WO2015190806A1 - 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기 - Google Patents

복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기 Download PDF

Info

Publication number
WO2015190806A1
WO2015190806A1 PCT/KR2015/005788 KR2015005788W WO2015190806A1 WO 2015190806 A1 WO2015190806 A1 WO 2015190806A1 KR 2015005788 W KR2015005788 W KR 2015005788W WO 2015190806 A1 WO2015190806 A1 WO 2015190806A1
Authority
WO
WIPO (PCT)
Prior art keywords
guard
ppdu
subband
subbands
guard region
Prior art date
Application number
PCT/KR2015/005788
Other languages
English (en)
French (fr)
Inventor
최진수
이욱봉
조한규
천진영
임동국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167025987A priority Critical patent/KR101909123B1/ko
Priority to US15/306,744 priority patent/US10182440B2/en
Publication of WO2015190806A1 publication Critical patent/WO2015190806A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions

Definitions

  • the present disclosure relates to wireless communication, and more particularly, to a data transmission method using a plurality of subbands in a wireless local area network (WLAN) and a device using the same.
  • WLAN wireless local area network
  • Wi-Fi is a wireless local area network (WLAN) technology that allows wireless devices to connect to the Internet in the 2.4 GHz, 5 GHz, or 60 GHz frequency bands.
  • the WLAN is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard.
  • the IEEE 802.11n standard supports multiple antennas and provides up to 600 Mbit / s data rates.
  • a system supporting IEEE 802.11n is called a high throughput system.
  • IEEE 802.11ac primarily operates in the 5GHz band and provides data rates of 1Gbit / s and higher.
  • IEEE 802.11ac supports DL MU-MIMO (downlink multi-user multiple input multiple output).
  • a system supporting IEEE 802.11ac is called a Very High Throughput (VHT) system.
  • VHT Very High Throughput
  • IEEE 802.11ax is being developed as a next generation WLAN to cope with higher data rates and high user loads.
  • the scope of IEEE 802.11ax includes: 1) enhancements to the 802.11 physical layer (PHY) and medium access control (MAC) layers, 2) improvement of spectral efficiency and area throughput, and 3) interference sources. May include performance improvement in an environment in which the network exists, a heterogeneous network environment, and an environment in which a high user load exists.
  • the existing IEEE 802.11 standard supports orthogonal frequency division multiplexing (OFDM) and uses only one fast Fourier transform (FFT) size in the same bandwidth.
  • FFT fast Fourier transform
  • the next generation WLAN supports orthogonal frequency division multiple access (OFDMA) for multiple user access and considers using a larger FFT size.
  • the present specification provides a data transmission method using a plurality of subbands in a WLAN and a device using the same.
  • a data transmission method in a WLAN includes a transmitter receiving allocation information regarding at least one subband of a plurality of subbands from an access point (AP), and wherein the transmitter selects a physical layer protocol data unit (PPDU) in the at least one assigned subband. It includes sending. At least one of the plurality of subbands has a guard region defined at both ends.
  • AP access point
  • PPDU physical layer protocol data unit
  • Each of the plurality of subbands may have a guard region defined at both ends.
  • the number of guard subcarriers included in the guard region may vary depending on the size of a fast fioriier transform (FFT) used to generate the PPDU.
  • FFT fast fioriier transform
  • a device for data transmission in a WLAN includes a transceiver for transmitting and receiving wireless signals and a processor coupled to the transceiver.
  • the processor receives allocation information regarding at least one subband of a plurality of subbands from an access point (AP) through the transceiver, and transmits a physical layer protocol data unit (PPDU) in the at least one allocated subband. Transmit through the transceiver.
  • At least one of the plurality of subbands has a guard region defined at both ends.
  • FIG. 1 shows a PPDU format according to the prior art.
  • FIG. 2 shows an example of a PPDU format for a proposed WLAN.
  • FIG. 3 shows another example of a PPDU format for a proposed WLAN.
  • FIG. 4 shows another example of a PPDU format for a proposed WLAN.
  • FIG. 7 illustrates a resource allocation method according to an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a data transmission method according to an embodiment of the present invention.
  • FIG. 14 is a block diagram illustrating a device in which an embodiment of the present invention is implemented.
  • a wireless local area network (HT) system conforming to the Institute of Electrical and Electronics Engineers (IEEE) 802.11n standard is referred to as a high throughput (HT) system
  • a system conforming to the IEEE 802.11ac standard is referred to as VHT (Very). High Throughput) system
  • a WLAN system according to the proposed scheme is referred to as a high efficiency WLAN (HEW) system or a high efficiency (HE) system.
  • HEW high efficiency WLAN
  • HE high efficiency
  • the proposed WLAN system can operate in the band below 6GHz or in the 60GHz band.
  • the band below 6 GHz may include at least one of a 2.4 GHz band and a 5 GHz band.
  • a station may be called various names such as a wireless device, a mobile station (MS), a network interface device, a wireless interface device, or simply a user.
  • the STA may include a non-AP STA or an AP unless separately distinguishing a function from an access point (AP).
  • AP access point
  • the STA When described in communication with a STA to an AP, the STA may be interpreted as a non-AP STA.
  • the STA may be a non-AP STA or an AP if it is described in STA-to-STA communication or otherwise requires a function of the AP.
  • a physical layer protocol data unit is a data block generated in a physical layer according to the IEEE 802.11 standard.
  • FIG. 1 shows a PPDU format according to the prior art.
  • PPDU supporting IEEE 802.11a / g includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF) and a legacy-signal (L-SIG).
  • L-STF may be used for frame detection, automatic gain control (AGC), and the like.
  • L-LTF may be used for fine frequency / time synchronization and channel estimation.
  • HT PPDU supporting IEEE 802.11n includes HT-SIG, HT-STF, and HT-LTF after L-SIG.
  • VHT PPDU supporting IEEE 802.11ac includes VHT-SIGA, VHT-STF, VHT-LTF and VHT-SIGB after L-SIG.
  • FIG. 2 shows an example of a PPDU format for a proposed WLAN.
  • the PPDU may be transmitted through at least one 20 MHz channel.
  • an example in which an 80 MHz band is allocated to one receiving STA is shown.
  • Each 20MHz channel may be allocated to different receiving STAs.
  • L-STF, L-LTF and L-SIG may be the same as L-STF, L-LTF and L-SIG of the VHT PPDU.
  • the L-STF, L-LTF, and L-SIG may be transmitted in orthogonal frequency division multiplexing (OFDM) symbols generated based on 64 fast Fourier transform (FFT) sizes (or 64 subcarriers) in each 20 MHz channel.
  • OFDM orthogonal frequency division multiplexing
  • the HE-SIGA may include common control information commonly received by an STA receiving a PPDU.
  • the HE-SIGA may be transmitted in two or three OFDM symbols.
  • the following table illustrates information included in the HE-SIGA.
  • the field name and the number of bits are examples only, and not all fields are necessary.
  • Table 1 field beat Explanation Bandwidth 2 The bandwidth over which the PPDU is sent. Yes, 20 MHz, 40 MHz, 80 MHz or 160 MHz Group id 6 Indicate the STA or STA group to receive the PPDU.
  • Stream information 12 Indicates the number or location of spatial streams to be received by the STA. Alternatively, this indicates the number or location of spatial streams to be received by each STA in the STA group.
  • UL (uplink) indication One Indicates whether the PPDU is for an AP (UPLINK) or for an STA (DOWNLINK).
  • MU instruction One Indicates whether the SU-MIMO PPDU or MU-MIMO PPDU.
  • Guard interval (GI) indication One Indicates whether Short GI or long GI is used.
  • HE-STF may be used to improve AGC estimation in MIMO transmission.
  • HE-LTF may be used to estimate the MIMO channel.
  • the HE-SIGB may include user specific information required for each STA to receive its own data (ie, physical layer service data unit (PSDU)).
  • PSDU physical layer service data unit
  • the HE-SIGB may be transmitted in one or two OFDM symbols.
  • the HE-SIGB may include information about a length of the PSDU and a modulation and coding scheme (MCS) of the PSDU.
  • MCS modulation and coding scheme
  • the L-STF, L-LTF, L-SIG, and HE-SIGA may be transmitted redundantly in units of 20 MHz channels. That is, when PPDUs are transmitted on four 20 MHz channels, L-STF, L-LTF, L-STG, and HE-SIGA are repeatedly transmitted every 20 MHz channels.
  • the FFT size per unit frequency can be further increased. For example, 256 FFT in a 20 MHz channel, 512 FFT in a 40 MHz channel, and 1024 FFT in an 80 MHz channel may be used. Increasing the FFT size reduces the OFDM subcarrier spacing, thereby increasing the number of OFDM subcarriers per unit frequency, but may increase the OFDM symbol time. To increase the efficiency, the GI length after the HE-STF may be set equal to the GI length of the HE-SIGA.
  • FIG. 3 shows another example of a PPDU format for a proposed WLAN.
  • the FFT size per unit frequency can be further increased.
  • FIG. 4 shows another example of a PPDU format for a proposed WLAN.
  • HE-SIGB is placed after HE-SIGA. Each 20MHz channel is assigned to different STAs (STA1, STA2, STA3, STA4).
  • the HE-SIGB contains information specific to each STA, but is encoded over the entire band. That is, the HE-SIGB can be received by all STAs. From HE-STF (or after HE-SIGB), the FFT size per unit frequency can be further increased.
  • legacy STAs supporting legacy IEEE 802.11a / g / n / ac cannot decode the corresponding PPDU.
  • the L-STF, L-LTF, and L-SIG are transmitted through a 64 FFT on a 20 MHz channel so that the existing STA can be received.
  • L-SIG occupies one OFDM symbol, one OFDM symbol time is 4us, and GI has 0.8us.
  • the HE-SIGA includes information necessary for the HE STA to decode the HE PPDU, but may be transmitted through a 64 FFT in a 20 MHz channel so that both the legacy STA and the HE STA can be received. This is for the HE STA to receive not only the HE PPDU but also the existing HT / VHT PPDU. At this time, it is necessary for the legacy STA and the HE STA to distinguish between the HE PPDU and the HT / VHT PPDU.
  • the phase of constellation for OFDM symbols transmitted after L-STF, L-LTF, and L-SIG is used.
  • OFDM symbol # 1 is the first OFDM symbol after L-SIG
  • OFDM symbol # 2 is the OFDM symbol following OFDM symbol # 1
  • OFDM symbol # 3 is the OFDM symbol following OFDM symbol # 2.
  • the constellation phases used for the 1st OFDM symbol and the 2nd OFDM symbol are the same.
  • Binary phase shift keying (BPSK) is used for both the 1st OFDM symbol and the 2nd OFDM symbol.
  • the phases used in the OFDM symbol # 1 and the OFDM symbol # 2 are the same, and are rotated 90 degrees counterclockwise.
  • a modulation method having a 90 degree rotated constellation is called quadrature binary phase shift keying (QBPSK).
  • the phase in OFDM symbol # 1 is not rotated, but the phase in OFDM symbol # 2 is rotated 90 degrees counterclockwise in the same way as the HT PPDU. Since the VHT-SIGA is transmitted after the L-SIG and the VHT-SIGA is transmitted in 2 OFDM symbols, OFDM symbol # 1 and OFDM symbol # 2 are used for transmission of the VHT-SIGA.
  • the HE-PPDU may use the phase of three OFDM symbols transmitted after the L-SIG.
  • the phases of OFDM symbol # 1 and OFDM symbol # 2 are not rotated, but the phase of OFDM symbol # 3 is rotated 90 degrees counterclockwise.
  • OFDM symbols # 1 and # 2 use BPSK modulation, and OFDM symbols # 3 use QBPSK modulation.
  • the HE-SIGA is transmitted after the L-SIG and the HE-SIGA is transmitted in 3 OFDM symbols, all of the OFDM symbols # 1 / # 2 / # 3 may be used for transmission of the HE-SIGA.
  • the HE system is considering the introduction of orthogonal frequency division multiple access (OFDMA). This allows a plurality of STAs to simultaneously access a plurality of subbands, thereby improving frequency efficiency.
  • OFDMA orthogonal frequency division multiple access
  • the subband or subchannel refers to a resource unit that can be allocated to each STA or a bandwidth of the smallest unit to support.
  • the STA may scan all subbands simultaneously to detect subbands (eg, idle subbands) that it can use.
  • subbands eg, idle subbands
  • an OFDMA-based system can transmit and receive data using a plurality of discontinuous subbands.
  • STA1 uses a 20 MHz channel 620
  • STA2 also uses a 20 MHz channel 630.
  • the HE STA uses an 80 MHz channel 610. If the HE STA, the STA1, and the STA2 simultaneously use the corresponding channel, the band emission of the STA1 and the STA2 may affect the spectrum of the HE STA due to interference.
  • an 80 MHz channel 610 of an HE STA is divided into four subbands 611, 612, 613, and 614, and a second subband 612 is allocated to the HE STA. If the HE STA transmits the first PPDU on the second subband 612, and the STA1 transmits the second PPDU on the 20 MHz channel 620, the side robe and the first robe of the 20 MHz channel 620 transmission are lost. Interference may occur because some of the two subbands 612 overlap.
  • SBW subband bandwidth refers to the bandwidth of the subband.
  • TBW total bandwidth refers to the total bandwidth of a plurality of subbands.
  • TBW may be 160 MHz, 80 MHz, 40 MHz or 20 MHz.
  • the SBW can be 80 MHz, 40 MHz, 20 MHz, 10 MHz, 5 MHz, or 1 MHz. In the following description, TBW is 80 MHz and SBW is 20 MHz. In an environment where multiple BSSs coexist, the SBW may correspond to the bandwidth of the smallest subband.
  • a guard tone is a subcarrier that is not used for interference prevention and is also called an unused subcarrier, a null subcarrier, and a guard subcarrier.
  • a set of one or more consecutive guard tones is called a guard region.
  • FIG. 7 illustrates a resource allocation method according to an embodiment of the present invention.
  • the 80 MHz channel 710 includes four subbands 711, 712, 713, 714, with guard regions defined at each end. According to one embodiment, additional guard regions 751, 752, 753 may be defined in the middle portion of the 80 MHz channel 710.
  • the additional guard regions 751, 752, and 735 may be disposed at positions for reducing interference due to transmission in the subbands 720 and 730 by other STAs.
  • additional guard regions 751, 752, and 753 may be defined between the plurality of subbands 711, 712, 713, and 714.
  • a first guard region 751 is defined between the first subband 711 and the second subband 712, and a second guard region between the second subband 712 and the third subband 713.
  • 752 may be defined, and a third guard region 753 may be defined between the third subband 713 and the fourth subband 714.
  • One of both ends of the guard regions 751, 752, and 753 may be aligned with the right most or left most index of the right or left ends of the subbands 711, 712, 713, and 714.
  • the first guard region 751 may start from the right end of the 20 MHz channel 720.
  • the second guard region 752 may end from the left end of the 20 MHz channel 730
  • the third guard region 753 may start from the right end of the 20 MHz channel 730.
  • guard regions may be disposed at both ends of the subbands 711, 712, 713, and 714.
  • the guard area includes one or more guard subcarriers to which no data is assigned.
  • the number of guard subcarriers in each guard region may be allocated as equally as possible except for the data subcarriers among the total subcarriers in the TBW.
  • the total number of subcarriers is 256. If the number of guard subcarriers across the TBW is 11, 245 subcarriers remain. If three guard regions 751, 752, and 753 are defined as shown in FIG. 7, the number of guard subcarriers of the first guard region 751 and the third guard region 753 is 6, and the second guard is respectively.
  • the number of guard subcarriers in the area 752 can be referred to as nine.
  • the guard area structure of TBW 160 MHz may be repeatedly applied to the structure of TBW 80 MHz.
  • the above embodiment is assumed to be generated by applying an inverse discrete fourier transform (IDFT) according to one FFT size to the HE PPDU.
  • IDFT inverse discrete fourier transform
  • the HE PPDU may be generated by applying IDFTs according to different FFT sizes.
  • a first part to which the first FFT size is applied eg, L-STF, L-LTF, L-SIG
  • a second part to which the second FFT size is applied eg, HE-STF, HE-LTF, data field
  • the second FFT size may be N (N> 1) times the first FFT size.
  • the TBW is 80 MHz and the second part to which the N-times FFT is applied uses 1024 FFT.
  • the total number of subcarriers is 1024. If the number of guard subcarriers across the TBW is 11, 1013 subcarriers remain. If three guard regions 751, 752, and 753 are defined as shown in FIG. 7, the number of guard subcarriers of the first guard region 751 and the third guard region 753 is 14 and the second guard is respectively.
  • the number of guard subcarriers in the area 752 may be 17.
  • the guard area structure of TBW 160 MHz may be repeatedly applied to the structure of TBW 80 MHz.
  • each frequency index of the subband is matched with the right most or left most frequency index of the SBW, as shown in FIG. Therefore, the size of the subband of the TBW may be configured to be the same as the SBW. If four times FFT is applied, the number of subcarriers included in each subband is increased four times.
  • the frequency position is the start and end of each subband regardless of whether the N-times FFT is applied to the SBW because the number of tones is scaled up to the existing FFT subcarrier tones. And it can be applied by adjusting the frequency position where the guard region starts and ends.
  • TBW applies N-times FFT and SBW applies only 1x FFT, but the frequency index is different. This is equal to the subcarrier spacing of 1x FFT being 312.5 kHz and the subcarrier spacing of 1x FFT being N times the subcarrier spacing of N-times FFT, such as the subcarrier spacing of 4-times FFT is set to 78.125 kHz. Applicable when set.
  • the first guard region 823 is located at the right most side of the first subband 811.
  • the second guard region 824 is located on the left most side of the second subband 812.
  • the third guard region 825 is located on the right side of the second subband 812.
  • the fourth guard region 826 is located on the left side of the third subband 813.
  • the fifth guard region 827 is located at the right side of the third subband 813.
  • the sixth guard region 828 is located on the left side of the fourth subband 814.
  • the first guard region 823 may include three guard subcarriers
  • the second guard region 824 may include three guard subcarriers
  • the third guard region 825 may include five guard subcarriers.
  • the fourth guard region 826 may include four guard subcarriers
  • the fifth guard region 827 may include three guard subcarriers
  • the sixth guard region 828 may include three guards. It may include a subcarrier.
  • the positions of the first guard region 823 to the sixth guard region 828 are the same as when the 1x FFT is applied.
  • the first guard region 823 may include seven guard subcarriers
  • the second guard region 824 may include seven guard subcarriers
  • the third guard region 825 may include nine guard subcarriers.
  • the fourth guard region 826 may include eight guard subcarriers
  • the fifth guard region 827 may include seven guard subcarriers
  • the sixth guard region 828 may include seven guards. It may include a subcarrier.
  • the first guard region 923 is located on the right side of the first subband 911.
  • the second guard region 924 is located on the left side of the second subband 912.
  • the first guard region 923 may include 15 guard subcarriers, and the second guard region 924 may include 14 guard subcarriers.
  • the positions of the first guard region 923 and the second guard region 924 are the same as when the 1x FFT is applied.
  • the first guard region 923 may include nine guard subcarriers, and the second guard region 924 may include eight guard subcarriers.
  • the first guard region 1023 is located on the right side of the first subband 1011.
  • the second guard region 1024 is located on the left side of the second subband 1012. The same holds true for the remaining guard area.
  • the first guard region 1123 is located on the right side of the first subband 1111.
  • the second guard region 1124 is located on the left side of the second subband 1112. The same holds true for the remaining guard area.
  • guard regions may be defined between subbands for various TBW / SBW combinations.
  • the setting of the guard area can be changed according to the environment.
  • the proposed guard region may be defined in the BSS in which OFDMA is set, and the guard region may not be defined in the BSS in which OFDMA is not set.
  • a guard area may be defined, and a guard area may not be defined between BSSs in which only a specific TBW using all band bands exists for communication.
  • FIG. 12 shows an example of interference between subbands. This shows an example of interference between HE STAs using a plurality of subbands.
  • HE STA1 and HE STA2 use the same 80 MHz band, it is assumed that HE STA1 uses the first subband 1210 and HE STA2 uses the second subband 1220.
  • the WLAN may use a channel or subband not used by another STA.
  • HE STA1 transmits a first OFDMA packet (eg, a PPDU) in a first subband 1210, and at the same time, HE STA2 transmits a second OFDMA packet in a second subband 1220. Since the first subband 120 and the second subband 1220 are adjacent to each other, interference may occur in side lobes of each subband.
  • interference may be mitigated if a guard region is defined on the right side of the first subband 1210 and / or on the left side of the second subband 1220.
  • FIG. 13 is a block diagram illustrating a data transmission method according to an embodiment of the present invention.
  • the TBW 110 is said to include four subbands 101, 102, 103, 104. Guard regions according to the above-described embodiments may be defined between the subbands 101, 102, 103, and 104.
  • the AP transmits a transmission allocation (TA) message in the TBW 110.
  • the transmission assignment message may be transmitted in at least one of the four subbands 101, 102, 103, 104.
  • the transmission allocation message may include at least one of identification information identifying STA1 and STA2 indicating UL transmission, UL transmission interval, synchronization information for UL transmission, and allocation information indicating a subband allocated to each STA.
  • STA1 may transmit the first PPDU in the first subband 101
  • STA2 may transmit the second PPDU in the second subband 102. Interference can be mitigated through the guard region.
  • the AP may send an ACK for the received PPDU to STA1 and STA2.
  • FIG. 14 is a block diagram illustrating a device in which an embodiment of the present invention is implemented.
  • the device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the device may be an AP or a non-AP STA in the above embodiment.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the AP or non-AP STA may be implemented by the processor 51.
  • the memory 52 may be connected to the processor 51 to store instructions for implementing an operation of the processor 51.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선랜에서 데이터 전송 방법 및 기기가 제공된다. 전송기가 AP(access point)로부터 복수의 서브밴드 중 적어도 하나의 서브밴드에 관한 할당 정보를 수신하고, 상기 적어도 하나의 할당된 서브밴드에서 PPDU(Physical layer Protocol Data Unit)를 전송한다. 상기 복수의 서브밴드 중 적어도 어느 하나는 양단에 가드 영역이 정의된다.

Description

복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기
본 명세서는 무선 통신에 관한 것으로, 보다 상세하게는 무선랜(wireless local area network, WLAN)에서 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기에 관한 것이다.
와이파이(Wi-Fi)는 무선기기가 2.4GHz, 5GHz 또는 60GHz 주파수 대역에서 인터넷에 연결되도록 하는 무선랜(Wireless local area network, WLAN) 기술이다. 무선랜은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준을 기반으로 한다.
IEEE 802.11n 표준은 다중 안테나를 지원하고, 최대 600 Mbit/s 데이터 레이트를 제공한다. IEEE 802.11n을 지원하는 시스템을 HT(High Throughput) 시스템이라 한다.
IEEE 802.11ac 표준은 주로 5GHz 대역에서 동작하며, 1Gbit/s 이상의 데이터 레이트를 제공한다. IEEE 802.11ac는 DL MU-MIMO(downlink multi-user multiple input multiple output)을 지원한다. IEEE 802.11ac을 지원하는 시스템을 VHT(Very High Throughput) 시스템이라 한다.
보다 높은 데이터 레이트와 높은 사용자 부하에 대응하기 위한 차세대 무선랜으로 IEEE 802.11ax가 개발되고 있다. IEEE 802.11ax의 범위(scope)는 1) 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput)의 향상, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경 등에서 성능 향상 등을 포함할 수 있다.
기존 IEEE 802.11 표준은 OFDM(orthogonal frequency division multiplexing)을 지원하고, 동일한 대역폭에서 하나의 FFT(fast Fourier transform) 크기(size)만 사용한다. 하지만, 차세대 무선랜은 다중 사용자 접속이 가능한 OFDMA(orthogonal frequency division multiple access)를 지원하고, 더 큰 FFT 크기를 사용하는 것을 고려하고 있다.
본 명세서는 무선랜에서 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기를 제공한다.
일 양태에서, 무선랜에서 데이터 전송 방법이 제공된다. 상기 방법은 전송기가 AP(access point)로부터 복수의 서브밴드 중 적어도 하나의 서브밴드에 관한 할당 정보를 수신하고, 상기 전송기가 상기 적어도 하나의 할당된 서브밴드에서 PPDU(Physical layer Protocol Data Unit)를 전송하는 것을 포함한다. 상기 복수의 서브밴드 중 적어도 어느 하나는 양단에 가드 영역이 정의된다.
상기 복수의 서브밴드 각각은 양단에 가드 영역이 정의될 수 있다.
상기 가드 영역에 포함되는 가드 서브캐리어의 개수는 상기 PPDU의 생성에 사용되는 FFT(fast Fiourier transform) 크기에 따라 달라질 수 있다.
다른 양태에서, 무선랜에서 데이터 전송을 위한 기기는 무선신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 AP(access point)로부터 복수의 서브밴드 중 적어도 하나의 서브밴드에 관한 할당 정보를 상기 송수신기를 통해 수신하고, 상기 적어도 하나의 할당된 서브밴드에서 PPDU(Physical layer Protocol Data Unit)를 상기 송수신기를 통해 전송한다. 상기 복수의 서브밴드 중 적어도 어느 하나는 양단에 가드 영역이 정의된다.
다른 대역폭을 가진 스테이션이 공존하는 상황에서 간섭을 완화하고 시스템 성능을 향상시킬 수 있다.
도 1은 종래 기술에 따른 PPDU 포맷을 보여준다.
도 2는 제안되는 무선랜을 위한 PPDU 포맷의 일 예를 보여준다.
도 3은 제안되는 무선랜을 위한 PPDU 포맷의 다른 예를 보여준다.
도 4는 제안되는 무선랜을 위한 PPDU 포맷의 또 다른 예를 보여준다.
도 5는 PPDU 구분을 위한 위상 회전의 일 예를 보여준다.
도 6은 서로 다른 대역폭 크기를 가진 사용자들의 공존(coexistence) 상황에서의 간섭을 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 자원 할당 방법을 나타낸 도면이다.
도 8은 TBW=80MHz, SBW=20MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 9는 TBW=80MHz, SBW=40MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 10은 TBW=160MHz, SBW=20MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 11은 TBW=160MHz, SBW=40MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 12는 서브밴드 간 간섭의 일예를 보여준다.
도 13은 본 발명의 일 실시예에 따른 데이터 전송 방법을 나타낸 블록도이다.
도 14는 본 발명의 실시예가 구현되는 기기를 나타낸 블록도이다.
설명을 명확히 하기 위해, IEEE(Institute of Electrical and Electronics Engineers) 802.11n 표준에 따르는 무선랜(wireless local area network) 시스템을 HT(High Throughput) 시스템이라고 하고, IEEE 802.11ac 표준에 따른 시스템을 VHT(Very High Throughput) 시스템이라고 한다. 이에 비해, 제안된 방식을 따르는 무선랜 시스템을 HEW(High Efficiency WLAN) 시스템 또는 HE(High Efficiency) 시스템이라고 한다. HEW 또는 HE 라는 명칭은, 기존(conventional) 무선랜과의 구분을 위한 것일 뿐, 어떠한 제한이 있는 것은 아니다.
제안되는 무선랜 시스템은 6GHz 이하의 대역 또는 60GHz 대역에서 동작할 수 있다. 6GHz 이하의 대역은 2.4GHz 대역 및 5GHz 대역 중 적어도 하나를 포함할 수 있다.
STA(station)은 무선기기, MS(mobile station), 네트워크 인터페이스 기기, 무선 인터페이스 기기 또는 단순히 사용자(user) 등 다양한 명칭으로 불릴 수 있다. STA은 별도로 AP(access point)와의 기능을 구분하지 않는 한, non-AP STA 또는 AP를 포함할 수 있다. STA 대 AP와의 통신으로 기술되면, STA는 non-AP STA으로 해석될 수 있다. STA 대 STA 통신으로 기술되거나, 별도로 AP의 기능이 필요하지 않는다면 STA는 non-AP STA 또는 AP 일 수 있다.
PPDU(Physical layer Protocol Data Unit)은 IEEE 802.11 표준에 따른 PHY(physical) 계층에서 생성되는 데이터 블록이다.
도 1은 종래 기술에 따른 PPDU 포맷을 보여준다.
IEEE 802.11a/g를 지원하는 PPDU는 L-STF(legacy-short training field), L-LTF(legacy-long training field) 및 L-SIG(legacy-signal)을 포함한다. L-STF는 프레임 탐지(frame detection), AGC(automatic gain control) 등에 사용될 수 있다. L-LTF는 정밀 주파수/시간 동기(fine frequency/time synchronization) 및 채널 추정에 사용될 수 있다.
IEEE 802.11n를 지원하는 HT PPDU는 L-SIG 이후에 HT-SIG, HT-STF, HT-LTF를 포함한다.
IEEE 802.11ac를 지원하는 VHT PPDU는 L-SIG 이후에 VHT-SIGA, VHT-STF, VHT-LTF, VHT-SIGB를 포함한다.
도 2는 제안되는 무선랜을 위한 PPDU 포맷의 일 예를 보여준다.
이는 4개의 2OMHz 채널을 통해 총 80MHz 대역폭에서 전송되는 PPDU를 보여준다. PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 여기서는, 80MHz 대역이 하나의 수신 STA에게 할당된 예를 보여준다. 20MHz 채널 각각이 서로 다른 수신 STA에게 할당될 수 있다.
L-STF, L-LTF 및 L-SIG는 VHT PPDU의 L-STF, L-LTF 및 L-SIG과 동일할 수 있다. L-STF, L-LTF 및 L-SIG는 각 20MHz 채널에서 64 FFT(fast Fourier transform) 크기(또는 64 subcarrier)를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 심벌에서 전송될 수 있다.
HE-SIGA는 PPDU를 수신하는 STA이 공통적으로 수신하는 공용 제어 정보(common control information)을 포함할 수 있다. HE-SIGA는 2개 또는 3개 OFDM 심벌에서 전송될 수 있다.
다음 표는 HE-SIGA에 포함되는 정보를 예시한다. 필드명이나 비트 수는 예시에 불과하며, 모든 필드가 필수적인 것이 아니다.
표 1
필드 비트 설명
대역폭 2 PPDU가 전송되는 대역폭. 예, 20MHz, 40MHz, 80MHz 또는 160MHz
그룹 ID 6 PPDU를 수신할 STA 또는 STA 그룹을 지시함.
스트림 정보 12 STA이 수신할 공간 스트림(spatial stream)의 개수 또는 위치를 나타냄. 또는, STA 그룹내 각 STA이 수신할 공간 스트림의 개수 또는 위치를 나타냄.
UL(uplink) 지시 1 PPDU가 AP를 위한 것인지(UPLINK) 또는 STA을 위한 것인지(DOWNLINK)를 나타냄.
MU 지시 1 SU-MIMO PPDU 인지 MU-MIMO PPDU 여부를 나타냄.
GI(Guard interval) 지시 1 Short GI 또는 long GI가 사용되는지 여부를 나타냄.
할당 정보 12 PPDU가 전송되는 대역폭에서 각 STA에게 할당되는 대역 또는 채널(서브채널 인덱스 또는 서브밴드 인덱스)
전송 파워 12 할당되는 채널 별 전송 파워
HE-STF는 MIMO 전송에서 AGC 추정을 향상시키기 위하여 사용될 수 있다. HE-LTF는 MIMO 채널을 추정하는데 사용될 수 있다.
HE-SIGB는 각 STA이 자신의 데이터(즉, PSDU(physical layer service data unit))를 수신하기 위해 필요한 사용자 특정 정보를 포함할 수 있다. HE-SIGB는 1개 또는 2개 OFDM 심벌에서 전송될 수 있다. 예를 들어, HE-SIGB는 해당 PSDU의 길이, 해당 PSDU의 MCS(Modulation and Coding Scheme)에 관한 정보를 포함할 수 있다.
L-STF, L-LTF, L-SIG 및 HE-SIGA는 20MHz 채널 단위로 중복되어(duplicately) 전송될 수 있다. 즉, 4개의 20MHz 채널로 PPDU가 전송될 때, L-STF, L-LTF, L-STG 및 HE-SIGA는 20MHz 채널 마다 중복적으로 전송된다.
HE-STF 부터(또는 HE-SIGA 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다. 예를 들어, 20MHz 채널에서 256 FFT, 40MHz 채널에서 512 FFT, 80MHz 채널에서 1024 FFT가 사용될 수 있다. FFT 크기를 늘리게 되면, OFDM 부반송파 간격(spacing)이 줄어 단위 주파수당 OFDM 부반송파 수가 증가하지만 반대로 OFDM 심벌 시간(symbol time)이 증가될 수 있다. 효율성을 높이기 위해, HE-STF 이후의 GI 길이는 HE-SIGA의 GI 길이와 동일하게 설정할 수 있다.
도 3은 제안되는 무선랜을 위한 PPDU 포맷의 다른 예를 보여준다.
HE-SIGB가 HE-SIGA 다음에 배치되는 것을 제외하고, 도 2의 PPDU 포맷과 동일하다. HE-STF 부터(또는 HE-SIGB 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다.
도 4는 제안되는 무선랜을 위한 PPDU 포맷의 또 다른 예를 보여준다.
HE-SIGB가 HE-SIGA 다음에 배치된다. 각 20MHz 채널은 서로 다른 STA(STA1, STA2, STA3, STA4)에게 할당된다. HE-SIGB는 각 STA에게 특정적인 정보를 포함하지만, 전 대역에 걸쳐서 인코딩된다. 즉, HE-SIGB는 모든 STA이 수신 가능하다. HE-STF 부터(또는 HE-SIGB 이후)는 단위 주파수당 FFT 크기가 더 증가될 수 있다.
한편, FFT 크기를 증가시키면, 기존 IEEE 802.11a/g/n/ac를 지원하는 레거시 STA은 해당 PPDU를 디코딩할 수 없다. 레거시 STA과 HE STA의 공존을 위해 L-STF, L-LTF, L-SIG는 기존 STA이 수신 가능하도록 20MHz 채널에서 64 FFT을 통해 전송된다. 예를 들어, L-SIG 는 하나의 OFDM 심벌을 차지하고, 상기 하나의 OFDM 심벌 시간은 4us, GI는 0.8us 을 가진다.
HE-SIGA 는 HE STA이 HE PPDU를 디코딩하는데 필요한 정보를 포함하지만, 레거시 STA과 HE STA 모두 수신 가능하도록 20MHz 채널에서 64 FFT을 통해 전송될 수 있다. 이는 HE STA이 HE PPDU 뿐만 아니라 기존 HT/VHT PPDU를 수신할 수 있도록 하기 위함이다. 이때, 레거시 STA과 HE STA이 HE PPDU와 HT/VHT PPDU를 구분할 수 있도록 하는 것이 필요하다.
도 5는 PPDU 구분을 위한 위상 회전의 일 예를 보여준다.
PPDU 구분을 위해, L-STF, L-LTF, L-SIG 이후에 전송되는 OFDM 심벌들에 대한 성상(constellation)의 위상을 이용한다.
OFDM 심벌#1은 L-SIG 이후 첫번째 OFDM 심벌이고, OFDM 심벌#2은 OFDM 심벌#1에 후속하는 OFDM 심벌이고, OFDM 심벌#3은 OFDM 심벌#2에 후속하는 OFDM 심벌이다.
non-HT PPDU에서는, 1st OFDM 심벌과 2nd OFDM 심벌에 사용되는 constellation의 위상이 동일하다. 1st OFDM 심벌과 2nd OFDM 심벌 모두 BPSK(binary phase shift keying)이 사용된다.
HT PPDU에서는, OFDM 심벌#1과 OFDM 심벌#2에 사용되는 성상의 위상이 동일하고, 반시계 방향으로 90도 회전된다. 90도 회전된 성상을 갖는 변조 방식을 QBPSK(quadrature binary phase shift keying)라 한다.
VHT PPDU에서는, OFDM 심벌#1에서의 위상은 회전되지 않지만, OFDM 심벌#2에서의 위상은 HT PPDU와 동일하게 반시계 방향으로 90도 회전된다. L-SIG 이후 VHT-SIGA가 전송되고, VHT-SIGA는 2 OFDM 심벌에서 전송되므로, OFDM 심벌#1과 OFDM 심벌#2은 VHT-SIGA의 전송에 사용된다.
HT/VHT PPDU와 구분을 위해, HE-PPDU에서는 L-SIG 이후에 전송되는 3개의 OFDM 심벌의 위상을 이용할 수 있다. OFDM 심벌#1과 OFDM 심벌#2의 위상은 회전되지 않지만, OFDM 심벌#3의 위상은 반시계 방향으로 90도 회전된다. OFDM 심벌#1 및 #2은 BPSK 변조를 사용하고, OFDM 심벌#3은 QBPSK 변조를 사용한다.
L-SIG 이후 HE-SIGA가 전송되고, HE-SIGA가 3 OFDM 심벌에서 전송된다면, OFDM 심벌#1/#2/#3 모두는 HE-SIGA의 전송에 사용된다고 할 수 있다.
이하에서는, 제안되는 무선랜 시스템에서의 자원 할당 방법에 대해 기술한다.
무선랜 시스템의 발전과 동시에, 높은 처리량(high throughput) 및 QoE(quality of experience) 향상에 대한 사용자들의 요구는 더욱 높아지고 있다.
기존의 무선랜 시스템에서는 동일한 BSS(Basic Service Set) 내의 주파수 상에서 하나의 STA 만이 채널을 사용할 수 있었다. 특히, 프라이머리 채널(primary channel)을 포함하여 인접한 주파수밴드로만 큰 대역폭(wider bandwidth)으로 확장해야 했다.
HE 시스템은 OFDMA(orthogonal frequency division multiple access)의 도입을 고려하고 있다. 이는 다수의 STA가 다수의 서브밴드 상으로 동시에 접근할 수 있어 주파수 효율을 높일 수 있다.
이하에서 서브밴드 또는 서브채널은 각 STA에게 할당가능한 자원 단위 또는 지원하는 가장 작은 단위의 대역폭을 말한다.
OFDMA 기법을 적용할시, STA는 전체 서브밴드를 동시에 스캔하여 자신이 사용가능한 서브밴드(예, 아이들 서브밴드)을 검출할 수 있다. 단순히 연속적인 채널들을 결합하여 사용가능한 대역폭을 확장할 수 있었던 기존 무선랜과 달리, OFDMA 기반 시스템은 불연속적인 다수의 서브밴드를 이용하여 데이터를 송신 및 수신할 수 있다.
기존 무선랜 시스템에서는 채널을 할당할 때, 서브밴드 단위의 할당이 고려되지 않았다. 이는 서브밴드 단위로는 가드 톤(guard tone)이 정의되지 않음을 의미한다. 할당된 채널의 양 끝단 서브캐리어(right most and left most subcarriers)를 가드 톤으로 사용하였다. OFDMA 기반의 HE STA와 레거시(legacy) STA이 동시에 채널에 액세스할 때, 간섭이 작용할 수 있다.
도 6은 서로 다른 대역폭 크기를 가진 사용자들의 공존(coexistence) 상황에서의 간섭을 나타낸 도면이다.
STA1은 20 MHz 채널(620)을 사용하고, STA2도 20 MHz 채널(630)을 사용한다. HE STA은 80 MHz 채널(610)을 사용한다고 하자. HE STA, STA1, STA2가 동시에 해당 채널을 사용한다면, STA1과 STA2의 밴드 방출(band emission)으로 인해 HE STA의 스펙트럼에 간섭으로 영향을 미칠 수 있다.
예를 들어, HE STA의 80 MHz 채널(610)이 4개의 서브밴드(611, 612, 613, 614)로 나뉘고, HE STA에게 제2 서브밴드(612)가 할당된다고 한다. HE STA이 제2 서브밴드(612)에서 제1 PPDU를 전송하고, STA1가 20 MHz 채널(620)에서 제2 PPDU를 전송한다면, 20 MHz 채널(620) 전송의 사이드 로브(side robe)와 제2 서브밴드(612)의 일부가 중복됨으로 인해 간섭이 발생할 수 있다.
이하에서는, 간섭을 완화하면서(mitigate) 보다 큰 대역폭을 활용할 수 있도록 하기 위해, 본 발명의 일 실시예에 따른 자원 할당 방법에 대해 기술한다.
SBW(subband bandwidth)는 서브밴드의 대역폭을 말한다. TBW(total bandwidth)는 복수의 서브밴드의 전체 대역폭을 말한다. TBW는 160 MHz, 80 MHz, 40 MHz 또는 20 MHz 일 수 있다. SBW는 80 MHz, 40 MHz, 20 MHz, 10 MHz, 5 MHz, 또는 1 MHz 일 수 있다. 이하에서는, TBW는 80 MHz이고, SBW는 20 MHz 인 것을 예시적으로 설명한다. 복수의 BSS가 공존하는 환경에서, SBW는 가장 작은 서브밴드의 대역폭에 해당될 수 있다.
가드 톤(guard tone)은 간섭 방지를 위해 사용되지 않는 서브캐리어로써, 미사용 서브캐리어, 널(null) 서브캐리어, 가드 서브캐리어라고도 한다. 하나 또는 그 이상의 연속적인 가드 톤의 집합을 가드 영역(guard region)이라 한다.
도 7은 본 발명의 일 실시예에 따른 자원 할당 방법을 나타낸 도면이다.
80 MHz 채널(710)은 4개의 서브밴드(711, 712, 713, 714)를 포함하고, 양 단에는 각각 가드 영역이 정의된다. 일 실시예에 따르면, 추가적인 가드 영역(751, 752, 753)이 80 MHz 채널(710)의 중간 부분에 정의될 수 있다.
추가적인 가드 영역(751, 752, 735)은 타 STA에 의한 서브밴드(720, 730)에서의 전송으로 인한 간섭을 줄이기 위한 위치에 배치될 수 있다.
보다 구체적으로 복수의 서브밴드(711, 712, 713, 714) 사이에 추가적인 가드 영역(751, 752, 753)이 정의될 수 있다. 제1 서브밴드(711)와 제2 서브밴드(712) 사이에 제1 가드 영역(751)이 정의되고, 제2 서브밴드(712)와 제3 서브밴드(713) 사이에 제2 가드 영역(752)이 정의되고, 제3 서브밴드(713)와 제4 서브밴드(714) 사이에 제3 가드 영역(753)이 정의될 수 있다.
가드 영역(751, 752, 753)의 양 끝단 중 하나는 서브밴드(711, 712, 713, 714)의 오른쪽 끝단 또는 왼쪽 끝단의 인덱스(right most or left most index)와 맞추어줄 수 있다. 예를 들어, 도 7에 나타난 바와 같이, 20 MHz 채널(720)의 사이드 로브로 인한 간섭을 방지하기 위해, 제1 가드 영역(751)은 20 MHz 채널(720)의 오른쪽 끝단부터 시작될 수 있다. 마찬가지로, 제2 가드 영역(752)는 20 MHz 채널(730)의 왼쪽 끝단부터 종료되고, 제3 가드 영역(753)은 20 MHz 채널(730)의 오른쪽 끝단부터 시작될 수 있다.
제안된 실시예에 따르면, 서브밴드(711, 712, 713, 714)의 양단에는 가드 영역 각각이 배치될 수 있다.
가드 영역은 데이터가 할당되지 않는 하나 또는 그 이상의 가드 서브캐리어를 포함한다. TBW 내 전체 서브캐리어들 중 데이터 서브캐리어를 제외하고 최대한 동등하게 각 가드 영역 내 가드 서브캐리어의 개수가 할당될 수 있다.
예를 들어, TBW가 80 MHz 이고, 256 FFT가 사용되면 전체 서브캐리어의 수는 256이다. TBW 양단의 가드 서브캐리어의 개수가 11이라면 245개가 서브캐리어가 남아 있다. 도 7과 같이 3개의 가드영역(751, 752, 753)이 정의된다고 한다면, 제1 가드영역(751)과 제3 가드영역(753)의 가드 서브캐리어의 개수를 각각 6이라 하고, 제2 가드영역(752)의 가드 서브캐리어의 개수를 9라고 할 수 있다. 서브밴드(711, 712, 713, 714) 각각의 데이터 서브캐리어의 개수는 56이다. 56*4+6+6+9=245 가 된다. TBW 160 MHz의 가드 영역 구조는 TBW 80 MHz의 구조를 반복해서 적용될 수 있다.
상기의 실시예는 HE PPDU에 하나의 FFT 크기에 따른 IDFT(inverse Discrete Fourier transform)를 적용하여 생성되는 것을 가정한 것이다. 전술한 바와 같이, HE PPDU는 서로 다른 FFT 크기에 따른 IDFT를 적용하여 생성될 수 있다. 제1 FFT 크기가 적용되는 제1 파트(예, L-STF, L-LTF, L-SIG)와 제2 FFT 크기가 적용되는 제2 파트(예, HE-STF, HE-LTF, 데이터 필드)를 포함한다. 예를 들어, 제2 FFT 크기는 제1 FFT 크기의 N(N>1) 배 일 수 있다.
N=4 라면, TBW가 80 MHz 이고, N-times FFT가 적용되는 제2 파트는 1024 FFT를 사용된다. 전체 서브캐리어의 수는 1024이다. TBW 양단의 가드 서브캐리어의 개수가 11이라면 1013개가 서브캐리어가 남아 있다. 도 7과 같이 3개의 가드영역(751, 752, 753)이 정의된다고 한다면, 제1 가드영역(751)과 제3 가드영역(753)의 가드 서브캐리어의 개수를 각각 14이라 하고, 제2 가드영역(752)의 가드 서브캐리어의 개수를 17라고 할 수 있다. 서브밴드(711, 712, 713, 714) 각각의 데이터 서브캐리어의 개수는 242이다. 242*4+14+14+17=1013 가 된다. TBW 160 MHz의 가드 영역 구조는 TBW 80 MHz의 구조를 반복해서 적용될 수 있다.
서브밴드의 각 주파수 인덱스는 도 7에서와 마찬가지로 SBW의 오른쪽 끝단 또는 왼쪽 끝단의 주파수 인덱스(right most or left most frequency index)와 맞추어준다. 따라서 TBW의 서브밴드의 크기는 SBW와 동일하게 구성될 수 있다. 4배 FFT가 적용된다면, 각 서브밴드에 포함되는 서브캐리어의 개수는 4배 늘어난다.
N-times FFT가 PPDU에 적용되면, 기존 FFT 서브캐리어 톤에 스케일러블하게 톤 개수가 증가된 것이기 때문에 SBW에 N-times FFT가 적용되는지 상관없이 각 서브밴드가 시작하고 끝나는 주파수 위치(frequency position) 및 가드 영역이 시작하고 끝나는 주파수 위치를 맞추어 적용이 가능하다. TBW는 N-times FFT가 적용되고 SBW는 1x FFT가 적용되더라도 주파수 인덱스만 다를 뿐 서브밴드 및 가드 영역이 시작하고 끝나는 주파수 위치를 나란히 맞추어 적용이 가능하다. 이는 1x FFT의 서브캐리어 간격(spacing)이 312.5 kHz 이고, 4-times FFT의 서브캐리어 간격이 78.125 kHz 로 설정되는 것과 같이, 1x FFT의 서브캐리어 간격이 N-times FFT의 서브캐리어 간격의 N 배로 설정될 때 적용 가능하다.
도 8은 TBW=80MHz, SBW=20MHz 일 때 가드 영역을 설정하는 예를 보여준다.
(1) 1x FFT가 적용될 때
TBW의 양 끝단(right most and left most subcarriers)에는 이미 정의된 가드영역(821, 822)이 있다. 제1 가드영역(823)은 제1 서브밴드(811)의 우측(right most side)에 위치한다. 제2 가드영역(824)은 제2 서브밴드(812)의 좌측(left most side)에 위치한다. 제3 가드영역(825)은 제2 서브밴드(812)의 우측에 위치한다. 제4 가드영역(826)은 제3 서브밴드(813)의 좌측에 위치한다. 제5 가드영역(827)는 제3 서브밴드(813)의 우측에 위치한다. 제6 가드영역(828)은 제4 서브밴드(814)의 좌측에 위치한다. 제1 가드영역(823)는 3 가드 서브캐리어를 포함할 수 있고, 제2 가드영역(824)는 3 가드 서브캐리어를 포함할 수 있고, 제3 가드영역(825)는 5 가드 서브캐리어를 포함할 수 있고, 제4 가드영역(826)는 4 가드 서브캐리어를 포함할 수 있고, 제5 가드영역(827)는 3 가드 서브캐리어를 포함할 수 있고, 제6 가드영역(828)는 3 가드 서브캐리어를 포함할 수 있다.
(2) 4x FFT가 적용될 때
제1 가드영역(823) 내지 제6 가드영역(828)의 위치는 1x FFT가 적용된 경우와 동일하다. 제1 가드영역(823)는 7 가드 서브캐리어를 포함할 수 있고, 제2 가드영역(824)는 7 가드 서브캐리어를 포함할 수 있고, 제3 가드영역(825)는 9 가드 서브캐리어를 포함할 수 있고, 제4 가드영역(826)는 8 가드 서브캐리어를 포함할 수 있고, 제5 가드영역(827)는 7 가드 서브캐리어를 포함할 수 있고, 제6 가드영역(828)는 7 가드 서브캐리어를 포함할 수 있다.
도 9는 TBW=80MHz, SBW=40MHz 일 때 가드 영역을 설정하는 예를 보여준다.
(1) 1x FFT가 적용될 때
TBW의 양 끝단에는 이미 정의된 가드영역(921, 922)이 있다. 제1 가드영역(923)은 제1 서브밴드(911)의 우측에 위치한다. 제2 가드영역(924)은 제2 서브밴드(912)의 좌측에 위치한다. 제1 가드영역(923)는 15 가드 서브캐리어를 포함할 수 있고, 제2 가드영역(924)는 14 가드 서브캐리어를 포함할 수 있다.
(2) 4x FFT가 적용될 때
제1 가드영역(923) 및 제2 가드영역(924)의 위치는 1x FFT가 적용된 경우와 동일하다. 제1 가드영역(923)는 9 가드 서브캐리어를 포함할 수 있고, 제2 가드영역(924)는 8 가드 서브캐리어를 포함할 수 있다.
도 10은 TBW=160MHz, SBW=20MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 8에서 설명한 TBW=80MHz, SBW=20MHz 에 관한 할당이 두번 반복될 수 있다. TBW의 양 끝단에는 이미 정의된 가드영역(1021, 1022)이 있다. 제1 가드영역(1023)은 제1 서브밴드(1011)의 우측에 위치한다. 제2 가드영역(1024)은 제2 서브밴드(1012)의 좌측에 위치한다. 나머지 가드영역도 마찬가지이다.
도 11은 TBW=160MHz, SBW=40MHz 일 때 가드 영역을 설정하는 예를 보여준다.
도 9에서 설명한 TBW=80MHz, SBW=40MHz 에 관한 할당이 두번 반복될 수 있다. TBW의 양 끝단에는 이미 정의된 가드영역(1121, 1122)이 있다. 제1 가드영역(1123)은 제1 서브밴드(1111)의 우측에 위치한다. 제2 가드영역(1124)은 제2 서브밴드(1112)의 좌측에 위치한다. 나머지 가드영역도 마찬가지이다.
도 8 내지 도 11의 TBW/SBW 조합 이외에도, 다양한 TBW/SBW 조합에 대해 가드영역이 서브밴드들 사이에 정의될 수 있다.
서브밴드들 사이에 가드영역이 정의되면, 다양한 대역폭이 공존하는 환경에서 간섭으로 인한 성능 열화를 줄일 수 있다. 하지만, 증가되는 가드 서브캐리어로 인해 데이터 서브캐리어가 줄어 처리량(throughput)의 감소가 있을 수 있다. 따라서, 환경에 따라 가드 영역의 설정을 변경할 수 있다. 예를 들어, OFDMA가 설정된 BSS에서는 제안된 가드 영역이 정의되고, OFDMA가 설정되지 않은 BSS에서는 가드 영역이 정의되지 않을 수 있다. 또는 다양한 TBW/SBW 조합이 인접 BSS간에 존재하는 환경에서는 가드 영역이 정의되고, 전체 밴드 대역을 모두 통신에 사용하는 특정 TBW만 존재하는 BSS간에는 가드 영역이 정의되지 않을 수 있다.
도 12는 서브밴드 간 간섭의 일예를 보여준다. 이는 복수의 서브밴드를 사용하는 HE STA 간 간섭의 예를 보여준다.
HE STA1과 HE STA2 모두 동일한 80 MHz 밴드를 사용하지만, HE STA1 은 제1 서브밴드(1210)을 사용하고, HE STA2는 제2 서브밴드(1220)을 사용한다고 하자.
무선랜은 CCA(clear channel assessment)를 기반으로 채널 엑세스를 하기 때문에 CCA 임계값(threshold) 조건만 만족하면 다른 STA이 사용하지 않는 채널 또는 서브밴드를 사용할 수 있다. HE STA1이 제1 서브밴드(1210)에서 제1 OFDMA 패킷(예, PPDU)을 전송하고, 이와 동시에 HE STA2이 제2 서브밴드(1220)에서 제2 OFDMA 패킷을 전송한다고 하자. 제1 서브밴드(120)와 제2 서브밴드(1220)는 서로 인접하는 바, 각 서브밴드의 사이드 로브에서 간섭이 발생할 수 있다.
따라서, 제1 서브밴드(1210)의 우측 및/또는 제2 서브밴드(1220)의 좌측에 가드 영역이 정의된다면 간섭을 완화할 수 있다.
도 13은 본 발명의 일 실시예에 따른 데이터 전송 방법을 나타낸 블록도이다.
TBW(110)는 네개의 서브밴드(101, 102, 103, 104)를 포함한다고 한다. 서브밴드(101, 102, 103, 104)들 사이에는 전술한 실시예에 따른 가드 영역이 정의될 수 있다.
AP는 전송 할당(transmission allocation, TA) 메시지를 TBW(110)에서 전송한다. 전송 할당 메시지는 네개의 서브밴드(101, 102, 103, 104) 중 적어도 어느 하나에서 전송될 수 있다.
전송 할당 메시지는 UL 전송을 지시하는 STA1 및 STA2를 식별하는 식별 정보, UL 전송 구간, UL 전송을 위한 동기 정보 및 각 STA에게 할당되는 서브밴드를 가리키는 할당 정보 중 적어도 어느 하나를 포함할 수 있다.
STA1에게 제1 서브밴드(101)가 할당되고, STA2에게 제2 서브밴드(102)가 할당된다고 하자. STA1은 제1 서브밴드(101)에서 제1 PPDU를 전송하고, STA2는 제2 서브밴드(102)에서 제2 PPDU를 전송할 수 있다. 가드 영역을 통해 간섭을 완화할 수 있다. AP는 수신된 PPDU에 대한 ACK를 STA1, STA2에게 보낼 수 있다.
도 14는 본 발명의 실시예가 구현되는 기기를 나타낸 블록도이다.
기기(50)는 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(53)를 포함한다. 기기는 전술한 실시예에서 AP 또는 non-AP STA일 수 있다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 AP 또는 non-AP STA의 동작은 프로세서(51)에 의해 구현될 수 있다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)의 동작을 구현하는 명령(instruction)을 저장할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 무선랜에서 데이터 전송 방법에 있어서,
    전송기가 AP(access point)로부터 복수의 서브밴드 중 적어도 하나의 서브밴드에 관한 할당 정보를 수신하고,
    상기 전송기가 상기 적어도 하나의 할당된 서브밴드에서 PPDU(Physical layer Protocol Data Unit)를 전송하는 것을 포함하되,
    상기 복수의 서브밴드 중 적어도 어느 하나는 양단에 가드 영역이 정의되는 것을 특징으로 하는 데이터 전송 방법.
  2. 제 1 항에 있어서,
    상기 복수의 서브밴드 각각은 양단에 가드 영역이 정의되는 것을 특징으로 하는 데이터 전송 방법.
  3. 제 1 항에 있어서,
    상기 가드 영역에 포함되는 가드 서브캐리어의 개수는 상기 PPDU의 생성에 사용되는 FFT(fast Fiourier transform) 크기에 따라 달라지는 것을 특징으로 하는 데이터 전송 방법.
  4. 제 1 항에 있어서,
    상기 PPDU는 제1 FFT 크기를 갖는 제1 파트와 제2 FFT 크기를 갖는 제2 파트를 포함하는 것을 특징으로 하는 데이터 전송 방법.
  5. 제 4 항에 있어서,
    상기 가드 영역은 상기 제2 파트가 전송되는 주파수 대역에서 정의되는 것을 특징으로 하는 데이터 전송 방법.
  6. 제 4 항에 있어서,
    상기 제1 파트는 상기 PPDU가 전송되는 상기 할당된 적어도 하나의 서브밴드를 지시하는 정보를 포함하는 것을 특징으로 하는 데이터 전송 방법.
  7. 무선랜에서 데이터 전송을 위한 기기에 있어서,
    무선신호를 송신 및 수신하는 송수신기와;
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    AP(access point)로부터 복수의 서브밴드 중 적어도 하나의 서브밴드에 관한 할당 정보를 상기 송수신기를 통해 수신하고,
    상기 적어도 하나의 할당된 서브밴드에서 PPDU(Physical layer Protocol Data Unit)를 상기 송수신기를 통해 전송하되,
    상기 복수의 서브밴드 중 적어도 어느 하나는 양단에 가드 영역이 정의되는 것을 특징으로 하는 기기.
  8. 제 7 항에 있어서,
    상기 복수의 서브밴드 각각은 양단에 가드 영역이 정의되는 것을 특징으로 하는 기기.
  9. 제 7 항에 있어서,
    상기 가드 영역에 포함되는 가드 서브캐리어의 개수는 상기 PPDU의 생성에 사용되는 FFT(fast Fiourier transform) 크기에 따라 달라지는 것을 특징으로 하는 기기.
  10. 제 1 항에 있어서,
    상기 PPDU는 제1 FFT 크기를 갖는 제1 파트와 제2 FFT 크기를 갖는 제2 파트를 포함하는 것을 특징으로 하는 기기.
  11. 제 10 항에 있어서,
    상기 가드 영역은 상기 제2 파트가 전송되는 주파수 대역에서 정의되는 것을 특징으로 하는 기기.
  12. 제 10 항에 있어서,
    상기 제1 파트는 상기 PPDU가 전송되는 상기 할당된 적어도 하나의 서브밴드를 지시하는 정보를 포함하는 것을 특징으로 하는 기기.
PCT/KR2015/005788 2014-06-09 2015-06-09 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기 WO2015190806A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167025987A KR101909123B1 (ko) 2014-06-09 2015-06-09 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기
US15/306,744 US10182440B2 (en) 2014-06-09 2015-06-09 Method for transmitting data using plurality of subbands and apparatus using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462009872P 2014-06-09 2014-06-09
US62/009,872 2014-06-09
US201462010411P 2014-06-10 2014-06-10
US62/010,411 2014-06-10

Publications (1)

Publication Number Publication Date
WO2015190806A1 true WO2015190806A1 (ko) 2015-12-17

Family

ID=54833829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005788 WO2015190806A1 (ko) 2014-06-09 2015-06-09 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기

Country Status (3)

Country Link
US (1) US10182440B2 (ko)
KR (1) KR101909123B1 (ko)
WO (1) WO2015190806A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080630A (ko) * 2015-07-30 2021-06-30 주식회사 윌러스표준기술연구소 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3164980B1 (en) * 2014-07-04 2020-03-11 Newracom, Inc. Physical layer protocol data unit format in a high efficiency wireless lan
KR102438318B1 (ko) * 2014-10-10 2022-08-30 뉴라컴 인코포레이티드 고효율 무선랜에서 동적 자원 할당
US10327226B2 (en) * 2014-12-12 2019-06-18 Newracom, Inc. Method and apparatus for resource allocation for multiple user transmission in a High Efficiency wireless LAN
KR102603640B1 (ko) * 2021-11-23 2023-11-16 금오공과대학교 산학협력단 듀얼모드 지수변조를 적용한 mimo-sefdm 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273497A1 (en) * 2009-04-22 2010-10-28 Lg Electronics Inc. Method for mapping subband/miniband in wireless communication system and an apparatus therefor
US20120213181A1 (en) * 2004-02-18 2012-08-23 Walton J Rodney Transmit diversity and spatial spreading for an ofdm-based multi-antenna communication system
WO2013077652A1 (ko) * 2011-11-24 2013-05-30 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 수행 방법 및 이를 지원하는 장치
WO2013077600A1 (ko) * 2011-11-21 2013-05-30 엘지전자 주식회사 무선랜 시스템에서 프레임 송수신 방법 및 이를 지원하는 장치
US20130242916A1 (en) * 2005-09-12 2013-09-19 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515726A (ja) * 2002-09-30 2006-06-01 アイピーアール ライセンシング インコーポレイテッド Wlanのための指向性アンテナをステアリングする方法
US8737189B2 (en) * 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
CN102396186B (zh) 2009-04-13 2014-12-10 马维尔国际贸易有限公司 用于wlan的物理层帧格式
KR101585366B1 (ko) * 2012-02-14 2016-01-13 엘지전자 주식회사 무선랜 시스템에서 데이터 유닛 전송 방법 및 이를 지원하는 장치
JP6201037B2 (ja) * 2013-05-07 2017-09-20 エルジー エレクトロニクス インコーポレイティド データユニットを送信する方法及び装置
EP3075120A1 (en) * 2013-11-27 2016-10-05 Marvell World Trade Ltd. Orthogonal frequency division multiple access for wireless local area network
US9755795B2 (en) * 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213181A1 (en) * 2004-02-18 2012-08-23 Walton J Rodney Transmit diversity and spatial spreading for an ofdm-based multi-antenna communication system
US20130242916A1 (en) * 2005-09-12 2013-09-19 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
US20100273497A1 (en) * 2009-04-22 2010-10-28 Lg Electronics Inc. Method for mapping subband/miniband in wireless communication system and an apparatus therefor
WO2013077600A1 (ko) * 2011-11-21 2013-05-30 엘지전자 주식회사 무선랜 시스템에서 프레임 송수신 방법 및 이를 지원하는 장치
WO2013077652A1 (ko) * 2011-11-24 2013-05-30 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 수행 방법 및 이를 지원하는 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210080630A (ko) * 2015-07-30 2021-06-30 주식회사 윌러스표준기술연구소 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말
KR20210082544A (ko) * 2015-07-30 2021-07-05 주식회사 윌러스표준기술연구소 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말
KR102309057B1 (ko) 2015-07-30 2021-10-06 주식회사 윌러스표준기술연구소 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말
KR102309054B1 (ko) 2015-07-30 2021-10-06 주식회사 윌러스표준기술연구소 시그널링 필드를 이용하는 무선 통신 방법 및 무선 통신 단말

Also Published As

Publication number Publication date
US20170048865A1 (en) 2017-02-16
US10182440B2 (en) 2019-01-15
KR20160130404A (ko) 2016-11-11
KR101909123B1 (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
WO2015064943A1 (en) Method of transmitting data and device using the same
EP3217588B1 (en) Method and device for allocating resource unit on basis of container in wireless lan
WO2015160102A1 (ko) 데이터 블록 전송 방법 및 장치
WO2016076511A1 (ko) 무선랜 시스템에서 프레임 전송 방법
US9877324B2 (en) Bandwidth signaling
EP3206326B1 (en) Method and apparatus for transmitting data on resource units including pilot tones in wlan
WO2015156520A1 (ko) 데이터 전송 방법 및 이를 이용한 장치
WO2016027937A1 (ko) 액티브 스캐닝을 수행하는 방법 및 장치
WO2015190806A1 (ko) 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기
CN107079485B (zh) 用于发送数据的方法和装置
CN107005381B (zh) 在无线lan中基于不同的导频音图案发送数据的方法和装置
EP3664351B1 (en) Method and device for receiving signal by using resource unit including plurality of subcarriers
WO2016009278A2 (en) Method and device for transmitting data
EP3104567A1 (en) Method and apparatus for transmitting data unit in wireless local area network
WO2016056808A1 (ko) 무선랜에서 단일 자원 단위를 기반으로 무선 자원을 할당하는 방법 및 장치
WO2016035943A1 (ko) Txop 보호 방법 및 장치
WO2016039535A1 (ko) 데이터 블록 전송 방법 및 전송기
KR20170044098A (ko) 무선랜 시스템에서 프리엠블 전송 방법
WO2016018026A1 (ko) 무선랜 시스템에서 sta의 신호 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15306744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807119

Country of ref document: EP

Kind code of ref document: A1