WO2017063388A1 - 一种惯导装置初始对准方法 - Google Patents

一种惯导装置初始对准方法 Download PDF

Info

Publication number
WO2017063388A1
WO2017063388A1 PCT/CN2016/088343 CN2016088343W WO2017063388A1 WO 2017063388 A1 WO2017063388 A1 WO 2017063388A1 CN 2016088343 W CN2016088343 W CN 2016088343W WO 2017063388 A1 WO2017063388 A1 WO 2017063388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
angle
error
alignment
instrument
Prior art date
Application number
PCT/CN2016/088343
Other languages
English (en)
French (fr)
Inventor
任强
王杰俊
沈雪峰
魏立龙
崔贵彦
Original Assignee
上海华测导航技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华测导航技术股份有限公司 filed Critical 上海华测导航技术股份有限公司
Priority to RU2017125038A priority Critical patent/RU2670243C9/ru
Priority to US15/542,442 priority patent/US10670424B2/en
Priority to KR1020177023784A priority patent/KR101988786B1/ko
Priority to EP16854771.9A priority patent/EP3364155A4/en
Publication of WO2017063388A1 publication Critical patent/WO2017063388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the present invention is directed to the problem that the conventional initial alignment algorithm in the field of agricultural machinery and engineering machinery is not suitable for the lower cost and performance of the inertial navigation device, and an initial alignment method for the agricultural machinery is proposed.
  • attitude of the car body can reflect the movement and position information of the car body in real time. This information can provide important data input for high-precision integrated navigation and control algorithms.
  • Strapdown-Inertial-Navigation-System has a wide range of features such as autonomous navigation, good confidentiality, strong anti-interference ability, rich navigation parameters and high precision in short time, but due to the inherent error of inertial sensors In order to make the navigation error accumulate over time for a long time, the navigation accuracy is poor, and other navigation systems with error stability are needed, such as high-precision GPS-RTK.
  • the inertial navigation system calculates the speed and position through integral calculation based on the measured body acceleration. To do this, you must know the initial speed and position.
  • both the physical platform and the mathematical platform are the benchmarks for measuring acceleration, and the platform must accurately align and track the geographic coordinate system to avoid the acceleration error caused by the platform error.
  • the accuracy of the initial alignment is directly related to the working accuracy of the navigation system and is one of the key technologies.
  • the commonly used alignment methods have two steps of coarse alignment and fine alignment, but the two alignment methods are mainly aimed at high-precision gyroscopes that can sense the angular velocity of the Earth's rotation, which is obviously used in low cost and low performance. In the guiding device, these two methods are not applicable.
  • the present invention is directed to the problem that the conventional initial alignment algorithm in the field of agricultural machinery and engineering machinery is not suitable for the lower cost and performance of the inertial navigation device, and an initial alignment method for the agricultural machinery is proposed.
  • the technical solution of the present invention is an initial alignment method of an inertial navigation device, comprising the following steps:
  • the absolute alignment process is performed to obtain the sensor installation angle error, thereby improving the error attitude angle accuracy calculated by the relative alignment.
  • step of pre-processing the sensor comprises:
  • the sensor is filtered to reduce the effects of instrument vibration on the sensor.
  • step of performing relative alignment comprises:
  • the instrument is stationary in one direction, the three-axis acceleration data is collected, and then the instrument is turned 180°, and the three-axis acceleration data is collected;
  • the installation error angle of the sensor is calculated, and the installation error angle of the sensor in different directions is obtained.
  • A, B, and C are model coefficients.
  • the accelerometer output values in the sensor, ⁇ , ⁇ , They are the mounting error angle of the sensor, g is the gravity acceleration of the earth, and ⁇ is the angle between the plane of the instrument and the horizontal plane.
  • n the total number of samples
  • i the sampling point
  • i 1, 2 alone, n
  • n a positive integer
  • step of performing absolute alignment comprises:
  • the ⁇ x error system vector, ⁇ p, ⁇ v, ⁇ nb are position error, velocity error and attitude angle error, respectively.
  • the acceleration and gyroscope are respectively biased, and T is transposed;
  • the Kalman filter system updates the equation to
  • the initial attitude angle ⁇ calculated from the relative alignment is taken as the initial value of ⁇ nb in the Kalman filter state vector, and then the system vector is updated according to the Kalman filter system update equation and the Kalman filter is performed. When the Kalman filter converges, the calculation is performed.
  • the installation attitude angle error ⁇ nb of the sensor is performed.
  • the device is an agricultural device
  • the agricultural device is a tractor.
  • the relative alignment mainly solves the alignment of the MEMS-IMU sensor coordinate system with the tractor coordinate system, and the absolute alignment solves the alignment of the tractor coordinate system and the navigation coordinate system.
  • the relative error attitude angle is calculated by the relative alignment process.
  • the relative error attitude angle is used as the initial value of the attitude error in the state vector in the absolute alignment process, which can accelerate the convergence speed of the Kalman filter.
  • the alignment accuracy can be further improved by the absolute alignment process. .
  • FIG. 1 is a schematic diagram of an initial alignment method of an inertial navigation device according to the present disclosure
  • Figure 3 is a flow chart of the absolute alignment process of the present invention.
  • the present invention provides an initial alignment method for an inertial navigation device.
  • the method mainly includes the following steps:
  • Step S1 providing a sensor-loaded instrument and pre-treating the sensor.
  • the step of pre-processing the sensor comprises: step S1a: initializing the sensor; step S1b: filtering the sensor, that is, special processing as illustrated to reduce the device The effect of vibration on the sensor.
  • Step S2 Perform a relative alignment process to obtain an installation error angle of the sensor.
  • the step of performing the relative alignment process includes: firstly, the instrument is stationary in one direction, and the triaxial acceleration data is acquired; then the instrument is turned 180°, and the three axes are collected. Acceleration data; the installation error angle calculation of the sensor is performed to obtain the installation error angle of the sensor in different directions.
  • the formula for obtaining the installation error angle is:
  • A, B, and C are model coefficients.
  • the accelerometer output values in the sensor, ⁇ , ⁇ , They are the mounting error angle of the sensor, g is the gravity acceleration of the earth, and ⁇ is the angle between the plane of the instrument and the horizontal plane.
  • n is the total number of samples
  • i is the sampling point
  • i 1, 2 together
  • Equation 2 Using Equation 2 and Equation 3, A, B, C, and ⁇ can be obtained, and then substituted into Equation 1 to obtain the installation error angles ⁇ , ⁇ ,
  • Step S3 Perform absolute alignment processing to obtain an installation posture angle error of the sensor, thereby improving the accuracy of the error posture angle calculated by the relative alignment.
  • the steps of performing absolute alignment processing include:
  • the ⁇ x error system vector, ⁇ p, ⁇ v, ⁇ nb are position error, velocity error and attitude angle error, respectively.
  • the acceleration and gyroscope are respectively biased, and T is transposed;
  • the initial attitude angle ⁇ calculated by Equation 3 in relative alignment is taken as the initial value of ⁇ nb in the Kalman filter state vector (or Kalman state vector), and then the Kalman filter system vector is updated according to Equation 6 and kalman filtering is performed;
  • the attitude angle of the output is calculated as the more accurate sensor installation angle error ⁇ nb , that is, the alignment angle.
  • the invention can further improve the accuracy of the error attitude angle calculated by the relative alignment by the installation attitude angle error ⁇ nb .
  • the device is an agricultural device, such as an agricultural tractor.
  • the initial alignment implementation method of the low-cost inertial navigation device (three-axis accelerometer and three-axis gyroscope) of the agricultural machinery of the invention is divided into two aspects: relative alignment and absolute alignment, and the relative alignment mainly solves the MEMS-IMU sensor coordinates.
  • Alignment with the tractor coordinate system the absolute alignment solves the alignment of the tractor coordinate system with the navigation coordinate system.
  • the relative error attitude angle is calculated by the relative alignment process.
  • the relative error attitude angle is used as the initial value of the attitude error in the state vector in the absolute alignment process, which can accelerate the convergence speed of the Kalman filter.
  • the alignment accuracy can be further improved by the absolute alignment process. .
  • the inertial navigation initial alignment method implemented by the present invention can solve the requirements for a high-precision gyroscope in a conventional alignment method
  • the present invention mainly requires no other peripheral equipment to complete the alignment, and the alignment precision is high;
  • the inertial navigation initial alignment method of the present invention can speed up the convergence speed of the kalman filter and can greatly reduce the attitude angle, velocity and position error accumulated over time;

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

一种惯导装置初始对准方法,包括如下步骤:提供一装载有传感器的器械,并对传感器进行预处理;进行相对对准,以求得传感器的安装误差角;进行绝对对准,以求得传感器的安装姿态角误差,进而提高相对对准计算出的误差姿态角精度。相对对准过程计算出相对的误差姿态角,相对误差姿态角作为绝对对准过程中状态向量中姿态误差的初始值从而可以加快卡尔曼滤波收敛速度,通过绝对对准过程可以进一步提高对准精度。

Description

一种惯导装置初始对准方法 技术领域
本发明针对农业机械和工程机械领域传统初始对准算法在较低成本和性能的惯导装置不适用的问题,设计发明了一种针对上述领域主要是农业机械的初始对准方法。
背景技术
随着MEMS(Micro-Electro-Mechanical-System)传感器、导航和控制技术的发展以及国家对农业扶持力度的进一步加大,精准农业正在快速变成一种趋势,而在农业机械辅助驾驶控制过程中,车体的姿态(包括俯仰角、翻滚角和航向角)、速度和位置信息能够实时反映出车体的运动和位置信息,这些信息能够为高精度的组合导航和控制算法提供重要的数据输入。
捷联惯性导航(Strapdown-Inertial-Navigation-System,SINS)具有自主导航、保密性好、抗干扰能力强、导航参数丰富和短时间内精度高等特点被广泛应用,但是由于惯性传感器固有误差的存在,使得导航误差随着时间积累长时间导航精度较差,需要其他误差稳定的导航系统辅助,例如高精度GPS-RTK。惯性导航系统是根据测得的车体加速度,经过积分运算求得速度和位置。为此,必须知道初始速度和位置。此外,以地理坐标系为导航坐标系的惯性系统中,物理平台和数学平台都是测量加速度的基准,而且平台必须准确地对准和跟踪地理坐标系,以避免平台误差引起加速度测量误差。初始对准的精度直接关系到导航系统的工作精度,也是重要关键技术之一。
目前常用的对准方法有粗对准和精对准两个步骤,但是这两种对准方法主要针对的是高精度的陀螺仪能够感应到地球自转角速度,明显在低成本和低性能的惯导装置中,这两种方法并不适用。
发明内容
本发明针对农业机械和工程机械领域传统初始对准算法在较低成本和性能的惯导装置不适用的问题,设计发明了一种针对上述领域主要是农业机械的初始对准方法。
本发明的技术方案为,一种惯导装置初始对准方法,包括如下步骤:
提供一装载有传感器的器械,并对传感器进行预处理;
进行相对对准处理,以求得传感器的安装误差角;
进行绝对对准处理,以求得传感器的安装姿态角误差,进而提高相对对准计算出的误差姿态角精度。
上述的方法,其中,对传感器进行预处理的步骤包括:
对传感器进行初始化设置;
对传感器进行滤波处理,以减小由于器械震动对传感器的影响。
上述的方法,其中,进行相对对准的步骤包括:
将器械朝一个方向静止,采集三轴加速度数据,然后将器械掉头180°,采集三轴加速度数据;
进行传感器的安装误差角度计算,求得传感器在不同方向上的安装误差角度。
上述的方法,其中,求得安装误差角度的公式为:
Figure PCTCN2016088343-appb-000001
Figure PCTCN2016088343-appb-000002
Figure PCTCN2016088343-appb-000003
Figure PCTCN2016088343-appb-000004
其中,A、B、C为模型系数,
Figure PCTCN2016088343-appb-000005
分别为传感器中加速度计输出值,γ、θ、
Figure PCTCN2016088343-appb-000006
分别为传感器的安装误差角度,g为地球重力加速度,α为器械平面与水平面的夹角。
上述的方法,其中,进行最小二乘法数据拟合,以得到可计算出模型系数 A、B、C的公式:
Figure PCTCN2016088343-appb-000007
其中,
Figure PCTCN2016088343-appb-000008
分别为传感器中加速度计输出值,n为总的采样个数,i为采样点,i=1,2.....,n,n为正整数。
上述的方法,其中,器械平面与水平面的夹角α计算方式为:
假设第一次器械停放的航向角为β,利用停放角度为β时的三轴加速度数据和(β+π)时的三轴加速度数据来求得器械平面与水平面的夹角α,α的求解公式为:
Figure PCTCN2016088343-appb-000009
上述的方法,其中,进行绝对对准的步骤包括:
绝对对准卡尔曼滤波模型建立:
卡尔曼滤波状态向量:
Figure PCTCN2016088343-appb-000010
其中,δx误差系统向量,δp、δv、δψnb分别为位置误差、速度误差和姿态角误差,
Figure PCTCN2016088343-appb-000011
Figure PCTCN2016088343-appb-000012
分别为加速度和陀螺仪零偏,T为转置;
卡尔曼滤波观测向量:y=[pT vT];
其中,p为GPS位置信息,v为GPS速度信息;
卡尔曼滤波系统更新方程为
Figure PCTCN2016088343-appb-000013
Figure PCTCN2016088343-appb-000014
Figure PCTCN2016088343-appb-000015
其中,
Figure PCTCN2016088343-appb-000016
分别对应为δp、δv、δψnb的导数,
Figure PCTCN2016088343-appb-000017
为器械坐标系到 导航坐标系旋转矩阵,fb
Figure PCTCN2016088343-appb-000018
分别为传感器输出的加速度和角速度;
由相对对准中计算的初始姿态角α作为卡尔曼滤波状态向量中δψnb的初始值,然后按卡尔曼滤波系统更新方程来更新系统向量以及进行卡尔曼滤波,当卡尔曼滤波收敛后,计算出传感器的安装姿态角误差δψnb
上述的方法,其中,所述器械为农用器械;
所述农用器械为拖拉机。
本发明通过相对对准和绝对对准,相对对准主要是解决MEMS-IMU传感器坐标系与拖拉机坐标系的对准,绝对对准解决的是拖拉机坐标系与导航坐标系的对准。相对对准过程计算出相对的误差姿态角,相对误差姿态角作为绝对对准过程中状态向量中姿态误差的初始值从而可以加快卡尔曼滤波收敛速度,通过绝对对准过程可以进一步提高对准精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本发明的主旨。
图1为本发明公开的一种惯导装置初始对准方法的示意图;
图2为本发明进行相对对准处理的流程图;
图3为本发明进行绝对对准处理的流程图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结 构,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
本发明提供了一种惯导装置初始对准方法,参照图1所示,主要包括如下步骤:
步骤S1:提供一装载有传感器的器械,并对传感器进行预处理。
在发明一可选的实施例中,对传感器进行预处理的步骤包括:步骤S1a:对传感器进行初始化设置;步骤S1b:对传感器进行滤波处理,也即图示的特殊处理,以减小由于器械震动对传感器的影响。
步骤S2:进行相对对准处理,以求得传感器的安装误差角。
在本发明一可选的实施例中,结合图2所示,进行相对对准处理的步骤包括:首先将器械朝一个方向静止,采集三轴加速度数据;然后将器械掉头180°,采集三轴加速度数据;进行传感器的安装误差角度计算,求得传感器在不同方向上的安装误差角度。
其中,求得安装误差角度的公式为:
Figure PCTCN2016088343-appb-000019
Figure PCTCN2016088343-appb-000020
Figure PCTCN2016088343-appb-000021
Figure PCTCN2016088343-appb-000022
其中,A、B、C为模型系数,
Figure PCTCN2016088343-appb-000023
分别为传感器中加速度计输出值,γ、θ、
Figure PCTCN2016088343-appb-000024
分别为传感器的安装误差角度,g为地球重力加速度,α为器械平面与水平面的夹角。
进行最小二乘法数据拟合,以得到可计算出模型系数A、B、C的公式:
Figure PCTCN2016088343-appb-000025
其中,
Figure PCTCN2016088343-appb-000026
分别为传感器中加速度计输出值,n为总的采样个数,i为采样点,i=1,2.....,n,n为正整数,例如n=8,9,10,12……。
器械平面与水平面的夹角α计算方式为:
假设第一次器械停放的航向角为β,利用停放角度为β时的三轴加速度数据和(β+π)时的三轴加速度数据来求得器械平面与水平面的夹角α,求解公式为:
Figure PCTCN2016088343-appb-000027
利用公式②、公式③可求得A、B、C和α,然后代入公式①即可求得安装误差角γ、θ、
Figure PCTCN2016088343-appb-000028
步骤S3:进行绝对对准处理,以求得传感器的安装姿态角误差,进而提高相对对准计算出的误差姿态角精度。
在本发明中,结合图3所示,进行绝对对准处理的步骤包括:
首先进行绝对对准卡尔曼滤波(kalman filter)模型建立:
卡尔曼滤波状态向量:
Figure PCTCN2016088343-appb-000029
其中,δx误差系统向量,δp、δv、δψnb分别为位置误差、速度误差和姿态角误差,
Figure PCTCN2016088343-appb-000030
Figure PCTCN2016088343-appb-000031
分别为加速度和陀螺仪零偏,T为转置;
之后,获取卡尔曼滤波观测向量:y=[pT vT];         ⑤
其中,p为GPS位置信息,v为GPS速度信息;
再者,建立卡尔曼滤波系统的更新方程:
Figure PCTCN2016088343-appb-000032
Figure PCTCN2016088343-appb-000033
Figure PCTCN2016088343-appb-000034
其中,
Figure PCTCN2016088343-appb-000035
分别对应为δp、δv、δψnb的导数,
Figure PCTCN2016088343-appb-000036
为器械坐标系到导航坐标系旋转矩阵,fb
Figure PCTCN2016088343-appb-000037
分别为传感器输出的加速度和角速度;
由相对对准中的公式③计算的初始姿态角α作为卡尔曼滤波状态向量(或称Kalman状态向量)中δψnb的初始值,然后按公式⑥更新卡尔曼滤波系统向量以及进行kalman滤波;
当kalman收敛后,计算输出的姿态角为较为准确的传感器的安装姿态角误差δψnb,即对准角度。本发明通过该安装姿态角误差δψnb可进一步提高相对对准计算出的误差姿态角精度。
在本发明一可选的实施例中,器械为农用器械,例如农用的拖拉机。
本发明的农业机械低成本惯导装置(三轴加速度计和三轴陀螺仪)初始对准实现方法分为相对对准和绝对对准两个方面,相对对准主要是解决MEMS-IMU传感器坐标系与拖拉机坐标系的对准,绝对对准解决的是拖拉机坐标系与导航坐标系的对准。相对对准过程计算出相对的误差姿态角,相对误差姿态角作为绝对对准过程中状态向量中姿态误差的初始值从而可以加快卡尔曼滤波收敛速度,通过绝对对准过程可以进一步提高对准精度。
由于本发明采用了如上技术方案,具有如下优点:
(1)本发明实现的惯导初始对准方法可解决传统对准方法中对高精度陀螺仪的要求;
(2)本发明主要不需要借助其他外围设备即可完成对准,对准精度较高;
(3)经本发明的惯导初始对准方法可加快kalman滤波的收敛速度且能大大降低随时间积累的姿态角、速度和位置误差;
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域 中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

  1. 一种惯导装置初始对准方法,其特征在于,包括如下步骤:
    提供一装载有传感器的器械,并对传感器进行预处理;
    进行相对对准,以求得传感器的安装误差角;
    进行绝对对准,以求得传感器的安装姿态角误差,进而提高相对对准计算出的误差姿态角精度。
  2. 如权利要求1所述的方法,其特征在于,对传感器进行预处理的步骤包括:
    对传感器进行初始化设置;
    对传感器进行滤波处理,以减小由于器械震动对传感器的影响。
  3. 如权利要求1所述的方法,其特征在于,进行相对对准的步骤包括:
    将器械朝一个方向静止,采集三轴加速度数据,然后将器械掉头180°,采集三轴加速度数据;
    进行传感器的安装误差角度计算,求得传感器在不同方向上的安装误差角度。
  4. 如权利要求3所述的方法,其特征在于,求得安装误差角度的公式为:
    Figure PCTCN2016088343-appb-100001
    Figure PCTCN2016088343-appb-100002
    Figure PCTCN2016088343-appb-100003
    Figure PCTCN2016088343-appb-100004
    其中,A、B、C为模型系数,
    Figure PCTCN2016088343-appb-100005
    分别为传感器中加速度计输出值,γ、θ、
    Figure PCTCN2016088343-appb-100006
    分别为传感器的安装误差角度,g为地球重力加速度,α为器械平面与水平面的夹角。
  5. 如权利要求4所述的方法,其特征在于,进行最小二乘法数据拟合,以得到可计算出模型系数A、B、C的公式:
    Figure PCTCN2016088343-appb-100007
    其中,
    Figure PCTCN2016088343-appb-100008
    分别为传感器中加速度计输出值,n为总的采样个数,i为采样点,i=1,2.....,n,n为正整数。
  6. 如权利要求4所述的方法,其特征在于,器械平面与水平面的夹角α计算方式为:
    假设第一次器械停放的航向角为β,利用停放角度为β时的三轴加速度数据和(β+π)时的三轴加速度数据来求得器械平面与水平面的夹角α,α的求解公式为:
    Figure PCTCN2016088343-appb-100009
  7. 如权利要求6所述的方法,其特征在于,进行绝对对准的步骤包括:
    绝对对准卡尔曼滤波模型建立:
    卡尔曼滤波状态向量:
    Figure PCTCN2016088343-appb-100010
    其中,δx误差系统向量,δp、δv、δψnb分别为位置误差、速度误差和姿态角误差,
    Figure PCTCN2016088343-appb-100011
    Figure PCTCN2016088343-appb-100012
    分别为加速度和陀螺仪零偏,T为转置;
    卡尔曼滤波观测向量:y=[pT vT];
    其中,p为GPS位置信息,v为GPS速度信息;
    卡尔曼滤波系统更新方程为
    Figure PCTCN2016088343-appb-100013
    Figure PCTCN2016088343-appb-100014
    Figure PCTCN2016088343-appb-100015
    其中,
    Figure PCTCN2016088343-appb-100016
    分别对应为δp、δv、δψnb的导数,
    Figure PCTCN2016088343-appb-100017
    为器械坐标系到 导航坐标系旋转矩阵,fb
    Figure PCTCN2016088343-appb-100018
    分别为传感器输出的加速度和角速度;
    由相对对准中计算的初始姿态角α作为卡尔曼滤波状态向量中δψnb的初始值,然后按卡尔曼滤波系统更新方程来更新系统向量以及进行卡尔曼滤波,当卡尔曼滤波收敛后,计算出传感器的安装姿态角误差δψnb
  8. 如权利要求1所述的方法,其特征在于,所述器械为农用器械;
    所述农用器械为拖拉机。
PCT/CN2016/088343 2015-10-13 2016-07-04 一种惯导装置初始对准方法 WO2017063388A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017125038A RU2670243C9 (ru) 2015-10-13 2016-07-04 Способ начального выравнивания устройства инерциальной навигации
US15/542,442 US10670424B2 (en) 2015-10-13 2016-07-04 Method for initial alignment of an inertial navigation apparatus
KR1020177023784A KR101988786B1 (ko) 2015-10-13 2016-07-04 관성 항법 장치의 초기 정렬 방법
EP16854771.9A EP3364155A4 (en) 2015-10-13 2016-07-04 METHOD OF INITIALLY ALIGNING AN INERTIAL NAVIGATION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510669553.0 2015-10-13
CN201510669553.0A CN105203129B (zh) 2015-10-13 2015-10-13 一种惯导装置初始对准方法

Publications (1)

Publication Number Publication Date
WO2017063388A1 true WO2017063388A1 (zh) 2017-04-20

Family

ID=54950938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088343 WO2017063388A1 (zh) 2015-10-13 2016-07-04 一种惯导装置初始对准方法

Country Status (6)

Country Link
US (1) US10670424B2 (zh)
EP (1) EP3364155A4 (zh)
KR (1) KR101988786B1 (zh)
CN (1) CN105203129B (zh)
RU (1) RU2670243C9 (zh)
WO (1) WO2017063388A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594283A (zh) * 2018-03-13 2018-09-28 杨勇 Gnss/mems惯性组合导航系统的自由安装方法
CN113137977A (zh) * 2021-04-21 2021-07-20 扬州大学 一种sins/偏振光组合导航初始对准滤波方法
CN114526734A (zh) * 2022-03-01 2022-05-24 长沙金维信息技术有限公司 用于车载组合导航的安装角补偿方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203129B (zh) * 2015-10-13 2019-05-07 上海华测导航技术股份有限公司 一种惯导装置初始对准方法
JP6422912B2 (ja) 2016-04-06 2018-11-14 株式会社クボタ 測位検出装置及び測位検出装置を備えた作業機
CN109211276B (zh) * 2018-10-30 2022-06-03 东南大学 基于gpr与改进的srckf的sins初始对准方法
CN109596144B (zh) * 2018-12-10 2020-07-24 苏州大学 Gnss位置辅助sins行进间初始对准方法
CN109959390B (zh) * 2018-12-26 2022-11-22 中国电子科技集团公司第二十研究所 一种旋转调制系统双位置安装偏差补偿方法
CN110031023A (zh) * 2019-05-16 2019-07-19 上海华测导航技术股份有限公司 一种工程机械姿态传感器系统误差标定方法
CA3143762A1 (en) * 2019-06-17 2020-12-24 Rohit Seth Relative position tracking using motion sensor with drift correction
CN110440830B (zh) * 2019-08-20 2023-03-28 湖南航天机电设备与特种材料研究所 动基座下车载捷联惯导系统自对准方法
CN110388941B (zh) * 2019-08-28 2021-09-10 北京机械设备研究所 一种基于自适应滤波的车辆姿态对准方法
CN110388942B (zh) * 2019-08-28 2021-09-10 北京机械设备研究所 一种基于角度和速度增量的车载姿态精对准系统
CN112798010B (zh) * 2019-11-13 2023-05-09 北京三快在线科技有限公司 一种视觉惯性里程计vio系统的初始化方法、装置
CN111102991A (zh) * 2019-11-28 2020-05-05 湖南率为控制科技有限公司 一种基于航迹匹配的初始对准方法
CN110873577B (zh) * 2019-12-02 2022-05-17 中国人民解放军战略支援部队信息工程大学 一种水下快速动基座对准方法及装置
CN111238532B (zh) * 2019-12-23 2022-02-01 湖北航天技术研究院总体设计所 一种适用于晃动基座环境的惯性测量单元标定方法
CN111216708B (zh) 2020-01-13 2022-02-11 上海华测导航技术股份有限公司 车辆导航引导系统及车辆
CN111272199B (zh) * 2020-03-23 2022-09-27 北京爱笔科技有限公司 一种imu的安装误差角的标定方法及装置
CN113155150A (zh) * 2020-10-23 2021-07-23 中国人民解放军火箭军工程大学 一种基于凝固载体坐标系的惯导初始姿态解算方法
CN113433600B (zh) * 2021-06-23 2022-04-12 中国船舶重工集团公司第七0七研究所 一种重力仪安装误差角标定方法
CN114061623B (zh) * 2021-12-30 2022-05-17 中国航空工业集团公司西安飞行自动控制研究所 一种基于双天线测向的惯性传感器零偏误差辨识方法
CN114993242B (zh) * 2022-06-17 2023-03-31 北京航空航天大学 一种基于加速度匹配的阵列式pos安装偏差角标定方法
CN115096321B (zh) * 2022-06-23 2024-08-06 中国人民解放军63921部队 一种车载捷联惯导系统鲁棒无迹信息滤波对准方法及系统
CN115435817B (zh) * 2022-11-07 2023-03-14 开拓导航控制技术股份有限公司 Mems惯导安装误差的标定方法、存储介质和控制计算机
CN118426017A (zh) * 2024-04-28 2024-08-02 牧星智能工业科技(上海)有限公司 一种基于农业场景自定义坐标的电台rtk组合导航定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149529A1 (en) * 2002-02-01 2003-08-07 The Aerospace Corporation Fault detection pseudo gyro
CN101701825A (zh) * 2009-09-28 2010-05-05 龙兴武 高精度激光陀螺单轴旋转惯性导航系统
CN103245359A (zh) * 2013-04-23 2013-08-14 南京航空航天大学 一种惯性导航系统中惯性传感器固定误差实时标定方法
CN103743414A (zh) * 2014-01-02 2014-04-23 东南大学 一种里程计辅助车载捷联惯导系统行进间初始对准方法
CN104165638A (zh) * 2014-08-07 2014-11-26 北京理工大学 一种双轴旋转惯导系统多位置自主标定方法
CN105203129A (zh) * 2015-10-13 2015-12-30 上海华测导航技术股份有限公司 一种惯导装置初始对准方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638883A (en) * 1968-05-21 1972-02-01 Dynasciences Corp Cross-rate axis sensor
JP3162187B2 (ja) * 1992-06-29 2001-04-25 三菱プレシジョン株式会社 移動体の慣性検出手段の初期座標値設定方法と装置
US5886257A (en) * 1996-07-03 1999-03-23 The Charles Stark Draper Laboratory, Inc. Autonomous local vertical determination apparatus and methods for a ballistic body
US6647352B1 (en) * 1998-06-05 2003-11-11 Crossbow Technology Dynamic attitude measurement method and apparatus
US6341249B1 (en) * 1999-02-11 2002-01-22 Guang Qian Xing Autonomous unified on-board orbit and attitude control system for satellites
US6453239B1 (en) * 1999-06-08 2002-09-17 Schlumberger Technology Corporation Method and apparatus for borehole surveying
ES2238936B1 (es) * 2004-02-27 2006-11-16 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" Sistema y metodo de fusion de sensores para estimar posicion, velocidad y orientacion de un vehiculo, especialmente una aeronave.
US8224574B2 (en) * 2004-05-12 2012-07-17 Northrop Grumman Guidance And Electronics Company, Inc. System for multiple navigation components
DE102005033237B4 (de) * 2005-07-15 2007-09-20 Siemens Ag Verfahren zur Bestimmung und Korrektur von Fehlorientierungen und Offsets der Sensoren einer Inertial Measurement Unit in einem Landfahrzeug
US7421343B2 (en) * 2005-10-27 2008-09-02 Honeywell International Inc. Systems and methods for reducing vibration-induced errors in inertial sensors
RU2300081C1 (ru) * 2005-11-07 2007-05-27 Александр Викторович Захарин Способ определения инструментальных погрешностей измерителей инерциальной навигационной системы на этапе начальной выставки
US7561960B2 (en) * 2006-04-20 2009-07-14 Honeywell International Inc. Motion classification methods for personal navigation
CA2649990A1 (en) * 2006-06-15 2007-12-21 Uti Limited Partnership Vehicular navigation and positioning system
US7835832B2 (en) * 2007-01-05 2010-11-16 Hemisphere Gps Llc Vehicle control system
KR100898169B1 (ko) * 2007-03-23 2009-05-19 국방과학연구소 관성항법시스템의 초기정렬 방법
FR2920224B1 (fr) * 2007-08-23 2009-10-02 Sagem Defense Securite Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede
JP4466715B2 (ja) * 2007-10-25 2010-05-26 トヨタ自動車株式会社 脚式ロボット、及びその制御方法
RU2406973C2 (ru) * 2009-02-05 2010-12-20 Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" Способ калибровки бесплатформенных инерциальных навигационных систем
RU2527140C2 (ru) * 2009-10-26 2014-08-27 Лэйка Геосистемс Аг Способ калибровки инерциальных датчиков
CN101975872B (zh) * 2010-10-28 2011-09-14 哈尔滨工程大学 石英挠性加速度计组件零位偏置的标定方法
KR101213975B1 (ko) * 2010-11-05 2012-12-20 국방과학연구소 비행 중 정렬 장치 및 그 방법
US20130245984A1 (en) * 2010-11-17 2013-09-19 Hillcrest Laboratories, Inc. Apparatuses and methods for magnetometer alignment calibration without prior knowledge of the local magnetic field
US9891054B2 (en) * 2010-12-03 2018-02-13 Qualcomm Incorporated Inertial sensor aided heading and positioning for GNSS vehicle navigation
KR101257935B1 (ko) * 2010-12-06 2013-04-23 국방과학연구소 관성 항법 시스템의 바이어스 추정치를 이용한 정렬 장치 및 그 항법 시스템
US9160980B2 (en) * 2011-01-11 2015-10-13 Qualcomm Incorporated Camera-based inertial sensor alignment for PND
CN102168991B (zh) 2011-01-29 2012-09-05 中北大学 三轴矢量传感器与安装载体间安装误差的标定补偿方法
CN102865881B (zh) * 2012-03-06 2014-12-31 武汉大学 一种惯性测量单元的快速标定方法
US9915550B2 (en) * 2012-08-02 2018-03-13 Memsic, Inc. Method and apparatus for data fusion of a three-axis magnetometer and three axis accelerometer
RU2563333C2 (ru) * 2013-07-18 2015-09-20 Федеральное государственное унитарное предприятие "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" Бесплатформенная инерциальная навигационная система
US10247556B2 (en) * 2013-07-23 2019-04-02 The Regents Of The University Of California Method for processing feature measurements in vision-aided inertial navigation
ITTO20130645A1 (it) * 2013-07-30 2015-01-31 St Microelectronics Srl Metodo e sistema di calibrazione in tempo reale di un giroscopio
US9714548B2 (en) * 2013-08-23 2017-07-25 Flexit Australia Pty Ltd. Apparatus for single degree of freedom inertial measurement unit platform rate isolation
JP6351164B2 (ja) * 2014-06-12 2018-07-04 国立研究開発法人量子科学技術研究開発機構 ビーム照射対象確認装置、ビーム照射対象確認プログラム、および阻止能比算出プログラム
CN104064869B (zh) * 2014-06-13 2016-10-05 北京航天万达高科技有限公司 基于mems惯导的双四元数动中通天线控制方法及系统
US10234292B2 (en) * 2014-08-08 2019-03-19 Stmicroelefctronics S.R.L. Positioning apparatus and global navigation satellite system, method of detecting satellite signals
US9857198B2 (en) * 2015-02-04 2018-01-02 Bae Systems Information And Electronic Systems Integration Inc. Apparatus and method for inertial sensor calibration
US9651399B2 (en) * 2015-03-25 2017-05-16 Northrop Grumman Systems Corporation Continuous calibration of an inertial system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030149529A1 (en) * 2002-02-01 2003-08-07 The Aerospace Corporation Fault detection pseudo gyro
CN101701825A (zh) * 2009-09-28 2010-05-05 龙兴武 高精度激光陀螺单轴旋转惯性导航系统
CN103245359A (zh) * 2013-04-23 2013-08-14 南京航空航天大学 一种惯性导航系统中惯性传感器固定误差实时标定方法
CN103743414A (zh) * 2014-01-02 2014-04-23 东南大学 一种里程计辅助车载捷联惯导系统行进间初始对准方法
CN104165638A (zh) * 2014-08-07 2014-11-26 北京理工大学 一种双轴旋转惯导系统多位置自主标定方法
CN105203129A (zh) * 2015-10-13 2015-12-30 上海华测导航技术股份有限公司 一种惯导装置初始对准方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364155A4 *
ZHANG, HUI ET AL.: "Research on Calibration Method for the Installation Error of Three-Axis Acceleration Sensor", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 24, no. 11, 30 November 2011 (2011-11-30), pages 1543 - 1546, XP009509436 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594283A (zh) * 2018-03-13 2018-09-28 杨勇 Gnss/mems惯性组合导航系统的自由安装方法
CN113137977A (zh) * 2021-04-21 2021-07-20 扬州大学 一种sins/偏振光组合导航初始对准滤波方法
CN114526734A (zh) * 2022-03-01 2022-05-24 长沙金维信息技术有限公司 用于车载组合导航的安装角补偿方法

Also Published As

Publication number Publication date
EP3364155A4 (en) 2019-06-12
US10670424B2 (en) 2020-06-02
KR101988786B1 (ko) 2019-06-12
RU2670243C1 (ru) 2018-10-19
CN105203129B (zh) 2019-05-07
CN105203129A (zh) 2015-12-30
US20180274940A1 (en) 2018-09-27
EP3364155A1 (en) 2018-08-22
KR20170104623A (ko) 2017-09-15
RU2670243C9 (ru) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2017063388A1 (zh) 一种惯导装置初始对准方法
KR102017404B1 (ko) 9축 mems 센서에 기반하여 농기계의 전-자세 각도를 갱신하는 방법
KR102018450B1 (ko) 단일 안테나에 기초한 gnss―ins 차량 자세 결정 방법
CN107655493B (zh) 一种光纤陀螺sins六位置系统级标定方法
CN103900565B (zh) 一种基于差分gps的惯导系统姿态获取方法
CN104316055B (zh) 一种基于改进的扩展卡尔曼滤波算法的两轮自平衡机器人姿态解算方法
CN104501838B (zh) 捷联惯导系统初始对准方法
CN110954102B (zh) 用于机器人定位的磁力计辅助惯性导航系统及方法
CN109596144B (zh) Gnss位置辅助sins行进间初始对准方法
CN104697526A (zh) 用于农业机械的捷联惯导系统以及控制方法
CN113063429B (zh) 一种自适应车载组合导航定位方法
CN106403952A (zh) 一种动中通低成本组合姿态测量方法
CN106153069B (zh) 自主导航系统中的姿态修正装置和方法
CN109612460B (zh) 一种基于静止修正的垂线偏差测量方法
CN110702113B (zh) 基于mems传感器的捷联惯导系统数据预处理和姿态解算的方法
CN104359496B (zh) 基于垂线偏差补偿的高精度姿态修正方法
CN108458714A (zh) 一种姿态检测系统中不含重力加速度的欧拉角求解方法
CN107202578A (zh) 一种基于mems技术的捷联式垂直陀螺仪解算方法
CN115540860A (zh) 一种多传感器融合位姿估计算法
CN111307114B (zh) 基于运动参考单元的水面舰船水平姿态测量方法
CN116125789A (zh) 一种基于四元数的姿态算法参数自动匹配系统及方法
CN106197376B (zh) 基于单轴mems惯性传感器的车身倾角测量方法
CN106595669B (zh) 一种旋转体姿态解算方法
CN104154914A (zh) 一种空间稳定型捷联惯导系统初始姿态测量方法
CN108088463B (zh) 一种高度传感器辅助伪卫星定位的惯导初始对准方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542442

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017125038

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016854771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023784

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE