the method of obtaining the radiation dose distribution of the radioactive waste 9 is not particularly limited.
  • the radiation dose distribution may be obtained from the result of measuring the radiation dose distribution of the radioactive waste 9 at a plurality of measurement points, The radiation dose distribution may be estimated based on the past radiation exposure history of the radioactive waste 9.
  • the placement condition candidate that minimizes the required storage container number X is specified.
  • the placement condition candidate thus obtained is a condition satisfying the constraint condition and having the minimum required number of storage containers X among the i placement condition candidates A examined. Therefore, according to the method described above, the plurality of waste pieces 900 can be efficiently stored in the storage container 91, and the required number of storage containers 91 can be satisfied while satisfying the physical constraints required for each waste body. The required number of storage containers X can be reduced.
  • a plurality of cutting conditions for the radioactive waste 9 that may contribute to the reduction of the required number of storage containers X may be selected.
  • cutting conditions such as cutting high dose portions in radioactive waste at fine intervals (fine particle size) and cutting low dose portions in radioactive waste at large intervals (coarse particle size) You may set it.
  • FIG. 5 shows an exemplary method for cutting the internals 9a of the reactor 1 to obtain a plurality of waste pieces 900 (e.g. 900A to 900E) having a high radiation dose. Cutting conditions are illustrated.
  • the high-dose region 90 shown in FIG. 5 indicates a portion where the radiation dose is particularly high in the furnace, and the cutting conditions are set so that the particle size is cut with a finer particle size than the other portions in the internal 9a.
  • 900A-900C have larger particle sizes than 900D and 900E).
  • other arbitrary cutting conditions other than cutting condition B shown in FIG. 5 can also be used.
  • the step of selecting the placement condition candidate A j and the step of calculating the required number of storage containers X are performed for each of the plurality of cutting conditions B k. It is characterized in that the combination of B and the placement condition candidate A is specified.
  • the arrangement condition candidates of A 1 and A 2 are selected as the condition satisfying the constraint condition are, required storage container number X corresponding to the arrangement condition candidate a 1 and a 2 are five and four, respectively.
  • arrangement condition candidates A 5 and A 6 in the arrangement candidate conditions in the case of cutting conditions B 2 cut radioactive waste 9 are selected as satisfying the constraint condition condition, arrangement condition candidate A 5 and A
  • the required storage container numbers X corresponding to 6 are 6 and 5 respectively.
  • the layout condition candidate satisfies the constraints condition A 8 in the arrangement candidate conditions in the case of cutting the radioactive waste 9 in cutting conditions B 3, to be corresponding to the arrangement condition candidate A 8
  • the number of storage containers X is six. Accordingly, in the exemplary embodiment shown in FIG. 4, as a combination of cutting conditions B and arrangement condition candidate A required storage container number X is minimized, the combination of the arrangement condition Candidate A 2 and the cutting conditions B 1 is identified .
  • various cutting methods when cutting the radioactive waste 9 to obtain the plurality of waste pieces 900 are defined as the plurality of cutting conditions B,
  • a storage condition capable of reducing the number of waste bodies 950 obtained by storing the waste piece 900 in the storage container 91 can be calculated for each of the cutting conditions.
  • the most efficient cutting condition as a storage condition capable of reducing the number of waste bodies 950 by efficiently storing the waste piece 900 in the storage container 91.
  • a combination of B and placement condition A can be specified.
  • the method for determining container accommodation condition further includes the step of acquiring the radiation dose distribution of the radioactive waste 9, and in the step of selecting the arrangement condition candidate A ′ j , the acquired radiation dose distribution is selected. based on, may be selected to satisfy the constraint placed condition candidate a 'j of the surface dose rate is at least stipulates that falls below the threshold value of the waste 950 (950A ⁇ 950C). The above method is useful in such a case because it may be necessary to ensure the safety and efficiency in discarding or storing the waste body 950 (950A to 950C).
  • safety and efficiency in discarding or storing the waste body 950 can be achieved by setting the surface dose rate for each waste body 950 equal to or less than the threshold value based on the radiation dose distribution of the radioactive waste 9 At the same time, it is possible to reduce the required number of storage containers X, which is the required number of storage containers, while securing the property.
  • the container housing conditions determination method further comprises a step of measuring a radiation dose distribution of a radioactive waste 9, in the step of selecting an arrangement candidate conditions A 'j, the radiation dose distribution that the measured based on, may be selected to satisfy the constraint placed condition candidate a 'j of the surface dose rate is at least stipulates that falls below the threshold value of the waste 950 (950A ⁇ 950C).
  • the above method is useful in such a case because it may be necessary to ensure the safety and efficiency in discarding or storing the waste body 950 (950A to 950C).
  • safety and efficiency in discarding or storing the waste body 950 can be achieved by setting the surface dose rate for each waste body 950 equal to or less than the threshold value based on the radiation dose distribution of the radioactive waste 9 At the same time, it is possible to reduce the required number of storage containers X, which is the required number of storage containers, while securing the property.
  • the storage container 91 as the storage destination of each waste piece 900 and the storage position in the storage container 91 are defined by the arrangement condition candidate A.
  • the arrangement condition candidate A among the plurality of arrangement condition candidates A i (1 ⁇ i ⁇ N), the number of storage containers 91 necessary for storing the plurality of waste pieces 900 is necessary.
  • the storage container number X reduce possible arrangement candidate conditions a o is determined as capacity limitations for waste piece into the storage container. Therefore, according to at least one embodiment of the present invention, when the plurality of waste pieces 900 are stored in at least one storage container 91 to obtain at least one waste body 950, the amount of waste bodies 950 can be reduced. Containment conditions can be calculated.
  • a placement condition candidate A j that satisfies a constraint that at least defines that the surface dose rate of the waste body 950 is less than or equal to the threshold value based on the radiation dose distribution.
  • the radiation dose information for each waste piece 900 is relevant.
  • the surface dose rate of the waste body 950 can be obtained. Then, by determining whether or not the surface dose rate of the waste body 950 is equal to or less than the threshold value, it is determined whether the arrangement condition candidate A ′ j satisfies the above constraint condition.
  • the container accommodation condition determination method described above may be implemented using any computer program executed on any computer system.
  • the container accommodation condition determination method described above may be implemented using a computer program 124 executed in computer system 10 shown in FIG.
  • the computer system 10 includes a computer 100a communicably connected to each other by a local area network 230a, a database 210a, and a control console 220a.
  • the computer 100a executes the computer program 124 in response to an instruction from the control console 220a.
  • the database 210 a identifies each of the one or more waste bodies 950 by identification information of a tag attached to each waste body 950, and characterization information describing the physical property condition for each waste body 950 as each waste body They are stored in association with 950.
  • the control console 220a may function as a terminal for the system user to give instructions and information to the computer program 124 on the computer 100a and displaying the output of the computer program 124 on the screen.
  • the computer 100a is configured of a CPU 110a, a main storage 120a, and an interface 130a.
  • the CPU 110a reads out and executes the computer program 124 stored on the main storage 120a.
  • the main memory 120a stores information on a plurality of (N) cutting conditions 121k (1 ⁇ k ⁇ N) and a plurality of (M) arrangement condition candidates 122i (1 ⁇ i ⁇ M). Further, the main memory 120a stores data representing other information other than the above in the temporary storage area 123a.
  • the interface 130a provides a communication path for exchanging data and control signals between the CPU 110a, the main memory 120a and the local area network 230a.
  • a plurality of program modules or functions constituting the computer program 124 may be read from the main storage 120a by the CPU 110a and executed as functional modules 111a to 118a.
  • the input / output and main control unit 111a functions as an input / output unit for the functional modules 112a to 118a described above to exchange data, control commands, etc. with the main memory 120a, the database 210a and the control console 220a. Further, the input / output and main control unit 111a has a role of controlling the overall flow of a series of processing operations executed by the above-described functional modules 112a to 118a. For example, the series of processing operations executed by the above-described functional modules 112a to 118a are looped until a combination of cutting conditions and candidate arrangement conditions is found that minimizes the required number of storage containers when all waste pieces are accommodated. It must be repeatedly executed by control. Therefore, the input / output and main control unit 111a repeatedly calls and executes the above-described functional modules 112a to 118a for the number of times of repetitive execution controlled by the loop control.
  • the arrangement condition candidate generation unit 113a generates the storage container 91 of the storage destination of each waste piece 900 and a plurality of arrangement condition candidates 122i (1 ⁇ i ⁇ M) that define the storage position in the storage container 91. . Subsequently, the placement condition candidate selection unit 114a that has received the plurality of placement condition candidates 122i (1 ⁇ i ⁇ M) generated by the placement condition candidate generation unit 113a follows the plurality of placement condition candidates 122i (1 ⁇ i ⁇ M). Assuming that the waste piece 900 is placed in the storage container 91, one or more candidate for placement condition 122j (1 ⁇ j ⁇ M) satisfying the restriction condition required for the waste body is selected for each storage container 91 Do.
  • the required storage container number calculation unit 115a that has received one or more selected arrangement condition candidates 122j (1 ⁇ j ⁇ M) determines the plurality of waste pieces 900 according to the selected arrangement condition candidates 122j (1 ⁇ j ⁇ M). Calculate the required number of storage containers X, which is the number of storage containers 91 required to accommodate.
  • the optimal placement condition candidate identification unit 116a receives the plurality of placement condition candidates 122j (1 ⁇ j ⁇ M) and the required storage container number X calculated for each placement condition from the required storage container number calculation unit 115a.
  • the placement condition candidate 122 (0) which minimizes the value is identified and output to the input / output and main control unit 111a.
  • the process performed by the functional modules 113a-118a may be performed for each of a plurality of radioactive waste cutting conditions 121k (1 ⁇ k ⁇ N).
  • the cutting condition acquisition unit 112a acquires a plurality of cutting conditions 121k (1 ⁇ k ⁇ N), and stores the acquired plurality of cutting conditions 121k (1 ⁇ k ⁇ N) in the main storage 120a. Do. Subsequently, the process of selecting the arrangement condition candidate 122 j (1 ⁇ j ⁇ M) and the process of calculating the required number of storage containers X are acquired by the cutting condition acquiring unit 112 a and the plurality of cutting conditions stored in the main memory 120 a.
  • the optimum arrangement condition candidate identification unit 116a identifies a combination of the cutting condition 121k (1 ⁇ k ⁇ N) and the arrangement condition candidate 122j (1 ⁇ j ⁇ M) that minimizes the required number of storage containers X.
  • the cutting condition acquiring unit 112a acquires the characteristic description information indicating the respective characteristics of the plurality of waste pieces 900, and the database 210a. You may save it to In at least one embodiment, the following operation may be performed in the process of selecting the placement condition candidate 122 j (1 ⁇ j ⁇ M). First, the characteristic description information acquisition unit 118a is instructed to acquire the characteristic description information stored in the database 210a.
  • each waste body 950 for each storage container 91 The placement condition candidate selection unit 114a determines whether the constraint condition required for the condition is satisfied.
  • the flowchart of FIG. 7 starts from step S801 by the radiation dose distribution acquisition unit 117a being called by the input / output and main control unit 111a.
  • the radiation dose distribution acquiring unit 117a acquires radiation dose distribution measurement data regarding radioactive waste before being cut into a plurality of waste pieces 900, and cuts the radiation dose distribution measurement data through the main memory 120a into the cutting condition acquiring unit 112a. Pass to
  • the cutting condition acquisition unit 112a acquires the plurality of cutting conditions 121k (1 ⁇ k ⁇ N) of the radioactive waste while referring to the radiation dose distribution measurement data, and acquires the plurality of acquired cutting conditions 121k (1 ⁇ ). Store k ⁇ N) in the main memory 120 a.
  • the arrangement condition candidate generation unit 113a reads a plurality of cutting conditions 121k (1 ⁇ k ⁇ N) from the main memory 120a
  • the arrangement condition candidate generating unit 113a selects one or more unselected cutting conditions 121k (1 ⁇ k ⁇ N)
  • One cutting condition 121 ' is selected.
  • the arrangement condition candidate generation unit 113a generates one arrangement condition candidate 122j based on the selected cutting condition 121 ', and stores the one arrangement condition candidate 122j in the main storage 120a.
  • step S804 the placement condition candidate selection unit 114a reads the placement condition candidate 122j from the main memory 120a, and uses the characteristic description information for each waste piece obtained from the placement condition candidate generation unit 113a to obtain the placement condition. It is determined whether the candidate 122 j satisfies the constraint condition required for each waste body. Subsequently, in step S805, if the arrangement condition candidate selection unit 114a determines that the arrangement condition candidate 122j satisfies the predetermined constraint condition, the process proceeds to step S806 in FIG. 7 and it is determined that the condition is not satisfied. The process proceeds to step S807 in FIG.
  • the placement condition candidate selection unit 114a may select placement condition candidates as described below with reference to FIG. 12 as placement condition candidates satisfying the above constraint conditions. Specifically, the placement condition candidate selection unit 114a sets a low dose around the high-dose waste piece 920 (FIG. 12) disposed at the center in the storage container 91 as a placement condition candidate satisfying the above constraint conditions. Arrangement condition candidates may be selected such that the waste piece 930 (FIG. 12) is surrounded.
  • step S806 in FIG. 7 when the required storage container number calculation unit 115a receives the placement condition candidate 122j determined that the placement condition candidate selection unit 114a is a candidate satisfying the above constraint condition, the required storage container for the placement condition candidate 122j is stored. Calculate the number X.
  • the required number of storage containers X is a value in which the number of storage containers 91 required when storing all of the plurality of waste pieces 900 in one or more storage containers 91 in accordance with each arrangement condition candidate is predicted.
  • step S807 in FIG. 7 the arrangement condition candidate generation unit 113a can generate another arrangement condition candidate from the plurality of waste pieces 900 obtained by cutting the radioactive waste according to the currently selected cutting condition 121 '. It is determined whether the If another arrangement condition candidate can be generated, the process returns to step S 803 in FIG. 7, and the arrangement condition candidate generation unit 113 a can obtain the radioactive waste according to the currently selected cutting condition 121 ′. Another arrangement condition candidate is generated from the plurality of waste pieces 900. If, in step S807, the placement condition candidate generation unit 113a determines that another placement condition candidate can not be generated any more from the plurality of waste pieces 900 obtained according to the currently selected cutting condition 121 ', the process is performed as shown in FIG. The process proceeds to step S808.
  • step S808 in FIG. 7 the cutting condition acquisition unit 112a processes the steps S802 to S807 in FIG. 7 among the plurality of cutting conditions 121k (1 ⁇ k ⁇ N) stored in the main memory 120a. It is determined whether there are unselected unselected cutting conditions left. If an unselected cutting condition remains, the process returns to step S802, and the cutting condition acquisition unit 112a does not select among the plurality of cutting conditions 121k (1 ⁇ k ⁇ N) stored in the main memory 120. Choose a new cutting condition for selection. If no unselected cutting condition remains in the plurality of cutting conditions 121k (1 ⁇ k ⁇ N), the process proceeds to step S809.
  • the optimal arrangement condition candidate identification unit 116a calculates the required number of storage containers X calculated for each of the plurality of arrangement condition candidates and the arrangement conditions for all of the plurality of cutting conditions 121k (1 ⁇ k ⁇ N). It receives from calculation part 115a. Subsequently, the optimum placement condition candidate identification unit 116a determines the required number of storage containers 91 out of the required storage container number X calculated for each placement condition candidate for each of the plurality of cutting candidates 121k (1 ⁇ k ⁇ N). Identify the set of efficient placement condition candidates and cutting candidates that minimize. Finally, the optimum arrangement condition candidate specifying unit 116a outputs the set of the specified optimum arrangement condition candidate and the cutting candidate to the input / output and the main control unit 111a.
  • a plurality of such waste pieces 910 which are cut out from the reactor according to predetermined cutting conditions and discharged from the nuclear power plant 93 are separated according to the dose. It is also good.
  • the plurality of waste pieces 910 may be separated by the sorting device 94 into a high dose piece (G1 in FIG. 8), a medium dose piece (G2 in FIG. 8) and a low dose piece (G2 in FIG. 8). It divides into G3) of FIG.
  • the forming suitable for the waste pieces 910 sorted according to the dose is performed. Do the processing.
  • arrangement conditions capable of reducing the required number of storage containers are determined, and all waste pieces 910 are accommodated in one or more storage containers 91 according to the determined arrangement conditions.
  • One or more waste bodies 960 (960A to 960C) are produced and stored in a storage building 92.
  • a plurality of divided bodies 940 obtained by cutting the radioactive waste 9 are formed into a standardized shape (including dimensions) by compression molding.
  • a plurality of waste pieces 910 may be accommodated in one or more storage containers 91 according to suitable arrangement conditions.
  • the standardized shape (including the dimensions) of the waste piece will be referred to as a standardized shape.
  • the length of the long side, the length of the short side, and the depth of the cross section of the storage space in the storage container 91 are divided by appropriate integers
  • the dimensions cut off may be the vertical, horizontal, and height dimensions, and the shape having the dimensions may be a standardized shape.
  • the dimensions of the length, width, and height of the waste piece 910 are the length of the long side, the length of the short side, and the depth of the storage space cross section in the storage container 91. May be divided by an appropriate integer, and the waste piece 910 may be compression molded so as to be rounded off.
  • the long side length, the short side length and the depth of the section of the storage space in the storage container 91 are Lx, Ly and Lz, respectively.
  • appropriate integers ⁇ , ⁇ and ⁇ are used.
  • the dimensions lx, ly and lz of the height, width and height of the standardized shape may be calculated according to the following equation.
  • the above-described compression molding process is performed by cutting, compressing, dissolving, or a combination of these processes on a plurality of divided bodies 940 cut out of the radioactive waste 9 Also good.
  • the radioactive waste 9 may include a furnace internal 9a that is cut by a cutting tool.
  • the plurality of divided bodies 940 obtained by cutting the radioactive waste may be sorted according to the radioactive level, for example, by the sorting device 94 shown in FIG.
  • radioactive waste 9 (S1 in FIG. 9) is cut into a plurality of divided bodies 940 and disassembled (S2 in FIG. 9), and the plurality of divided bodies 940 are used for the compression molding process
  • the sheet is compression-molded from the front, rear, left and right, and the top and bottom (S3 in FIG. 9) by a plate-like pressing member included in the compression device (S3 in FIG. 9), and molded into a cube having standardized dimensions (S4 in FIG. 9).
  • the compression molding process described above with reference to FIG. 9 is performed on the waste piece 910 after the waste piece 910 is separated by the sorting device 94 in the disposal procedure shown in FIG. It may be implemented as a molding process.
  • a plurality of divided bodies 940 formed by cutting radioactive waste are separated according to the radiation dose as in the modified embodiment shown in FIG. 8, and the divided bodies are compression molded for each separated radiation level.
  • standardized shapes corresponding to high radiation levels are designed with small dimensions to small size or fine particle size
  • standardized shapes corresponding to low radiation levels are designed with large size to large size or coarse particle size It is also good.
  • the above-mentioned integers ⁇ , ⁇ and ⁇ used for dividing Lx, Ly and Lz described above as the length and the length of the long side of the long side of the storage space cross section in the storage container 91 into the desired particle size Adjust accordingly.
  • the dimensions lx, ly and lz of the height, width and height of the standardized shape are calculated according to the above equation (1).
  • the high radiation dose waste pieces have a standardized shape of small dimensions, so it is possible to avoid storing a large amount of high dose pieces in one storage container at one time.
  • waste pieces with high radiation dose have a standardized shape with small dimensions, so it can be accommodated in each storage container while finely adjusting the amount of high-dose waste pieces little by little, and the surface dose rate for each storage container It becomes easy to be within the allowable range.
  • the above integers ⁇ , ⁇ and ⁇ used to divide Lx, Ly and Lz described above as the long side length, short side length and depth of the storage space cross section in the storage container 91 are desired. Adjust according to particle size. Then, the dimensions lx, ly and lz of the height, width and height of the standardized shape are calculated according to the above equation (1).
  • the embodiment shown in FIG. 9 may be implemented, for example, using a computer program 125 executed on computer system 20 shown in FIG.
  • a computer program 125 executed on computer system 20 shown in FIG.
  • FIG. 10 in order to explain the system configuration according to the embodiment shown in FIG. 10, only the differences between the embodiment shown in FIG. 10 and the embodiment shown in FIG. 6 will be described, and the embodiment shown in FIG. Description of the same configuration as that of the above will be omitted.
  • all the waste pieces 910 are treated as being formed into a simple standardized shape, and efficient placement condition candidates can be obtained without considering multiple cutting conditions. It differs from the embodiment shown in FIG. 6 in that it can be determined. Further, in the embodiment shown in FIG. 10, the surface dose rate, calorific value, weight and the like of each of the plurality of waste pieces 910 formed into a standardized shape are obtained by actual measurement in advance in the following pretreatment, The values are recorded in database 210b. In one embodiment, this pre-processing may be performed with the intervention of a worker in the nuclear power plant prior to determining efficient placement condition candidates using computer system 20. .
  • the characteristic description information for each waste piece includes the actual measurement values measured in advance as described above for each of the plurality of waste pieces 910, and two or more types of standardized shapes are defined according to the plurality of radioactive levels. If yes, it may also include information on the type of standardized shape.
  • steps S1201 to S1206 correspond to the above-described pretreatment, and the plurality of divided bodies obtained by cutting the radioactive waste are compressed and processed to have at least one standardized shape.
  • the process of forming into a waste piece and the process of measuring the weight, radiation dose and calorific value of each said waste piece are included.
  • steps S1207 to S1212 correspond to the processing executed by the functional modules 113 to 118 configuring the computer program 125 to determine efficient placement condition candidates using the computer system 20. Do.
  • step S1201 The process of the flowchart of FIG. 11 starts from step S1201, and the radioactive waste is cut into a plurality of divided bodies and disassembled. Subsequently, the process proceeds to step S1202, and the plurality of divided bodies are molded so as to have a standardized shape.
  • the plurality of divided bodies are separated according to the radioactive level, the plurality of divided bodies are formed and processed according to standardized shapes of two or more different sizes for each radioactive level, and a plurality of waste pieces 910 May be obtained.
  • step S 1203 each of the plurality of waste pieces 910 is tagged. In the tag attached to each of the plurality of waste pieces 910, identification information for uniquely identifying each waste piece 910 is recorded. Subsequently, the process proceeds to step S 1204, where the weight of each waste piece is measured for each of the plurality of waste pieces. In addition, when two or more types of standardized shapes are defined, it is also determined as to which type of standardized shape each of the plurality of waste pieces has. Subsequently, the process proceeds to step S1205, and the surface dose rate and calorific value for each waste piece are measured for each of the plurality of waste pieces.
  • step S1206 information representing the weight for each waste piece actually measured or determined as described above for each of the plurality of waste pieces, type of standardized shape, surface dose rate and calorific value, etc. It is recorded in the database 210b.
  • information representing weight for each waste piece, type of standardized shape, surface dose rate, calorific value, etc. is for each waste piece recorded in a tag attached to each of the plurality of waste pieces 910.
  • step S1207 the placement condition candidate selection unit 114b may select placement condition candidates as described below with reference to FIG. 12 as placement condition candidates satisfying the above constraint conditions. Specifically, the placement condition candidate selection unit 114b sets a low-dose waste piece around the high-dose waste piece 910 placed at the center in the storage container 91 as a placement condition candidate satisfying the above constraint conditions. You may select candidate placement conditions that surround it.
  • a plurality of waste pieces 900 (920, 930) obtained by at least cutting the radioactive waste 9 (9a) is contained in at least one storage container 91 to obtain at least one waste body 950.
  • the second waste piece 930 which contains the first waste piece 920 in the first area located at the center of the storage container 91 and whose radiation dose is lower than that of the first waste piece 920 is the first waste piece
  • a second waste piece 930 may be stored in the storage container 91 in a second area surrounding the first area to surround 920.
  • the plurality of arrangement condition candidates 122 i (1 ⁇ i ⁇ M) are firstly discarded in each storage container 91.
  • Object piece 920 is accommodated in a first area located at the center of the storage container 91, and a second waste piece 930 having a radiation dose lower than that of the first waste piece 920 surrounds the first waste piece 920
  • the second waste piece 930 may be stored in a second area surrounding the first area in the storage container 91, and may include at least one candidate arrangement condition.
  • the arrangement condition candidate generation units 113 a and 113 b refer to FIG. 12 as at least one of the plurality of arrangement condition candidates 122 i (1 ⁇ i ⁇ M).
  • candidate arrangement conditions may be included which define how to arrange the waste pieces 920 and 930 described above.
  • candidate arrangement conditions which define the arrangement (FIG. 12) of surrounding the high-dose waste piece 920 in the storage container 91 with the low-dose waste piece 930. Even if the high-dose waste piece 920 is contained, the low radiation dose waste piece 930 surrounding it can function as a radiation shield to reduce the radiation amount reaching the waste body 950 surface. Therefore, if a plurality of placement condition candidates include candidates for defining the disposition method of the waste piece as shown in FIG. Even in the situation where there are many waste pieces of dose 920, such a placement condition candidate can increase the possibility of satisfying the constraints.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Measurement Of Radiation (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して少なくとも一つの廃棄体を得る際の前記保管容器への前記廃棄物ピースの収容条件を決定する方法であって、各々の前記廃棄物ピースの保管先の保管容器と該保管容器内における収容位置を規定する複数の配置条件候補のそれぞれについて、前記配置条件候補に従って前記保管容器内に前記廃棄物ピースを配置した場合を仮定し、各々の前記保管容器について前記廃棄体に求められる制約条件を満たす一つ以上の前記配置条件候補を選定するステップと、選定された前記配置条件候補に従って前記複数の廃棄物ピースを収容するために必要な前記保管容器の数である必要保管容器数を算出するステップと、前記必要保管容器数が最小となる前記配置条件候補を特定するステップと、を備えることを特徴とする。

Description

放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体
 本開示は、放射性廃棄物を切断して得られる廃棄物ピースを効率よく保管容器に収容するための方法および当該方法により製造される廃棄体に関する。
 原子力施設等から排出される放射性廃棄物は、完全密閉した状態で永久保管される。そのため年々保管する放射性廃棄物は増加する一方であり、保管費用も増加している。こうした状況の下で、発生する放射性廃棄物はできるだけ減容化するのが望ましい。
 特許文献1には、原子炉容器内に設けられた制御棒クラスタ案内管を安全に回収可能とするために、制御棒クラスタ案内管を複数に分割し、各分割体を個別の保管容器に収容するための切断減容装置が開示されている。また、特許文献2には、放射性廃棄物を収容したカートリッジに薄板状のボードを載せ、その上から圧縮装置にて押圧し、その状態を維持しながら次の放射性廃棄物を収容し、さらに上から押圧する処理を順次繰り返し、最上部を蓋で固定して収容する減容処理が開示されている。また、特許文献3には、放射性廃棄物を破砕し、破砕物を充填した収容袋を真空引きして圧縮する減容処理装置が開示されている。
特開2014-098596号公報 特開2000-065990号公報 特開2011-080873号公報
 しかしながら、特許文献1記載の収容方法においては、制御棒クラスタ案内管を分割して成る複数の分割体を、保管容器の充填率を向上させる工夫をしておらず、保管容器の収容スペースを有効活用できていない。そのため、特許文献1記載の収容方法においては、保管容器の必要個数が無駄に多くなるという問題点がある。言い換えると、特許文献1記載の発明においては、放射性廃棄物を切断減容処理して得られる廃棄物ピースを一つ以上の保管容器に保管して廃棄体を製造する際、製造される廃棄体を低減できない。その結果、特許文献1記載の発明においては、製造される廃棄体の個数が無駄に多くなり、最終処分まで廃棄体を保管する保管用建屋のスペースが有効活用されない。また、製造される廃棄体の個数が無駄に多いと、廃棄体を保管用建屋に移送するコストも嵩むこととなる。
 また、特許文献2記載の切断減容法は、保管容器の容積に合わせて(保管容器の容積と比べて大きすぎたり小さすぎたりしないように)放射性廃棄物を切り出さなくてはならないため、切り出し方に著しい制約が課され、融通が利かない。また、炉心構造物のように放射性レベルが極めて高い放射性廃棄物は、放射能汚染拡散防止の観点から(例えば粉状に)細かく破砕するのに適さないので、特許文献3記載の切断減容法によって処理することは困難である。
 上記問題点に鑑み、本発明の少なくとも一実施形態の目的は、複数の廃棄物ピースを保管容器に効率的に収容することにより、廃棄体毎に求められる物理的な制約条件を満たしながら保管容器の必要数を低減する容器収容条件決定方法、当該容器収容条件決定方法に従って当該複数の廃棄物ピースを保管容器に収容する収容方法および当該方法により得られる廃棄体を得ることである。
 (1)本発明の少なくとも一実施形態では、放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して少なくとも一つの廃棄体を得る際の前記保管容器への前記廃棄物ピースの収容条件を決定する容器収容条件決定方法は、各々の前記廃棄物ピースの保管先の保管容器と該保管容器内における収容位置を規定する複数の配置条件候補のそれぞれについて、前記配置条件候補に従って前記保管容器内に前記廃棄物ピースを配置した場合を仮定し、各々の前記保管容器について前記廃棄体に求められる制約条件を満たす一つ以上の前記配置条件候補を選定するステップと、選定された前記配置条件候補に従って前記複数の廃棄物ピースを収容するために必要な前記保管容器の数である必要保管容器数を算出するステップと、前記必要保管容器数が最小となる前記配置条件候補を特定するステップと、を備える構成を採る。
 このように本発明の少なくとも一実施形態では、各廃棄物ピースの保管先となる保管容器と該保管容器内における収容位置が配置条件候補により規定される。そして、本発明の少なくとも一実施形態では、複数の配置条件候補の中から制約条件を満たす一つ以上の配置条件候補を選定し、該選定された配置条件候補の中から、複数の廃棄物ピースを収容するために必要な保管容器の数を低減可能な配置条件候補が保管容器への廃棄物ピースの収容条件として決定される。こうして得られた廃棄物ピースの収容条件は、複数の配置条件候補のうち、個々の廃棄体の制約条件を満たし、且つ、必要保管容器数が最小となる条件である。
 よって、本発明の少なくとも一実施形態によれば、複数の廃棄物ピースを保管容器に効率的に収容することができ、廃棄体毎に求められる物理的な制約条件を満たしながら保管容器の必要数を低減可能である。
 (2)また、本発明の幾つかの実施形態では、上記(1)の方法において、前記放射性廃棄物の複数の切断条件の各々について、前記配置条件候補を選定するステップおよび前記必要保管容器数を算出するステップを行い、前記必要保管容器数が最小となる前記切断条件および前記配置条件候補の組み合わせを特定することを特徴とする。
 このように、上記(2)の構成によれば、放射性廃棄物を切断して複数の廃棄物ピースを得る際の様々な切断の仕方を複数の切断条件として規定し、複数の切断条件のそれぞれについて廃棄物ピースを保管容器に収容して得られる廃棄体の数を低減可能な収容条件を算出することができる。その結果、上記(2)の構成においては、廃棄物ピースを保管容器に効率的に収容することにより廃棄体の数を低減可能な収容条件として、最も効率的な切断条件と配置条件の組み合わせを特定することができる。
 (3)また、本発明の幾つかの実施形態では、上記(1)または(2)の方法において、前記放射性廃棄物の放射線量分布を取得するステップをさらに備え、前記配置条件候補を選定するステップでは、前記放射線量分布に基づいて、前記廃棄体の表面線量率が閾値以下になることを少なくとも規定する前記制約条件を満たす前記配置条件候補を選定することを特徴とする。
 廃棄体を廃棄又は保管する際の安全性や効率性を確保することが必要な場合もあり得るので、上記(3)の方法は、そのような場合に有益である。つまり、上記(3)の方法によれば、放射性廃棄物の放射線量分布に基づいて廃棄体毎の表面線量率を閾値以下とすることにより、廃棄体を廃棄又は保管する際の安全性や効率性を確保しながら、同時に、保管容器の必要数を低減することができる。
 (4)また、本発明の幾つかの実施形態では、上記(1)または(2)の方法において、各々の前記廃棄物ピースの放射線量を計測するステップをさらに備え、前記配置条件候補を選定するステップでは、各々の前記廃棄物ピースの前記放射線量に基づいて、前記廃棄体の表面線量率が閾値以下になることを少なくとも規定する前記制約条件を満たす前記配置条件候補を選定してもよい。
 廃棄体を廃棄又は保管する際の安全性や効率性を確保することが必要な場合もあり得るので、上記(4)の方法は、そのような場合に有益である。上記(4)の方法によれば、放射性廃棄物の放射線量分布に基づいて廃棄体毎の表面線量率を閾値以下とすることにより、廃棄体を廃棄又は保管する際の安全性や効率性を確保しながら、同時に、保管容器の必要数を低減することができる。
 (5)また、本発明の幾つかの実施形態では、上記(1)~(4)の方法において、前記複数の廃棄物ピースのそれぞれの特性を示す特性記述情報をデータベースに保存するステップをさらに備え、前記配置条件候補を選定するステップでは、前記データベースに保存された前記特性記述情報に基づいて、前記配置条件候補に従って前記保管容器内に前記廃棄物ピースを配置したとき、各々の前記保管容器について前記廃棄体に求められる制約条件を満たすか否かを判定してもよい。
 このように、上記(5)の構成によれば、保管容器内に廃棄物ピースを配置する際の配置の仕方を定める配置条件候補を選定する動作を、各廃棄物ピースの特性を示す特性記述情報に基づいて行うことにより、各廃棄物ピースの特性に応じた形で効率的な減容処理ができる。
 (6)また、本発明の幾つかの実施形態では、上記(5)の方法において、前記特性記述情報は、各々の前記廃棄物ピースの形状、重量又は線量の少なくとも一つを含んでいる。
 このように、上記(6)の構成によれば、廃棄物ピースの形状、重量又は線量を考慮して配置条件候補を選定することができる。
 (7)また、本発明の少なくとも幾つかの実施形態では、上記(1)~(6)の方法において、前記放射性廃棄物を切断して得た複数の分割体を圧縮処理して少なくとも一種類の標準化形状を有する前記複数の廃棄物ピースに成型するステップをさらに備えている。
 このように、上記(7)の構成によれば、放射性廃棄物を切断して得られる複数の廃棄物ピースは、標準化された形状(寸法を含む)を有する廃棄物ピースに成型されてから保管容器に収容される。従って、上記(7)の構成によれば、廃棄物ピースを保管容器に収容して得られる廃棄体の量を低減する収容条件を決定するための計算処理を大幅に簡略化することができる。また、上記(7)の構成においては、標準化形状を適切に設計すれば、廃棄物ピースを可能な限り隙間なく保管容器に詰め込める収容条件を算出することができる。
 (8)また、本発明の少なくとも幾つかの実施形態では、上記(1)~(7)の方法において、前記廃棄体に求められる制約条件は、各々の前記廃棄体の重量、表面線量率又は発熱量の少なくとも一つが許容範囲内に収まるという条件を含む。
 本発明に係る幾つかの実施形態を実施するにあたっては、廃棄体を長期保管する場所に移送する作業における安全性や効率性を確保することが必要な場合もあり得る。そのような場合であっても、上記(8)の構成によれば、放射性廃棄物の放射線量分布に基づいて廃棄体毎の線量率、重量および発熱量の少なくとも一つを許容限度内とすることにより、廃棄体の移送作業における安全性や効率性を確保しながら、同時に、保管容器の必要数を低減することができる。
 (9)また、本発明の少なくとも幾つかの実施形態では、上記(1)~(8)の方法において、前記複数の配置条件候補は、各々の保管容器内において、第1廃棄物ピースを、前記保管容器の中央部に位置する第1領域に収容し、前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースが前記第1廃棄物ピースを取り巻くように、前記第2廃棄物ピースを前記保管容器内において前記第1領域を取り囲む第2領域に収納する、配置条件候補を少なくとも一つ含む。
 上記(9)の方法によれば、低線量の第2廃棄物ピースが高線量の第1廃棄物ピースを取り巻く配置の仕方が配置条件候補として選ばれた場合には、保管容器内に高線量の第1廃棄物ピースが収容されても、その周囲を取り囲む低線量の第2廃棄物ピースが放射線遮蔽物として機能することにより、廃棄体表面に達する放射線量を減らすことができる。従って、複数の配置条件候補の中に上記(9)の方法による廃棄物ピースの配置の仕方を規定する配置条件候補が含まれていれば、利用可能な保管容器が少なく、容器に収容すべき高線量の廃棄物ピースが多い状況であっても、そのような配置条件候補が制約条件を満たす可能性を高めることができる。その結果、従来の収容方法と比較して高い放射線量の廃棄物ピースをより多く収容することが可能となり、保管容器内への廃棄物ピースの充填率を増やすことができるので、従来の収容方法よりも廃棄体の個数を減らすことができる。
 (10)また、本発明の少なくとも幾つかの実施形態では、上記(1)乃至(9)のいずれかの方法により決定された前記収容条件に従って前記保管容器内に前記廃棄物ピースを収容して少なくとも一つの廃棄体を得るステップ、を備えていてもよい。
 これにより、上記(10)の構成によれば、上記(1)~(9)において上述した容器収容条件決定方法を用いることにより、複数の廃棄物ピースを一つ以上の保管容器に収容するための収容方法として本発明に係る実施の形態を実施可能にすることができる。
 (11)本発明の少なくとも一実施形態では、放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して少なくとも一つの廃棄体を得る方法は、第1廃棄物ピースを、前記保管容器の中央部に位置する第1領域に収容するステップと、前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースが前記第1廃棄物ピースを取り巻くように、前記第2廃棄物ピースを前記保管容器内において前記第1領域を取り囲む第2領域に収容するステップと、を備える構成を採る。
 以上のように、本発明の少なくとも一つの実施形態では、前記保管容器の中央部に収容された相対的に高い放射線量を有する廃棄物ピースの周囲が、相対的に低い放射線量を有する廃棄物ピースが放射線遮蔽物として取り巻くように配置される。これにより、低線量の第2廃棄物ピースが高線量の第1廃棄物ピースを取り巻く配置の仕方が配置条件候補として選ばれた場合には、保管容器内に高い放射線量の廃棄物ピースが収容されても、その周囲を取り囲む低い放射線量の廃棄物ピースが放射線遮蔽物として機能することにより、廃棄体表面に達する放射線量を減らすことができる。従って、複数の配置条件候補の中に、上記(11)の方法による廃棄物ピースの配置の仕方を規定する配置条件候補が含まれていれば、利用可能な保管容器が少なく、容器に収容すべき高線量の廃棄物ピースが多い状況であっても、そのような配置条件候補が制約条件を満たす可能性を高めることができる。その結果、従来の収容方法と比較して高い放射線量の廃棄物ピースをより多く収容することが可能となり、保管容器内への廃棄物ピースの充填率を増やすことができるので、従来の収容方法よりも廃棄体の個数を減らすことができる。
 (12)本発明の少なくとも一実施形態では、放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して得られる少なくとも一つの廃棄体は、前記保管容器の中央部に位置する第1領域に収容された第1廃棄物ピースと、前記保管容器内において、前記第1領域を取り囲む第2領域に、前記第1廃棄物ピースを取り巻くように収納され、前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースと、
を備える構成を採る。
 以上のように、上記(12)の実施形態に係る廃棄体は、前記保管容器の中央部に収容された高線量を有する廃棄物ピースの周囲を、低線量を有する廃棄物ピースが放射線遮蔽物として取り巻くように配置される形で生成されたものである。従って、上記(12)の実施形態に係る廃棄体は、従来の収容方法と比較して高い放射線量の廃棄物ピースを保管容器内により高い充填率でより多く収容することが可能な廃棄体とすることができる。また、上記(12)の実施形態に係る廃棄体は、保管容器内において、高線量の廃棄物ピースの周囲を取り囲む低線量の廃棄物ピースが放射線遮蔽物として機能する。それにより、上記(12)の実施形態に係る廃棄体は、高い放射線量の廃棄物ピースが収容されていても、廃棄体の表面における表面線量率や発熱量を有効に低減することができ、廃棄体の廃棄作業や保管作業を容易にすることができる。
 以上より、本発明の少なくとも一つの実施形態によれば、複数の廃棄物ピースを保管容器に効率的に収容することにより、廃棄体毎に求められる物理的な制約条件を満たしながら保管容器の必要数を低減することができる。
本発明の一実施形態に係る放射性廃棄物の処理方法の全体フローを示す図である。 本発明の一実施形態に係る複数の配置条件候補の第1の例を示す図である。 本発明の一実施形態に係る複数の配置条件候補の第2の例を示す図である。 本発明の一実施形態において、切断条件および配置条件候補の組と、制約条件の充足性および保管容器の必要個数との間の対応関係を示す図である。 本発明の一実施形態に係る放射性廃棄物の切断条件の一例を示す図である。 本発明の一実施形態に係るコンピュータ・システムを示す図である。 本発明の一実施形態に係る一連の処理動作の流れを示すフローチャートである。 本発明に係る一変形実施例における放射性廃棄物処理の全体フローを示す図である。 本発明の一実施形態において、廃棄物ピースを標準化形状に成形する処理を示す図である。 本実施形態に係るコンピュータ・システムを示す図である。 本実施形態に係る一連の処理動作の流れを示すフローチャートである。 本実施形態において、廃棄物ピースを保管容器に収容した様子を示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態に係る放射性廃棄物の処理方法の全体フローを示す図である。図1に示すように、幾つかの実施形態では、放射性廃棄物9を少なくとも切断して得られる複数の廃棄物ピース900の少なくとも一つの保管容器91(91A~91C)への収容条件を決定し、該収容条件に従って廃棄物ピース900を保管容器91(91A~91C)に収容し、廃棄体950(950A~950C)を得る。
 なお、図1に示す例示的な実施形態では、放射性廃棄物9は、原子炉容器1内における炉内構造物9aとして例示されているが、他の実施形態では、放射性廃棄物9は、炉内構造物以外の原子炉容器、蒸気発生器、配管等としてもよい。さらに別の実施形態では、放射性廃棄物9は、原子力関連施設から排出される低レベル放射性廃棄物であってもよい。
 以下、図2~図4を参照しながら「配置条件候補」及び「制約条件」について説明し、続いて、図4を参照して保管容器91への廃棄物ピース900の収容条件の決定方法について詳述する。
 ここで、図2及び図3は、それぞれ、図1に示す廃棄物処理方法で使用する複数の配置条件候補の例を示す図である。また、図4は、本発明の一実施形態において、配置条件候補の組と制約条件の充足性および保管容器91の必要個数との間の対応関係を示す図である。
 図2及び図3に示すように、各々の廃棄物ピース900を何れの保管容器91(91A~91C)の中の何れの位置に収容するかについて、様々なパターンが存在する。配置条件候補は、このパターンを特定する条件である。すなわち、配置条件候補とは、各々の廃棄物ピース900の保管先の保管容器91(91A~91C)と該保管容器91(91A~91C)内における収容位置を規定する条件である。
 一般的に、廃棄物ピース900の形状(寸法を含む)は、不均一でランダムな3次元形状となる。しかし、図2および図3においては、説明を分かりやすく簡単にするため、各廃棄物ピース900は単純な2次元形状で表し、長方形の2次元領域で表される箱型容器内の空間に2次元的に収容する模式的な例を示す。図2に示す例と図3に示す例とでは、廃棄物ピース900の形状も互いに異なっている。また、図2および図3に示す例においては、容器内の廃棄物ピース900の具体的な収容位置は、最初の3つの保管容器91-1~91-3についてのみ図示され、4番目以降の保管容器91における具体的な収容位置は省略してある。なお、複数の廃棄物ピース900を一つ以上の保管容器91に収容する際の収容の仕方を定める配置条件としては、図2および図3に示した配置条件以外の他の任意の配置条件を使用することもできる。
 制約条件とは、廃棄体950全体として満たさなければならない廃棄体950の特性に関する制約を意味する。一実施形態では、当該制約条件は、各々の廃棄体950の重量、表面線量率又は発熱量の少なくとも一つが許容範囲内に収まるという条件を含む。さらに別の一実施形態では、当該制約条件は、各々の廃棄体950の重量、表面線量率および発熱量の全てが許容範囲内に収まるという条件を含む。
 幾つかの実施形態では、図4に示すように、N個の配置条件候補A(1≦i≦N;ただし、Nは2以上の整数)の各々に従って保管容器91内に廃棄物ピース900を配置した場合を仮定し、各々の保管容器91(91A~91C)について廃棄体に求められる制約条件を満たすか否かを判断する。そして、i個の配置条件候補の中から、各々の保管容器91(91A~91C)について廃棄体に求められる制約条件を満たす一つ以上の配置条件候補を選定する。
 なお、図4には、例示的な実施形態として、A、A、A、A、Aの配置条件候補が制約条件を満たす条件として選定される場合を示している。
 幾つかの実施形態では、配置条件候補を選定するに際して、放射性廃棄物9の放射線量分布に基づいて、廃棄体950(950A~950C)の表面線量率が閾値以下になることを少なくとも規定する制約条件を満たすj個(1≦j≦N)の配置条件候補を選定する。
 これにより、廃棄体950(950A~950C)の移送作業における安全性や効率性を確保しながら、同時に、保管容器91(91A~91C)の必要数を低減することができる。
 なお、放射性廃棄物9の放射線量分布の取得方法は特に限定されず、例えば、放射性廃棄物9の放射線量分布を複数の計測点において計測した結果から放射線量分布を取得してもよいし、放射性廃棄物9の過去の放射線被ばく履歴に基づいて放射線量分布を推定してもよい。
 制約条件を満たすj個の配置条件候補A’を選定したら、続けて、各々の配置条件候補A’(1≦j≦N)に従って複数の廃棄物ピース900を収容するために必要な保管容器数(必要保管容器数)Xを算出する。必要保管容器数Xは、制約条件を満たす配置条件候補の各々について算出される。
 制約条件を満たす配置条件候補毎に必要保管容器数Xを算出した後、必要保管容器数Xが最小となる配置条件候補を特定する。
 こうして得られた配置条件候補は、検討したi個の配置条件候補Aのうち、制約条件を満たし、且つ、必要保管容器数Xが最小の条件である。よって、以上説明した方法によれば、複数の廃棄物ピース900を保管容器91に効率的に収容することができ、廃棄体毎に求められる物理的な制約条件を満たしながら保管容器91の必要数である必要保管容器数Xを低減可能である。
 上述した収容条件決定方法において、必要保管容器数Xの減少に寄与し得る放射性廃棄物9の複数の切断条件を選定してもよい。以下、図5を参照しながら、放射性廃棄物を切断して複数の廃棄物ピース900を得る際の切断の仕方を定める切断方法の一例を説明する。一実施形態においては、放射性廃棄物内の高線量部分を細かい間隔で(細かい粒度で)切断し、放射性廃棄物内の低線量部分を大きい間隔で(粗い粒度で)切断するような切断条件を設定しても良い。そのような切断条件の一例として、図5は、原子炉1の炉内構造物9aを切断して高い放射線量を有する複数の廃棄物ピース900(例えば、900A~900E)を得るための例示的な切断条件を図示する。
 図5に示す高線量領域90は、炉内において放射線量が特に高い部分を示し、炉内構造物9a内の他の部分よりも細かい粒度で切断されるように切断条件が設定されている(例えば、900A~900Cは、900Dおよび900Eよりも粒度が大きい)。これにより、高線量領域90から切り出した高線量の廃棄物ピース900(例えば、図5の900Dおよび900E)の量を少しずつ微調整しながら各保管容器91に収容可能となるので、保管容器91毎の表面線量率を許容範囲内に収めることが容易となる。なお、放射性廃棄物を切断して複数の廃棄物ピース900を得る際の切断条件としては、図5に示した切断条件B以外の他の任意の切断条件を使用することもできる。
 幾つかの実施形態では、放射性廃棄物9の複数の廃棄物ピース900(900A~900E)への切断パターンを指定するM個の切断条件B(1≦k≦M;ただしMは2以上の整数)を複数仮定し、複数の切断条件Bの各々について、配置条件候補Aを選定するステップおよび必要保管容器数Xを算出するステップを行い、必要保管容器数Xが最小となる切断条件Bおよび配置条件候補Aの組み合わせを特定することを特徴とする。
 例えば、図4に示す例示的な実施形態では、放射性廃棄物9を切断条件Bで切断した場合の配置条件候補の中でAおよびAの配置条件候補が制約条件を満たす条件として選定されており、配置条件候補AおよびAに対応する必要保管容器数Xは、それぞれ5個と4個である。同様に、放射性廃棄物9を切断条件B切断した場合の配置条件候補の中でAおよびAの配置条件候補が制約条件を満たす条件として選定されており、配置条件候補AおよびAに対応する必要保管容器数Xは、それぞれ6個と5個である。同様に、放射性廃棄物9を切断条件Bで切断した場合の配置条件候補の中でAの配置条件候補が制約条件を満たす条件として選定されており、配置条件候補Aに対応する必要保管容器数Xは6個である。従って、図4に示す例示的な実施形態では、必要保管容器数Xが最小となる切断条件Bおよび配置条件候補Aの組み合わせとして、配置条件候補Aおよび切断条件Bの組み合わせが特定される。
 このように、図5を用いて上述した方法によれば、放射性廃棄物9を切断して複数の廃棄物ピース900を得る際の様々な切断の仕方を複数の切断条件Bとして規定し、複数の切断条件のそれぞれについて廃棄物ピース900を保管容器91に収容して得られる廃棄体950の数を低減可能な収容条件を算出することができる。その結果、図5を用いて上述した方法によれば、廃棄物ピース900を保管容器91に効率的に収容することにより廃棄体950の数を低減可能な収容条件として、最も効率的な切断条件Bと配置条件Aの組み合わせを特定することができる。
 幾つかの実施形態では、上記容器収容条件決定方法は、放射性廃棄物9の放射線量分布を取得するステップをさらに備え、配置条件候補A’を選定するステップでは、当該取得した放射線量分布に基づいて、廃棄体950(950A~950C)の表面線量率が閾値以下になることを少なくとも規定する制約条件を満たす配置条件候補A’を選定してもよい。
 廃棄体950(950A~950C)を廃棄又は保管する際の安全性や効率性を確保することが必要な場合もあり得るので、上記の方法は、そのような場合に有益である。つまり、上記の方法によれば、放射性廃棄物9の放射線量分布に基づいて廃棄体950毎の表面線量率を閾値以下とすることにより、廃棄体950を廃棄又は保管する際の安全性や効率性を確保しながら、同時に、保管容器の必要数である必要保管容器数Xを低減することができる。
 幾つかの実施形態では、上記容器収容条件決定方法は、放射性廃棄物9の放射線量分布を計測するステップをさらに備え、配置条件候補A’を選定するステップでは、当該計測した放射線量分布に基づいて、廃棄体950(950A~950C)の表面線量率が閾値以下になることを少なくとも規定する制約条件を満たす配置条件候補A’を選定してもよい。
 廃棄体950(950A~950C)を廃棄又は保管する際の安全性や効率性を確保することが必要な場合もあり得るので、上記の方法は、そのような場合に有益である。つまり、上記の方法によれば、放射性廃棄物9の放射線量分布に基づいて廃棄体950毎の表面線量率を閾値以下とすることにより、廃棄体950を廃棄又は保管する際の安全性や効率性を確保しながら、同時に、保管容器の必要数である必要保管容器数Xを低減することができる。
 このように本発明の少なくとも一実施形態では、各廃棄物ピース900の保管先となる保管容器91と該保管容器91内における収容位置が配置条件候補Aにより規定される。そして、本発明の少なくとも一実施形態では、複数の配置条件候補A(1≦i≦N)の中から、複数の廃棄物ピース900を収容するために必要な保管容器91の数である必要保管容器数Xを低減可能な配置条件候補Aが保管容器への廃棄物ピースの収容条件として決定される。従って、本発明の少なくとも一実施形態によれば、複数の廃棄物ピース900を少なくとも一つの保管容器91に収容して少なくとも一つの廃棄体950を得る際に、廃棄体950の量を低減可能な収容条件を算出することができる。
 一実施形態においては、放射線量分布に基づいて、廃棄体950の表面線量率が閾値以下になることを少なくとも規定する制約条件を満たす配置条件候補Aを選定する際に、以下のように選定してもよい。
 例えば、放射性廃棄物9を複数の切断条件B(1≦k≦M;ただしMは2以上の整数)で切断した場合の各々について、廃棄物ピース900毎の放射線量の情報を得る。その際、廃棄物ピース900毎の放射線量情報を、対応する切断条件Bと対応付ける形で管理する。こうして、特定の切断条件Bで切断された複数の廃棄物ピース900を特定の配置条件候補A’に従って保管容器91に収容したと仮定した場合、廃棄物ピース900毎の放射線量情報を当該複数の廃棄物ピース900にわたって合成することにより廃棄体950の表面線量率が得られる。その上で、廃棄体950の表面線量率が閾値以下であるか否かを判定することにより、配置条件候補A’が上記制約条件を満たすか否かが判定される。
 一実施形態においては、上述した容器収容条件決定方法は、任意のコンピュータ・システムにおいて実行される任意のコンピュータ・プログラムを使用して実施されてもよい。例えば、一実施形態においては、上述した容器収容条件決定方法は、図6に示すコンピュータ・システム10において実行されるコンピュータ・プログラム124を使用して実施されてもよい。
 コンピュータ・システム10は、ローカルエリア・ネットワーク230aによって相互に通信可能に接続されるコンピュータ100a、データベース210aおよび制御用コンソール220aを備える。コンピュータ100aは、制御用コンソール220aからの指令に応じて、コンピュータ・プログラム124を実行する。データベース210aは、一つ以上の廃棄体950の各々を、各廃棄体950に付けられたタグの識別情報によって識別すると共に、廃棄体950毎の物理特性条件を記述する特性記述情報を各廃棄体950に対応付けて記憶している。制御用コンソール220aは、コンピュータ100a上のコンピュータ・プログラム124に対してシステム利用者が指令や情報を与え、コンピュータ・プログラム124の出力を画面表示する端末として機能してもよい。
 コンピュータ100aは、CPU 110a、主記憶120aおよびインターフェース130aにより構成される。CPU 110aは、主記憶120a上に記憶されたコンピュータ・プログラム124を読み出して実行する。主記憶120aは、複数の(N個の)切断条件121k(1≦k≦N)と複数の(M個の)配置条件候補122i(1≦i≦M)に関する情報を記憶する。また、主記憶120aは、上記以外の他の情報を表すデータを一時記憶領域123a内に記憶する。インターフェース130aは、CPU 110a、主記憶120aおよびローカルエリア・ネットワーク230aの間でデータや制御信号をやり取りするための通信経路を提供する。コンピュータ・プログラム124を構成する複数のプログラム・モジュールまたは関数は、主記憶120aからCPU 110aによって読み出され、機能モジュール111a~118aとして実行されてもよい。
 入出力および主制御部111aは、上述した機能モジュール112a~118aが、主記憶120a、データベース210aおよび制御用コンソール220aとの間でデータや制御指令などをやり取りするための入出力部として機能する。また、入出力および主制御部111aは、上述した機能モジュール112a~118aによって実行される一連の処理動作の全体フローを制御する役割を有する。例えば、上述した機能モジュール112a~118aによって実行される一連の処理動作は、全ての廃棄物ピースを収容した際に保管容器の必要個数が最小となる切断条件と配置条件候補の組み合わせが見つかるまでループ制御によって繰り返し実行されなくてはならない。そこで、入出力および主制御部111aは、上記ループ制御によって制御される反復実行回数分だけ上述した機能モジュール112a~118aを繰り返し呼び出して実行する。
 配置条件候補生成部113aは、各々の廃棄物ピース900の保管先の保管容器91と保管容器91内における収容位置を規定する複数の配置条件候補122i(1≦i≦M)のそれぞれを生成する。続いて、配置条件候補生成部113aが生成した複数の配置条件候補122i(1≦i≦M)を受け取った配置条件候補選定部114aは、複数の配置条件候補122i(1≦i≦M)に従って保管容器91内に前記廃棄物ピース900を配置した場合を仮定し、各々の保管容器91について廃棄体に求められる制約条件を満たす一つ以上の配置条件候補122j(1≦j≦M)を選定する。
 選定した一つ以上の配置条件候補122j(1≦j≦M)を受け取った必要保管容器数算出部115aは、選定された配置条件候補122j(1≦j≦M)に従って複数の廃棄物ピース900を収容するために必要な保管容器91の数である必要保管容器数Xを算出する。複数の配置条件候補122j(1≦j≦M)と配置条件毎に算出した必要保管容器数Xを必要保管容器数算出部115aから受け取った最適配置条件候補特定部116aは、必要保管容器数Xが最小となる配置条件候補122(0)を特定し、入出力および主制御部111aに出力する。
 少なくとも一実施形態においては、機能モジュール113a~118aによって実行される上記処理は、放射性廃棄物の複数の切断条件121k(1≦k≦N)の各々について実行されてもよい。そのような実施形態では、切断条件取得部112aは、複数の切断条件121k(1≦k≦N)を取得し、取得した複数の切断条件121k(1≦k≦N)を主記憶120aに格納する。続いて、配置条件候補122j(1≦j≦M)を選定する処理および必要保管容器数Xを算出する処理が、切断条件取得部112aによって取得され、主記憶120aに格納された複数の切断条件121k(1≦k≦N)の各々について繰り返し実行される。その結果、最適配置条件候補特定部116aは、必要保管容器数Xが最小となる切断条件121k(1≦k≦N)および配置条件候補122j(1≦j≦M)の組み合わせを特定する。
 少なくとも一実施形態においては、切断条件取得部112aは、放射性廃棄物9の放射線量分布の計測結果に基づいて、複数の廃棄物ピース900のそれぞれの特性を示す特性記述情報を取得し、データベース210aに保存してもよい。また、少なくとも一実施形態においては、配置条件候補122j(1≦j≦M)を選定する処理では、以下の動作を実行しても良い。まず、特性記述情報取得部118aに指示してデータベース210aに保存された特性記述情報を取得させる。続いて、取得させた特性記述情報に基づいて、配置条件候補122j(1≦j≦M)に従って保管容器91内に廃棄物ピース900を配置した場合に、各々の保管容器91について廃棄体950毎に求められる制約条件を満たすか否かが配置条件候補選定部114aによって判定される。
 以下、図6に示す機能モジュール111a~118aによって実行される一連の処理動作の流れを図7のフローチャートに沿って説明する。図7のフローチャートは、入出力および主制御部111aによって放射線量分布取得部117aを呼び出すことによってステップS801から開始する。放射線量分布取得部117aは、複数の廃棄物ピース900に切断する前の放射性廃棄物に関する放射線量分布計測データから取得し、主記憶120aを介して当該放射線量分布計測データを切断条件取得部112aに渡す。
 続いて、切断条件取得部112aは、当該放射線量分布計測データを参照しながら放射性廃棄物の複数の切断条件121k(1≦k≦N)を取得し、取得した複数の切断条件121k(1≦k≦N)を主記憶120aに格納する。配置条件候補生成部113aは、複数の切断条件121k(1≦k≦N)を主記憶120aから読み出すと、ステップS802において、複数の切断条件121k(1≦k≦N)に含まれる未選択の切断条件121’を一つ選択する。続いて、ステップS803において、配置条件候補生成部113aは、当該選択された切断条件121’に基づいて一つの配置条件候補122jを生成して主記憶120aに格納する。
 続いて、ステップS804において、配置条件候補選定部114aは、主記憶120aから配置条件候補122jを読み出し、配置条件候補生成部113aから得た廃棄物ピース毎の特性記述情報を使用して、配置条件候補122jが廃棄体毎に求められる制約条件を満たすか否かを判定する。続いて、ステップS805において、配置条件候補122jが所定の制約条件を満たすと配置条件候補選定部114aが判定した場合には、処理は図7のステップS806に進み、満たさないと判定した場合には、処理は図7のステップS807に進む。なお、ステップS805において、配置条件候補選定部114aは、上記制約条件を満たす配置条件候補として、図12を参照して以下のとおりに後述するような配置条件候補を選定してもよい。具体的には、配置条件候補選定部114aは、上記制約条件を満たす配置条件候補として、保管容器91内において中央部に配置した高線量の廃棄物ピース920(図12)の周りを低線量の廃棄物ピース930(図12)が取り巻くような配置条件候補を選定してもよい。
 図7のステップS806において、必要保管容器数算出部115aは、配置条件候補選定部114aが上記制約条件を満たす候補であると判断した配置条件候補122jを受け取ると、配置条件候補122jについて必要保管容器数Xを算出する。必要保管容器数Xとは、個々の配置条件候補に従って複数の廃棄物ピース900の全てを一つ以上の保管容器91に収容する際に必要となる保管容器91の個数を予想した値である。必要保管容器数算出部115aが必要保管容器数Xを算出すると、処理は図7のステップS807に進む。
 図7のステップS807においては、配置条件候補生成部113aは、現在選択されている切断条件121’に従って放射性廃棄物を切断して得られる複数の廃棄物ピース900から別の配置条件候補を生成可能であるか否かを判定する。別の配置条件候補を生成可能であるならば、処理は図7のステップS803に戻り、配置条件候補生成部113aは、現在選択されている切断条件121’に従って放射性廃棄物を切断して得られる複数の廃棄物ピース900から別の配置条件候補を一つ生成する。ステップS807において、現在選択されている切断条件121’に従って得られる複数の廃棄物ピース900から別の配置条件候補をこれ以上生成できないと配置条件候補生成部113aが判定したならば、処理は図7のステップS808に進む。
 図7のステップS808において、切断条件取得部112aは、主記憶120a上に記憶された複数の切断条件121k(1≦k≦N)の中で図7のステップS802~S807までの処理のために選択されていない未選択の切断条件が残っているかを判定する。未選択の切断条件が残っているならば、処理はステップS802に戻り、切断条件取得部112aは、主記憶120上に記憶された複数の切断条件121k(1≦k≦N)の中から未選択の切断条件を新たに選びなおす。複数の切断条件121k(1≦k≦N)の中に未選択の切断条件が残っていないならば、処理はステップS809に進む。
 ステップS809において、最適配置条件候補特定部116aは、複数の配置条件候補と配置条件毎に算出した必要保管容器数Xを複数の切断条件121k(1≦k≦N)の全てについて必要保管容器数算出部115aから受け取る。続いて、最適配置条件候補特定部116aは、複数の切断候補121k(1≦k≦N)の各々について配置条件候補毎に算出された必要保管容器数Xの中から、保管容器91の必要個数が最小となる効率的な配置条件候補と切断候補の組を特定する。最後に、最適配置条件候補特定部116aは、当該特定した最適な配置条件候補と切断候補の組を入出力および主制御部111aに出力する。
 次に、本明細書に記載された一つ以上の実施形態を部分的に修正して実施するための変形例について図8を参照しながら以下のとおりに説明する。例えば、図5を使用して上述したとおり、同じ放射性廃棄物9の中でも廃棄物ピース900を切り出す場所(図5に示す高線量領域90とそれ以外の領域)によっては、廃棄物ピース毎の放射線レベルに差異があり得る。
 そこで、図8に示す実施形態においては、所定の切断条件に従って炉内から切り出され、原子力発電プラント93から排出されるそのような複数の廃棄物ピース910を、線量に応じて分別するようにしてもよい。例えば、例示的な一実施形態においては、複数の廃棄物ピース910は、分別装置94により高線量のピース(図8のG1)、中線量のピース(図8のG2)および低線量のピース(図8のG3)に分別される。続いて、本変形実施例では、廃棄体毎の廃棄物ピースの充填率を増やし、廃棄体の個数を減らすことを目的として、線量に応じて分別された廃棄物ピース910に対して適切な成形処理を行う。続いて、本変形実施例では、保管容器の必要数を低減可能な配置条件が決定され、当該決定された配置条件に従って一つ以上の保管容器91の中に全ての廃棄物ピース910を収容して一つ以上の廃棄体960(960A~960C)を生成し、保管用建屋92に保管する。
 図9に示す例示的な実施形態では、放射性廃棄物9を切断して得られた複数の分割体940を圧縮成形処理することにより標準化された形状(寸法を含む)に成型して成る複数の廃棄物ピースを得てから、好適な配置条件に従って一つ以上の保管容器91の中に複数の廃棄物ピース910を収容してもよい。以下においては、廃棄物ピースの当該標準化された形状(寸法を含む)を標準化形状と呼ぶ。
 例示的な一実施形態において、標準化形状の一例を示すと、保管容器91内における収容スペース断面の長辺の長さ、短辺の長さ、及び深さをそれぞれ適当な整数で割り、端数を切り捨てた寸法を縦・横・高さの寸法とし、当該寸法を有する形状を標準化形状としてもよい。また、標準化形状の決定方法の一例として、廃棄物ピース910の縦・横・高さの寸法が、保管容器91内における収容スペース断面の長辺の長さ、短辺の長さ、及び深さをそれぞれ適当な整数で割り、端数を切り捨てた寸法となるように廃棄物ピース910を圧縮成形してもよい。より具体的には、保管容器91内における収容スペース断面の長辺の長さ、短辺の長さ、及び深さをそれぞれLx、LyおよびLzとすると、適切な整数α、βおよびγを使用して、標準化形状の縦・横・高さの寸法lx、lyおよびlzを以下の式に従って算出しても良い。
Figure JPOXMLDOC01-appb-M000001
 例示的な一実施形態においては、上述した圧縮成形処理は、放射性廃棄物9から切り出された複数の分割体940に対する切断処理、圧縮処理、溶解処理またはこれらの処理を組み合わせた処理により実施されても良い。一実施形態においては、放射性廃棄物9は、切断工具で切断される炉内構造物9aを含んでも良い。一実施形態においては、放射性廃棄物を切断して得られた複数の分割体940は、例えば、図8に示す分別装置94などによって放射性レベルに応じて分別されても良い。
 図9において、放射性廃棄物9(図9のS1)は複数の分割体940に切断されて解体され(図9のS2)、当該複数の分割体940は、圧縮成形処理のために使用される圧縮装置が備える板状の押圧部材によって前後、左右および上下から圧縮成形され(図9のS3)、寸法が標準化された立方体形状に成型される(図9のS4)。なお、一実施形態においては、図9を参照しながら上述した圧縮成形処理は、図8に示す廃棄処理手順において、廃棄物ピース910を分別装置94により分別した後に廃棄物ピース910に対して行われる成形処理として実施してもよい。
 また、放射性廃棄物を切断して成る複数の分割体940を、図8に示す変形実施形態のように放射線量に応じて分別し、分別された放射線レベル毎に分割体を圧縮成形する場合には、複数の放射線レベルに各々対応した複数のサイズまたは粒度を有する複数種類の標準化形状を設けることが可能となる。例えば、高い放射線レベルに対応する標準化形状は、小さいサイズまたは細かい粒度に合わせて小さい寸法で設計し、低い放射線レベルに対応する標準化形状は、大きいサイズまたは粗い粒度に合わせて大きい寸法で設計してもよい。例示的な一実施形態では、様々な粒度(サイズ)に対応する様々な縦・横・高さの寸法に成型された標準化形状を有する廃棄物ピース910を得るために、以下のようにしても良い。すなわち、保管容器91内における収容スペース断面の長辺の長さ短辺の長さ及び深さとして上述したLx、LyおよびLzを割るのに使用する上記整数α、βおよびγを所望の粒度に応じて調整する。その上で、上記式(1)に従って標準化形状の縦・横・高さの寸法lx、lyおよびlzを算出する。このようにすると、放射線量が高い廃棄物ピースは小さな寸法の標準化形状を有するので、高線量のピースを一つの保管容器に一度に大量に収容することのないようにすることが可能となる。つまり、放射線量が高い廃棄物ピースは小さな寸法の標準化形状を有するので、高線量の廃棄物ピースの量を少しずつ微調整しながら各保管容器に収容可能となり、保管容器毎の表面線量率を許容範囲内に収めることが容易となる。
 以上より、図9に示す例示的な実施形態によれば、放射性廃棄物を切断して得られる複数の廃棄物ピースを標準化された形状(寸法を含む)を有する廃棄物ピースに成型してから保管容器に収容することができる。従って、この実施形態によれば、廃棄物ピースを保管容器に収容して得られる廃棄体の量を低減可能な収容条件を決定するための計算処理を大幅に簡略化することができ、廃棄物ピースを可能な限り隙間なく保管容器に詰め込める収容条件を算出することができる。その場合、当該算出された収容条件に適合した標準化形状の縦・横・高さの寸法を決定するために、例えば、以下のようにしても良い。すなわち、保管容器91内における収容スペース断面の長辺の長さ、短辺の長さ、及び深さとして上述したLx、LyおよびLzを割るのに使用する上記整数α、βおよびγを所望の粒度に応じて調整する。その上で、上記式(1)に従って標準化形状の縦・横・高さの寸法lx、lyおよびlzを算出する。
 一実施形態においては、図9に示す実施形態は、例えば、図10に示すコンピュータ・システム20において実行されるコンピュータ・プログラム125を使用して実施可能である。以下、図10に示す実施形態に係るシステム構成を説明するために、図10に示す実施形態と図6に示した実施形態との間の相違点のみを説明し、図6に示した実施形態と同様の構成については説明を省略する。
 図10に示すコンピュータ・システム20においては、全ての廃棄物ピース910は、単純な標準化形状に成形されているとして扱われ、複数の切断条件を考慮しなくても、効率的な配置条件候補を決定することが可能である点が図6に示す実施形態とは異なる。また、図10に示す実施形態では、標準化形状に成形された複数の廃棄物ピース910がそれぞれ有する表面線量率、発熱量および重量などは、以下の事前処理において、事前の実測によって得られ、実測値がデータベース210bに記録される。一実施形態においては、この事前処理は、コンピュータ・システム20を使用して効率的な配置条件候補を決定するのに先立って、原子力発電プラント内の作業員が介在する形で実施されてもよい。また、廃棄物ピース毎の特性記述情報は、複数の廃棄物ピース910の各々について上記のように事前に実測された実測値を含み、複数の放射性レベルに応じて2種類以上の標準化形状が定義されている場合には、標準化形状の種別に関する情報も含んでいてもよい。
 以下、図10に示す実施形態の全体の処理の流れについて、図11記載のフローチャートに沿って説明する。図11記載のフローチャートにおいて、ステップS1201~S1206は、上述した事前処理に対応し、放射性廃棄物を切断して得た複数の分割体を圧縮処理して少なくとも一種類の標準化形状を有する前記複数の廃棄物ピースに成型する処理および各々の前記廃棄物ピースの重量、放射線量および発熱量を計測する処理を含む。図11記載のフローチャートにおいて、ステップS1207~S1212は、コンピュータ・システム20を使用して効率的な配置条件候補を決定するためにコンピュータ・プログラム125を構成する機能モジュール113~118が実行する処理に対応する。
 図11のフローチャートの処理はステップS1201から開始し、放射性廃棄物を複数の分割体に切断して解体する。続いて、処理はステップS1202に進み、複数の分割体は、標準化形状となるように成形処理される。複数の分割体が放射性レベルに応じて分別される場合には、複数の分割体は、放射性レベル毎に2種類以上の異なる寸法の標準化形状に合わせて成形処理がされ、複数の廃棄物ピース910が得られてもよい。
 続いて、処理はステップS1203に進み、複数の廃棄物ピース910の各々に対してタグが付される。複数の廃棄物ピース910の各々に対して付されたタグには、各々の廃棄物ピース910を一意に識別するための識別情報が記録されている。続いて、処理はステップS1204に進み、複数の廃棄物ピースの各々について廃棄物ピース毎の重量が実測される。また、標準化形状が2種類以上定義されている場合には、複数の廃棄物ピースの各々がいずれの種類の標準化形状を有するかに関しても判別される。続いて、処理はステップS1205に進み、複数の廃棄物ピースの各々について廃棄物ピース毎の表面線量率や発熱量が実測される。続いて、処理はステップS1206に進み、複数の廃棄物ピースの各々について上記のとおり実測され又は判別された廃棄物ピース毎の重量、標準化形状の種別、表面線量率および発熱量などを表す情報がデータベース210bに記録される。その際、廃棄物ピース毎の重量、標準化形状の種別、表面線量率および発熱量などを表す情報は、複数の廃棄物ピース910の各々に対して付されたタグに記録された廃棄物ピース毎の識別情報と対応付ける形でデータベース210bに記録される。
 続いて、処理はステップS1207以降に進むが、ステップS1207~S1211までの処理は、図7のステップS803~S807と同様であり、ステップS1212での処理は、切断条件を考慮しない点を除けば、図7のステップS809と同様である。なお、ステップS1209において、配置条件候補選定部114bは、上記制約条件を満たす配置条件候補として、図12を参照して以下のとおりに後述するような配置条件候補を選定してもよい。具体的には、配置条件候補選定部114bは、上記制約条件を満たす配置条件候補として、保管容器91内において中央部に配置した高線量の廃棄物ピース910の周りを低線量の廃棄物ピースが取り巻くような配置条件候補を選定してもよい。
 以下、本発明に係る別の実施形態について図12を用いて説明する。この実施形態では、放射性廃棄物9(9a)を少なくとも切断して得られる複数の廃棄物ピース900(920、930)を少なくとも一つの保管容器91に収容して少なくとも一つの廃棄体950を得る際に、第1廃棄物ピース920を、保管容器91の中央部に位置する第1領域に収容し、第1廃棄物ピース920よりも放射線量が低い第2廃棄物ピース930が第1廃棄物ピース920を取り巻くように、第2廃棄物ピース930を保管容器91内において第1領域を取り囲む第2領域に収納してもよい。
 これにより、保管容器91内において高線量の廃棄物ピース920の周囲を低線量の廃棄物ピース930で取り囲むような配置の仕方(図12)を規定する配置条件候補が選ばれた場合、保管容器91内に高い放射線量の廃棄物ピース920が収容されても、その周囲を取り囲む低線量の廃棄物ピース930が放射線遮蔽物として機能することにより、廃棄体950表面に達する放射線量を減らすことができる。従って、複数の配置条件候補122i(1≦i≦M)の中に図12に示すような廃棄物ピースの配置の仕方を規定する候補が含まれていれば、利用可能な保管容器91が少なく、容器91に収容すべき高線量の廃棄物ピース920が多い状況であっても、そのような配置条件候補が制約条件を満たす可能性を高めることができる。その結果、従来の収容方法と比較して、利用可能な保管容器の個数が限られていても、高い放射線量の廃棄物ピース920をより多く保管容器91内に収容することが可能となる。従って、保管容器91内への廃棄物ピース900の充填率を増やすことができるので、従来の収容方法よりも廃棄体950の個数を減らすことができる。
 また、図1乃至図11を参照して上述した実施形態に係る容器収容条件決定方法において、複数の配置条件候補122i(1≦i≦M)は、各々の保管容器91内において、第1廃棄物ピース920を、保管容器91の中央部に位置する第1領域に収容し、第1廃棄物ピース920よりも放射線量が低い第2廃棄物ピース930が第1廃棄物ピース920を取り巻くように、第2廃棄物ピース930を保管容器91内において第1領域を取り囲む第2領域に収納する、配置条件候補を少なくとも一つ含むようにしてもよい。例えば、図7のステップS803および図11のステップS1207において、配置条件候補生成部113aおよび113bは、複数の配置条件候補122i(1≦i≦M)の中の少なくとも一つとして、図12を参照しながら上述した廃棄物ピース920と930の配置の仕方を規定する配置条件候補を含めてもよい。
 保管容器91内において高線量の廃棄物ピース920の周囲を低線量の廃棄物ピース930で取り囲むような配置の仕方(図12)を規定する配置条件候補が選ばれた場合、保管容器91内に高線量の廃棄物ピース920が収容されても、その周囲を取り囲む低い放射線量の廃棄物ピース930が放射線遮蔽物として機能することにより、廃棄体950表面に達する放射線量を減らすことができる。従って、複数の配置条件候補の中に図12に示すような廃棄物ピースの配置の仕方を規定する候補が含まれていれば、利用可能な保管容器91が少なく、容器91に収容すべき高線量の廃棄物ピース920が多い状況であっても、そのような配置条件候補が制約条件を満たす可能性を高めることができる。その結果、従来の収容方法と比較して、利用可能な保管容器の個数が限られていても、高い放射線量の廃棄物ピース920をより多く保管容器91内に収容することが可能となる。従って、保管容器91内への廃棄物ピース900の充填率を増やすことができるので、従来の収容方法よりも廃棄体950の個数を減らすことができる。
 1               原子炉
 9               放射性廃棄物
 9a              炉内構造物
 10、20           コンピュータ・システム
 90              高線量部分
 91、91A、91B、91C  保管容器
 92              保管用建屋
 93              原子力発電プラント
 94              分別装置
 100a、100b       コンピュータ
 110a、110b       CPU
 111a、111b       入出力および主制御部
 112a、112b       切断条件取得部
 113a、113b       配置条件候補生成部
 114a、114b       配置条件候補選定部
 115a、115b       必要保管容器数算出部
 116a、116b       最適配置条件候補特定部
 120a、120b       主記憶
 121(121k(1≦k≦N)、121’) 切断条件
 122(122i(1≦i≦M)、122j(1≦i≦M)) 配置条件候補
 123a、123b       一時記憶領域
 124、125         コンピュータ・プログラム
 130a、130b       インターフェース
 210a、210b       データベース
 220a、220b       制御用コンソール
 900(900A、900B、900C、900D、900E) 廃棄物ピース
 910、920、930 廃棄物ピース
 940             分割体
 950、960         廃棄体
 

Claims (12)

  1.  放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して少なくとも一つの廃棄体を得る際の前記保管容器への前記廃棄物ピースの収容条件を決定する方法であって、
     各々の前記廃棄物ピースの保管先の保管容器と該保管容器内における収容位置を規定する複数の配置条件候補のそれぞれについて、前記配置条件候補に従って前記保管容器内に前記廃棄物ピースを配置した場合を仮定し、各々の前記保管容器について前記廃棄体に求められる制約条件を満たす一つ以上の前記配置条件候補を選定するステップと、
     選定された前記配置条件候補に従って前記複数の廃棄物ピースを収容するために必要な前記保管容器の数である必要保管容器数を算出するステップと、
     前記必要保管容器数が最小となる前記配置条件候補を特定するステップと、
    を備えることを特徴とする放射性廃棄物の容器収容条件決定方法。
  2.  前記放射性廃棄物の複数の切断条件の各々について、前記配置条件候補を選定するステップおよび前記必要保管容器数を算出するステップを行い、
     前記必要保管容器数が最小となる前記切断条件および前記配置条件候補の組み合わせを特定することを特徴とする請求項1に記載の容器収容条件決定方法。
  3.  前記放射性廃棄物の放射線量分布を取得するステップをさらに備え、
     前記配置条件候補を選定するステップでは、前記放射線量分布に基づいて、前記廃棄体の表面線量率が閾値以下になることを少なくとも規定する前記制約条件を満たす前記配置条件候補を選定することを特徴とする請求項1又は2に記載の容器収容条件決定方法。
  4.  各々の前記廃棄物ピースの放射線量を計測するステップをさらに備え、
     前記配置条件候補を選定するステップでは、各々の前記廃棄物ピースの前記放射線量に基づいて、前記廃棄体の表面線量率が閾値以下になることを少なくとも規定する前記制約条件を満たす前記配置条件候補を選定することを特徴とする請求項1又は2に記載の容器収容条件決定方法。
  5.  前記複数の廃棄物ピースのそれぞれの特性を示す特性記述情報をデータベースに保存するステップをさらに備え、
     前記配置条件候補を選定するステップでは、前記データベースに保存された前記特性記述情報に基づいて、前記配置条件候補に従って前記保管容器内に前記廃棄物ピースを配置したとき、各々の前記保管容器について前記廃棄体に求められる制約条件を満たすか否かを判定することを特徴とする請求項1乃至4の何れか一項に記載の容器収容条件決定方法。
  6.  前記特性記述情報は、各々の前記廃棄物ピースの形状、重量又は線量の少なくとも一つを含むことを特徴とする請求項5に記載の容器収容条件決定方法。
  7.  前記放射性廃棄物を切断して得た複数の分割体を圧縮処理して少なくとも一種類の標準化形状を有する前記複数の廃棄物ピースに成型するステップをさらに備えることを特徴とする請求項1乃至6の何れか一項に記載の容器収容条件決定方法。
  8.  前記廃棄体に求められる制約条件は、各々の前記廃棄体の重量、表面線量率又は発熱量の少なくとも一つが許容範囲内に収まるという条件を含むことを特徴とする請求項1乃至7の何れか一項に記載の容器収容条件決定方法。
  9.  前記複数の配置条件候補は、各々の保管容器内において、
     第1廃棄物ピースを、前記保管容器の中央部に位置する第1領域に収容し、前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースが前記第1廃棄物ピースを取り巻くように、前記第2廃棄物ピースを前記保管容器内において前記第1領域を取り囲む第2領域に収納する、
    配置条件候補を少なくとも一つ含むことを特徴とする、請求項1乃至8のいずれか一項に記載された容器収容条件決定方法。
  10.  請求項1乃至9のうちのいずれか一項に記載された容器収容条件決定方法により決定された前記収容条件に従って前記保管容器内に前記廃棄物ピースを収容して少なくとも一つの廃棄体を得るステップ、
    を備える放射性廃棄物収容方法。
  11.  放射性廃棄物を少なくとも切断して得られる複数の廃棄物ピースを少なくとも一つの保管容器に収容して少なくとも一つの廃棄体を得る方法であって、
     第1廃棄物ピースを、前記保管容器の中央部に位置する第1領域に収容するステップと、
     前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースが前記第1廃棄物ピースを取り巻くように、前記第2廃棄物ピースを前記保管容器内において前記第1領域を取り囲む第2領域に収納するステップと、
    を備える放射性廃棄物収容方法。
  12.  放射性廃棄物の切断片である複数の廃棄物ピースと、
     前記複数の廃棄物ピースを収容する保管容器と、を備え、
     前記複数の廃棄物ピースは、
      前記保管容器の中央部に位置する第1領域に収容された第1廃棄物ピースと、
      前記保管容器内において、前記第1領域を取り囲む第2領域に、前記第1廃棄物ピースを取り巻くように収納され、前記第1廃棄物ピースよりも放射線量が低い第2廃棄物ピースと、
    を含むことを特徴とする廃棄体。
PCT/JP2016/074890 2015-10-16 2016-08-25 放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体 WO2017064930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2990372A CA2990372C (en) 2015-10-16 2016-08-25 Method of determining conditions for accommodating radioactive waste in container, radioactive waste accommodating method, and waste body produced using said method
US15/739,400 US20190074097A1 (en) 2015-10-16 2016-08-25 Method of determining conditions for accommodating radioactive waste in container, radioactive waste accommodating method, and waste body produced using said method
KR1020177036539A KR20180008773A (ko) 2015-10-16 2016-08-25 방사성 폐기물의 용기 수용 조건 결정 방법, 방사성 폐기물 수용 방법 및 당해 방법에 의해 제조되는 폐기체
EP16855184.4A EP3300083B1 (en) 2015-10-16 2016-08-25 Method of determining conditions for accommodating radioactive waste in container and radioactive waste accommodating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015204470A JP6721312B2 (ja) 2015-10-16 2015-10-16 放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体。
JP2015-204470 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017064930A1 true WO2017064930A1 (ja) 2017-04-20

Family

ID=58518252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074890 WO2017064930A1 (ja) 2015-10-16 2016-08-25 放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体

Country Status (7)

Country Link
US (1) US20190074097A1 (ja)
EP (1) EP3300083B1 (ja)
JP (1) JP6721312B2 (ja)
KR (1) KR20180008773A (ja)
CA (1) CA2990372C (ja)
TW (1) TWI648747B (ja)
WO (1) WO2017064930A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863865B2 (ja) * 2017-09-12 2021-04-21 日立Geニュークリア・エナジー株式会社 クリアランス計測システムおよび方法
JP7168428B2 (ja) * 2018-12-03 2022-11-09 日立Geニュークリア・エナジー株式会社 廃棄物処理装置、および、廃棄物処理方法
WO2023056052A2 (en) * 2021-09-30 2023-04-06 Deep Isolation, Inc. Radioactive waste canister systems and methods
FR3131064B1 (fr) * 2021-12-21 2024-02-16 Electricite De France Procédé de conditionnement de déchets nucléaires
FR3131065B1 (fr) * 2021-12-21 2024-02-09 Electricite De France Procédé de gestion d’un déchet nucléaire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126297A (ja) * 1983-01-06 1984-07-20 株式会社日立製作所 不燃性雑固体廃棄物の処理方法
JPS6289000A (ja) * 1985-10-16 1987-04-23 日本碍子株式会社 放射性廃棄物の充填処理方法
JP2002207098A (ja) * 2001-01-11 2002-07-26 Toshiba Corp 放射性固体廃棄物処理方法
JP2015087300A (ja) * 2013-10-31 2015-05-07 日立Geニュークリア・エナジー株式会社 プラント解体計画支援装置及びプラント解体計画支援方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961800A (ja) * 1982-10-01 1984-04-09 株式会社東芝 放射性廃棄物の保管方法
JPS60146200A (ja) * 1984-01-11 1985-08-01 株式会社日立製作所 放射性廃棄物充填方法
DE3842215A1 (de) * 1988-12-15 1990-06-21 Bayer Ag Verfahren zur deponierung von abfaellen
AU6033596A (en) * 1995-06-07 1996-12-30 Molten Metal Technology, Inc. Apparatus and method for reducing volume of radioactive wast e
US5963863A (en) * 1995-12-01 1999-10-05 Telefonaktiebolaget L M Ericsson Routing system for automatically routing a call to a multi-mode transceiver in a wireless network
US5936863A (en) * 1998-01-28 1999-08-10 Lockheed Martin Idaho Technologies Company Optimal segmentation and packaging process
JP2000044008A (ja) * 1998-07-31 2000-02-15 Yashiki Kankyo Hozen:Kk 廃蛍光管収集処理管理システム
JP2001141887A (ja) * 1999-11-10 2001-05-25 Toshiba Corp 原子力施設解体廃棄物の管理方法
JP5079374B2 (ja) * 2007-04-12 2012-11-21 日本原子力発電株式会社 放射性廃棄物保管兼処分容器
KR100880823B1 (ko) * 2008-10-24 2009-02-02 주식회사 소명특수건업 방사성 폐기물 고형화 처리방법 및 장치
JP2014185919A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 放射性廃棄物の処理方法及び処分容器
JP6297929B2 (ja) * 2014-06-04 2018-03-20 日立Geニュークリア・エナジー株式会社 放射性廃棄物収納計画支援システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126297A (ja) * 1983-01-06 1984-07-20 株式会社日立製作所 不燃性雑固体廃棄物の処理方法
JPS6289000A (ja) * 1985-10-16 1987-04-23 日本碍子株式会社 放射性廃棄物の充填処理方法
JP2002207098A (ja) * 2001-01-11 2002-07-26 Toshiba Corp 放射性固体廃棄物処理方法
JP2015087300A (ja) * 2013-10-31 2015-05-07 日立Geニュークリア・エナジー株式会社 プラント解体計画支援装置及びプラント解体計画支援方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3300083A4 *

Also Published As

Publication number Publication date
EP3300083A1 (en) 2018-03-28
JP6721312B2 (ja) 2020-07-15
JP2017075897A (ja) 2017-04-20
TWI648747B (zh) 2019-01-21
EP3300083B1 (en) 2021-05-12
US20190074097A1 (en) 2019-03-07
TW201715535A (zh) 2017-05-01
KR20180008773A (ko) 2018-01-24
CA2990372A1 (en) 2017-04-20
EP3300083A4 (en) 2018-09-05
CA2990372C (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2017064930A1 (ja) 放射性廃棄物の容器収容条件決定方法、放射性廃棄物収容方法および当該方法により製造される廃棄体
Sofianopoulou Manufacturing cells design with alternative process plans and/or replicate machines
JP2012088771A (ja) マルチステップ・ラティス・ボクセル法
Barashev et al. Reaction kinetics of glissile interstitial clusters in a crystal containing voids and dislocations
KR102242394B1 (ko) 방사성 폐기물 처리 공정 결정 방법, 방사성 폐기물 처리 공정 이력 관리 방법 및 그 방사성 폐기물 관리 시스템
JP6297929B2 (ja) 放射性廃棄物収納計画支援システム
Basch et al. Reporting red-blue intersections between two sets of connected line segments
Allen et al. Evolving reusable 3d packing heuristics with genetic programming
Kubiński et al. Optimization of the loading pattern of the PWR core using genetic algorithms and multi-purpose fitness function
Yllera Modularization methods for evaluating fault trees of complex technical systems
Shaukat et al. Optimization of core reload pattern for PARR-1 using evolutionary techniques
Virk et al. Application of Nature Inspired Algorithms to Optimize Multi-objective Two-Dimensional Rectangle Packing Problem
Saylor et al. Analysis of the 30B UF6 Container for Use with Increased Enrichment
Asbury Multi-grid genetic algorithms for optimal radiation shield design
Tan et al. An improved parallel Random Sequential Addition algorithm in RMC code for dispersion fuel analysis
Sosa-Ascencio et al. Grammar-based selection hyper-heuristics for solving irregular bin packing problems
Chen et al. A genetic algorithm for the minimum tetrahedralization of a convex polyhedron
Marshall et al. Performing keff Validation of As-Loaded Criticality Safety Calculations Using UNF-ST&DARDS: Sensitivity Calculations
JP2021009033A (ja) 遮蔽性能評価方法、遮蔽性能評価装置、遮蔽構造の設計方法及び遮蔽構造設計装置
Faure Modelling of electromagnetic microinstabilities in extreme particle and photon beam-plasma interaction
EP4379744A1 (en) Management of structures for packaging
Spencer Adaptable Long-Term Optimization of Dry Cask Storage Loading Patterns
KR100946820B1 (ko) 컴퓨터 시뮬레이터로 구현된 핵분열 시스템의 모델링 방법
Lewandowski et al. Ab initio multiconfiguration self-consistent-field calculations of the excited states of a Mn impurity in CaF 2
Messenger Abundance anomalies in globular cluster red giant stars

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177036539

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2990372

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE