WO2016035943A1 - Txop 보호 방법 및 장치 - Google Patents
Txop 보호 방법 및 장치 Download PDFInfo
- Publication number
- WO2016035943A1 WO2016035943A1 PCT/KR2014/013099 KR2014013099W WO2016035943A1 WO 2016035943 A1 WO2016035943 A1 WO 2016035943A1 KR 2014013099 W KR2014013099 W KR 2014013099W WO 2016035943 A1 WO2016035943 A1 WO 2016035943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sta
- frame
- cts
- trigger frame
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000010586 diagram Methods 0.000 description 17
- 101150081243 STA1 gene Proteins 0.000 description 9
- OVGWMUWIRHGGJP-WTODYLRWSA-N (z)-7-[(1r,3s,4s,5r)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@H]1[C@H](/C=C/[C@H](O)CCCCC)C[C@H]2S[C@@H]1C2 OVGWMUWIRHGGJP-WTODYLRWSA-N 0.000 description 8
- 101100366889 Caenorhabditis elegans sta-2 gene Proteins 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000012549 training Methods 0.000 description 4
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
Definitions
- the present invention relates to wireless communication, and more particularly, to a method and apparatus for protecting TXOP in a wireless communication system.
- Wi-Fi is a wireless local area network (WLAN) technology that allows wireless devices to connect to the Internet in the 2.4 GHz, 5 GHz, or 60 GHz frequency bands.
- WLANs are based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard.
- the IEEE 802.11n standard supports multiple antennas and provides up to 600 Mbit / s data rates.
- a system supporting IEEE 802.11n is called a high throughput system.
- IEEE 802.11ac primarily operates in the 5GHz band and provides data rates of 1Gbit / s and higher.
- IEEE 802.11ac supports DL MU-MIMO (downlink multi-user multiple input multiple output).
- a system supporting IEEE 802.11ac is called a Very High Throughput (VHT) system.
- VHT Very High Throughput
- IEEE 802.11ax is being developed as the next generation WLAN to cope with higher data rates and higher user loads.
- the scope of IEEE 802.11ax includes: 1) enhancements to the 802.11 physical layer (PHY) and medium access control (MAC) layers, 2) improvement of spectral efficiency and area throughput, and 3) interference sources. May include performance improvement in an environment in which the network exists, a heterogeneous network environment, and an environment in which a high user load exists.
- the available channel bandwidth in the WLAN system has been varied from 20 MHz to 160 MHz. Accordingly, determining an appropriate channel bandwidth for communication between the transmitting terminal and the receiving terminal has become an important factor in determining the Wi-Fi performance.
- a dynamic channel bandwidth setting protocol based on a request to send (RTS) frame and a clear to send (CTS) frame has been developed from IEEE 802.11ac.
- RTS request to send
- CTS clear to send
- the transmitting terminal transmits the RTS frame to the receiving terminal before transmitting the data frame.
- the destination terminal receiving the RTS frame responds to the transmitting terminal in the CTS frame.
- the third terminals receiving the RTS frame and the CTS frame may delay the medium access for a predetermined time in order to protect data frames to be transmitted later.
- One aspect of the present invention proposes a method and apparatus for protecting TXOP.
- a receiving frame may include a trigger frame having information on a first interval for exchanging a plurality of clear to send (CTS) frames from a transmitting STA. And receiving, by the receiving STA, transmitting one of the plurality of CTS frames to the transmitting STA during the first period.
- CTS clear to send
- TXOP for downlink data transmission is protected.
- a method and apparatus for generating and transmitting a frame for protection of a downlink TXOP are provided.
- WLAN wireless local area network
- FIG. 2 is a conceptual diagram illustrating a PPDU format according to the prior art.
- FIG. 3 is a conceptual diagram illustrating an example of a HE PPDU format.
- FIG. 4 is a conceptual diagram illustrating another example of the HE PPDU format.
- FIG. 5 is a conceptual diagram illustrating another example of the HE PPDU format.
- FIG. 6 is a conceptual diagram illustrating an example of an RTS / CTS exchange.
- FIG 7 illustrates an RTS-CTS exchange according to an embodiment of the present invention.
- FIG 8 shows an example of a PPDU format for a trigger frame according to an embodiment of the present invention.
- FIG. 9 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
- a wireless local area network (WLAN) system conforming to the Institute of Electrical and Electronics Engineers (IEEE) 802.11n standard is called a high throughput (HT) system, and a system according to the IEEE 802.11ac standard is called a VHT (Very High Throughput) system.
- a WLAN system supporting orthogonal frequency division multiple access (OFDMA) is called a high efficiency WLAN (HEW) system or a high efficiency (HE) system.
- OFDMA orthogonal frequency division multiple access
- HEW high efficiency WLAN
- HE high efficiency
- the proposed WLAN system can operate in the band below 6GHz or in the 60GHz band.
- the band below 6 GHz may include at least one of a 2.4 GHz band and a 5 GHz band.
- a station may be called various names such as a wireless device, a mobile station (MS), a network interface device, and a wireless interface device.
- the STA may include a non-AP STA or an AP unless separately distinguishing a function from an access point (AP).
- AP access point
- the STA When described in communication with a STA to an AP, the STA may be interpreted as a non-AP STA.
- the STA may be a non-AP STA or an AP if it is described in STA-to-STA communication or otherwise requires a function of the AP.
- WLAN wireless local area network
- FIG. 1 shows the structure of an infrastructure BSS (Basic Service Set) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
- BSS Basic Service Set
- IEEE Institute of Electrical and Electronic Engineers 802.11
- the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
- BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA 1 (station 100-1) that are able to successfully synchronize and communicate with each other, and do not indicate a specific area.
- the BSS 105 may include one or more joinable STAs 105-1 and 105-2 to one AP 130.
- the BSS may include at least one STA, APs 125 and 130 that provide a distribution service, and a distribution system DS that connects a plurality of APs.
- the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
- ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
- APs included in one ESS 140 may have the same service set identification (SSID).
- the portal 120 may serve as a bridge that connects the WLAN network (IEEE 802.11) with another network (eg, 802.X).
- a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
- a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
- FIG. 1 is a conceptual diagram illustrating an IBSS.
- the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
- the data (or frame) transmitted from the AP to the STA is downlink data (or downlink frame), and the data (or frame) transmitted from the STA to the AP is uplink data (or uplink frame).
- the transmission from the AP to the STA may be expressed in terms of downlink transmission and the transmission from the STA to the AP in terms of uplink transmission.
- the Physical Layer Protocol Data Unit is a data block generated in a physical (PHY) layer in the IEEE 802.11 standard.
- the topmost PPDU format of FIG. 2 publishes for a non-HT (high throughput) PPDU (physical layer convergence procedure) protocol data unit (PLCP) format supporting IEEE 802.11a / g.
- the non-HT PPDU format may also be expressed in terms of legacy PPDU format.
- the non-HT PPDU format includes a legacy-short training field (L-STF) 300, a legacy-long training field (L-LTF) 320, a legacy signal field (L-SIG) 340, and data 360. It may include.
- L-STF legacy-short training field
- L-LTF legacy-long training field
- L-SIG legacy signal field
- the L-STF 300 may include a short training orthogonal frequency division multiplexing symbol.
- the L-STF 300 may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization.
- AGC automatic gain control
- the L-LTF 320 may include a long training orthogonal frequency division multiplexing symbol. L-LTF 320 may be used for fine frequency / time synchronization and channel prediction.
- the L-SIG 340 may be used to transmit control information.
- the L-SIG 340 may include information about a data rate and a data length.
- the data 360 may include a service field as a payload, a scrambled scrambled PLCP service data unit (PSDU), tail bits, and padding bits.
- PSDU scrambled scrambled PLCP service data unit
- FIG. 2 is a conceptual diagram illustrating a high throughput (DU) PPDU format.
- the HT PPDU format of FIG. 2 represents an HT mixed format PPDU (HT-mixed format PPDU) for supporting both IEEE 802.11n and IEEE 802.11a / g.
- the HT mixed format PPDU may further include an HT-SIG 400, an HT-STF 420, and an HT-LTF 440 in addition to the non-HT PPDU format.
- the HT-SIG 400 may include information for interpreting the HT mixed format PPDU.
- the HT-SIG 400 may include a modulation and coding scheme (MCS), PSDU length information, and space time block coding (STBC) information.
- MCS modulation and coding scheme
- STBC space time block coding
- the HT-STF 420 may be used for improving AGC performance, timing synchronization, and frequency synchronization.
- the total length of the HT-STF 420 is 4 us, which is the same as that of the L-STF, but the cyclic delay values may be different.
- the HT-LTF 440 may be used for multiple input multiple output (MIMO) channel estimation and fine carrier frequency offset (CFO) estimation. Since the STA supporting IEEE 802.11n needs to estimate the channel by the number of space time streams (or spatial streams), the number of HT-LTFs 440 may increase according to the number of space time streams. Can be.
- MIMO multiple input multiple output
- CFO fine carrier frequency offset
- VHT very high throughput
- the VHT PPDU format may include L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B and data.
- the L-STF field, L-LTF field, and L-SIG field are fields included in the non-HT PPDU format as described above.
- the remaining VHT-SIG-A 500, VHT-STF 520, VHT-LTF 540 and VHT-SIG-B 560 may be included only in the VHT PPDU format.
- the VHT-SIG-A 500 may include information for interpreting the VHT PPDU format.
- the VHT-SIG-A 500 may include VHT-SIG-A1 and VHT-SIG-A2.
- VHT-SIG-A1 is used for bandwidth information of a channel to be used, whether space time block coding is applied, a group identifier for indicating a group used for transmission of STAs grouped in multi-user (MIMO), and used. Information on the number of streams may be included.
- the VHT-SIG-A2 provides information on whether to use a short guard interval (GI), forward error correction (FEC) information, information on a modulation and coding scheme (MCS) for a single user, and multiple users.
- GI short guard interval
- FEC forward error correction
- MCS modulation and coding scheme
- the VHT-STF 520 may be used to improve automatic gain control estimation in a MIMO environment.
- the VHT-LTF 540 is used to estimate the channel in the MIMO environment.
- the VHT-SIG-B 560 may include information about each STA, that is, information about the length of the PSDU and the MCS, tail bits, and the like.
- FIG. 3 is a diagram illustrating an example of a high efficiency (HE) PPDU format.
- the PPDU may be transmitted through at least one 20 MHz channel.
- an example in which an 80 MHz band is allocated to one receiving STA is shown.
- Each 20MHz channel may be allocated to different receiving STAs.
- L-STF, L-LTF and L-SIG may be the same as L-STF, L-LTF and L-SIG of the VHT PPDU.
- the L-STF, L-LTF, and L-SIG may be transmitted in an orthogonal frequency division multiplexing (OFDM) symbol generated based on 64 fast Fourier transform (FFT) points (or 64 subcarriers) in each 20 MHz channel.
- OFDM orthogonal frequency division multiplexing
- the HE-SIGA may include common control information commonly received by an STA receiving a PPDU.
- the HE-SIGA may be transmitted in two or three OFDM symbols.
- the following table illustrates information included in the HE-SIGA.
- the field name and the number of bits are examples only, and not all fields are necessary.
- HE-STF may be used to improve AGC estimation in MIMO transmission.
- HE-LTF may be used to estimate the MIMO channel.
- the HE-SIGB may include user specific information required for each STA to receive its own data (ie, physical layer service data unit (PSDU)).
- PSDU physical layer service data unit
- the HE-SIGB may be transmitted in one or two OFDM symbols.
- the HE-SIGB may include information about a length of the PSDU and a modulation and coding scheme (MCS) of the PSDU.
- MCS modulation and coding scheme
- the L-STF, L-LTF, L-SIG, and HE-SIGA may be transmitted redundantly in units of 20 MHz channels. That is, when PPDUs are transmitted on four 20 MHz channels, L-STF, L-LTF, L-STG, and HE-SIGA are repeatedly transmitted every 20 MHz channels.
- the FFT size per unit frequency can be further increased. For example, 256 FFT in a 20 MHz channel, 512 FFT in a 40 MHz channel, and 1024 FFT in an 80 MHz channel may be used. Increasing the FFT size reduces the OFDM subcarrier spacing, thereby increasing the number of OFDM subcarriers per unit frequency, but may increase the OFDM symbol time. To increase the efficiency, the GI length after the HE-STF may be set equal to the GI length of the HE-SIGA.
- FIG. 4 is a conceptual diagram illustrating another example of the HE PPDU format.
- the FFT size per unit frequency can be further increased.
- FIG. 5 is a conceptual diagram illustrating another example of the HE PPDU format.
- HE-SIGB is placed after HE-SIGA. Each 20MHz channel is assigned to different STAs (STA 1, STA 2, STA 3, STA 4).
- the HE-SIGB contains information specific to each STA, but is encoded over the entire band. That is, all STAs can receive the HE-SIGB. From HE-STF (or after HE-SIGB), the FFT size per unit frequency can be further increased.
- legacy STAs supporting legacy IEEE 802.11a / g / n / ac cannot decode the corresponding PPDU.
- the L-STF, L-LTF, and L-SIG are transmitted through a 64 FFT on a 20 MHz channel so that the existing STA can be received.
- L-SIG may occupy one OFDM symbol, one OFDM symbol time may be 4us, and GI may be 0.8us.
- Transmission opportunity refers to the interval of time that a particular STA has the right to initiate a frame exchange sequence on the wireless medium.
- An STA that acquires a TXOP is called a TXOP holder and a counterpart is called a TXOP responder.
- TXOP is obtained by competition, and is a representative procedure to request (TX) / clear to send (RTS) exchange to protect the TXOP.
- FIG. 6 is a conceptual diagram illustrating an example of an RTS / CTS exchange.
- the RTS frame and the CTS frame can be exchanged to solve the hidden node issue.
- the neighboring STAs may know whether to transmit or receive data between the two STAs based on the RTS frame and the CTS frame.
- STA 1 wants to transmit data to STA 2. If the channel idles through competition, STA 1 sends an RTS frame to STA 2. In response, STA 2 sends a CTS frame to STA 1. STA 3 within coverage of STA 1 cannot overhear an RTS frame and set a network allocation vector (NAV) to prevent channel access. STA 4 in coverage of STA 2 overhears the CTS frame and sets the NAV to prevent channel access.
- NAV network allocation vector
- Such an RTS frame and a CTS frame exchange scheme are performed by unicast transmission or only between an AP and a specific STA, and do not consider an uplink multi-user (MU) environment.
- MU uplink multi-user
- Downlink (DL) MU transmission refers to an AP acquiring a TXOP simultaneously or sequentially transmitting data to a plurality of STAs.
- Uplink (UL) MU transmission refers to a plurality of STAs transmitting data simultaneously or sequentially to an AP.
- the AP since the RTS frame and the CTS frame exchange are possible only by one-to-one transmission between the AP and the STA, the AP cannot receive the DL MU TXOP for the DL MU frame. Likewise, the UL MU TXOP for the UL MU frame cannot be protected.
- FIG 7 illustrates an RTS-CTS exchange according to an embodiment of the present invention.
- the AP transmits a trigger frame 710 via an idle channel if one or more channels are idle during a point coordination function (PCF) interframe space (PIFS).
- the trigger frame 710 is a frame that triggers transmission of a plurality of CTS frames to a plurality of STAs.
- the trigger frame 710 may be referred to as an RTS frame or a guard frame.
- PIFS is merely an example and may be referred to as a first interval.
- STA 1 and STA 2 are destination STAs to transmit CTS frames, and STA 3 is not a target STA.
- the number of target STAs is only an example.
- STA 1 and STA 2 which are allowed to transmit CTS frames, may transmit CTS frames 721 and 722 to the AP after short interframe space (SIFS), respectively.
- SIFS short interframe space
- SIFS is merely an example and may be referred to as a second interval.
- the CTS frames 721 and 722 are sent in response to the trigger frame 710.
- the STA 3 that has received the trigger frame 710 but is not allowed to transmit the CTS frame may configure the NAV 730 by using the duration information of the trigger frame 710.
- the AP may transmit the DL MU data frame 750 to the plurality of STAs after the SIFS time, and STA 1 and STA 2 may transmit ACK frames 71 and 762 thereof to the AP, respectively.
- the AP may retransmit the trigger frame or give up the entire DL MU TXOP after SIFS.
- the STA may transmit a control frame or an NDP frame to the AP instead of the CTS frame after receiving the trigger frame.
- a control frame an ACK frame, a buffer status report frame, or a null data frame such as a block ACK signal may be transmitted to the AP.
- STA 3 may update the NAV configuration based on the trigger frame or the CTS frame.
- TXOP for the UL MU data frame may be protected through a trigger frame or a CTS frame.
- the trigger frame may include period information for TXOP protection for the MU CTS frame and period information for TXOP protection for the UL MU data frame.
- the following table illustrates the fields included in the trigger frame.
- the field name is only an example, not all fields are required, and some fields may be omitted.
- the fields may be included in a trigger frame as MAC header or MAC data of a trigger frame.
- FIG. 8 shows an example of a PPDU format for a trigger frame according to an embodiment of the present invention. This is an example of applying to a trigger frame based on the PPDU format of FIG. 3. This is merely an example and may be applied to a trigger frame based on the PPDU format of FIG. 4 or 5.
- Information about the first interval may be included in the interval field 881 in the MAC header.
- the information about the second section may be included in any one of the L_SIG 830, the HE-SIG A 840, or the HE-SIG B 870 and the section field 881.
- the information about the third section may be included in the L-SIG 830, the HE-SIG A 840, or the HE-SIG B 870.
- Information on the fourth interval and resource allocation may be included in the HE-SIG A 840 or the HE-SIG B 870.
- the HE PPDU format may include the HE-SIG A 840 and the HE-SIG B 870 separated as shown in FIGS. 3 to 5, but the HE-SIG A 840 and the HE-SIG B 870. ) May be composed of one HE-SIG field without being separated.
- the information on the second section, the information on the third section, and the information on the fourth section may be included in the HE-SIG field.
- the legacy STA that receives the trigger frame may grasp the first section and update the NAV configuration using the legacy STA. In this way, DL MU TXOP due to the trigger frame can be protected.
- the HE STA may update the NAV configuration based on the CTS frame even though the HE STA does not receive the trigger frame.
- the channel busy period can be determined based on the received information.
- FIG. 9 is a block diagram illustrating a wireless device in which an embodiment of the present invention is implemented.
- the wireless device 50 includes a processor 51, a memory 52, and an RF unit 53.
- the wireless device may be an AP or a non-AP STA in the above-described embodiment.
- the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
- the processor 51 implements the proposed functions, processes and / or methods. In the embodiments of FIGS. 7 and 8, the operation of the AP or non-AP STA may be implemented by the processor 51.
- the memory 52 may be connected to the processor 51 and may store instructions that are executed by the processor 51 to implement an operation of an AP or a non-AP STA.
- the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
- the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
- the RF unit may include a baseband circuit for processing a radio signal.
- the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
- the module may be stored in memory and executed by a processor.
- the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선 통신 시스템에서 TXOP를 보호하는 방법 및 장치가 제공된다. TXOP를 보호하는 방법은 수신 STA(station)이 전송 STA으로부터 복수의 CTS(clear to send) 프레임의 교환을 위한 제1 구간에 대한 정보를 갖는 트리거 프레임을 수신하는 단계와 상기 수신 STA이 상기 제1 기간 중 CTS 프레임를 상기 전송 STA으로 전송하는 단계를 포함할 수 있다.
Description
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 TXOP를 보호하는 방법 및 장치에 관한 것이다.
와이파이(Wi-Fi)는 무선기기가 2.4GHz, 5GHz 또는 60GHz 주파수 대역에서 인터넷에 연결되도록 하는 WLAN(Wireless local area network) 기술이다. WLAN은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준을 기반으로 한다.
IEEE 802.11n 표준은 다중 안테나를 지원하고, 최대 600 Mbit/s 데이터 레이트를 제공한다. IEEE 802.11n을 지원하는 시스템을 HT(High Throughput) 시스템이라 한다.
IEEE 802.11ac 표준은 주로 5GHz 대역에서 동작하며, 1Gbit/s 이상의 데이터 레이트를 제공한다. IEEE 802.11ac는 DL MU-MIMO(downlink multi-user multiple input multiple output)을 지원한다. IEEE 802.11ac을 지원하는 시스템을 VHT(Very High Throughput) 시스템이라 한다.
보다 높은 데이터 레이트와 높은 사용자 부하에 대응하기 위한 차세대 WLAN으로 IEEE 802.11ax가 개발되고 있다. IEEE 802.11ax의 범위(scope)는 1) 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput)의 향상, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경 등에서 성능 향상 등을 포함할 수 있다.
상술한 바와 같이, WLAN 시스템에서 사용 가능한 채널 대역폭은 20MHz에서 160MHz까지 다양해졌다. 이에 따라, 송신 단말 및 수신 단말 간에 통신을 위한 적절한 채널 대역폭을 결정하는 것이 와이파이 성능을 결정하는데 중요한 요인이 되었다.
송신 단말 및 수신 단말 간에 통신을 위한 적절한 채널 대역폭을 결정하기 위해 IEEE 802.11ac부터는 RTS(request to send) 프레임 및 CTS(clear to send) 프레임을 기반으로 한 동적 채널 대역폭 설정 프로토콜이 개발되었다. 초기 RTS 프레임 및 CTS 프레임은 히든 노드(hidden node) 문제, 데이터 프레임 충돌 오버 헤드를 줄이기 위해 고안되었다. 송신 단말이 데이터 프레임을 전송하기 전에 수신 단말로 RTS 프레임을 전송한다. RTS 프레임을 수신한 목적 단말은 CTS 프레임으로 송신 단말에 응답한다. RTS 프레임 및 CTS 프레임을 수신한 제3의 단말들은 이후에 전송될 데이터 프레임의 보호를 위해 매체 접속을 일정 시간 지연할 수 있다.
하지만, RTS/CTS 프레임 교환은 단일 전송으로 이루어지거나 AP와 지정된 특정 STA 사이에서 이루어지므로 상향링크 MU(Multi user) 환경에서는 적합하지 않은 단점이 존재한다.
본 발명의 일 측면은 TXOP를 보호하는 방법 및 장치를 제안한다.
본 발명의 일 측면에 따른 무선 통신 시스템에서 TXOP를 보호하는 방법은 수신 STA(station)이 전송 STA으로부터 복수의 CTS(clear to send) 프레임의 교환을 위한 제1 구간에 대한 정보를 갖는 트리거 프레임을 수신하는 단계와 상기 수신 STA이 상기 제1 기간 중 상기 복수의 CTS 프레임 중 하나를 상기전송 STA으로 전송하는 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, 하향링크 데이터 전송을 위한 TXOP가 보호된다.
본 발명의 일 측면에 따르면 하향링크 TXOP의 보호를 위한 프레임을 생성하고 전송하는 방법 및 장치가 제공된다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 2는 종래 기술에 따른 PPDU 포맷을 나타낸 개념도이다.
도 3은 HE PPDU 포맷의 일 예를 나타낸 개념도이다.
도 4는 HE PPDU 포맷의 다른 예를 나타낸 개념도이다.
도 5는 HE PPDU 포맷의 또 다른 예를 나타낸 개념도이다.
도 6은 RTS/CTS 교환의 일 예를 나타낸 개념도이다
도 7은 본 발명의 일 실시예에 따른 RTS-CTS 교환을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 트리거 프레임을 위한 PPDU 포맷의 일 예를 나타낸다.
도 9는 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
IEEE(Institute of Electrical and Electronics Engineers) 802.11n 표준에 따르는 WLAN(wireless local area network) 시스템을 HT(High Throughput) 시스템이라고 하고, IEEE 802.11ac 표준에 따른 시스템을 VHT(Very High Throughput) 시스템이라고 한다. 이에 비교하여, OFDMA(orthogonal frequency division multiple access)을 지원하는 WLAN 시스템을 HEW(High Efficiency WLAN) 시스템 또는 HE(High Efficiency) 시스템이라고 한다. HEW 또는 HE 라는 명칭은, 기존(conventional) WLAN과의 구분을 위한 것일 뿐, 어떠한 제한이 있는 것은 아니다.
제안되는 WLAN 시스템은 6GHz 이하의 대역 또는 60GHz 대역에서 동작할 수 있다. 6GHz 이하의 대역은 2.4GHz 대역 및 5GHz 대역 중 적어도 하나를 포함할 수 있다.
STA(station)은 무선기기, MS(mobile station), 네트워크 인터페이스 기기, 무선 인터페이스 기기 등 다양한 명칭으로 불릴 수 있다. STA은 별도로 AP(access point)와의 기능을 구분하지 않는 한, non-AP STA 또는 AP를 포함할 수 있다. STA 대 AP와의 통신으로 기술되면, STA는 non-AP STA으로 해석될 수 있다. STA 대 STA 통신으로 기술되거나, 별도로 AP의 기능이 필요하지 않는다면 STA는 non-AP STA 또는 AP 일 수 있다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(Basic Service Set)의 구조를 나타낸다.
도 1의 상단을 참조하면, WLAN 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA 1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(Distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(Distribution System, DS, 110)을 포함할 수 있다.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 120)은 WLAN 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 1의 하단은 IBSS를 나타낸 개념도이다.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
이하, 본 발명의 실시예에서는 AP에서 STA으로 전송되는 데이터(또는 프레임)를 하향링크 데이터(또는 하향링크 프레임), STA에서 AP로 전송되는 데이터(또는 프레임)를 상향링크 데이터(또는 상향링크 프레임)이라는 용어로 표현할 수 있다. 또한, AP에서 STA으로의 전송을 하향링크 전송, STA에서 AP로의 전송을 상향링크 전송이라는 용어로 표현할 수 있다.
도 2는 종래 기술에 따른 PPDU 포맷을 나타낸 개념도이다. PPDU(Physical layer Protocol Data Unit)은 IEEE 802.11 표준에서 PHY(physical) 계층에서 생성되는 데이터 블록이다.
도 2의 가장 상단의 PPDU 포맷은 IEEE 802.11a/g을 지원하는 non-HT(high throughput) PPDU(PLCP(physical layer convergence procedure) protocol data unit) 포맷에 대해 게시한다. non-HT PPDU 포맷은 레거시 PPDU 포맷이라는 용어로도 표현될 수 있다.
non-HT PPDU 포맷은 L-STF(legacy-short training field)(300), L-LTF(legacy-long training field)(320), L-SIG(legacy SIGNAL field)(340) 및 데이터(360)를 포함할 수 있다.
L-STF(300)는 짧은 트레이닝 OFDM 심볼(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF(300)는 프레임 탐지(frame detection), AGC(automatic gain control), 다이버시티 탐지(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF(320)는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF(320)는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 예측을 위해 사용될 수 있다.
L-SIG(340)는 제어 정보를 전송하기 위해 사용될 수 있다. L-SIG(340)는 데이터 전송률(rate), 데이터 길이(length)에 대한 정보를 포함할 수 있다.
데이터(360)는 페이로드(payload)로써 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PLCP service data unit), 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
도 2의 가운데는 HT(high throughput) PPDU 포맷을 나타낸 개념도이다.
도 2의 HT PPDU 포맷은 IEEE 802.11n 및 IEEE 802.11a/g를 모두 지원하기 위한 HT 혼합 포맷 PPDU (HT-mixed format PPDU)을 나타낸다.
HT 혼합 포맷 PPDU는 non-HT PPDU 포맷에 추가적으로 HT-SIG(400), HT-STF(420), HT-LTF(440)를 더 포함할 수 있다.
HT-SIG(400)는 HT 혼합 포맷 PPDU를 해석하기 위한 정보를 포함할 수 있다. 예를 들어, HT-SIG(400)는 MCS(modulation and coding scheme), PSDU 길이 정보, STBC(space time block coding) 정보 등을 포함할 수 있다.
HT-STF(420)는 AGC 성능의 향상, 타이밍 동기화 및 주파수 동기화를 위해 사용될 수 있다. HT-STF(420)의 전체 길이는 4us로 L-STF와 동일하나 순환 지연 값은 서로 다를 수 있다.
HT-LTF(440)는 MIMO(multiple input multiple output) 채널 추정과 미세 CFO(carrier frequency offset) 추정을 위해 사용될 수 있다. IEEE 802.11n을 지원하는 STA은 시공간 스트림(space time stream)(또는 공간 스트림(spatial stream))의 개수만큼 채널을 추정해야 하기 때문에 시공간 스트림의 수에 따라 HT-LTF(440)의 개수가 증가할 수 있다.
도 2의 하단은 VHT(very high throughput) PPDU 포맷을 나타낸 개념도이다.
VHT PPDU 포맷은 L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, VHT-SIG-B 및 데이터를 포함할 수 있다.
L-STF 필드, L-LTF 필드 및 L-SIG 필드는 전술한 바와 같이 non-HT PPDU 포맷에 포함된 필드이다. 나머지 VHT-SIG-A(500), VHT-STF(520), VHT-LTF(540) 및 VHT-SIG-B(560)는 VHT PPDU 포맷에만 포함될 수 있다.
VHT-SIG-A(500)는 VHT PPDU 포맷을 해석하기 위한 정보를 포함할 수 있다. VHT-SIG-A(500)는 VHT-SIG-A1 및 VHT-SIG-A2를 포함할 수 있다. VHT-SIG-A1는 사용하는 채널의 대역폭 정보, 공간 시간 블록 코딩의 적용 여부, MU(multi-user)-MIMO에서 그룹핑된 STA들의 전송에 사용되는 그룹을 지시하는 그룹 ID(identifier) 및 사용되는 스트림의 개수에 대한 정보 등을 포함할 수 있다.
VHT-SIG-A2는 짧은 가드 인터벌(guard interval, GI) 사용 여부에 대한 정보, 포워드 에러 정정(FEC; forward error correction) 정보, 단일 사용자에 대한 MCS(modulation and coding scheme)에 관한 정보, 복수 사용자에 대한 채널 코딩의 종류에 관한 정보, 빔포밍 관련 정보, CRC(cyclic redundancy checking)를 위한 여분 비트(redundancy bits)와 컨벌루셔널 디코더(convolutional decoder)의 테일 비트(tail bit) 등을 포함할 수 있다.
VHT-STF(520)는 MIMO 환경에서 자동 이득 제어 추정(automatic gain control estimation)을 향상시키기 위하여 사용될 수 있다.
VHT-LTF(540)는 MIMO 환경에서 채널을 추정하기 위하여 사용된다.
VHT-SIG-B(560)는 각 STA에 대한 정보, 즉 PSDU의 길이와 MCS에 관한 정보, 테일 비트 등을 포함할 수 있다.
도 3은 HE (High Efficiency) PPDU 포맷의 일 예를 도시한 도면이다.
이는 4개의 2OMHz 채널을 통해 총 80MHz 대역폭에서 전송되는 PPDU를 보여준다. PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 여기서는, 80MHz 대역이 하나의 수신 STA에게 할당된 예를 보여준다. 20MHz 채널 각각이 서로 다른 수신 STA에게 할당될 수 있다.
L-STF, L-LTF 및 L-SIG는 VHT PPDU의 L-STF, L-LTF 및 L-SIG과 동일할 수 있다. L-STF, L-LTF 및 L-SIG는 각 20MHz 채널에서 64 FFT(fast Fourier transform) point(또는 64 subcarrier)를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 심벌에서 전송될 수 있다.
HE-SIGA는 PPDU를 수신하는 STA이 공통적으로 수신하는 공용 제어 정보(common control information)을 포함할 수 있다. HE-SIGA는 2개 또는 3개 OFDM 심벌에서 전송될 수 있다.
다음 표는 HE-SIGA에 포함되는 정보를 예시한다. 필드명이나 비트 수는 예시에 불과하며, 모든 필드가 필수적인 것이 아니다.
HE-STF는 MIMO 전송에서 AGC 추정을 향상시키기 위하여 사용될 수 있다. HE-LTF는 MIMO 채널을 추정하는데 사용될 수 있다.
HE-SIGB는 각 STA이 자신의 데이터(즉, PSDU(physical layer service data unit))를 수신하기 위해 필요한 사용자 특정 정보를 포함할 수 있다. HE-SIGB는 1개 또는 2개 OFDM 심벌에서 전송될 수 있다. 예를 들어, HE-SIGB는 해당 PSDU의 길이, 해당 PSDU의 MCS(Modulation and Coding Scheme)에 관한 정보를 포함할 수 있다.
L-STF, L-LTF, L-SIG 및 HE-SIGA는 20MHz 채널 단위로 중복되어(duplicately) 전송될 수 있다. 즉, 4개의 20MHz 채널로 PPDU가 전송될 때, L-STF, L-LTF, L-STG 및 HE-SIGA는 20MHz 채널 마다 중복적으로 전송된다.
HE-STF 부터(또는 HE-SIGA 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다. 예를 들어, 20MHz 채널에서 256 FFT, 40MHz 채널에서 512 FFT, 80MHz 채널에서 1024 FFT가 사용될 수 있다. FFT 크기를 늘리게 되면, OFDM 부반송파 간격(spacing)이 줄어 단위 주파수당 OFDM 부반송파 수가 증가 하지만 반대로 OFDM 심벌 시간(symbol time)이 증가될 수 있다. 효율성을 높이기 위해, HE-STF 이후의 GI 길이는 HE-SIGA의 GI 길이와 동일하게 설정할 수 있다.
도 4는 HE PPDU 포맷의 다른 예를 나타낸 개념도이다.
HE-SIGB가 HE-SIGA 다음에 배치되는 것을 제외하고, 도 3의 PPDU 포맷과 동일하다. HE-STF 부터(또는 HE-SIGB 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다.
도 5는 HE PPDU 포맷의 또 다른 예를 나타낸 개념도이다.
HE-SIGB가 HE-SIGA 다음에 배치된다. 각 20MHz 채널은 서로 다른 STA(STA 1, STA 2, STA 3, STA 4)에게 할당된다. HE-SIGB는 각 STA에게 특정적인 정보를 포함하지만, 전 대역에 걸쳐서 인코딩된다. 즉, 모든 STA이 HE-SIGB를 수신할 수 있다. HE-STF 부터(또는 HE-SIGB 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다.
한편, FFT 크기를 증가시키면, 기존 IEEE 802.11a/g/n/ac를 지원하는 레거시 STA은 해당 PPDU를 디코딩할 수 없다. 레거시 STA과 HE STA의 공존을 위해 L-STF, L-LTF, L-SIG는 기존 STA이 수신 가능하도록 20MHz 채널에서 64 FFT을 통해 전송된다. 예를 들어, L-SIG 는 하나의 OFDM 심벌을 차지하고, 상기 하나의 OFDM 심벌 시간은 4us, GI는 0.8us 일 수 있다.
TXOP(transmission opportunity)는 특정 STA이 무선매체 상으로 프레임 교환 시퀀스(frame exchange sequence)를 개시하는 권리를 갖는 시간 인터벌(interval of time)을 말한다. TXOP를 획득한 STA을 TXOP 홀더(holder)라 하고, 상대방을 TXOP 응답자(responder)라 한다. 일반적으로 TXOP는 경쟁에 의해 획득하며, TXOP를 보호하기 위한 대표적인 절차자 RTS(request to send)/CTS(clear to send) 교환이다.
도 6은 RTS/CTS 교환의 일 예를 나타낸 개념도이다.
숨겨진 노드 문제(hidden node issue)를 해결하기 위해 RTS 프레임과 CTS 프레임이 교환될 수 있다. 주위의 STA들은 RTS 프레임 및 CTS 프레임을 기반으로 두 STA 간의 데이터 송신 또는 수신 여부에 대해 알 수 있다.
STA 1이 STA 2로 데이터 전송을 원한다고 하자. 경쟁을 통해 채널이 아이들(idle)하면, STA 1은 STA 2로 RTS 프레임을 보낸다. 이에 대한 응답으로, STA 2는 STA 1으로 CTS 프레임을 보낸다. STA 1의 커버리지 내의 STA 3는 RTS 프레임을 오버히어(overhear)하고 NAV(Network Allocation Vector)를 설정하여 채널 액세스를 하지 못한다. STA 2의 커버리지 내의 STA 4는 CTS 프레임을 오버히어하고 NAV를 설정하여 채널 액세스를 하지 못한다.
이러한 RTS 프레임과 CTS 프레임 교환 방식은 유니캐스트(unicast) 전송으로 이루어지거나 AP와 지정된 특정 STA 사이에서만 이루어지며, MU(uplink multi-user) 환경은 고려하지 않는다.
DL(downlink) MU 전송은 TXOP를 획득한 AP가 다수의 STA에게 데이터를 동시에 또는 순차적으로 전송하는 것을 말한다. UL(uplink) MU 전송은 다수의 STA이 AP로 데이터를 동시에 또는 순차적으로 전송하는 것을 말한다.
기존 WLAN 시스템에 의하면, RTS 프레임과 CTS 프레임 교환은 AP와 STA 간 일대일 전송만으로 가능하기 때문에 AP는 DL MU 프레임에 대한 DL MU TXOP를 보호받을 수 없다. 마찬가지로, UL MU 프레임에 대한 UL MU TXOP도 보호될 수 없다.
도 7은 본 발명의 일 실시예에 따른 RTS-CTS 교환을 나타낸다.
AP는 PIFS(point coordination function (PCF) interframe space)) 동안 하나 또는 그 이상이 채널이 아이들하면, 아이들 채널을 통해 트리거 프레임(710)을 전송한다. 트리거 프레임(710)은 복수의 STA에게 복수의 CTS 프레임의 전송을 트리거 하는 프레임이다. 트리거 프레임(710)은 RTS 프레임 또는 보호 프레임이라고 할 수도 있다. PIFS는 예시에 불과하며, 제1 간격(interval)이라고 할 수 있다.
STA 1과 STA 2는 CTS 프레임을 전송할 대상(destination) STA이고, STA 3는 대상 STA이 아니라고 하자. 대상 STA의 수는 예시에 불과하다.
CTS 프레임 전송이 허여되는 STA 1과 STA 2는 SIFS(short interframe space) 이후 CTS 프레임(721, 722)을 각각 AP로 전송할 수 있다. 이하에서, SIFS는 예시에 불과하며, 제2 간격이라고 할 수 있다. CTS 프레임(721, 722)은 트리거 프레임(710)의 응답으로써 전송된다.
트리거 프레임(710)을 수신하였지만, CTS 프레임을 전송하는 것이 허여되지 않은 STA 3은 트리거 프레임(710)의 구간(duration) 정보를 이용하여 NAV(730)를 설정할 수 있다.
CTS 프레임을 수신한 AP는 SIFS 시간 이후, DL MU 데이터 프레임(750)을 복수의 STA들로 전송하고, STA 1과 STA 2는 이에 대한 ACK 프레임(71,762)을 각각 AP로 전송할 수 있다.
만약, AP가 STA로부터 CTS 프레임을 수신하지 못한 경우, AP는 SIFS 후에 트리거 프레임을 재전송하거나 전체 DL MU TXOP을 포기할 수 있다.
DL MU TXOP 보호를 위하여 STA는 트리거 프레임 수신 후에 CTS 프레임을 대신하여 제어 프레임(control frame) 또는 NDP 프레임을 AP로 전송할 수 있다. 제어 프레임으로 블록 ACK(BlockAck) 신호와 같은 ACK 프레임, 버퍼 상태 보고(Buffer Status Report) 프레임 또는 널 데이터 프레임이 AP로 전송될 수 있다.
STA 3은 트리거 프레임 또는 CTS 프레임을 기반으로 NAV 설정을 업데이트할 수 있다.
UL MU 데이터 프레임에 대한 TXOP가 트리거 프레임 또는 CTS 프레임을 통하여 보호될 수 있다. 트리거 프레임은 MU CTS 프레임에 대한 TXOP 보호를 위한 기간 정보와 UL MU 데이터 프레임에 대한 TXOP 보호를 위한 기간 정보를 포함할 수 있다.
다음 표는 트리거 프레임에 포함되는 필드를 예시한다. 필드 명은 예시에 불과하고, 모든 필드가 필수적인 것은 아니고, 어떤 필드는 생략될 수 있다.
상기 필드들은 트리거 프레임의 MAC 헤더 또는 MAC 데이터로서트리거 프레임에 포함될 수 있다.
도 8은 본 발명의 일 실시예에 따른 트리거 프레임을 위한 PPDU 포맷의 일 예를 나타낸다. 이는 도 3의 PPDU 포맷을 기반으로 트리거 프레임에 적용한 예이다. 이는 예시에 불과하고, 도 4 또는 도 5의 PPDU 포맷을 기반으로 트리거 프레임에 적용할 수 있다.
제1 구간에 관한 정보는 MAC 헤더 내의 구간 필드(881)에 포함될 수 있다.
제2 구간에 관한 정보는 L_SIG(830), HE-SIG A(840), 또는 HE-SIG B (870) 및 구간 필드(881) 중 어느 하나에 포함될 수 있다.
제3 구간에 관한 정보는 L-SIG(830) 또는 HE-SIG A(840), 또는 HE-SIG B (870)에 포함될 수 있다.
제4 구간 및 자원 할당에 관한 정보는 HE-SIG A(840) 또는 HE-SIG B(870)에 포함될 수 있다.
한편, HE PPDU 포맷은 도 3 내지 도 5와 같이 분리된 HE-SIG A(840)와 HE-SIG B(870)를 포함할 수도 있지만, HE-SIG A(840)와 HE-SIG B (870)는 분리되지 않고 하나의 HE-SIG 필드로 구성될 수 있다. 이 경우, 제2 구간에 관한 정보, 제3 구간에 대한 정보 및 제4 구간에 대한 정보는 HE-SIG 필드에 포함될 수 있다.
트리거 프레임을 수신한 레거시 STA는 제1 구간을 파악할 수 있고, 이를 이용하여 NAV 설정을 업데이트 할 수 있다. 이로써, 트리거 프레임에 의한 DL MU TXOP가 보호될 수 있다.
만약, CTS 프레임이 HE PPDU 포맷을 기반으로 전송된다면, HE STA은 트리거 프레임을 수신하지 못하더라도 CTS 프레임에 기초하여 NAV 설정을 업데이트 할 수 있다.
또한, CTS 프레임이 HE PPDU 포맷으로 전송된다면, 제 1구간에 관한 정보와 CTS 프레임의 PPDU 길이 정보가 HE-SIG A 또는 HE-SIG B로 전송됨으로써, HE STA가 트리거 프레임을 수신하지 못하고 CTS 프레임의 PPDU 프리엠블만 수신하더라도 수신 정보에 기초하여 채널 Busy 구간을 판단할 수 있도록 할 수 있다.
도 9은 본 발명의 실시예가 구현되는 무선 기기를 나타낸 블록도이다.
무선기기(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 무선기기는 전술한 실시예에서 AP 또는 non-AP STA일 수 있다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 7 및 도 8의 실시예에서 AP 또는 non-AP STA의 동작은 프로세서(51)에 의해 구현될 수 있다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되어 AP 또는 non-AP STA의 동작을 구현하는 명령어를 저장할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
Claims (8)
- 무선 통신 시스템에서 TXOP를 보호하는 방법에 있어서,수신 STA(station)이 전송 STA으로부터 복수의 CTS(clear to send) 프레임의 교환을 위한 제1 구간에 대한 정보를 갖는 트리거 프레임을 수신하는 단계; 및상기 수신 STA이 상기 제1 기간 중 CTS 프레임를 상기 전송 STA으로 전송하는 단계를 포함하는 방법.
- 제1항에 있어서,상기 수신 STA이 상기 전송 STA으로부터 MU DATA 프레임을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제2항에 있어서,상기 제1 구간은 상기 트리거 프레임, 상기 복수의 CTS 프레임 및 상기 MU DATA 프레임의 교환에 필요한 시간을 나타내는 것을 특징으로 하는 방법.
- 제3항에 있어서,상기 트리거 프레임은 상기 트리거 프레임 및 상기 복수의 CTS 프레임의 교환에 필요한 시간을 나타내는 제2 구간에 관한 정보를 더 포함하는 것을 특징으로 하는 방법.
- 제3항에 있어서,상기 트리거 프레임은 상기 트리거 프레임의 전송에 필요한 시간을 나타내는 제3 구간에 관한 정보를 더 포함하는 것을 특징으로 하는 방법.
- 제3항에 있어서,상기 트리거 프레임은 상기 복수의 CTS 프레임 각각의 전송에 필요한 시간을 나타내는 제4 구간에 관한 정보를 더 포함하는 것을 특징으로 하는 방법.
- 제1항에 있어서,상기 트리거 프레임은 상기 복수의 CTS 프레임의 전송을 허용하는 적어도 하나의 STA에 관한 정보를 더 포함하는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서의 무선기기에 있어서,무선신호를 송신 및 수신하는 RF(radio frequency)부와상기 RF부에 연결되는 프로세서를 포함하되,상기 프로세서는, 수신 STA(station)이 전송 STA으로부터 복수의 CTS(clear to send) 프레임의 교환을 위한 제1 구간에 대한 정보를 갖는 트리거 프레임을 수신하고 상기 수신 STA이 상기 제1 기간 중 CTS 프레임를 상기전송 STA으로 전송하는 것을 특징으로 하는 무선기기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/509,149 US10212731B2 (en) | 2014-09-04 | 2014-12-31 | TXOP protection method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462045574P | 2014-09-04 | 2014-09-04 | |
US62/045,574 | 2014-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035943A1 true WO2016035943A1 (ko) | 2016-03-10 |
Family
ID=55439985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/013099 WO2016035943A1 (ko) | 2014-09-04 | 2014-12-31 | Txop 보호 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10212731B2 (ko) |
WO (1) | WO2016035943A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213759A1 (en) * | 2016-06-06 | 2017-12-14 | Intel IP Corporation | Devices and methods for band pause testing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9838232B2 (en) * | 2014-10-29 | 2017-12-05 | Intel IP Corporation | Wireless device, method, and computer readable media for signaling a short training field in a high-efficiency wireless local area network |
US10439687B2 (en) | 2016-07-18 | 2019-10-08 | Intel IP Corporation | Transmission opportunity (TXOP) duration field disable setting in high efficiency signal A (HE-SIG-A) |
KR102382007B1 (ko) * | 2017-08-25 | 2022-04-04 | 삼성전자주식회사 | 무선 통신 시스템에서 대역을 공유하기 위한 장치 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120087358A1 (en) * | 2010-10-06 | 2012-04-12 | Chunhui Zhu | Method and system for enhanced contention avoidance in multi-user multiple-input-multiple-output wireless networks |
WO2013191439A1 (ko) * | 2012-06-18 | 2013-12-27 | 엘지전자 주식회사 | 무선랜 시스템에서 채널 액세스 제어 방법 및 장치 |
KR20140057412A (ko) * | 2006-01-04 | 2014-05-12 | 인터디지탈 테크날러지 코포레이션 | Wlan 시스템에서 효율적인 다수 모드 동작을 제공하는 방법 및 시스템 |
KR20140066261A (ko) * | 2010-06-29 | 2014-05-30 | 엘지전자 주식회사 | 무선랜 시스템에서 데이터 프레임 전송 방법 및 장치 |
KR20140095059A (ko) * | 2011-10-17 | 2014-07-31 | 엘지전자 주식회사 | 무선랜 시스템에서 프레임을 전송하는 방법 및 장치 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4666890B2 (ja) * | 2003-04-28 | 2011-04-06 | ソニー株式会社 | 通信システム及び通信方法、並びに通信装置 |
JP5639470B2 (ja) * | 2007-08-31 | 2014-12-10 | コーニンクレッカ フィリップス エヌ ヴェ | 改善されたマルチユーザ伝送 |
CN102577207A (zh) * | 2009-06-12 | 2012-07-11 | 私人基金会加泰罗尼亚电信技术中心 | 用于使用多入多出或多入单出技术并具有多用户能力的无线宽带系统中的媒体访问控制的方法及设备 |
KR101760073B1 (ko) * | 2010-02-10 | 2017-07-20 | 마벨 월드 트레이드 리미티드 | 무선 통신들을 위한 송신 보호 |
US8953578B2 (en) * | 2010-06-23 | 2015-02-10 | Samsung Electronics Co., Ltd. | Method and system for contention avoidance in multi-user multiple-input-multiple-output wireless networks |
EP4447609A2 (en) * | 2012-03-01 | 2024-10-16 | InterDigital Patent Holdings, Inc. | Multi-user parallel channel access in wlan systems |
-
2014
- 2014-12-31 WO PCT/KR2014/013099 patent/WO2016035943A1/ko active Application Filing
- 2014-12-31 US US15/509,149 patent/US10212731B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140057412A (ko) * | 2006-01-04 | 2014-05-12 | 인터디지탈 테크날러지 코포레이션 | Wlan 시스템에서 효율적인 다수 모드 동작을 제공하는 방법 및 시스템 |
KR20140066261A (ko) * | 2010-06-29 | 2014-05-30 | 엘지전자 주식회사 | 무선랜 시스템에서 데이터 프레임 전송 방법 및 장치 |
US20120087358A1 (en) * | 2010-10-06 | 2012-04-12 | Chunhui Zhu | Method and system for enhanced contention avoidance in multi-user multiple-input-multiple-output wireless networks |
KR20140095059A (ko) * | 2011-10-17 | 2014-07-31 | 엘지전자 주식회사 | 무선랜 시스템에서 프레임을 전송하는 방법 및 장치 |
WO2013191439A1 (ko) * | 2012-06-18 | 2013-12-27 | 엘지전자 주식회사 | 무선랜 시스템에서 채널 액세스 제어 방법 및 장치 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017213759A1 (en) * | 2016-06-06 | 2017-12-14 | Intel IP Corporation | Devices and methods for band pause testing |
Also Published As
Publication number | Publication date |
---|---|
US10212731B2 (en) | 2019-02-19 |
US20170303309A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015064943A1 (en) | Method of transmitting data and device using the same | |
WO2016204460A1 (ko) | 무선 랜 시스템에서 상향링크 송신을 수행하는 방법 및 장치 | |
KR101978919B1 (ko) | 무선랜에서 프레임을 전송하는 방법 및 장치 | |
KR101919392B1 (ko) | 무선랜에서 프레임을 전송하는 방법 및 장치 | |
WO2010095802A1 (en) | Coexistent channel access method | |
WO2017007266A1 (ko) | 무선랜 시스템에서 사운딩 동작 방법 및 이를 위한 장치 | |
WO2016060448A1 (ko) | 무선랜에서 버퍼 상태 정보를 기반으로 상향링크 전송 자원을 할당하는 방법 및 장치 | |
WO2015170942A1 (ko) | 무선랜에서 파워 세이브 모드 동작을 위한 방법 및 장치 | |
WO2016028117A1 (ko) | 무선랜에서 상향링크 데이터를 트리거하는 방법 및 장치 | |
WO2016027937A1 (ko) | 액티브 스캐닝을 수행하는 방법 및 장치 | |
WO2010095793A1 (en) | Channel access method for very high throughput (vht) wireless local access network system | |
WO2016105128A1 (ko) | 무선랜 시스템에서 상향링크 다중 사용자 데이터에 대한 확인응답 신호 송수신 방법 및 이를 위한 장치 | |
WO2017142210A1 (ko) | 무선랜 시스템에서 상향링크 확인응답 신호 송수신 방법 및 이를 위한 장치 | |
WO2016076511A1 (ko) | 무선랜 시스템에서 프레임 전송 방법 | |
WO2016085311A1 (ko) | 무선랜 시스템에서 상향링크 다중 사용자 데이터에 대한 확인응답 신호 송수신 방법 및 이를 위한 장치 | |
WO2016200020A1 (ko) | 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2016085286A1 (ko) | 무선랜에서 서로 다른 파일롯 톤 패턴을 기반으로 한 데이터 전송 방법 및 장치 | |
WO2018048284A1 (ko) | 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치 | |
JP2017536745A (ja) | 複数のサブキャリアを含むリソースユニットを使用して信号を送信する方法及び装置 | |
WO2016035943A1 (ko) | Txop 보호 방법 및 장치 | |
WO2015190806A1 (ko) | 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기 | |
WO2016056808A1 (ko) | 무선랜에서 단일 자원 단위를 기반으로 무선 자원을 할당하는 방법 및 장치 | |
WO2016021858A1 (ko) | 무선랜 시스템에서 멀티 유저 프레임 전송 방법 | |
WO2017191936A2 (ko) | 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치 | |
WO2017164685A1 (ko) | 사용자별 시그널링을 통한 전력소모 감소 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14901273 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15509149 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14901273 Country of ref document: EP Kind code of ref document: A1 |