WO2017061797A1 - 상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치 - Google Patents

상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017061797A1
WO2017061797A1 PCT/KR2016/011204 KR2016011204W WO2017061797A1 WO 2017061797 A1 WO2017061797 A1 WO 2017061797A1 KR 2016011204 W KR2016011204 W KR 2016011204W WO 2017061797 A1 WO2017061797 A1 WO 2017061797A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack policy
data
ack
acknowledgment
value
Prior art date
Application number
PCT/KR2016/011204
Other languages
English (en)
French (fr)
Inventor
천진영
류기선
조한규
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201680058357.2A priority Critical patent/CN108141325B/zh
Priority to EP16853913.8A priority patent/EP3361664B1/en
Priority to EP23201206.2A priority patent/EP4283897A3/en
Priority to US15/762,084 priority patent/US11171757B2/en
Priority to JP2018515978A priority patent/JP6518009B2/ja
Priority to KR1020187012819A priority patent/KR102148658B1/ko
Publication of WO2017061797A1 publication Critical patent/WO2017061797A1/ko
Priority to US17/492,159 priority patent/US11677530B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the following description relates to a method and apparatus for transmitting and receiving an acknowledgment signal based on an ACK policy value for multi-user or multi-station (STA) data in a WLAN system.
  • STA multi-station
  • IEEE 802.11a and b are described in 2.4. Using unlicensed band at GHz or 5 GHz, IEEE 802.11b provides a transmission rate of 11 Mbps and IEEE 802.11a provides a transmission rate of 54 Mbps.
  • IEEE 802.11g applies orthogonal frequency-division multiplexing (OFDM) at 2.4 GHz to provide a transmission rate of 54 Mbps.
  • IEEE 802.11n applies multiple input multiple output OFDM (MIMO-OFDM) to provide a transmission rate of 300 Mbps for four spatial streams. IEEE 802.11n supports channel bandwidths up to 40 MHz, in this case providing a transmission rate of 600 Mbps.
  • the WLAN standard uses a maximum of 160MHz bandwidth, supports eight spatial streams, and supports IEEE 802.11ax standard through an IEEE 802.11ac standard supporting a speed of up to 1Gbit / s.
  • an uplink OFDMA (UL OFDMA) transmission scheme and an uplink multi-user (UL MU) transmission scheme will be used. Accordingly, the AP may receive UL MU frames from a plurality of STAs at the same transmission opportunity, and it is necessary to transmit an acknowledgment frame.
  • UL OFDMA uplink OFDMA
  • UL MU uplink multi-user
  • a trigger is triggered from the AP.
  • a method for transmitting an acknowledgment signal is set to a value other than a first ACK policy value for requesting transmission of an acknowledgment signal based on a request.
  • the STA may set an ACK policy value of data transmitted based on the trigger frame as a second ACK policy value requesting a general acknowledgment or an immediate transmission block acknowledgment.
  • the acknowledgment signal may be received after a short interframe space (SIFS) after data transmission set to the second ACK policy value.
  • SIFS short interframe space
  • the ACK policy value of the downlink data may be set to any one of a plurality of ACK policy values including the first ACK policy value.
  • the plurality of ACK policy values may include a '00' requesting a general acknowledgment or an immediate transport block acknowledgment, a '01' requesting an acknowledgment, a requesting explicit acknowledgment or a power save multi-poll (PSMP). '10' for requesting an acknowledgment, and '11' for requesting an acknowledgment signal transmission based on a block acknowledgment request (Block Ack Request).
  • PSMP power save multi-poll
  • the first ACK policy value may be '11' and the second ACK policy value may be '00'.
  • a trigger frame is received from the AP, and the trigger frame
  • a transceiver configured to transmit data to the AP in a multi-user access manner in response
  • a processor coupled to the transceiver and configured to provide the data to the transceiver, wherein the processor checks an ACK policy value of data transmitted based on the trigger frame based on a block acknowledgment request.
  • a station is configured to be set to a value other than a first ACK policy value requesting response signal transmission.
  • the processor may be configured to set an ACK policy value of data transmitted based on the trigger frame to a second ACK policy value requesting a general acknowledgment or an immediate transmission block acknowledgment.
  • the processor checks an ACK policy value of the downlink data set to one of a plurality of ACK policy values including the first ACK policy value. Can be configured.
  • an access point receives data from a plurality of stations (STA) in a multi-user manner in a WLAN system, triggering the plurality of STAs ( trigger) frame, and receiving data from the plurality of STAs in a multi-user access method, wherein the ACK policy value of the data received after the trigger frame transmission is confirmed based on a block acknowledgment request.
  • the present invention proposes a multi-user data reception method, characterized in that it is set to a value other than a first ACK policy value requesting transmission of a response signal.
  • the ACK policy value of data received after the trigger frame transmission may be set to a second ACK policy value requesting a general acknowledgment or an immediate transmission block acknowledgment.
  • the AP may set an ACK policy value of the downlink data to any one of a plurality of ACK policy values including the first ACK policy value. have.
  • an AP (Access Point) device that receives data from a plurality of STAs in a multi-user manner in a WLAN system, triggers on the plurality of STAs
  • a transceiver configured to transmit a frame and to receive data from the plurality of STAs in a multi-user access manner;
  • a processor coupled to the transceiver and configured to process the data, wherein the processor requests the first ACK policy to transmit an acknowledgment signal based on a block acknowledgment request of the data.
  • An AP device configured to operate in response to being set to a value other than a value, is proposed.
  • the ACK policy value of the data received after the trigger frame transmission may be set to a second ACK policy value for requesting a general acknowledgment or an immediate transmission block acknowledgment.
  • the AP may transmit an acknowledgment signal for a plurality of STAs without delay.
  • FIG. 1 is a diagram illustrating an example of a configuration of a WLAN system.
  • FIG. 2 is a diagram illustrating another example of a configuration of a WLAN system.
  • FIG. 3 is a diagram illustrating a block Ack mechanism utilized in a WLAN system.
  • FIG. 4 is a diagram illustrating a basic configuration of a block acknowledgment frame.
  • FIG. 5 is a diagram illustrating a specific configuration of a BA control field shown in FIG. 4.
  • FIG. 6 is a diagram illustrating a specific configuration of a BA information field shown in FIG. 4.
  • FIG. 7 is a diagram illustrating the configuration of a Block Ack start sequence control subfield.
  • FIG. 8 is a diagram illustrating a BA information field configuration of a compressed Block Ack frame.
  • FIG. 9 illustrates a BA information field of a Multi-TID Block Ack frame.
  • FIG. 12 is a diagram for explaining an uplink multi-user transmission situation to which the present invention is applied.
  • FIG. 13 is a diagram for describing a method of transmitting an acknowledgment signal to a plurality of STAs by using an Ack policy according to an embodiment of the present invention.
  • FIG. 14 illustrates a case in which an ACK policy value based on a block acknowledgment request is not used according to an embodiment of the present invention.
  • 15 and 16 illustrate an uplink multiple access situation to which the present invention is applied.
  • 17 and 18 illustrate a case in which an AP describes an ACK policy value when a trigger frame is transmitted as another embodiment of the present invention.
  • 19 is a view for explaining an apparatus for implementing the method as described above.
  • the following description relates to a method and an apparatus therefor for efficiently utilizing a channel having a wide band in a WLAN system.
  • a WLAN system to which the present invention is applied will be described in detail.
  • FIG. 1 is a diagram illustrating an example of a configuration of a WLAN system.
  • the WLAN system includes one or more basic service sets (BSSs).
  • BSS is a set of stations (STAs) that can successfully synchronize and communicate with each other.
  • An STA is a logical entity that includes a medium access control (MAC) and a physical layer interface to a wireless medium.
  • the STA is an access point (AP) and a non-AP STA (Non-AP Station). Include.
  • the portable terminal operated by the user among the STAs is a non-AP STA, and when referred to simply as an STA, it may also refer to a non-AP STA.
  • a non-AP STA is a terminal, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile terminal, or a mobile subscriber. It may also be called another name such as a mobile subscriber unit.
  • the AP is an entity that provides an associated station (STA) coupled to the AP to access a distribution system (DS) through a wireless medium.
  • STA station
  • DS distribution system
  • the AP may be called a centralized controller, a base station (BS), a Node-B, a base transceiver system (BTS), or a site controller.
  • BS base station
  • BTS base transceiver system
  • BSS can be divided into infrastructure BSS and Independent BSS (IBSS).
  • IBSS Independent BSS
  • the BBS shown in FIG. 1 is an IBSS.
  • the IBSS means a BSS that does not include an AP. Since the IBSS does not include an AP, access to the DS is not allowed, thereby forming a self-contained network.
  • FIG. 2 is a diagram illustrating another example of a configuration of a WLAN system.
  • the BSS shown in FIG. 2 is an infrastructure BSS.
  • Infrastructure BSS includes one or more STAs and APs.
  • communication between non-AP STAs is performed via an AP.
  • AP access point
  • a plurality of infrastructure BSSs may be interconnected through a DS.
  • a plurality of BSSs connected through a DS is called an extended service set (ESS).
  • STAs included in the ESS may communicate with each other, and a non-AP STA may move from one BSS to another BSS while seamlessly communicating within the same ESS.
  • the DS is a mechanism for connecting a plurality of APs.
  • the DS is not necessarily a network, and there is no limitation on the form if it can provide a predetermined distribution service.
  • the DS may be a wireless network such as a mesh network or a physical structure that connects APs to each other.
  • the block Ack mechanism increases channel efficiency by transmitting a plurality of acknowledgments in one frame.
  • the immediate response method is advantageous for wide bandwidth and low delay traffic transmission, while the delay response method may be suitable for applications that are not sensitive to delay.
  • a STA that sends data using a block Ack mechanism is referred to as an originator and a STA that receives such data as a recipient.
  • FIG. 3 is a diagram illustrating a block Ack mechanism utilized in a WLAN system.
  • the block Ack mechanism may be initiated by the exchange of an add block acknowledgment (ADDBA) request / response frame as shown in FIG. 3 ((a) Setup step).
  • ADDBA add block acknowledgment
  • QoS data frame blocks may be sent from the sender to the receiver. Such blocks may be initiated in a polled TXOP or by winning an EDCA race.
  • the sphere of the frame in the block can be limited.
  • MPDUs in such a frame block may be acknowledged by a BlockAck frame received in response to a request by a BlockAckReq frame ((b) Data & Block Ack step).
  • the sender can terminate the Block Ack mechanism by sending a DELBA (delete Block Acknowledgment) frame to the receiver. Receiving such a DELBA frame, the receiver can release all resources allocated for Block Ack transmission ((c) Tear Down step).
  • DELBA delete Block Acknowledgment
  • FIG. 4 is a diagram illustrating a basic configuration of a block acknowledgment frame.
  • the block acknowledgment frame may include a MAC header field, a BA control field, and a BA information field as shown in FIG. 4.
  • the MAC header field may include a frame control field, a Duration / ID field, an RA field, and a TA field.
  • the RA field represents the address of the receiving STA
  • the TA field represents the address of the originating STA.
  • FIG. 5 is a diagram illustrating a specific configuration of a BA control field shown in FIG. 4.
  • the value of the BA Ack policy subfield in the BA control field may convey the meaning as shown in Table 1 below.
  • the BA Ack Policy subfield is set to this value when the sender requires immediate acknowledgment.
  • the addressee returns an Ack frame.
  • the value 0 is not used for data sent under HT-delayed Block Ack during a PSMP sequence.
  • the value 0 is not used in frames transmitted by DMG STAs.
  • the addressee sends no immediate response upon receipt of the frame.
  • the BA Ack Policy is set to this value when the sender does not require immediate acknowledgment.
  • the value 1 is not used in a Basic BlockAck frame outside a PSMP sequence.
  • the value 1 is not used in an Multi-TID BlockAck frame.
  • the Multi-TID, Compressed Bitmap, and GCR subfields in the BA control field may determine possible BlockAck frame transformation according to the following rule.
  • Multi-TID subfield value Compressed Bitmap subfield value
  • BlockAck frame variant 0 0 0 0 Basic BlockAck 0 One 0 Compressed BlockAck One 0 0 ExtendedCompressedBlockAck One One 0 Multi-TID BlockAck 0 0 One Reserved 0 One One GCR BlockAck One 0 One Reserved One One One Reserved
  • FIG. 6 is a diagram illustrating a specific configuration of a BA information field illustrated in FIG. 4, and FIG. 7 is a diagram illustrating a configuration of a Block Ack start sequence control subfield.
  • the BA information field may include a Block Ack Start Sequence Control (SSC) subfield and a Block Ack bitmap subfield.
  • SSC Block Ack Start Sequence Control
  • the Block Ack bitmap subfield has a length of 128 octets, and thus may indicate a reception state of 64 MSDUs.
  • Bit position n of the Block Ack bitmap field if set to 1, may indicate the successful reception of an MPDU having an MPDU sequence control value corresponding to (SSC + n), where SSC is the Block Ack start sequence control sub Represents a field value.
  • SSC is the Block Ack start sequence control sub Represents a field value.
  • bit position n of the Block Ack bitmap field when bit position n of the Block Ack bitmap field is set to 0, this may indicate that an MPDU having an MPDU sequence control value corresponding to (SSC + n) has not been received.
  • MPDU sequence control field and Block Ack start sequence control subfield values may be treated as 16-bit unsigned integers, respectively. For unused fragment numbers of the MSDU, the corresponding bit in the bitmap may be set to zero.
  • FIG. 8 is a diagram illustrating a BA information field configuration of a compressed Block Ack frame.
  • the Block Ack bitmap of the BS information field of the compressed Block Ack frame may have an 8 octet length as shown in FIG. 8, and may indicate reception states of 64 MSDUs and A-MSDUs.
  • the first bit of the bitmap corresponds to an MSDU or A-MSDU corresponding to the value of the start sequence number subfield, and each bit may sequentially correspond to the MSDU or A-MSDU following the MSDU or A-MSDU.
  • FIG. 9 illustrates a BA information field of a Multi-TID Block Ack frame.
  • the TID_INFO subfield of the BA control field of the Multi-TID BlockAck frame indicates how many TIDs are transmitted in the BA information field.
  • the value of the TID_INFO subfield indicates the number of TIDs -1 corresponding to the information of the BA information field. For example, when the TID_INFO value is 2, it may represent that the BA information field includes information on three TIDs.
  • a Per TID Info subfield may be additionally added to the Block Ack start sequence control subfield and the Block Ack bitmap subfield as shown in FIG. 9.
  • Per TID Info, block Ack start sequence control, and Block Ack bitmap subfields that appear first may be transmitted corresponding to the lowest TID value, and subsequent repeated subfields may correspond to the next TID. Triplet of these subfields may be repeated for each TID.
  • the AP may transmit MU-MIMO data frames to a plurality of STAs (STAs 1 to 3).
  • the STA 1 may transmit a BA frame immediately after receiving a downlink MU PPDU without requesting a BA.
  • the AP transmits a BA Request (BAR) frame to the STA 2 and the STA 3 to perform polling, and the STA 2 and the STA 3 may transmit a BA frame.
  • BAR BA Request
  • FIG. 11 is an example in which frame exchange is performed without SIFS after MU PPDU, and assumes that an Ack policy is set to Block Ack for all STAs. Accordingly, the AP may transmit and poll a BAR frame to all STAs.
  • FIG. 12 is a diagram for explaining an uplink multi-user transmission situation to which the present invention is applied.
  • a UL MU transmission scheme may be used, which means that the AP transmits a trigger frame to a plurality of STAs (eg, STA 1 to STA 4) as illustrated in FIG. 12. Can be started by.
  • the trigger frame may include UL MU allocation information (eg, resource location and size, STA IDs, MCS, MU type (MIMO, OFDMA, etc.)).
  • UL MU allocation information eg, resource location and size, STA IDs, MCS, MU type (MIMO, OFDMA, etc.
  • Each allocation's Information SU / MUAID for UL MU frame (In case of MU, additional number of STA is included.
  • the AP may acquire a TXOP for transmitting a trigger frame through a competition process to access a medium.
  • the STAs may transmit the UL data frame in the format indicated by the AP after SIFS of the trigger frame.
  • an AP according to the present invention performs an acknowledgment on a UL MU data frame through a block ACK (BA) frame.
  • BA block ACK
  • the uplink multiple access scheme in order to flexibly transmit an acknowledgment signal transmission scheme transmitted by the AP, it may be considered to flexibly apply an ACK policy value for each STA.
  • the QoS control field of the UL MU frame has the following configuration, and in particular, the QoS control field has a 2-bit field indicating an ACK policy in bits 5-6.
  • the addressed recipient returns an Ack or QoS + CF-Ack frame after a short interframe space (SIFS ) period, according to the procedures defined in Ack procedure and HCCA transfer rules.
  • SIFS short interframe space
  • a non-DMG STA sets the Ack Policy subfield for individually addressed QoS Null (no data) frames to this value.Otherwise: The addressed recipient returns a BlockAck frame, either individually or as part of an A-MPDU starting a SIFS after the PPDU carrying the frame, according to the procedure defined in Block ack procedure, Generation and transmission of BlockAck frames by an HT STA or DMG STA, Operation of HT-delayed block ack, Rules for RD initiator, Rules for RD responder, and Explicit feedback beamforming.
  • Ack Policy 01No AckThe addressed recipient takes no action upon receipt of the frame.
  • the Ack Policy subfield is set to this value in all individually addressed frames inwhich the sender does not require acknowledgment.
  • the Ack Policy subfield is alsoset to this value in all group addressed frames that use the QoS frame format exceptwith a TID for which a block ack agreement exists. This value of the Ack Policy subfield is not used for QoS Data frames with a TID forwhich a block ack agreement exists.
  • the Ack Policy subfield for group addressed QoS Null (no data) frames is set to thisvalue.
  • bit 6 of the Frame Control field (see 9.2.4.1.3 (Type and Subtype subfields)) is set to 1: There might be a response frame to the frame that is received, but it is neither the Ack frame nor any Data frame of subtype + CF-Ack.
  • the Ack Policy subfield for QoS CF-Poll and QoS CF-Ack + CF-Poll Data frames is set to this value.
  • bit 6 of the Frame Control field (see 9.2.4.1.3 (Type and Subtype subfields)) is set to 0:
  • the acknowledgment for a frame indicating PSMP Ack when it appears in a PSMP downlink transmission time (PSMP-DTT) is to be received in a later PSMP uplink transmission time (PSMP-UTT) .
  • PSMP-DTT PSMP downlink transmission time
  • PSMP-UTT PSMP uplink transmission time
  • the Bit 6 of the Frame Control field indicates the absence of a data Frame Body field.
  • the QoS Data frame contains no Frame Body field, and any response is generated in response to a QoS CF-Poll or QoS CF-Ack + CF-Poll frame, but does not signify an acknowledgment of data.
  • the QoS Data frame contains a Frame Body field, which is acknowledged as described in 10.29.2.7 (PSMP acknowledgment rules) ..
  • the above-described Ack policy field may represent four different values using 2-bit information, and the definition of each value is as defined in Tables 6 to 9 above.
  • an Ack policy field is applied to an uplink MU situation to propose a method in which an AP transmits an acknowledgment signal to a plurality of STAs more flexibly.
  • the ACK policy value used in the following description may have the following additional meanings in addition to the meanings shown in Tables 6 to 9 above, but it is assumed that the definitions of Tables 6 to 9 are borrowed unless otherwise specified.
  • FIG. 13 is a diagram for describing a method of transmitting an acknowledgment signal to a plurality of STAs by using an Ack policy according to an embodiment of the present invention.
  • the AP may induce UL MU frame transmission by transmitting a trigger frame to STAs 1 to 4.
  • STAs 1 to 4 may include an ACK policy in the MPDU and transmit the same.
  • STAs 1 and 3 set the ACK policy value to 00
  • STAs 2 and 4 set the ACK policy value to 11.
  • a BA may be immediately transmitted (ie, M-BA transmission) simultaneously to STAs that have transmitted UL MU frames indicating (implicit BA / ACK). It is assumed that the M-BA includes ACK / BA for a plurality of STAs.
  • M-BA is transmitted after SIFS, and thereafter, BARs are received from STAs that transmit UL MU frames in which the Ack policy is set to BA (11). After that, the block ACK may be transmitted to the STA that has transmitted the BAR.
  • the AP transmits BA / ACK to STA1 and STA3 at once after UL MU frame reception SIFS (ie, M-BA). Transfer through). At this time, the AP may transmit a Block ACK (Multi-STA BA) including BA / ACK information for the Multiple STA.
  • a Block ACK Multi-STA BA
  • the AP may wait to receive a BAR from STA2 and STA4 that have transmitted the UL frame having the ACK policy BA 11. Thereafter, the STA2 may transmit the BAR on a contention basis, and the AP may transmit a BA to the STA2 in response. Thereafter, the STA4 may transmit the BAR on a contention basis, and the AP may transmit a BA to the STA4 in response.
  • the operation of UL MU may be complicated.
  • the AP receives a BAR from the corresponding STA. Since there is no choice but to send an ACK, the procedure is delayed.
  • one preferred embodiment of the present invention proposes not to use the ACK policy value '11' in the UL MU situation. Accordingly, it is assumed that the STA transmits data in the form of UL MU, and the ACK policy value for this is set to values other than '11' (e.g. '00', '01' and '10'). Accordingly, when the STA requests an acknowledgment, the STA preferably operates by setting the ACK policy value to '00'.
  • the situation of the UL MU as described above may be different from the situation of the above-described DL MU.
  • the AP may collectively determine ACK policy values for a plurality of STAs, an ACK policy that operates on a BAR basis for some STAs may be selected according to the AP situation.
  • FIG. 14 illustrates a case in which an ACK policy value based on a block acknowledgment request is not used according to an embodiment of the present invention.
  • the AP may induce UL MU scheme frame transmission of a plurality of STAs by transmitting a trigger frame. Accordingly, each STA transmits a UL MU frame, but in the example of FIG. 14, it is assumed that STA 1 to STA 4 require reception of an acknowledgment for the corresponding frame. Accordingly, all of STAs 1 to 4 set the ACK policy value to '00' and transmit the received acknowledgment signal from the AP after SIFS.
  • the example of FIG. 14 illustrates a case in which the AP transmits an acknowledgment signal through the M-BA. Accordingly, the AP may include all acknowledgment signals for the STA 1 to the STA 4 through the M-BA.
  • 15 and 16 illustrate an uplink multiple access situation to which the present invention is applied.
  • FIG. 15 is a diagram illustrating a situation in which STA 1 to STA 4 transmit a UL MU PPDU in response to a trigger frame transmitted by an AP as described above.
  • STA 1 to STA 3 request an acknowledgment signal for the transmitted UL MU PPDU, it is preferable to set the ACK policy value to '00' and transmit it as described above.
  • the STA 4 does not request an acknowledgment signal for the transmitted UL MU PPDU, and accordingly, may set and transmit the ACK policy value as '01'.
  • the AP may transmit an acknowledgment signal to the STA 1 to STA 3 having the ACK policy value set to '00' through DL OFDMA BA or M-BA.
  • a trigger frame may be transmitted together, and accordingly, after the STAs transmit a UL MU PPDU or a UL Ack, a DL Ack may be transmitted for a UL MU PPDU requiring Ack. have.
  • trigger information for transmitting the Ack for the DL MU PPDU may be included or implicit.
  • the DL Ack frame may be transmitted in an OFDMA form or may be transmitted in an M-BA form. That is, Ack information transmitted to each STA may be configured and transmitted in each OFDMA frame, or Ack information transmitted to all STAs may be aggregated in one frame and transmitted in one frame. It is also possible to use two types of hybrid methods, such as using M-BA only within 20 MHz and transmitting more than one BW in OFDMA format.
  • the AP triggers a frame to solve the problem of selecting a different ACK policy value for each STA in the UL MU situation, and to flexibly operate the ACK policy according to the STA status. It is proposed to set the ACK policy for each STA through.
  • 17 and 18 illustrate a case in which an AP describes an ACK policy value when a trigger frame is transmitted as another embodiment of the present invention.
  • the AP may determine an ACK policy in the trigger frame identically for all STAs or differently for each STA.
  • FIG. 18 shows an example in which an ACK policy is defined for each STA.
  • the AP may receive a UL MU frame, transmit BA / ACK for STA1 and STA3 in the M-BA, and then allocate resources for MU BAR transmission for STA2 and STA4 through a trigger frame.
  • 19 is a view for explaining an apparatus for implementing the method as described above.
  • the wireless device 800 of FIG. 19 may correspond to a specific STA of the above-described description, and the wireless device 850 may correspond to the AP of the above-described description.
  • the STA 800 may include a processor 810, a memory 820, and a transceiver 830, and the AP 850 may include a processor 860, a memory 870, and a transceiver 880.
  • the transceiver 830 and 880 may transmit / receive a radio signal and may be executed in a physical layer such as IEEE 802.11 / 3GPP.
  • the processors 810 and 860 are executed at the physical layer and / or MAC layer, and are connected to the transceivers 830 and 880. Processors 810 and 860 may perform the aforementioned UL MU scheduling procedure.
  • Processors 810 and 860 and / or transceivers 830 and 880 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits and / or data processors.
  • the memories 820 and 870 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media and / or other storage units.
  • ROM read-only memory
  • RAM random access memory
  • flash memory memory cards
  • the method described above can be executed as a module (eg, process, function) that performs the functions described above.
  • the module may be stored in the memory 820, 870 and executed by the processors 810, 860.
  • the memories 820 and 870 may be disposed inside or outside the processes 810 and 860 and may be connected to the processes 810 and 860 by well-known means.
  • the present invention has been described assuming that it is applied to an IEEE 802.11-based WLAN system, but the present invention is not limited thereto.
  • the present invention can be applied in the same manner to various wireless systems in which the AP can operate the Block Ack mechanism for a plurality of STAs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

본 문서는 무선랜(WLAN) 시스템에서 AP (Access Point)가 복수의 스테이션 (STA)의 MU(Multi-User) 전송 데이터에 대해 확인응답(ACK/NACK) 신호를 전송하는 방법 및 이를 위한 장치에 대한 것이다. 이를 위해 STA은 AP로부터 수신한 트리거(trigger) 프레임에 응답하여, AP에 다중 사용자 접속 방식으로 데이터를 전송하되, 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정하는 것을 특징으로 한다.

Description

상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치
이하의 설명은 무선랜 시스템에서 다중 사용자 또는 다중 스테이션(STA) 데이터에 대해 ACK 정책 값을 기반으로 확인응답 신호를 송수신 하는 방법 및 이를 위한 장치에 대한 것이다.
무선랜 기술에 대한 표준은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준으로서 개발되고 있다. IEEE 802.11a 및 b는 2.4. GHz 또는 5 GHz에서 비면허 대역(unlicensed band)을 이용하고, IEEE 802.11b는 11 Mbps의 전송 속도를 제공하고, IEEE 802.11a는 54 Mbps의 전송 속도를 제공한다. IEEE 802.11g는 2.4 GHz에서 직교 주파수 분할 다중화(Orthogonal frequency-division multiplexing, OFDM)를 적용하여, 54 Mbps의 전송 속도를 제공한다. IEEE 802.11n은 다중입출력 OFDM(multiple input multiple output-OFDM, MIMO-OFDM)을 적용하여, 4 개의 공간적인 스트림(spatial stream)에 대해서 300 Mbps의 전송 속도를 제공한다. IEEE 802.11n에서는 채널 대역폭(channel bandwidth)을 40 MHz까지 지원하며, 이 경우에는 600 Mbps의 전송 속도를 제공한다.
상술한 무선랜 표준은 최대 160MHz 대역폭을 사용하고, 8개의 공간 스트림을 지원하여 최대 1Gbit/s의 속도를 지원하는 IEEE 802.11ac 표준을 거쳐, IEEE 802.11ax 표준화에 대한 논의가 이루어지고 있다.
IEEE 802.11ax 표준화에서는 상향링크 OFDMA (UL OFDMA) 전송 방식 및 상향링크 다중 사용자 (UL MU) 전송 방식이 이용될 예정이다. 이에 따라 동일한 전송 기회에 AP는 복수의 STA으로부터 UL MU 프레임을 수신할 수 있으며, 이에 대해 확인응답 프레임을 전송하는 것이 필요하다.
이때, 복수의 STA들에게 블록 확인응답 프레임(Block Ack Frame)을 통해 효율적으로 확인응답 신호를 전송하는 것이 고려될 수 있으나, 복수의 STA에 대한 MU BA 프레임 또는 M-BA 프레임은 크기가 커지게 되어 오버헤드가 문제될 수 있다.
또한, 복수의 STA 중 일부는 BA를 요청하고, 일부는 일반 ACK을 요청하는 경우 절차가 복잡해지고, 확인응답 과정이 지연될 수 있다.
이하의 설명에서는 상술한 UL MU 전송 상황에서 효율적으로 확인응답 신호를 전송하기 위한 방법 및 장치에 대해 살펴본다.
상술한 바와 같은 과제를 해결하기 위한 본 발명의 일 측면에서는 무선랜(WLAN) 시스템에서 스테이션(STA)이 AP (Access Point)에 다중 사용자 방식으로 접속하는 방법에 있어서, 상기 AP로부터 트리거(trigger) 프레임을 수신하고, 상기 트리거 프레임에 응답하여 상기 AP에 다중 사용자 접속 방식으로 데이터를 전송하는 것을 포함하되, 상기 STA은 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정하는 것을 특징으로 하는, 확인응답 신호 전송 방법을 제안한다.
상기 STA은 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정할 수 있다.
상기 제 2 ACK 정책 값으로 설정된 데이터 전송 후, 상기 AP로부터 상기 데이터에 대한 확인응답 신호를 수신하는 것을 추가적으로 포함할 수 있다.
이때, 상기 확인응답 신호는 상기 제 2 ACK 정책 값으로 설정된 데이터 전송 후 SIFS (short interframe space) 이후 수신될 수 있다.
상기 AP로부터 다중 사용자 방식으로 하향링크 데이터를 수신하는 경우, 상기 하향링크 데이터의 ACK 정책 값은 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정될 수 있다.
상기 복수의 ACK 정책 값들은, 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 ‘00’, 확인응답을 요청하지 않는 ‘01’, 명시적인 확인응답을 요청하지 않거나 PSMP(power save multi-poll) 확인응답을 요청하는 ‘10’, 및 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 ‘11’을 포함할 수 있다.
여기서, 상기 제 1 ACK 정책 값은 ‘11’이며, 상기 제 2 ACK 정책 값은 ‘00’일 수 있다.
한편, 본 발명의 다른 일 측면에서는 무선랜(WLAN) 시스템에서 AP (Access Point)에 다중 사용자 방식으로 접속하는 스테이션(STA)에 있어서, 상기 AP로부터 트리거(trigger) 프레임을 수신하고, 상기 트리거 프레임에 응답하여 상기 AP에 다중 사용자 접속 방식으로 데이터를 전송하도록 구성되는 송수신기; 및 상기 송수신기에 연결되어, 상기 송수신기에 상기 데이터를 제공하도록 구성되는 프로세서를 포함하되, 상기 프로세서는 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정하도록 구성되는 것을 특징으로 하는 스테이션을 제안한다.
상기 프로세서는 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정하도록 구성될 수 있다.
상기 송수신기가 상기 AP로부터 다중 사용자 방식으로 하향링크 데이터를 수신하는 경우, 상기 프로세서는 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정되는 상기 하향링크 데이터의 ACK 정책 값을 확인하도록 구성될 수 있다.
한편, 본 발명의 또 다른 일 측면에서는, 무선랜(WLAN) 시스템에서 AP (Access Point)가 다중 사용자 방식으로 복수의 스테이션(STA)으로부터 데이터를 수신하는 방법에 있어서, 상기 복수의 STA에 트리거(trigger) 프레임을 전송하고, 상기 복수의 STA으로부터 다중 사용자 접속 방식으로 데이터를 수신하는 것을 포함하되, 상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정되는 것을 특징으로 하는, 다중 사용자 데이터 수신 방법을 제안한다.
상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정될 수 있다.
상기 AP가 다중 사용자 방식으로 상기 복수의 STA에 하향링크 데이터를 전송하는 경우, 상기 AP는 상기 하향링크 데이터의 ACK 정책 값을 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정할 수 있다.
아울러, 본 발명의 또 다른 일 측면에서는, 무선랜(WLAN) 시스템에서 다중 사용자 방식으로 복수의 스테이션(STA)으로부터 데이터를 수신하는 AP (Access Point) 장치에 있어서, 상기 복수의 STA에 트리거(trigger) 프레임을 전송하고, 상기 복수의 STA으로부터 다중 사용자 접속 방식으로 데이터를 수신하도록 구성되는 송수신기; 및 상기 송수신기와 연결되어 상기 데이터를 처리하도록 구성되는 프로세서를 포함하되, 상기 프로세서는 상기 데이터의 ACK 정책 값이 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정된 것에 대응하여 동작하도록 구성되는, AP 장치를 제안한다.
이때, 상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정될 수 있다.
상술한 바와 같은 본 발명에 따르면, UL MU 전송 상황에서 AP가 복수의 STA에 대한 확인응답 신호를 지연 없이 전송할 수 있다.
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 3은 무선랜 시스템에서 활용되는 블록 Ack 메커니즘을 설명하기 위한 도면이다.
도 4는 블록 확인응답 프레임의 기본 구성을 나타낸 도면이다.
도 5는 도 4에 도시된 BA 제어 필드의 구체적 구성을 도시한 도면이다.
도 6은 도 4에 도시된 BA 정보 필드의 구체적 구성을 도시한 도면이다.
도 7은 Block Ack 시작 시퀀스 제어 서브필드의 구성을 도시한 도면이다.
도 8은 압축된 Block Ack 프레임의 BA 정보 필드 구성을 도시한 도면이다.
도 9는 Multi-TID Block Ack 프레임의 BA 정보 필드를 도시한 도면이다.
도 10 및 도 11은 Block Ack 메커니즘이 하향링크 MU-MIMO 방식에 적용되는 경우를 설명하기 위한 도면이다.
도 12는 본 발명이 적용될 상향링크 다중 사용자 전송 상황을 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따라 Ack 정책을 활용하여 복수의 STA들에게 확인응답신호를 전송하는 방법을 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시형태에 따라 블록확인응답 요청에 기반하는 ACK 정책 값을 사용하지 않는 경우를 설명하기 위한 도면이다.
도 15 및 16은 본 발명이 적용되는 상향링크 다중 접속 상황에 대해 추가적으로 설명하기 위한 도면이다.
도 17 및 18은 본 발명의 또 다른 실시예로서, AP 가 트리거 프레임 전송 시 ACK 정책값을 설명하는 경우를 도시하고 있다.
도 19는 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다.
상술한 바와 같이 이하의 설명은 무선랜 시스템에서 넓은 대역을 가지는 채널을 효율적으로 활용하기 위한 방법 및 이를 위한 장치에 대한 것이다. 이를 위해 먼저 본 발명이 적용되는 무선랜 시스템에 대해 구체적으로 설명한다.
도 1은 무선랜 시스템의 구성의 일례를 나타낸 도면이다.
도 1에 도시된 바와 같이, 무선랜 시스템은 하나 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함한다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합이다.
STA는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 논리 개체로서, 액세스 포인트(access point, AP)와 비AP STA(Non-AP Station)을 포함한다. STA 중에서 사용자가 조작하는 휴대용 단말은 Non-AP STA로써, 단순히 STA이라고 할 때는 Non-AP STA을 가리키기도 한다. Non-AP STA은 단말(terminal), 무선 송수신 유닛(Wireless Transmit/Receive Unit, WTRU), 사용자 장비(User Equipment, UE), 이동국(Mobile Station, MS), 휴대용 단말(Mobile Terminal), 또는 이동 가입자 유닛(Mobile Subscriber Unit) 등의 다른 명칭으로도 불릴 수 있다.
그리고, AP는 자신에게 결합된 STA(Associated Station)에게 무선 매체를 통해 분배 시스템(Distribution System, DS)으로의 접속을 제공하는 개체이다. AP는 집중 제어기, 기지국(Base Station, BS), Node-B, BTS(Base Transceiver System), 또는 사이트 제어기 등으로 불릴 수도 있다.
BSS는 인프라스트럭처(infrastructure) BSS와 독립적인(Independent) BSS(IBSS)로 구분할 수 있다.
도 1에 도시된 BBS는 IBSS이다. IBSS는 AP를 포함하지 않는 BSS를 의미하고, AP를 포함하지 않으므로, DS로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
도 2는 무선랜 시스템의 구성의 다른 예를 나타낸 도면이다.
도 2에 도시된 BSS는 인프라스트럭처 BSS이다. 인프라스트럭처 BSS는 하나 이상의 STA 및 AP를 포함한다. 인프라스트럭처 BSS에서 비AP STA들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이나, 비AP STA 간에 직접 링크(link)가 설정된 경우에는 비AP STA들 사이에서 직접 통신도 가능하다.
도 2에 도시된 바와 같이, 복수의 인프라스트럭처 BSS는 DS를 통해 상호 연결될 수 있다. DS를 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다. ESS에 포함되는 STA들은 서로 통신할 수 있으며, 동일한 ESS 내에서 비AP STA은 끊김 없이 통신하면서 하나의 BSS에서 다른 BSS로 이동할 수 있다.
DS는 복수의 AP들을 연결하는 메커니즘(mechanism)으로서, 반드시 네트워크일 필요는 없으며, 소정의 분배 서비스를 제공할 수 있다면 그 형태에 대해서는 아무런 제한이 없다. 예컨대, DS는 메쉬(mesh) 네트워크와 같은 무선 네트워크일 수도 있고, AP들을 서로 연결시켜 주는 물리적인 구조물일 수도 있다.
이상을 바탕으로 무선랜 시스템에서 블록 확인응답(Block Ack) 방식에 대해 설명한다.
블록 Ack 메커니즘은 하나의 프레임에 복수의 확인응답을 포함시켜 전송함으로써 채널 효율성을 증대시키는 방식이다. 블록 Ack 메커니즘에는 즉시 응답 방식 및 지연 응답 방식과 같은 2가지 방식이 존재한다. 즉시 응답 방식은 넓은 대역폭과 낮은 지연 트래픽 전송에 유리한 반면, 지연 응답 방식은 지연에 민감하지 않은 어플리케이션에 적합할 수 있다. 이하의 설명에서 특별히 다른 규정이 없는 한, 블록 Ack 메커니즘을 이용하여 데이터를 보내는 STA을 발신자(originator)로, 이러한 데이터를 수신하는 STA을 수신자(recipient)로 나타낸다.
도 3은 무선랜 시스템에서 활용되는 블록 Ack 메커니즘을 설명하기 위한 도면이다.
블록 Ack 메커니즘을 도 3에 도시된 바와 같이 ADDBA (add Block Acknowledgment)요청/응답 프레임의 교환에 의해 개시될 수 있다 ((a) Setup 단계). 이와 같이 개시된 이후, QoS 데이터 프레임 블록들은 발신자로부터 수신자에게 전송될 수 있다. 이와 같은 블록들은 폴링된 TXOP 내 또는 EDCA 경쟁에서 이김으로써 개시될 수 있다. 상기 블록 내 프레임의 구는 제한될 수 있다. 이와 같은 프레임 블록 내 MPDU들은 BlockAckReq 프레임에 의한 요청에 따라 수신되는 BlockAck 프레임에 의해 수신 확인될 수 있다 ((b) Data & Block Ack 단계).
발신자가 더 이상 전송할 데이터가 없고 최종 블록 Ack 교환이 완료되는 경우, 발신자는 수신자에게 DELBA (delete Block Acknowledgment) 프레임을 전송하여 Block Ack 메커니즘을 종료할 수 있다. 이와 같은 DELBA 프레임을 수신한 수신자는 Block Ack 전송을 위해 할당된 모든 자원을 해제할 수 있다 ((c) Tear Down 단계).
도 4는 블록 확인응답 프레임의 기본 구성을 나타낸 도면이다.
블록 확인응답 프레임은 도 4에 도시된 바와 같이 MAC 헤더 필드, BA 제어(BA Control) 필드 및 BA 정보(BA information) 필드를 포함할 수 있다. 또한, MAC 헤더 필드는 프레임 제어 필드, Duration/ID 필드, RA 필드 및 TA 필드를 포함할 수 있다. 여기서 RA 필드는 수신 STA의 주소를, TA 필드는 발신 STA의 주소를 나타낸다.
도 5는 도 4에 도시된 BA 제어 필드의 구체적 구성을 도시한 도면이다.
BA 제어 필드 내 BA Ack 정책 서브필드의 값은 아래 표 1과 같은 의미를 전달할 수 있다.
표 1
Value Meaning
0 Normal Acknowledgment.The BA Ack Policy subfield is set to this value when the sender requires immediate acknowledgment. The addressee returns an Ack frame.The value 0 is not used for data sent under HT-delayed Block Ack during a PSMP sequence.The value 0 is not used in frames transmitted by DMG STAs.
1 No Acknowledgment.The addressee sends no immediate response upon receipt of the frame.The BA Ack Policy is set to this value when the sender does not require immediate acknowledgment.The value 1 is not used in a Basic BlockAck frame outside a PSMP sequence.The value 1 is not used in an Multi-TID BlockAck frame.
한편, BA 제어 필드 내 Multi-TID, Compressed Bitmap 그리고 GCR 서브필드들은 가능한 BlockAck 프레임 변형을 다음과 같은 규정에 따라 결정할 수 있다.
표 2
Multi-TID subfield value Compressed Bitmap subfield value GCR subfield value BlockAck frame variant
0 0 0 Basic BlockAck
0 1 0 Compressed BlockAck
1 0 0 ExtendedCompressedBlockAck
1 1 0 Multi-TID BlockAck
0 0 1 Reserved
0 1 1 GCR BlockAck
1 0 1 Reserved
1 1 1 Reserved
도 6은 도 4에 도시된 BA 정보 필드의 구체적 구성을 도시한 도면이며, 도 7은 Block Ack 시작 시퀀스 제어 서브필드의 구성을 도시한 도면이다.
도 6에 도시된 바와 같이 BA 정보 필드는 Block Ack 시작 시퀀스 제어(SSC) 서브필드 및 Block Ack 비트맵 서브필드를 포함할 수 있다.
도 6에 도시된 바와 같이 Block Ack 비트맵 서브필드는 128 옥텟 길이를 가지며, 이에 따라 64개의 MSDU의 수신 상태를 나타낼 수 있다. Block Ack 비트맵 필드의 비트 위치 n은, 만일 1로 설정되는 경우, (SSC + n)에 대응하는 MPDU 시퀀스 제어 값을 가지는 MPDU의 수신 성공을 나타낼 수 있으며, 여기서 SSC는 Block Ack 시작 시퀀스 제어 서브필드의 값을 나타낸다. 이와 달리, Block Ack 비트맵 필드의 비트 위치 n이 0으로 설정되는 경우, (SSC + n)에 대응하는 MPDU 시퀀스 제어 값을 가지는 MPDU가 수신되지 않았음을 나타낼 수 있다. MPDU 시퀀스 제어 필드 및 Block Ack 시작 시퀀스 제어 서브필드 값들은 각각 16 비트 unsigned integer로 취급될 수 있다. MSDU의 미사용 fragment number들에 대해서, 비트맵 내 대응하는 비트는 0으로 설정될 수 있다.
도 8은 압축된 Block Ack 프레임의 BA 정보 필드 구성을 도시한 도면이다.
압축된 Block Ack 프레임의 BS 정보 필드의 Block Ack 비트맵은 도 8에 도시된 바와 같이 8 옥텟 길이를 가질 수 있으며, 64개의 MSDU 및 A-MSDU의 수신 상태는 나타낼 수 있다. 비트맵의 첫번째 비트는 시작 시퀀스 번호 서브필드의 값에 대응하는 MSDU 또는 A-MSDU에 대응하며, 각 비트는 상기 MSDU 또는 A-MSDU 이후의 MSDU 또는 A-MSDU에 순차적으로 대응할 수 있다.
도 9는 Multi-TID Block Ack 프레임의 BA 정보 필드를 도시한 도면이다.
Multi-TID BlockAck 프레임의 BA 제어 필드의 TID_INFO 서브필드는 BA 정보 필드에서 몇 개의 TID에 대한 정보를 전달하는지를 나타낸다. 구체적으로 TID_INFO 서브필드의 값은 BA 정보 필드의 정보에 대응하는 TID의 수 -1을 나타낸다. 예를 들어, TID_INFO 값이 2인 경우 BA 정보 필드는 3개의 TID에 대한 정보를 포함함을 나타낼 수 있다.
한편, Multi-TID BlockAck 프레임의 경우 도 9에 도시된 바와 같이 Block Ack 시작 시퀀스 제어 서브필드 및 Block Ack 비트맵 서브필드에 추가적으로 Per TID Info 서브필드를 포함할 수 있다. 가장 처음에 등장하는 Per TID Info, block Ack 시작 시퀀스 제어, Block Ack 비트맵 서브필드들은 가장 낮은 TID값에 대응하여 전송될 수 있으며, 이후의 반복되는 서브필드들은 다음 TID에 대응할 수 있다. 이들 서브필드들의 Triplet은 TID마다 반복될 수 있다.
도 10 및 도 11은 Block Ack 메커니즘이 하향링크 MU-MIMO 방식에 적용되는 경우를 설명하기 위한 도면이다.
도 10 및 도 11에 도시된 바와 같이 AP는 복수의 STA (STA 1 내지 3)에세 MU-MIMO 데이터 프레임을 전송할 수 있다.
도 10은 MU PPDU 전송 후 SIFS 이후 프레임 교환이 이루어지는 것을 가정하였다. 도 10의 경우 STA 1에 대해서는 묵시적 Block Ack 요청이 Ack 정책으로 설정되고, STA 2 및 STA 3에 대해서는 Block ACK이 Ack 정책으로 설정된 것을 가정하였다. 이에 따라 STA 1의 경우 BA에 대한 요청 없이도 즉시 하향링크 MU PPDU 수신 후 BA 프레임을 전송할 수 있다. 이에 반해 STA 2 및 STA 3에게는 AP가 BAR (BA Request) 프레임을 전송하여 폴링을 수행할 수 있으며, 이에 대해 STA 2 및 STA 3은 BA 프레임을 전송할 수 있다.
한편, 도 11은 MU PPDU 후 SIFS 없이 프레임 교환이 이루어지는 예로서, 모든 STA들에게 Ack 정책이 Block Ack으로 설정된 경우를 가정한다. 이에 따라 AP는 모든 STA에게 BAR 프레임을 전송하여 폴링할 수 있다.
도 12는 본 발명이 적용될 상향링크 다중 사용자 전송 상황을 설명하기 위한 도면이다.
상술한 바와 같이 802.11ax 시스템에서는 UL MU 전송 방식이 사용될 수 있으며, 이는 도 12에 도시된 바와 같이 AP가 복수의 STA (예를 들어, STA 1 내지 STA 4)에게 트리거 프레임(Trigger Frame)을 전송함으로써 시작될 수 있다. 트리거 프레임은 UL MU 할당 정보(예를 들어, 자원 위치 및 크기, STA ID들, MCS,MU 타입 (MIMO, OFDMA 등))를 포함할 수 있다. 구체적으로 트리거 프레임에 포함되어 전송될 수 있는 정보의 일례는 다음과 같을 수 있다.
표 3
UL MU frame에 대한 durationNumber of allocation (N)Each allocation’s Information SU/MUAID (MU일 경우, STA수만큼 추가로 포함된다.)Power adjustmentTone(/Resource) allocation information (e.g., bitmap)MCSNstsSTBCCodingBeamformedEtc.
한편, 도 12에 도시된 바와 같이 AP는 매체에 접속하기 위해 경쟁 과정을 거쳐 트리거 프레임을 전송할 TXOP를 획득할 수 있다. 이에 대해 STA들은 트리거 프레임의 SIFS 이후 AP에 의해 지시된 포맷으로 UL 데이터 프레임을 전송할 수 있다. 이에 대응하여 본 발명에 따른 AP는 BA (Block ACK) 프레임을 통해 UL MU 데이터 프레임에 대해 확인 응답을 수행하는 것을 가정한다.
한편, 상향링크 다중 접속 방식에 있어서 AP가 전송하는 확인응답 신호 전송 방식을 유연하게 하기 위해 STA별 ACK 정책값을 유연하게 적용하는 것을 고려할 수 있다.
UL MU 프레임의 QoS 제어 필드는 다음과 같은 구성을 가지고 있고, 특히 QoS 제어 필드는 비트 5-6에 ACK 정책을 나타내는 2비트의 필드를 가지고 있다.
표 4
Applicable frame (sub) types Bits 0-3 Bit 4 Bits5-6 Bit 7 Bit 8 Bit 9 Bit 10 Bits 11-15
QoS CF-Poll and QoS CF-Ack+CF-Poll frames sent by HC TID EOSP Ack Policy Reserved TXOP Limit
QoS Data + CF-Poll and QoS Data + CF-Ack+CF-Poll frames sent by HC TID EOSP Ack Policy A-MSDU Present TXOP Limit
QoS Data and QoS Data + CF-Ack frames sent by HC TID EOSP Ack Policy A-MSDU Present AP PS Buffer State
QoS Null frames sent by HC TID EOSP Ack Policy Reserved AP PS Buffer State
QoS Data and QoS Data + CF-Ack frames sent by non-AP STAs that are not a TPC buffer STA or a TPU sleep STA in nonmesh BSS TID 0 Ack Policy A-MSDU Present TXOP Duration Requested
TID 1 Ack Policy A-MSDU Present Queue Size
QoS Null frames sent by non-AP STAs that are not a TPU buffer STA or a TPU sleep STA in a nonmesh BSS TID 0 Ack Policy Reserved TXOP Duration Requested
TID 1 Ack Policy Reserved Queue Size
표 5
Applicable frame (sub) types Bits 0-3 Bit 4 Bits5-6 Bit 7 Bit 8 Bit 9 Bit 10 Bits 11-15
QoS Data and QoS Data+CF-Ack frames sent by TPU buffer STAs in a nonmesh BSS TID EOSP Ack Policy A-MSDU Present Reserved
QoS Null frames sent by TPU buffer STAs in a nonmesh BSS TID EOSP Ack Policy Reserved Reserved
QoS Data and QoS Data + CF-Ack frames sent by TPU sleep STAs in a nonmesh BSS TID Reserved Ack Policy A-MSDU Present Reserved
QoS Null frames sent by TPU sleep STAs in a nonmesh BSS TID Reserved Ack Policy Reserved Reserved
All frames sent by mesh STAs in a mesh BSS TID EOSP Ack Policy A-MSDU Present Mesh Control Present Mesh Power Save Level RSPI Reserved
상기 표 4 및 표 5에 나타낸 ACK 정책 필드의 값은 다음과 같이 설정되어 있다.
표 6
Ack Policy ==00 Normal Ack or Implicit Block Ack Request.In a frame that is a non-A-MPDU frame or VHT single MPDU:The addressed recipient returns an Ack or QoS +CF-Ack frame after a short interframe space (SIFS) period, according to the procedures defined in Ack procedure and HCCA transfer rules. A non-DMG STA sets the Ack Policy subfield for individually addressed QoS Null (no data) frames to this value.Otherwise:The addressed recipient returns a BlockAck frame, either individually or as part of an A-MPDU starting a SIFS after the PPDU carrying the frame, according to theprocedures defined in Block ack procedure, Generation and transmission of BlockAck frames by an HT STA or DMG STA, Operation of HT-delayed block ack, Rules for RD initiator, Rules for RD responder, and Explicit feedback beamforming.
표 7
Ack Policy ==01No AckThe addressed recipient takes no action upon receipt of the frame. The Ack Policy subfield is set to this value in all individually addressed frames inwhich the sender does not require acknowledgment. The Ack Policy subfield is alsoset to this value in all group addressed frames that use the QoS frame format exceptwith a TID for which a block ack agreement exists.This value of the Ack Policy subfield is not used for QoS Data frames with a TID forwhich a block ack agreement exists.The Ack Policy subfield for group addressed QoS Null (no data) frames is set to thisvalue.
표 8
Ack Policy ==10No explicit acknowledgment or PSMP Ack or MU Ack.When bit 6 of the Frame Control field (see 9.2.4.1.3 (Type and Subtype subfields)) is set to 1:There might be a response frame to the frame that is received, but it is neither the Ack frame nor any Data frame of subtype +CF-Ack.The Ack Policy subfield for QoS CF-Poll and QoS CF-Ack +CF-Poll Data frames is set to this value.When bit 6 of the Frame Control field (see 9.2.4.1.3 (Type and Subtype subfields)) is set to 0:The acknowledgment for a frame indicating PSMP Ack when it appears in a PSMP downlink transmission time (PSMP-DTT) is to be received in a later PSMP uplink transmission time (PSMP-UTT).The acknowledgment for a frame indicating PSMP Ack when it appears in a PSMPUTT is to be received in a later PSMP-DTT.For a frame that is carried in a DL HE MU PPDU:The Ack Policy subfield for the frame that solicits an immediate response in a HE Trigger-based PPDU is set to this value (MU Ack).The addressed recipient returns an Ack, BlockAck, or Multi-STA BlockAck frame in the HE trigger-based PPDU format after a SIFS period, according to the procedures defined in 10.3.2.11.2 (Acknowledgement procedure for HE MU PPDU in MU format) and 25.5.2 (UL MU operation). (#2445)NOTE?Bit 6 of the Frame Control field (see 9.2.4.1.3 (Type and Subtype subfields)) indicates the absence of a data Frame Body field. When equal to 1, the QoS Data frame contains no Frame Body field, and any response is generated in response to a QoS CF-Poll or QoS CF-Ack +CF-Poll frame, but does not signify an acknowledgment of data. When set to 0, the QoS Data frame contains a Frame Body field, which is acknowledged as described in 10.29.2.7 (PSMP acknowledgment rules)..
표 9
Ack Policy ==11Block AckThe addressed recipient takes no action upon the receipt of the frame except for recording the state. The recipient can expect a BlockAckReq frame in the future to which it responds using the procedure described in Block acknowledgment (block ack).
즉, 상술한 Ack 정책 필드는 2비트 정보를 이용하여 4가지 다른 값을 나타낼 수 있으며, 각각의 값에 대한 정의는 상기 표 6 내지 표 9에 정의된 바와 같다. 이하의 설명에서는 이와 같은 Ack 정책 필드를 상향링크 MU 상황에도 적용하여 AP가 보다 유연하게 복수의 STA에 대해 확인응답 신호를 전송하는 방법을 제안하고자 한다. 이하의 설명에서 사용하는 ACK 정책 값은 상기 표 6 내지 표 9에 나타낸 의미 이외에도 아래와 같은 추가적인 의미를 가질 수 있으나, 특별히 다르게 규정하지 않는 경우 상기 표 6 내지 표 9의 정의를 차용하는 것을 가정한다.
도 13은 본 발명의 일 실시예에 따라 Ack 정책을 활용하여 복수의 STA들에게 확인응답신호를 전송하는 방법을 설명하기 위한 도면이다.
도 13의 예와 같이 AP는 STA 1 내지 4에게 트리거 프레임을 전송하여 UL MU 프레임 전송을 유도할 수 있다. STA 1 내지 4는 이에 따라 UL MU 프레임을 전송할 때, MPDU에 ACK 정책을 포함시켜 전송할 수 있다. 도 13에서는 STA 1 및 3은 ACK 정책 값을 00으로 설정하고, STA 2 및 4는 ACK 정책 값을 11로 설정하는 것을 가정하였다.
UL MU 프레임의 ACK 정책 값이 00인 경우, 본 실시형태에서는 단일 MPDU에 대한 묵시적 BA/ACK을 요청하는 것으로 가정하고, AP는 해당 STA의 UL MU 프레임 수신 이후 SIFS 시간 이후에 ACK 정책 == 00(묵시적 BA/ACK)를 가리키는 UL MU 프레임을 전송한 STA들에게 BA를 동시에 바로 전송(즉, M-BA전송)할 수 있다. M-BA는 복수의 STA에 대한 ACK/BA를 포함하는 것을 가정한다. 즉, ACK 정책==00를 가진 UL MU 프레임을 하나 이상 받으면, SIFS 후 M-BA를 전송하고, 이후, Ack 정책이 BA(11)로 설정된 UL MU 프레임을 전송한 STA들로부터는 BAR를 수신한 후, Block ACK을 BAR를 전송한 STA에게 전송할 수 있다.
도 13에서 STA1, STA3의 ACK 정책이 00 (묵시적 BA 또는 ACK for single MPDU) 이기 때문에, AP는 UL MU 프레임 수신 SIFS후, STA1, STA3에게 BA/ACK를 한 번에 전송(즉, M-BA를 통해 전송)한다. 이 때, Multiple STA에 대한 BA/ACK정보를 포함한 Block ACK (Multi-STA BA)을 AP가 전송할 수도 있다.
이 후, AP는 ACK 정책이 BA(11)인 UL 프레임을 전송한 STA2와 STA4로부터 BAR를 받기를 기다릴 수 있다. 이 후, STA2가 BAR를 경쟁 기반으로 전송하고, AP는 응답으로 STA2에게 BA를 전송할 수 있다. 이 후, STA4가 BAR를 경쟁 기반으로 전송하고, AP는 응답으로 STA4에게 BA를 전송할 수 있다.
다만, 도 13과 같이 복수의 STA별로 ACK 정책 값을 유연하게 운용하는 경우 UL MU 동작이 복잡해 질 수 있으며, 특히 ACK 정책 값 ‘11’을 사용하는 STA의 경우 AP는 해당 STA으로부터의 BAR 수신을 기다린 후 ACK을 전송할 수 밖에 없기 때문에 절차가 지연될 수 밖에 없다.
이에 따라 본 발명의 바람직한 일 실시형태에서는 UL MU 상황에서 ACK 정책값 ‘11’을 사용하지 않도록 설정하는 것을 제안한다. 이에 따라 STA은 UL MU 형태로 데이터를 전송하고, 이에 대한 ACK 정책 값은 ‘11’이외에 값(e.g. ‘00’, ‘01’ 및 ‘10’)으로 설정하는 것을 가정한다. 이에 따라 STA은 확인응답을 요청하는 경우 ACK 정책 값을 ‘00’으로 설정하여 동작하는 것이 바람직하다.
위와 같은 UL MU의 상황은 상술한 DL MU의 상황과 다를 수 있다. DL MU의 경우 AP가 복수의 STA에 대한 ACK 정책 값을 일괄적으로 결정할 수 있기 때문에 AP의 상황에 따라 일부 STA에 BAR 기반으로 동작하는 ACK 정책을 선택할 수 있다.
도 14는 본 발명의 일 실시형태에 따라 블록확인응답 요청에 기반하는 ACK 정책 값을 사용하지 않는 경우를 설명하기 위한 도면이다.
도 14에 도시된 바와 같이 AP는 트리거 프레임을 전송하여 복수의 STA의 UL MU 방식 프레임 전송을 유도할 수 있다. 이에 따라 각 STA은 UL MU 프레임을 전송하되, 도 14의 예에서 STA 1 내지 STA 4는 해당 프레임에 대한 확인응답의 수신을 요구하는 것을 가정한다. 이에 따라 STA 1 내지 4는 모두 ACK 정책 값을 ‘00’으로 설정하여 전송하며, 이에 따라 SIFS 이후에 AP로부터 확인응답 신호를 수신하게 된다.
한편, 도 14의 예에서는 AP가 M-BA를 통해 확인응답 신호를 전송하는 경우를 도시하고 있다. 이에 따라 AP는 M-BA를 통해 STA 1 내지 STA 4에 대한 확인응답 신호를 모두 포함하여 전송할 수 있다.
도 15 및 16은 본 발명이 적용되는 상향링크 다중 접속 상황에 대해 추가적으로 설명하기 위한 도면이다.
도 15는 상술한 설명과 같이 AP가 전송한 트리거 프레임에 응답하여 STA 1내지 STA 4가 UL MU PPDU를 전송하는 상황을 도시한 도면이다. 도 15에서 STA 1 내지 STA 3은 전송한 UL MU PPDU에 대한 확인응답 신호를 요청하고 있기 때문에 상술한 바와 같이 ACK 정책 값을 ‘00’으로 설정하여 전송하는 것이 바람직하다. 다만, 도 15에서 STA 4는 전송한 UL MU PPDU에 대해 확인응답 신호를 요청하지 않고, 이에 따라 ACK 정책값을 ‘01’로 설정하여 전송할 수 있다.
이에 따라 AP는 ACK 정책 값을 ‘00’으로 설정한 STA 1 내지 STA 3에 대해 DL OFDMA BA 또는 M-BA를 통해 확인응답 신호를 전송할 수 있다.
한편, 도 16에 도시된 바와 같이 AP가 DL MU PPDU를 전송할 때 Trigger frame을 함께 전송하고 그에 따라 STA들이 UL MU PPDU 또는 UL Ack을 전송한 후에 Ack이 필요한 UL MU PPDU에 대해 DL Ack을 전송할 수도 있다. 이 때 DL MU PPDU에 대한 Ack을 전송하기 위한 Trigger 정보는 포함될 수도 있고 implicit하게 할 수도 있다.
이 때 DL Ack frame은 OFDMA 형태로 전송될 수도 있고, M-BA 형태로 전송될 수도 있다. 즉, 각 STA에게 전송되는 Ack 정보가 각 OFDMA frame으로 구성되어 전송될 수도 있고, 모든 STA에게 전송되는 Ack 정보가 한 Frame내에 Aggregation되어 하나의 Frame으로 구성되어 전송될 수도 있다. 20MHz 내에서만 M-BA 를 사용하고 그 이상의 BW에 대해서는 OFDMA 형태로 전송하는 등의 두 방식의 Hybrid 방식도 가능하다.
상술한 바와 같이 UL MU 상황에서는 DL MU 상황과 달리 ACK 정책 값을 STA별로 상이하게 설정하는 경우 절차가 복잡해 지고, 불필요한 지연이 발생할 수 있기 때문에 ACK 정책 값 ‘11’을 사용하지 않는 것이 바람직하다.
다만, 본 발명의 다른 일 실시형태에서는 상술한 바와 같이 UL MU 상황에서 STA별로 다른 ACK 정책 값을 선택하는 문제를 해결하고, 또한 STA별 상황에 따라 ACK 정책을 유연하게 운용하기 위해 AP가 트리거 프레임을 통해 STA별 ACK 정책을 설정하는 것을 제안한다.
도 17 및 18은 본 발명의 또 다른 실시예로서, AP 가 트리거 프레임 전송 시 ACK 정책값을 설명하는 경우를 도시하고 있다.
이 때, AP는 Trigger 프레임에서 ACK 정책을 전체 STA에 대한 동일하게 또는 STA별로 다르게 정할 수 있다. 도 17은 전체 STA들에 대해서 동일한 ACK 정책 == 00 (묵시적 BA)을 정한 예를 나타내며, 도 18은 STA별로 ACK 정책을 정한 예를 나타낸다.
도 18의 예에서, STA1, STA3의 ACK 정책(A_P)는 00(묵시적 BA/ACK for single MPDU)로 설정하고, STA2, STA4에 대한 ACK 정책 (A_P)는 11 (Block ACK)으로 설정되었기 때문에, AP는 UL MU 프레임을 수신하고, M-BA에서 STA1, STA3에 대한 BA/ACK을 전송하고, 이 후에 STA2, STA4에 대한 MU BAR 전송을 위한 자원을 Trigger 프레임을 통해서 할당할 수 있다.
도 19는 상술한 바와 같은 방법을 구현하기 위한 장치를 설명하기 위한 도면이다.
도 19의 무선 장치(800)은 상술한 설명의 특정 STA, 그리고 무선 장치(850)은 상술한 설명의 AP에 대응할 수 있다.
STA (800)은 프로세서(810), 메모리(820), 송수신부(830)를 포함할 수 있고, AP (850)는 프로세서(860), 메모리(870) 및 송수신부(880)를 포함할 수 있다. 송수신부(830 및 880)은 무선 신호를 송신/수신하고, IEEE 802.11/3GPP 등의 물리적 계층에서 실행될 수 있다. 프로세서(810 및 860)은 물리 계층 및/또는 MAC 계층에서 실행되고, 송수신부(830 및 880)와 연결되어 있다. 프로세서(810 및 860)는 상기 언급된 UL MU 스케줄링 절차를 수행할 수 있다.
프로세서(810 및 860) 및/또는 송수신부(830 및 880)는 특정 집적 회로(application-specific integrated circuit, ASIC), 다른 칩셋, 논리 회로 및/또는 데이터 프로세서를 포함할 수 있다. 메모리(820 및 870)은 ROM(read-only memory), RAM(random access memory), 플래시 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 유닛을 포함할 수 있다. 일 실시 예가 소프트웨어에 의해 실행될 때, 상기 기술한 방법은 상기 기술된 기능을 수행하는 모듈(예를 들어, 프로세스, 기능)로서 실행될 수 있다. 상기 모듈은 메모리(820, 870)에 저장될 수 있고, 프로세서(810, 860)에 의해 실행될 수 있다. 상기 메모리(820, 870)는 상기 프로세스(810, 860)의 내부 또는 외부에 배치될 수 있고, 잘 알려진 수단으로 상기 프로세스(810, 860)와 연결될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 상술한 설명으로부터 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명은 IEEE 802.11 기반 무선랜 시스템에 적용되는 것을 가정하여 설명하였으나, 이에 한정될 필요는 없다. 본 발명은 AP가 복수의 STA에 대해 Block Ack 메커니즘을 운용할 수 있는 다양한 무선 시스템에 동일한 방식으로 적용될 수 있다.

Claims (15)

  1. 무선랜(WLAN) 시스템에서 스테이션(STA)이 AP (Access Point)에 다중 사용자 방식으로 접속하는 방법에 있어서,
    상기 AP로부터 트리거(trigger) 프레임을 수신하고,
    상기 트리거 프레임에 응답하여 상기 AP에 다중 사용자 접속 방식으로 데이터를 전송하는 것을 포함하되,
    상기 STA은 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정하는 것을 특징으로 하는, 확인응답 신호 전송 방법.
  2. 제 1 항에 있어서,
    상기 STA은 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정하는, 확인응답 신호 전송 방법.
  3. 제 2 항에 있어서,
    상기 제 2 ACK 정책 값으로 설정된 데이터 전송 후, 상기 AP로부터 상기 데이터에 대한 확인응답 신호를 수신하는 것을 추가적으로 포함하는, 확인응답 신호 전송 방법.
  4. 제 3 항에 있어서,
    상기 확인응답 신호는 상기 제 2 ACK 정책 값으로 설정된 데이터 전송 후 SIFS (short interframe space) 이후 수신되는, 확인응답 신호 전송 방법.
  5. 제 1 항에 있어서,
    상기 AP로부터 다중 사용자 방식으로 하향링크 데이터를 수신하는 경우, 상기 하향링크 데이터의 ACK 정책 값은 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정되는, 확인응답 신호 전송 방법.
  6. 제 5 항에 있어서,
    상기 복수의 ACK 정책 값들은,
    일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 ‘00’,
    확인응답을 요청하지 않는 ‘01’,
    명시적인 확인응답을 요청하지 않거나 PSMP(power save multi-poll) 확인응답을 요청하는 ‘10’, 및
    블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 ‘11’을 포함하는, 확인응답 신호 전송 방법.
  7. 제 2 항에 있어서,
    상기 제 1 ACK 정책 값은 ‘11’이며, 상기 제 2 ACK 정책 값은 ‘00’인, 확인응답 신호 전송 방법.
  8. 무선랜(WLAN) 시스템에서 AP (Access Point)에 다중 사용자 방식으로 접속하는 스테이션(STA)에 있어서,
    상기 AP로부터 트리거(trigger) 프레임을 수신하고, 상기 트리거 프레임에 응답하여 상기 AP에 다중 사용자 접속 방식으로 데이터를 전송하도록 구성되는 송수신기; 및
    상기 송수신기에 연결되어, 상기 송수신기에 상기 데이터를 제공하도록 구성되는 프로세서를 포함하되,
    상기 프로세서는 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정하도록 구성되는 것을 특징으로 하는, 스테이션.
  9. 제 8 항에 있어서,
    상기 프로세서는 상기 트리거 프레임 기반으로 전송되는 데이터의 ACK 정책 값을 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정하도록 구성되는, 스테이션.
  10. 제 8 항에 있어서,
    상기 송수신기가 상기 AP로부터 다중 사용자 방식으로 하향링크 데이터를 수신하는 경우, 상기 프로세서는 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정되는 상기 하향링크 데이터의 ACK 정책 값을 확인하도록 구성되는, 스테이션.
  11. 무선랜(WLAN) 시스템에서 AP (Access Point)가 다중 사용자 방식으로 복수의 스테이션(STA)으로부터 데이터를 수신하는 방법에 있어서,
    상기 복수의 STA에 트리거(trigger) 프레임을 전송하고,
    상기 복수의 STA으로부터 다중 사용자 접속 방식으로 데이터를 수신하는 것을 포함하되,
    상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정되는 것을 특징으로 하는, 다중 사용자 데이터 수신 방법.
  12. 제 11 항에 있어서,
    상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정되는, 다중 사용자 데이터 수신 방법.
  13. 제 11 항에 있어서,
    상기 AP가 다중 사용자 방식으로 상기 복수의 STA에 하향링크 데이터를 전송하는 경우, 상기 AP는 상기 하향링크 데이터의 ACK 정책 값을 상기 제 1 ACK 정책 값을 포함한 복수의 ACK 정책 값들 중 어느 하나로 설정하는, 다중 사용자 데이터 수신 방법.
  14. 무선랜(WLAN) 시스템에서 다중 사용자 방식으로 복수의 스테이션(STA)으로부터 데이터를 수신하는 AP (Access Point) 장치에 있어서,
    상기 복수의 STA에 트리거(trigger) 프레임을 전송하고, 상기 복수의 STA으로부터 다중 사용자 접속 방식으로 데이터를 수신하도록 구성되는 송수신기; 및
    상기 송수신기와 연결되어 상기 데이터를 처리하도록 구성되는 프로세서를 포함하되,
    상기 프로세서는 상기 데이터의 ACK 정책 값이 블록확인응답 요청(Block Ack Request) 기반으로 확인응답 신호 전송을 요청하는 제 1 ACK 정책 값을 제외한 다른 값으로 설정된 것에 대응하여 동작하도록 구성되는, AP 장치.
  15. 제 14 항에 있어서,
    상기 트리거 프레임 전송 후 수신되는 데이터의 ACK 정책 값은 일반 확인응답 또는 즉시전송 블록확인응답을 요청하는 제 2 ACK 정책 값으로 설정되는, 다중 사용자 데이터 수신 방법.
PCT/KR2016/011204 2015-10-07 2016-10-06 상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치 WO2017061797A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680058357.2A CN108141325B (zh) 2015-10-07 2016-10-06 用于上行链路多用户传输的ack/nack信号处理方法及装置
EP16853913.8A EP3361664B1 (en) 2015-10-07 2016-10-06 Ack/nack signal processing method and device for uplink multi-user transmission
EP23201206.2A EP4283897A3 (en) 2015-10-07 2016-10-06 Ack/nack signal processing method and device for uplink multi-user transmission
US15/762,084 US11171757B2 (en) 2015-10-07 2016-10-06 ACK/NACK signal processing method and device for uplink multi-user transmission
JP2018515978A JP6518009B2 (ja) 2015-10-07 2016-10-06 上りリンク多重ユーザ送信において確認応答信号処理方法及びそのための装置
KR1020187012819A KR102148658B1 (ko) 2015-10-07 2016-10-06 상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치
US17/492,159 US11677530B2 (en) 2015-10-07 2021-10-01 ACK/NACK signal processing method and device for uplink multi-user transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562238146P 2015-10-07 2015-10-07
US62/238,146 2015-10-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/762,084 A-371-Of-International US11171757B2 (en) 2015-10-07 2016-10-06 ACK/NACK signal processing method and device for uplink multi-user transmission
US17/492,159 Continuation US11677530B2 (en) 2015-10-07 2021-10-01 ACK/NACK signal processing method and device for uplink multi-user transmission

Publications (1)

Publication Number Publication Date
WO2017061797A1 true WO2017061797A1 (ko) 2017-04-13

Family

ID=58488072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011204 WO2017061797A1 (ko) 2015-10-07 2016-10-06 상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (2) US11171757B2 (ko)
EP (2) EP4283897A3 (ko)
JP (1) JP6518009B2 (ko)
KR (1) KR102148658B1 (ko)
CN (1) CN108141325B (ko)
WO (1) WO2017061797A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066853A1 (en) * 2017-09-28 2019-04-04 Intel Corporation METHODS AND APPARATUS TO FACILITATE ENHANCED DISTRIBUTED CHANNEL ACCESS AND POWER REDUCTION FOR ACCESS POINT TRIGGERS
CN113207189A (zh) * 2020-01-31 2021-08-03 联发科技(新加坡)私人有限公司 数据传输方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016196582A1 (en) * 2015-06-02 2016-12-08 Newracom, Inc. Ack policy for uplink and downlink mu ppdu
US11127214B2 (en) * 2018-09-17 2021-09-21 Qualcomm Incorporated Cross layer traffic optimization for split XR
CN110958084B (zh) * 2018-09-27 2021-12-14 华为技术有限公司 传输确认报文的方法和通信设备
US11483887B2 (en) * 2019-07-31 2022-10-25 Mediatek Singapore Pte. Ltd. Enhanced high-throughput multi-link operation management
US11109393B2 (en) * 2019-09-26 2021-08-31 Intel Corporation Apparatus, system and method of configuring an uplink transmission in a trigger-based multi-user uplink transmission
WO2022222153A1 (en) * 2021-04-23 2022-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and devices for restricted target wake time operation for latency sensitive traffic in wireless local area networks
WO2023053452A1 (ja) * 2021-10-01 2023-04-06 日本電信電話株式会社 無線通信方法、無線通信システム、及び無線通信方法をコンピュータに実行させる制御プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261742A1 (en) * 2010-04-23 2011-10-27 Qualcomm Incorporated Sequential ack for multi-user transmissions
US20120314697A1 (en) * 2010-02-18 2012-12-13 Lg Electronics Inc. Method and apparatus for ack transmission in a wlan
WO2014179478A1 (en) * 2013-05-03 2014-11-06 Qualcomm Incorporated Acknowledgement mechanism in frequency multiplexed communication in dense wireless environments
US20150063320A1 (en) * 2013-08-28 2015-03-05 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554232B2 (en) * 2005-08-17 2013-10-08 Apple Inc. Method and system for a wireless multi-hop relay network
TW200726168A (en) * 2005-12-07 2007-07-01 Interdigital Tech Corp Method and apparatus for supporting fragmentation and defragmentation in a WLAN
US20070153760A1 (en) * 2005-12-29 2007-07-05 Nir Shapira Method, apparatus and system of spatial division multiple access communication in a wireless local area network
US8670435B2 (en) * 2009-01-30 2014-03-11 Texas Instruments Incorporated Access and power management for centralized networks
JP5633048B2 (ja) * 2009-08-12 2014-12-03 マーベル ワールド トレード リミテッド Sdmaマルチデバイス無線通信
US10383141B2 (en) * 2009-09-23 2019-08-13 Qualcomm Incorporated Uplink SDMA transmit opportunity scheduling
JP2012209888A (ja) * 2011-03-30 2012-10-25 Panasonic Corp 無線通信装置及び半導体装置
US9179476B2 (en) * 2011-10-11 2015-11-03 Qualcomm Incorporated Multi-user transmission during reverse direction grant
CN103095425A (zh) * 2011-10-31 2013-05-08 华为技术有限公司 无线局域网中传输确认帧的方法和装置
US9608789B2 (en) * 2012-05-11 2017-03-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting acknowledgements in response to received frames
CN108668347B (zh) * 2012-06-13 2021-06-29 韩国电子通信研究院 无线局域网动态连接识别码分配操作方法、基站和接入点
US20160278081A1 (en) * 2013-11-07 2016-09-22 Lg Electronics Inc. Method and device for receiving multiuser uplink in wireless lan
US10225061B2 (en) * 2014-06-19 2019-03-05 Lg Electronics Inc. Method and apparatus for receiving frame
KR20160008971A (ko) * 2014-07-15 2016-01-25 뉴라컴 인코포레이티드 하향링크 다중 사용자 전송에 응답하는 상향링크 확인응답
WO2016126055A1 (ko) 2015-02-03 2016-08-11 엘지전자 주식회사 무선랜 시스템에서 정책 지시자 기반 확인응답 신호 송수신 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120314697A1 (en) * 2010-02-18 2012-12-13 Lg Electronics Inc. Method and apparatus for ack transmission in a wlan
US20110261742A1 (en) * 2010-04-23 2011-10-27 Qualcomm Incorporated Sequential ack for multi-user transmissions
WO2014179478A1 (en) * 2013-05-03 2014-11-06 Qualcomm Incorporated Acknowledgement mechanism in frequency multiplexed communication in dense wireless environments
US20150063320A1 (en) * 2013-08-28 2015-03-05 Qualcomm Incorporated Methods and apparatus for acknowledgment of multi-user uplink wireless transmissions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GHOSH, CHITTABRATA ET AL.: "DL Sounding Sequence with UL MU Feedback", IEEE 802.11-15/1103R0, 13 September 2015 (2015-09-13), XP068098340 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066853A1 (en) * 2017-09-28 2019-04-04 Intel Corporation METHODS AND APPARATUS TO FACILITATE ENHANCED DISTRIBUTED CHANNEL ACCESS AND POWER REDUCTION FOR ACCESS POINT TRIGGERS
CN113207189A (zh) * 2020-01-31 2021-08-03 联发科技(新加坡)私人有限公司 数据传输方法
CN113207189B (zh) * 2020-01-31 2023-08-25 联发科技(新加坡)私人有限公司 数据传输方法

Also Published As

Publication number Publication date
EP3361664A4 (en) 2019-06-19
US11171757B2 (en) 2021-11-09
CN108141325A (zh) 2018-06-08
KR102148658B1 (ko) 2020-08-28
EP3361664B1 (en) 2023-10-04
EP3361664A1 (en) 2018-08-15
CN108141325B (zh) 2021-01-01
US20220029770A1 (en) 2022-01-27
EP4283897A3 (en) 2024-02-28
US11677530B2 (en) 2023-06-13
JP6518009B2 (ja) 2019-05-22
US20180262315A1 (en) 2018-09-13
JP2018534841A (ja) 2018-11-22
KR20180054880A (ko) 2018-05-24
EP4283897A2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2016126055A1 (ko) 무선랜 시스템에서 정책 지시자 기반 확인응답 신호 송수신 방법 및 이를 위한 장치
WO2017061797A1 (ko) 상향링크 다중 사용자 전송에 있어서 확인응답 신호 처리 방법 및 이를 위한 장치
WO2016105128A1 (ko) 무선랜 시스템에서 상향링크 다중 사용자 데이터에 대한 확인응답 신호 송수신 방법 및 이를 위한 장치
KR101980714B1 (ko) 무선랜 시스템에서 다중 사용자 블록 확인응답 프레임 송수신 방법 및 이를 위한 장치
WO2016085311A1 (ko) 무선랜 시스템에서 상향링크 다중 사용자 데이터에 대한 확인응답 신호 송수신 방법 및 이를 위한 장치
WO2016039589A1 (en) Method and apparatus for transmitting and receiving acknowledgment in a wireless communication system
US10313082B2 (en) Method for transmitting and receiving acknowledgment/negative-acknowledgment signal for uplink multi-user data in wireless LAN system and apparatus therefor
WO2017142210A1 (ko) 무선랜 시스템에서 상향링크 확인응답 신호 송수신 방법 및 이를 위한 장치
WO2021210896A1 (ko) 무선랜 시스템에서 직접 통신을 위한 방법 및 장치
WO2021225328A1 (ko) 다중 링크를 지원하는 통신 시스템에서 데이터 전송을 지시하기 위한 방법 및 장치
WO2017164685A1 (ko) 사용자별 시그널링을 통한 전력소모 감소 방법
WO2016035943A1 (ko) Txop 보호 방법 및 장치
WO2017039349A1 (ko) 확장된 용량의 다중 스테이션 블록액 프레임 송수신 방법 및 이를 위한 장치
WO2022154433A1 (ko) 다중 링크를 지원하는 통신 시스템에서 저지연 통신을 위한 방법 및 장치
WO2022154432A1 (ko) 다중 링크를 지원하는 통신 시스템에서 하향링크 트래픽의 수신을 위한 방법 및 장치
WO2023048515A1 (ko) 통신 시스템에 신속 데이터의 송수신을 위한 방법 및 장치
WO2023055003A1 (ko) 다중 링크를 지원하는 통신 시스템에 nstr 동작을 위한 동기화 정보의 전송 방법 및 장치
WO2018016761A1 (ko) 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
WO2016186476A1 (ko) 무선랜 시스템에서 유휴 채널 정보에 기반한 스케줄링 방법 및 이를 위한 장치
WO2022250414A1 (ko) 무선랜에서 직접 통신을 위한 방법 및 장치
WO2024054003A1 (ko) 다중 링크를 지원하는 무선랜에서 저전력 동작을 위한 방법 및 장치
WO2023277492A1 (ko) 무선랜에서 emlsr 동작을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762084

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515978

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187012819

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016853913

Country of ref document: EP