WO2017063388A1 - 一种惯导装置初始对准方法 - Google Patents
一种惯导装置初始对准方法 Download PDFInfo
- Publication number
- WO2017063388A1 WO2017063388A1 PCT/CN2016/088343 CN2016088343W WO2017063388A1 WO 2017063388 A1 WO2017063388 A1 WO 2017063388A1 CN 2016088343 W CN2016088343 W CN 2016088343W WO 2017063388 A1 WO2017063388 A1 WO 2017063388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- angle
- error
- alignment
- instrument
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/183—Compensation of inertial measurements, e.g. for temperature effects
- G01C21/188—Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Definitions
- the present invention is directed to the problem that the conventional initial alignment algorithm in the field of agricultural machinery and engineering machinery is not suitable for the lower cost and performance of the inertial navigation device, and an initial alignment method for the agricultural machinery is proposed.
- attitude of the car body can reflect the movement and position information of the car body in real time. This information can provide important data input for high-precision integrated navigation and control algorithms.
- Strapdown-Inertial-Navigation-System has a wide range of features such as autonomous navigation, good confidentiality, strong anti-interference ability, rich navigation parameters and high precision in short time, but due to the inherent error of inertial sensors In order to make the navigation error accumulate over time for a long time, the navigation accuracy is poor, and other navigation systems with error stability are needed, such as high-precision GPS-RTK.
- the inertial navigation system calculates the speed and position through integral calculation based on the measured body acceleration. To do this, you must know the initial speed and position.
- both the physical platform and the mathematical platform are the benchmarks for measuring acceleration, and the platform must accurately align and track the geographic coordinate system to avoid the acceleration error caused by the platform error.
- the accuracy of the initial alignment is directly related to the working accuracy of the navigation system and is one of the key technologies.
- the commonly used alignment methods have two steps of coarse alignment and fine alignment, but the two alignment methods are mainly aimed at high-precision gyroscopes that can sense the angular velocity of the Earth's rotation, which is obviously used in low cost and low performance. In the guiding device, these two methods are not applicable.
- the present invention is directed to the problem that the conventional initial alignment algorithm in the field of agricultural machinery and engineering machinery is not suitable for the lower cost and performance of the inertial navigation device, and an initial alignment method for the agricultural machinery is proposed.
- the technical solution of the present invention is an initial alignment method of an inertial navigation device, comprising the following steps:
- the absolute alignment process is performed to obtain the sensor installation angle error, thereby improving the error attitude angle accuracy calculated by the relative alignment.
- step of pre-processing the sensor comprises:
- the sensor is filtered to reduce the effects of instrument vibration on the sensor.
- step of performing relative alignment comprises:
- the instrument is stationary in one direction, the three-axis acceleration data is collected, and then the instrument is turned 180°, and the three-axis acceleration data is collected;
- the installation error angle of the sensor is calculated, and the installation error angle of the sensor in different directions is obtained.
- A, B, and C are model coefficients.
- the accelerometer output values in the sensor, ⁇ , ⁇ , They are the mounting error angle of the sensor, g is the gravity acceleration of the earth, and ⁇ is the angle between the plane of the instrument and the horizontal plane.
- n the total number of samples
- i the sampling point
- i 1, 2 alone, n
- n a positive integer
- step of performing absolute alignment comprises:
- the ⁇ x error system vector, ⁇ p, ⁇ v, ⁇ nb are position error, velocity error and attitude angle error, respectively.
- the acceleration and gyroscope are respectively biased, and T is transposed;
- the Kalman filter system updates the equation to
- the initial attitude angle ⁇ calculated from the relative alignment is taken as the initial value of ⁇ nb in the Kalman filter state vector, and then the system vector is updated according to the Kalman filter system update equation and the Kalman filter is performed. When the Kalman filter converges, the calculation is performed.
- the installation attitude angle error ⁇ nb of the sensor is performed.
- the device is an agricultural device
- the agricultural device is a tractor.
- the relative alignment mainly solves the alignment of the MEMS-IMU sensor coordinate system with the tractor coordinate system, and the absolute alignment solves the alignment of the tractor coordinate system and the navigation coordinate system.
- the relative error attitude angle is calculated by the relative alignment process.
- the relative error attitude angle is used as the initial value of the attitude error in the state vector in the absolute alignment process, which can accelerate the convergence speed of the Kalman filter.
- the alignment accuracy can be further improved by the absolute alignment process. .
- FIG. 1 is a schematic diagram of an initial alignment method of an inertial navigation device according to the present disclosure
- Figure 3 is a flow chart of the absolute alignment process of the present invention.
- the present invention provides an initial alignment method for an inertial navigation device.
- the method mainly includes the following steps:
- Step S1 providing a sensor-loaded instrument and pre-treating the sensor.
- the step of pre-processing the sensor comprises: step S1a: initializing the sensor; step S1b: filtering the sensor, that is, special processing as illustrated to reduce the device The effect of vibration on the sensor.
- Step S2 Perform a relative alignment process to obtain an installation error angle of the sensor.
- the step of performing the relative alignment process includes: firstly, the instrument is stationary in one direction, and the triaxial acceleration data is acquired; then the instrument is turned 180°, and the three axes are collected. Acceleration data; the installation error angle calculation of the sensor is performed to obtain the installation error angle of the sensor in different directions.
- the formula for obtaining the installation error angle is:
- A, B, and C are model coefficients.
- the accelerometer output values in the sensor, ⁇ , ⁇ , They are the mounting error angle of the sensor, g is the gravity acceleration of the earth, and ⁇ is the angle between the plane of the instrument and the horizontal plane.
- n is the total number of samples
- i is the sampling point
- i 1, 2 together
- Equation 2 Using Equation 2 and Equation 3, A, B, C, and ⁇ can be obtained, and then substituted into Equation 1 to obtain the installation error angles ⁇ , ⁇ ,
- Step S3 Perform absolute alignment processing to obtain an installation posture angle error of the sensor, thereby improving the accuracy of the error posture angle calculated by the relative alignment.
- the steps of performing absolute alignment processing include:
- the ⁇ x error system vector, ⁇ p, ⁇ v, ⁇ nb are position error, velocity error and attitude angle error, respectively.
- the acceleration and gyroscope are respectively biased, and T is transposed;
- the initial attitude angle ⁇ calculated by Equation 3 in relative alignment is taken as the initial value of ⁇ nb in the Kalman filter state vector (or Kalman state vector), and then the Kalman filter system vector is updated according to Equation 6 and kalman filtering is performed;
- the attitude angle of the output is calculated as the more accurate sensor installation angle error ⁇ nb , that is, the alignment angle.
- the invention can further improve the accuracy of the error attitude angle calculated by the relative alignment by the installation attitude angle error ⁇ nb .
- the device is an agricultural device, such as an agricultural tractor.
- the initial alignment implementation method of the low-cost inertial navigation device (three-axis accelerometer and three-axis gyroscope) of the agricultural machinery of the invention is divided into two aspects: relative alignment and absolute alignment, and the relative alignment mainly solves the MEMS-IMU sensor coordinates.
- Alignment with the tractor coordinate system the absolute alignment solves the alignment of the tractor coordinate system with the navigation coordinate system.
- the relative error attitude angle is calculated by the relative alignment process.
- the relative error attitude angle is used as the initial value of the attitude error in the state vector in the absolute alignment process, which can accelerate the convergence speed of the Kalman filter.
- the alignment accuracy can be further improved by the absolute alignment process. .
- the inertial navigation initial alignment method implemented by the present invention can solve the requirements for a high-precision gyroscope in a conventional alignment method
- the present invention mainly requires no other peripheral equipment to complete the alignment, and the alignment precision is high;
- the inertial navigation initial alignment method of the present invention can speed up the convergence speed of the kalman filter and can greatly reduce the attitude angle, velocity and position error accumulated over time;
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Gyroscopes (AREA)
Abstract
Description
Claims (8)
- 一种惯导装置初始对准方法,其特征在于,包括如下步骤:提供一装载有传感器的器械,并对传感器进行预处理;进行相对对准,以求得传感器的安装误差角;进行绝对对准,以求得传感器的安装姿态角误差,进而提高相对对准计算出的误差姿态角精度。
- 如权利要求1所述的方法,其特征在于,对传感器进行预处理的步骤包括:对传感器进行初始化设置;对传感器进行滤波处理,以减小由于器械震动对传感器的影响。
- 如权利要求1所述的方法,其特征在于,进行相对对准的步骤包括:将器械朝一个方向静止,采集三轴加速度数据,然后将器械掉头180°,采集三轴加速度数据;进行传感器的安装误差角度计算,求得传感器在不同方向上的安装误差角度。
- 如权利要求6所述的方法,其特征在于,进行绝对对准的步骤包括:绝对对准卡尔曼滤波模型建立:卡尔曼滤波观测向量:y=[pT vT];其中,p为GPS位置信息,v为GPS速度信息;卡尔曼滤波系统更新方程为由相对对准中计算的初始姿态角α作为卡尔曼滤波状态向量中δψnb的初始值,然后按卡尔曼滤波系统更新方程来更新系统向量以及进行卡尔曼滤波,当卡尔曼滤波收敛后,计算出传感器的安装姿态角误差δψnb。
- 如权利要求1所述的方法,其特征在于,所述器械为农用器械;所述农用器械为拖拉机。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125038A RU2670243C9 (ru) | 2015-10-13 | 2016-07-04 | Способ начального выравнивания устройства инерциальной навигации |
US15/542,442 US10670424B2 (en) | 2015-10-13 | 2016-07-04 | Method for initial alignment of an inertial navigation apparatus |
KR1020177023784A KR101988786B1 (ko) | 2015-10-13 | 2016-07-04 | 관성 항법 장치의 초기 정렬 방법 |
EP16854771.9A EP3364155A4 (en) | 2015-10-13 | 2016-07-04 | METHOD OF INITIALLY ALIGNING AN INERTIAL NAVIGATION APPARATUS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510669553.0 | 2015-10-13 | ||
CN201510669553.0A CN105203129B (zh) | 2015-10-13 | 2015-10-13 | 一种惯导装置初始对准方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017063388A1 true WO2017063388A1 (zh) | 2017-04-20 |
Family
ID=54950938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/088343 WO2017063388A1 (zh) | 2015-10-13 | 2016-07-04 | 一种惯导装置初始对准方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10670424B2 (zh) |
EP (1) | EP3364155A4 (zh) |
KR (1) | KR101988786B1 (zh) |
CN (1) | CN105203129B (zh) |
RU (1) | RU2670243C9 (zh) |
WO (1) | WO2017063388A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108594283A (zh) * | 2018-03-13 | 2018-09-28 | 杨勇 | Gnss/mems惯性组合导航系统的自由安装方法 |
CN113137977A (zh) * | 2021-04-21 | 2021-07-20 | 扬州大学 | 一种sins/偏振光组合导航初始对准滤波方法 |
CN114526734A (zh) * | 2022-03-01 | 2022-05-24 | 长沙金维信息技术有限公司 | 用于车载组合导航的安装角补偿方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203129B (zh) * | 2015-10-13 | 2019-05-07 | 上海华测导航技术股份有限公司 | 一种惯导装置初始对准方法 |
JP6422912B2 (ja) | 2016-04-06 | 2018-11-14 | 株式会社クボタ | 測位検出装置及び測位検出装置を備えた作業機 |
CN109211276B (zh) * | 2018-10-30 | 2022-06-03 | 东南大学 | 基于gpr与改进的srckf的sins初始对准方法 |
CN109596144B (zh) * | 2018-12-10 | 2020-07-24 | 苏州大学 | Gnss位置辅助sins行进间初始对准方法 |
CN109959390B (zh) * | 2018-12-26 | 2022-11-22 | 中国电子科技集团公司第二十研究所 | 一种旋转调制系统双位置安装偏差补偿方法 |
CN110031023A (zh) * | 2019-05-16 | 2019-07-19 | 上海华测导航技术股份有限公司 | 一种工程机械姿态传感器系统误差标定方法 |
CA3143762A1 (en) * | 2019-06-17 | 2020-12-24 | Rohit Seth | Relative position tracking using motion sensor with drift correction |
CN110440830B (zh) * | 2019-08-20 | 2023-03-28 | 湖南航天机电设备与特种材料研究所 | 动基座下车载捷联惯导系统自对准方法 |
CN110388941B (zh) * | 2019-08-28 | 2021-09-10 | 北京机械设备研究所 | 一种基于自适应滤波的车辆姿态对准方法 |
CN110388942B (zh) * | 2019-08-28 | 2021-09-10 | 北京机械设备研究所 | 一种基于角度和速度增量的车载姿态精对准系统 |
CN112798010B (zh) * | 2019-11-13 | 2023-05-09 | 北京三快在线科技有限公司 | 一种视觉惯性里程计vio系统的初始化方法、装置 |
CN111102991A (zh) * | 2019-11-28 | 2020-05-05 | 湖南率为控制科技有限公司 | 一种基于航迹匹配的初始对准方法 |
CN110873577B (zh) * | 2019-12-02 | 2022-05-17 | 中国人民解放军战略支援部队信息工程大学 | 一种水下快速动基座对准方法及装置 |
CN111238532B (zh) * | 2019-12-23 | 2022-02-01 | 湖北航天技术研究院总体设计所 | 一种适用于晃动基座环境的惯性测量单元标定方法 |
CN111216708B (zh) | 2020-01-13 | 2022-02-11 | 上海华测导航技术股份有限公司 | 车辆导航引导系统及车辆 |
CN111272199B (zh) * | 2020-03-23 | 2022-09-27 | 北京爱笔科技有限公司 | 一种imu的安装误差角的标定方法及装置 |
CN113155150A (zh) * | 2020-10-23 | 2021-07-23 | 中国人民解放军火箭军工程大学 | 一种基于凝固载体坐标系的惯导初始姿态解算方法 |
CN113433600B (zh) * | 2021-06-23 | 2022-04-12 | 中国船舶重工集团公司第七0七研究所 | 一种重力仪安装误差角标定方法 |
CN114061623B (zh) * | 2021-12-30 | 2022-05-17 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种基于双天线测向的惯性传感器零偏误差辨识方法 |
CN114993242B (zh) * | 2022-06-17 | 2023-03-31 | 北京航空航天大学 | 一种基于加速度匹配的阵列式pos安装偏差角标定方法 |
CN115096321B (zh) * | 2022-06-23 | 2024-08-06 | 中国人民解放军63921部队 | 一种车载捷联惯导系统鲁棒无迹信息滤波对准方法及系统 |
CN115435817B (zh) * | 2022-11-07 | 2023-03-14 | 开拓导航控制技术股份有限公司 | Mems惯导安装误差的标定方法、存储介质和控制计算机 |
CN118426017A (zh) * | 2024-04-28 | 2024-08-02 | 牧星智能工业科技(上海)有限公司 | 一种基于农业场景自定义坐标的电台rtk组合导航定位方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030149529A1 (en) * | 2002-02-01 | 2003-08-07 | The Aerospace Corporation | Fault detection pseudo gyro |
CN101701825A (zh) * | 2009-09-28 | 2010-05-05 | 龙兴武 | 高精度激光陀螺单轴旋转惯性导航系统 |
CN103245359A (zh) * | 2013-04-23 | 2013-08-14 | 南京航空航天大学 | 一种惯性导航系统中惯性传感器固定误差实时标定方法 |
CN103743414A (zh) * | 2014-01-02 | 2014-04-23 | 东南大学 | 一种里程计辅助车载捷联惯导系统行进间初始对准方法 |
CN104165638A (zh) * | 2014-08-07 | 2014-11-26 | 北京理工大学 | 一种双轴旋转惯导系统多位置自主标定方法 |
CN105203129A (zh) * | 2015-10-13 | 2015-12-30 | 上海华测导航技术股份有限公司 | 一种惯导装置初始对准方法 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3638883A (en) * | 1968-05-21 | 1972-02-01 | Dynasciences Corp | Cross-rate axis sensor |
JP3162187B2 (ja) * | 1992-06-29 | 2001-04-25 | 三菱プレシジョン株式会社 | 移動体の慣性検出手段の初期座標値設定方法と装置 |
US5886257A (en) * | 1996-07-03 | 1999-03-23 | The Charles Stark Draper Laboratory, Inc. | Autonomous local vertical determination apparatus and methods for a ballistic body |
US6647352B1 (en) * | 1998-06-05 | 2003-11-11 | Crossbow Technology | Dynamic attitude measurement method and apparatus |
US6341249B1 (en) * | 1999-02-11 | 2002-01-22 | Guang Qian Xing | Autonomous unified on-board orbit and attitude control system for satellites |
US6453239B1 (en) * | 1999-06-08 | 2002-09-17 | Schlumberger Technology Corporation | Method and apparatus for borehole surveying |
ES2238936B1 (es) * | 2004-02-27 | 2006-11-16 | INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" | Sistema y metodo de fusion de sensores para estimar posicion, velocidad y orientacion de un vehiculo, especialmente una aeronave. |
US8224574B2 (en) * | 2004-05-12 | 2012-07-17 | Northrop Grumman Guidance And Electronics Company, Inc. | System for multiple navigation components |
DE102005033237B4 (de) * | 2005-07-15 | 2007-09-20 | Siemens Ag | Verfahren zur Bestimmung und Korrektur von Fehlorientierungen und Offsets der Sensoren einer Inertial Measurement Unit in einem Landfahrzeug |
US7421343B2 (en) * | 2005-10-27 | 2008-09-02 | Honeywell International Inc. | Systems and methods for reducing vibration-induced errors in inertial sensors |
RU2300081C1 (ru) * | 2005-11-07 | 2007-05-27 | Александр Викторович Захарин | Способ определения инструментальных погрешностей измерителей инерциальной навигационной системы на этапе начальной выставки |
US7561960B2 (en) * | 2006-04-20 | 2009-07-14 | Honeywell International Inc. | Motion classification methods for personal navigation |
CA2649990A1 (en) * | 2006-06-15 | 2007-12-21 | Uti Limited Partnership | Vehicular navigation and positioning system |
US7835832B2 (en) * | 2007-01-05 | 2010-11-16 | Hemisphere Gps Llc | Vehicle control system |
KR100898169B1 (ko) * | 2007-03-23 | 2009-05-19 | 국방과학연구소 | 관성항법시스템의 초기정렬 방법 |
FR2920224B1 (fr) * | 2007-08-23 | 2009-10-02 | Sagem Defense Securite | Procede de determination d'une vitesse de rotation d'un capteur vibrant axisymetrique, et dispositif inertiel mettant en oeuvre le procede |
JP4466715B2 (ja) * | 2007-10-25 | 2010-05-26 | トヨタ自動車株式会社 | 脚式ロボット、及びその制御方法 |
RU2406973C2 (ru) * | 2009-02-05 | 2010-12-20 | Открытое акционерное общество "Пермская научно-производственная приборостроительная компания" | Способ калибровки бесплатформенных инерциальных навигационных систем |
RU2527140C2 (ru) * | 2009-10-26 | 2014-08-27 | Лэйка Геосистемс Аг | Способ калибровки инерциальных датчиков |
CN101975872B (zh) * | 2010-10-28 | 2011-09-14 | 哈尔滨工程大学 | 石英挠性加速度计组件零位偏置的标定方法 |
KR101213975B1 (ko) * | 2010-11-05 | 2012-12-20 | 국방과학연구소 | 비행 중 정렬 장치 및 그 방법 |
US20130245984A1 (en) * | 2010-11-17 | 2013-09-19 | Hillcrest Laboratories, Inc. | Apparatuses and methods for magnetometer alignment calibration without prior knowledge of the local magnetic field |
US9891054B2 (en) * | 2010-12-03 | 2018-02-13 | Qualcomm Incorporated | Inertial sensor aided heading and positioning for GNSS vehicle navigation |
KR101257935B1 (ko) * | 2010-12-06 | 2013-04-23 | 국방과학연구소 | 관성 항법 시스템의 바이어스 추정치를 이용한 정렬 장치 및 그 항법 시스템 |
US9160980B2 (en) * | 2011-01-11 | 2015-10-13 | Qualcomm Incorporated | Camera-based inertial sensor alignment for PND |
CN102168991B (zh) | 2011-01-29 | 2012-09-05 | 中北大学 | 三轴矢量传感器与安装载体间安装误差的标定补偿方法 |
CN102865881B (zh) * | 2012-03-06 | 2014-12-31 | 武汉大学 | 一种惯性测量单元的快速标定方法 |
US9915550B2 (en) * | 2012-08-02 | 2018-03-13 | Memsic, Inc. | Method and apparatus for data fusion of a three-axis magnetometer and three axis accelerometer |
RU2563333C2 (ru) * | 2013-07-18 | 2015-09-20 | Федеральное государственное унитарное предприятие "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" | Бесплатформенная инерциальная навигационная система |
US10247556B2 (en) * | 2013-07-23 | 2019-04-02 | The Regents Of The University Of California | Method for processing feature measurements in vision-aided inertial navigation |
ITTO20130645A1 (it) * | 2013-07-30 | 2015-01-31 | St Microelectronics Srl | Metodo e sistema di calibrazione in tempo reale di un giroscopio |
US9714548B2 (en) * | 2013-08-23 | 2017-07-25 | Flexit Australia Pty Ltd. | Apparatus for single degree of freedom inertial measurement unit platform rate isolation |
JP6351164B2 (ja) * | 2014-06-12 | 2018-07-04 | 国立研究開発法人量子科学技術研究開発機構 | ビーム照射対象確認装置、ビーム照射対象確認プログラム、および阻止能比算出プログラム |
CN104064869B (zh) * | 2014-06-13 | 2016-10-05 | 北京航天万达高科技有限公司 | 基于mems惯导的双四元数动中通天线控制方法及系统 |
US10234292B2 (en) * | 2014-08-08 | 2019-03-19 | Stmicroelefctronics S.R.L. | Positioning apparatus and global navigation satellite system, method of detecting satellite signals |
US9857198B2 (en) * | 2015-02-04 | 2018-01-02 | Bae Systems Information And Electronic Systems Integration Inc. | Apparatus and method for inertial sensor calibration |
US9651399B2 (en) * | 2015-03-25 | 2017-05-16 | Northrop Grumman Systems Corporation | Continuous calibration of an inertial system |
-
2015
- 2015-10-13 CN CN201510669553.0A patent/CN105203129B/zh active Active
-
2016
- 2016-07-04 WO PCT/CN2016/088343 patent/WO2017063388A1/zh active Application Filing
- 2016-07-04 EP EP16854771.9A patent/EP3364155A4/en not_active Withdrawn
- 2016-07-04 US US15/542,442 patent/US10670424B2/en not_active Expired - Fee Related
- 2016-07-04 RU RU2017125038A patent/RU2670243C9/ru not_active IP Right Cessation
- 2016-07-04 KR KR1020177023784A patent/KR101988786B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030149529A1 (en) * | 2002-02-01 | 2003-08-07 | The Aerospace Corporation | Fault detection pseudo gyro |
CN101701825A (zh) * | 2009-09-28 | 2010-05-05 | 龙兴武 | 高精度激光陀螺单轴旋转惯性导航系统 |
CN103245359A (zh) * | 2013-04-23 | 2013-08-14 | 南京航空航天大学 | 一种惯性导航系统中惯性传感器固定误差实时标定方法 |
CN103743414A (zh) * | 2014-01-02 | 2014-04-23 | 东南大学 | 一种里程计辅助车载捷联惯导系统行进间初始对准方法 |
CN104165638A (zh) * | 2014-08-07 | 2014-11-26 | 北京理工大学 | 一种双轴旋转惯导系统多位置自主标定方法 |
CN105203129A (zh) * | 2015-10-13 | 2015-12-30 | 上海华测导航技术股份有限公司 | 一种惯导装置初始对准方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3364155A4 * |
ZHANG, HUI ET AL.: "Research on Calibration Method for the Installation Error of Three-Axis Acceleration Sensor", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 24, no. 11, 30 November 2011 (2011-11-30), pages 1543 - 1546, XP009509436 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108594283A (zh) * | 2018-03-13 | 2018-09-28 | 杨勇 | Gnss/mems惯性组合导航系统的自由安装方法 |
CN113137977A (zh) * | 2021-04-21 | 2021-07-20 | 扬州大学 | 一种sins/偏振光组合导航初始对准滤波方法 |
CN114526734A (zh) * | 2022-03-01 | 2022-05-24 | 长沙金维信息技术有限公司 | 用于车载组合导航的安装角补偿方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3364155A4 (en) | 2019-06-12 |
US10670424B2 (en) | 2020-06-02 |
KR101988786B1 (ko) | 2019-06-12 |
RU2670243C1 (ru) | 2018-10-19 |
CN105203129B (zh) | 2019-05-07 |
CN105203129A (zh) | 2015-12-30 |
US20180274940A1 (en) | 2018-09-27 |
EP3364155A1 (en) | 2018-08-22 |
KR20170104623A (ko) | 2017-09-15 |
RU2670243C9 (ru) | 2018-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017063388A1 (zh) | 一种惯导装置初始对准方法 | |
KR102017404B1 (ko) | 9축 mems 센서에 기반하여 농기계의 전-자세 각도를 갱신하는 방법 | |
KR102018450B1 (ko) | 단일 안테나에 기초한 gnss―ins 차량 자세 결정 방법 | |
CN107655493B (zh) | 一种光纤陀螺sins六位置系统级标定方法 | |
CN103900565B (zh) | 一种基于差分gps的惯导系统姿态获取方法 | |
CN104316055B (zh) | 一种基于改进的扩展卡尔曼滤波算法的两轮自平衡机器人姿态解算方法 | |
CN104501838B (zh) | 捷联惯导系统初始对准方法 | |
CN110954102B (zh) | 用于机器人定位的磁力计辅助惯性导航系统及方法 | |
CN109596144B (zh) | Gnss位置辅助sins行进间初始对准方法 | |
CN104697526A (zh) | 用于农业机械的捷联惯导系统以及控制方法 | |
CN113063429B (zh) | 一种自适应车载组合导航定位方法 | |
CN106403952A (zh) | 一种动中通低成本组合姿态测量方法 | |
CN106153069B (zh) | 自主导航系统中的姿态修正装置和方法 | |
CN109612460B (zh) | 一种基于静止修正的垂线偏差测量方法 | |
CN110702113B (zh) | 基于mems传感器的捷联惯导系统数据预处理和姿态解算的方法 | |
CN104359496B (zh) | 基于垂线偏差补偿的高精度姿态修正方法 | |
CN108458714A (zh) | 一种姿态检测系统中不含重力加速度的欧拉角求解方法 | |
CN107202578A (zh) | 一种基于mems技术的捷联式垂直陀螺仪解算方法 | |
CN115540860A (zh) | 一种多传感器融合位姿估计算法 | |
CN111307114B (zh) | 基于运动参考单元的水面舰船水平姿态测量方法 | |
CN116125789A (zh) | 一种基于四元数的姿态算法参数自动匹配系统及方法 | |
CN106197376B (zh) | 基于单轴mems惯性传感器的车身倾角测量方法 | |
CN106595669B (zh) | 一种旋转体姿态解算方法 | |
CN104154914A (zh) | 一种空间稳定型捷联惯导系统初始姿态测量方法 | |
CN108088463B (zh) | 一种高度传感器辅助伪卫星定位的惯导初始对准方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16854771 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15542442 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017125038 Country of ref document: RU Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2016854771 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177023784 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |