CN107079485B - 用于发送数据的方法和装置 - Google Patents

用于发送数据的方法和装置 Download PDF

Info

Publication number
CN107079485B
CN107079485B CN201580035091.5A CN201580035091A CN107079485B CN 107079485 B CN107079485 B CN 107079485B CN 201580035091 A CN201580035091 A CN 201580035091A CN 107079485 B CN107079485 B CN 107079485B
Authority
CN
China
Prior art keywords
fft size
ppdu
field
operating bandwidth
hew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580035091.5A
Other languages
English (en)
Other versions
CN107079485A (zh
Inventor
石镕豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Tekovlex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekovlex filed Critical Tekovlex
Publication of CN107079485A publication Critical patent/CN107079485A/zh
Application granted granted Critical
Publication of CN107079485B publication Critical patent/CN107079485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

提供了一种在无线局域网中发送数据的方法和使用该方法的装置。所述装置将多个介质接入控制协议数据单元(MPDU)发送到至少一个目的地站。所有多个MPDU中的持续时间字段被设置为相同值。

Description

用于发送数据的方法和装置
相关申请的交叉引用
本申请要求于2014年6月27日提交的韩国专利申请No.10-2014-0080171的优先权的权益,其全部内容通过引用并入本文中。
技术领域
本发明涉及无线通信,并且更具体地,涉及一种用于在无线局域网中发送数据的方法和装置。
背景技术
在2009年建立的电气和电子工程师协会(IEEE)802.11n标准基于多输入多输出(MIMO)技术在2.4GHz或5GHz的频带处提供了高达600Mbps的传送速率。
2013年建立的IEEE 802.11ac标准旨在在小于或等于6GHz的频带处利用介质接入控制(MAC)服务接入点(SAP)层方案来提供大于或等于1Gbps的吞吐量。支持IEEE 802.11ac标准的系统被称为极高吞吐量(VHT)系统。
在日益拥塞的环境中,存在实现更有效的无线局域网(WLAN)技术的持续努力。
发明内容
本发明提供了一种用于在无线局域网中发送数据的方法。
本发明还提供了一种在无线局域网中发送数据的装置。
在一方面,提供了一种用于在无线局域网中发送数据的方法。所述方法包括:由发送站确定是否要经由单个信道或多个子信道发送用于至少一个接收站的多个介质接入控制协议数据单元(MPDU),所述多个MPDU中的每个包括指示了用于更新网络分配矢量的对应MPDU的持续时间的持续时间字段;如果确定要经由所述单个信道发送用于至少一个接收站的多个MPDU,则由所述发送站经由所述单个信道将所述多个MPDU发送到至少一个接收站;并且如果确定要经由所述多个子信道发送用于至少一个接收站的多个MPDU,则由所述发送站经由所述多个子信道将所述多个MPDU发送到至少一个接收站,至少一个MPDU经由与至少一个接收站中的对应的一个相对应的多个子信道中的至少一个而发送。
多个MPDU中的所有MPDU的持续时间字段可以被设置为相同值。
在另一方面,提供了一种被配置为用于在无线局域网中发送数据的装置。所述装置包括:射频模块,其被配置为发送和接收无线电信号;以及处理器,其与所述射频模块可操作地耦合,并且被配置为:确定是否要经由单个信道或多个子信道发送用于至少一个接收站的多个介质接入控制协议数据单元(MPDU),所述多个MPDU中的每个包括指示了用于更新网络分配矢量的对应MPDU的持续时间的持续时间字段;如果确定要经由所述单个信道发送用于至少一个接收站的多个MPDU,则命令所述射频模块经由所述单个信道将所述多个MPDU发送到至少一个接收站;并且如果确定要经由所述多个子信道发送用于至少一个接收站的多个MPDU,则命令所述射频模块经由所述多个子信道将所述多个MPDU发送到至少一个接收站,至少一个MPDU经由与至少一个接收站中的对应的一个相对应的多个子信道中的至少一个而发送。
由于在同一时间段期间可以发送较大量的数据,所以可以提高传输效率。另外,可以减小发送机的峰值平均功率比(PAPR)。
附图说明
图1示出了传统系统使用的PPDU格式。
图2示出了根据本发明实施例的HEW PPDU格式。
图3示出了用于常规PPDU的星座相位。
图4示出了用于提出的HEW PPDU的星座相位。
图5示出了20MHz信道中的HEW PPDU格式。
图6示出了40MHz信道中的HEW PPDU格式。
图7示出了80MHz信道中的HEW PPDU格式。
图8示出了根据本发明的另一实施例的PPDU格式。
图9示出了根据本发明实施例的带宽信令。
图10示出了在IEEE 802.11b/g中使用的直接序列扩展频谱(DSSS)PPDU。
图11示出了根据本发明的实施例的数据传输。
图12示出了根据本发明的另一实施例的数据传输。
图13是根据本发明的实施例的STA的框图。
具体实施方式
提出的无线局域网(WLAN)系统可以在小于或等于6GHz的波段处或在60GHz的波段处操作。小于或等于6GHz的操作波段可以包括2.4GHz和5GHz中的至少一个。
为了清楚起见,符合电气和电子工程师协会(IEEE)802.11a/g标准的系统被称为非高吞吐量(non-HT)系统,符合IEEE 802.11n标准的系统被称为高吞吐量(HT)系统,并且符合IEEE 802.11ac标准的系统被称为极高吞吐量(VHT)系统。与之相比,符合提出的方法的WLAN系统被称为高效WLAN(HEW)系统。支持在发布HEW系统之前使用的系统的WLAN系统被称为传统系统(legacy系统)。HEW系统可以包括HEW站(STA)和HEW接入点(AP)。术语HEW仅用于与常规WLAN区分开的目的,并且对其不存在限制。除了提出的方法之外,HEW系统还可以通过提供向后兼容来支持IEEE 802.11/a/g/n/ac。
在下文中,除非另外地将站(STA)的功能与接入点(AP)的功能区分开,否则STA可以包括非AP STA和/或AP。当被描述为STA至AP通信时,STA可以被表示为非AP STA,并且其可以对应于非AP STA和AP之间的通信。当被描述为STA至STA通信时或当不另外需要AP的功能时,STA可以是非AP STA或AP。
物理层协议数据单元(PPDU)是用于数据传输的数据单元。
图1示出了传统系统使用的PPDU格式。
支持IEEE 802.11a/g的非HT PPDU包括传统短训练字段(Legacy-Short TrainingField,L-STF)、传统长训练字段(Legacy-long Training Field,L-LTF)和传统信号(Legacy-Signal,L-SIG)。
支持IEEE 802.11n的HT PPDU在L-SIG之后包括HT-SIG、HT-STF和HT-LTF。
支持IEEE 802.11ac的VHT PPDU在L-SIG之后包括VHT-SIG-A、VHT-STF、VHT-LTF和VHT-SIG-B。
图2示出了根据本发明实施例的HEW PPDU格式。
L-STF可以被用于帧检测、自动增益控制(AGC)、多样性检测和粗频率/时间同步。
L-LTF可以被用于细频率/时间同步和信道估计。
L-SIG可以包括指示对应PPDU的总长度的信息(或者指示物理层协议服务单元(PSDU)的传输时间的信息)。
L-STF、L-LTF和L-SIG可以与VHT系统的L-STF、L-LTF和L-SIG相同。L-STF、L-LTF和L-SIG可以被称为传统部分(legacy portion)。可以在基于64点快速傅立叶变换(FFT)(或64个子载波)在每个20MHz信道中生成的至少一个正交频分复用(OFDM)符号中发送L-STF、L-LTF和L-SIG。针对20MHz传输,可以通过使用64个FFT点执行离散傅立叶逆变换(IDFT)来生成传统部分。针对40MHz传输,可以通过使用128个FFT点执行IDFT来生成传统部分。针对80MHz传输,可以通过使用512个FFT点执行IDFT来生成传统部分。
HEW-SIGA可以包括一般地由接收PPDU的STA接收到的公共控制信息。可以以2个OFDM符号或3个OFDM符号来发送HEW-SIGA。
下面的表格例示了被包括在HEW-SIGA中的信息。字段名称或位数仅用于示例性目的。
【表1】
Figure BDA0001193995420000051
Figure BDA0001193995420000061
HEW-STF可以被用于改善MIMO传输中的AGC估计。
HEW-LTF可以被用于估计MIMO信道。HEW-LTF可以跨所有用户在相同时间点处开始,并且可以在相同时间点处结束。
HEW-SIGB可以包括针对每个STA接收其PSDU所需的用户特定信息。例如,HEW-SIGB可以包括关于对应PSDU的长度和/或其中发送针对对应接收机的PSDU的带宽或信道的信息。
数据部分可以包括至少一个PSDU。HEW-SIGB的位置仅用于说明目的。HEW-SIGB后面可以是数据部分。HEW-SIGB后面可以是HEW-STF或HEW-LTF。
在提出的PPDU格式中,可以每单位频率增加OFDM子载波的数量。OFDM子载波的数量可以通过增加FFT尺寸而增加K倍。K可以是2、4或8。可以经由降频(downclocking)来实现该增加(例如,在相同采样速率的情况下使用较大FFT尺寸)。
例如,采取K=4降频。至于传统部分,在20MHz信道中使用64FFT,在40MHz信道中使用128FFT,并且在80MHz信道中使用256FFT。至于使用较大FFT尺寸的HEW部分,在20MHz信道中使用256FFT,在40MHz信道中使用512FFT,并且在80MHz信道中使用1024FFT。HEW-SIGA可以具有与传统部分相同的FFT尺寸。HEW部分可以具有比传统部分更大的FFT尺寸。
通过使用两个不同的FFT尺寸执行IDFT来生成PPDU。PPDU可以包括具有第一FFT尺寸的第一部分和具有第二FFT尺寸的第二部分。第一部分可以包括L-STF、L-LTF、L-SIG和HEW-SIGA中的至少一个。第二部分可以包括HEW-STF、HEW-LTF和数据部分中的至少一个。HEW-SIGB可以被包括在第一部分中或第二部分中。
当FFT尺寸增加时,OFDM子载波间距减小,并且因此每单位频率的OFDM子载波的数量增加,但是OFDM符号持续时间增加。当FFT尺寸增加时,可以减少OFDM符号时间的保护间隔(GI)(或也被称为循环前缀(CP)长度)。
如果每单位频率的OFDM子载波的数量增加,则支持常规IEEE 80.2.11a/g/n/ac的传统STA不能解码对应的PPDU。为了使传统STA和HEW STA共存,在20MHz信道中通过64FFT来发送L-STF、L-LTF和L-SIG,使得传统STA可以接收L-STF、L-LTF和L-SIG。例如,在单个OFDM符号中发送L-SIG,该单个OFDM符号的符号时间是4微秒(us),并且GI是0.8us。
虽然HEW-SIGA包括由HEW STA对HEW PPDU进行解码所需的信息,但是可以在20MHz信道中通过64FFT来发送HEW-SIGA,使得其可以由传统STA和HEW STA两者接收到。这是为了允许HEW STA不仅接收HEW PPDU,而且还接收常规的非HT/HT/VHT PPDU。
图3示出了用于常规PPDU的星座相位。
为了识别PPDU的格式,使用用于在L-STF、L-LTF和L-SIG之后发送的两个OFDM符号的星座的相位。
‘第一OFDM符号’是在L-SIG之后首先出现的OFDM符号。‘第二OFDM符号’是在第一OFDM符号之后的OFDM符号。
在非HT PPDU中,在第一OFDM符号和第二OFDM符号中使用星座的相同相位。在第一OFMD符号和第二OFDM符号两者中使用二进制相移键控(BPSK)。
在HT PPDU中,尽管在第一OFDM符号和第二OFDM符号中使用星座的相同相位,但是星座相对于在非HT PPDU中使用的相位在逆时针方向上旋转90度。具有旋转90度的星座的调制方案被称为正交二进制相移键控(QBPSK)。
在VHT PPDU中,第一OFDM符号的星座与非HT PPDU的相同,而第二OFDM符号的星座与HT PPDU的相同。第二OFDM符号的星座相对于第一OFDM符号在逆时针方向上旋转90度。第一OFDM符号使用BPSK调制,并且第二OFDM符号使用QBPSK调制。由于VHT-SIG-A是在L-SIG之后被发送并且VHT-SIG-A在两个OFDM符号中被发送,所以第一OFDM符号和第二OFDM符号被用于发送VHT-SIG-A。
图4示出了用于提出的HEW PPDU的星座相位。
为了与非HT/HT/VHT PPDU区分开,可以使用在L-SIG之后发送的至少一个OFDM符号的星座。
如同非HT PPDU一样,HEW PPDU的第一OFDM符号和第二OFDM符号具有相同的星座相位。BPSK调制可被用于第一OFDM符号和第二OFDM符号。STA可以区分HEW PPDU和HT/VHTPPDU。
在实施例中,为了区分HEW PPDU和非HT PPDU,可以利用第三OFDM符号的星座。第三OFDM符号的星座可以相对于第二OFDM符号在逆时针方向上旋转90度。第一OFDM符号和第二OFDM符号可以使用BPSK调制,但是第三OFDM符号可以使用QBPSK调制。
在另一实施例中,HEW-SIGA可以提供关于PPDU的格式的指示。该指示可以指示PPDU的格式是否是HEW PPDU。HEW-SIGA可以提供关于正交频分多址(OFDMA)的使用的指示。
在下文中,提出了使用频域中的相位旋转的PPDU以便支持较低的峰值平均功率比(PAPR)。
为了清楚起见,假设PPDU的第二部分(即HEW部分)经由降频而使用4倍FFT尺寸。
在下文中,子信道指的是要分配给STA的资源分配单元。操作带宽(即20MHz信道、40MHz信道、80MHz信道或160MHz信道)可以被划分为多个子信道。子信道可以包括一个或多个子载波。多个子信道可以具有相同数量的子载波或不同数量的子载波。一个或多个子信道可以被分配给STA。STA可以通过分配的子信道来发送一个或多个PPDU。子信道可以被称为‘子带’或‘子群’。
图5示出了在20MHz信道中的HEW PPDU格式。
第一部分(即L-LTF、L-LTF、L-SIG和HEW-SIGA)在20MHz信道中使用64FFT。为了在第二部分中实施256FFT,提出通过对VHT 80MHz PPDU格式执行1/4降频并且通过将GI减小到0.8us和0.4us来减少开销。
如果VHT 80MHz PPDU格式经受1/4降频,则OFDM符号时间增加四倍,并且因此当使用长GI时为16us,并且当使用短GI时为14.4us。也就是说,GI在长GI的情况下也增加到3.2us,并且在短GI的情况下增加到1.6us。然而,GI可以在长GI的情况下保持0.8us,并且在短GI的情况下保持0.4us。在这样做时,在执行1/4降频之后,OFDM符号时间在使用长GI时为13.6us并且在使用短GI时为13.2us。
如果VHT 80MHz PPDU格式在20MHz信道中经受1/4降频,则基于64FFT的VHT-STF、VHT-LTF和VHT-SIG-B中的每个可以构成一个子信道,并且因此,4个子信道通过20MHz信道以256FFT为单位组合并发送。
在图5中,为了减少发送机STA的峰值平均功率比(PAPR),第二部分可以经受如下以子信道为单位的针对相位波形的乘法。
【等式1】
Figure BDA0001193995420000101
在此,R(k)表示针对子载波索引k处的相位波形的乘法值。256个子载波被划分为4个子信道。相应的子信道由64个子载波组成。可以针对4个子信道从具有最小子载波索引的子信道(即,最低子信道)开始乘以序列{+1,-1,-1,-1}。子信道的数目和序列{+1,-1,-1,-1}仅仅用于示例性目的。可以将256个子载波划分成多个子信道,并且可以通过乘以+1或-1来对各子信道进行相位旋转。
可以如下表示等式1。256个子载波被划分为具有不同数量的子载波的第一子群和第二子群。第一子群通过乘以+1而进行相位旋转,并且第二子群通过乘以-1而进行相位旋转。
构成HEW-STF和HEW-LTF的序列可以如下。
HEW-STF={HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58},
HEW-LTF={LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright}
其中:
Figure BDA0001193995420000102
LTFleft={1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1},
LTFright={1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1}.
图6示出了40MHz信道中的HEW PPDU格式。
为了在40MHz信道中实施512FFT,提出针对20MHz信道的上述256FFT传输使用两个块。类似于在20MHz信道中的256FFT传输中,OFDM符号时间在使用长GI时为13.6us,并且在使用短GI时为13.2us。
L-STF、L-LTF、L-SIG和HEW-SIGA使用64FFT而生成,并且在40MHz信道中以复制的方式被发送两次。也就是说,在第一20MHz子信道中发送第一部分,并且在第二20MHz子信道中发送其复制。
为了减小用于发送L-STF、L-LTF、L-SIG和HEW-SIGA的发送机STA的PAPR,可以如下以20MHz信道为单位对相位波形执行乘法。
【等式2】
Figure BDA0001193995420000111
这意味着第一部分针对第一20MHz子信道通过乘以+1而进行相位旋转,并且针对第二20MHz子信道通过乘以+j而进行相位旋转。
可以如下表示等式2。128个子载波被划分为第一子群和第二子群。第一子群通过乘以+1而进行相位旋转,并且第二子群通过乘以+j而进行相位旋转。
针对构成512FFT的每个基于64FFT的子信道,为了减少用于发送HEW-STF、HEW-LTF和HEW-SIGB的发送机STA的PAPR,可以如下以子信道为单位对相位波形执行乘法。
【等式3】
Figure BDA0001193995420000112
更具体地,根据等式3,512个子载波被划分为8个子信道。相应的子信道由64个子载波组成。可以针对8个子信道从具有最小子载波索引的子信道(即,最低子信道)开始乘以序列{+1,-1,-1,-1,+1,-1,-1,-1}。
可以如下表示等式3。512个子载波被划分为四个子群。第一子群通过乘以+1而进行相位旋转,第二子群通过乘以-1而进行相位旋转,第三子群通过乘以+1而进行相位旋转,并且第四子群通过乘以-1而进行相位旋转。
构成HEW-STF和HEW-LTF的序列可以如下。
HEW-STF={HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58},
HEW-LTF={LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,0,0,0,0,0,0,0,0,0,0,0,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright}
在此,
Figure BDA0001193995420000121
LTFleft={1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1},
LTFright={1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1}.
图7示出了80MHz信道中的HEW PPDU格式。
为了在80MHz信道中实施1024FFT,提出针对20MHz信道的前述256FFT传输使用四个块。类似于在20MHz信道中的256FFT传输中,OFDM符号时间在使用长GI时为13.6us,并且在使用短GI时为13.2us。
使用64FFT发送的L-STF、L-LTF、L-SIG和HEW-SIGA还在80MHz信道中以复制的方式被发送四次。也就是说,在第一20MHz子信道中发送第一部分,并且分别在第二、第三和第四20MHz子信道中发送其复制。
为了减小用于发送L-STF、L-LTF、L-SIG和HEW-SIGA的发送机STA的PAPR,可以如下以20MHz信道为单位对相位波形执行乘法。
【等式4】
Figure BDA0001193995420000122
这意味着第一部分针对第一20MHz子信道通过乘以+1而进行相位旋转,并且针对第二、第三和第四20MHz子信道通过乘以-1而进行相位旋转。
可以如下表示等式4。256个子载波被划分为具有不同数量的子载波的第一子群和第二子群。第一子群通过乘以+1而进行相位旋转,并且第二子群通过乘以-1而进行相位旋转。
针对构成1024FFT的每个基于64FFT的子信道,为了减小用于发送HEW-STF、HEW-LTF和HEW-SIGB的发送机STA的PAPR,可以如下以子信道为单位对相位波形执行乘法。
【等式5】
Figure BDA0001193995420000131
更具体地,根据等式5,1024个子载波被划分为16个子信道。相应的子信道由64个子载波组成。可以针对16个子信道从具有最小子载波索引的子信道(即,最低子信道)开始乘以序列{+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1,+1,-1,-1,-1}。
可以如下表示等式5。1024个子载波被划分为8个子群。第一子群通过乘以+1而进行相位旋转,第二子群通过乘以-1而进行相位旋转,第三子群通过乘以+1而进行相位旋转,第四子群通过乘以-1而进行相位旋转,第五子群通过乘以+1而进行相位旋转,第六子群通过乘以-1而进行相位旋转,第七子群通过乘以+1而进行相位旋转,并且第八子群通过乘以-1而进行相位旋转。
构成HEW-STF和HEW-LTF的序列如下。
HEW-STF={HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58,0,0,0,0,0,0,0,0,0,0,0,HTS-58,58},
HEW-LTF={LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,0,0,0,0,0,0,0,0,0,0,0,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,0,0,0,0,0,0,0,0,0,0,0,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,0,0,0,0,0,0,0,0,0,0,0,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright,1,-1,1,-1,0,0,0,1,-1,-1,1,LTFleft,1,LTFright,-1,-1,-1,1,1,-1,1,-1,1,1,-1,LTFleft,1,LTFright},
在此,
Figure BDA0001193995420000141
LTFleft={1,1,-1,-1,1,1,-1,1,-1,1,1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,1,1,1},
LTFright={1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1}
可以增加FFT尺寸以提高PPDU传输效率。为了提供与传统STA的兼容性,首先发送使用与传统PPDU相同的FFT尺寸的第一部分(STF、LTF、L-SIG和HEW-SIGA),并且随后发送使用较大FFT尺寸的第二部分(HEW-STF、HEW-LTF、HEW-SIGB和PSDU)。
为了减少发送机STA的PAPR,第一部分和第二部分在频域中使用不同的相位旋转。这意味着第一部分中的子载波的相位旋转不同于第二部分中的子载波的相位旋转。
图8示出了根据本发明另一实施例的PPDU格式。
由于在发送L-STF、L-LTF、L-SIG和HEW-SIGA之后每单位频率的OFDM子载波的数量增加,所以可能需要处理时间来处理具有较大FFT尺寸的数据。处理时间可以称为HEW过渡间隙。
在实施例中,可以通过定义后面是HEW-STF的短帧间间距(SIFS)来实施HEW过渡间隙。SIFS可以位于HEW-SIGA和HEW-STF之间。SIFS可以位于HEW-SIGB和HEW-STF之间。
在另一个实施例中,可以以再次发送HEW-STF的方式来实施HEW过渡间隙。HEW-STF的持续时间可以取决于处理时间或STA的能力而变化。如果需要该处理时间,则HEW-STF的持续时间可以变为两倍。
在下文中,描述了提出的带宽信令。
发送机STA可以在发送HEW PPDU之前向目的地STA发送请求发送(Request ToSend,RTS)帧。此外,发送机STA可以从目的地STA接收允许发送(Clear To Send,STS)帧作为响应。可以通过发送机STA和目的地STA之间的RTS/CTS交换而使用带宽信号来确定HEWPPDU的传输带宽。
如果发送机STA执行空闲信道评估(CCA),并且如果确定40MHz信道是空闲的,则通过40MHz信道发送RTS帧。如果只有20MHz信道是空闲的,则目的地STA仅在20MHz信道中接收RTS帧,并且目的地STA在20MHz信道中使用CTS帧向发送机STA进行响应。由于发送机STA通过40MHz信道来发送RTS帧但是仅在20MHz信道中接收CTS帧作为响应,所以HEW PPDU的传输带宽可以小于或等于其中使用CTS帧来接收响应的信道带宽。
图9示出了根据本发明实施例的带宽信令。STA1是发送机STA,并且STA2是目的地STA。
在发送HEW PPDU之前,STA1向STA2发送RTS帧,并且从STA2接收CTS帧。STA1执行CCA,并且由于确定了80MHz信道是空闲的,所以以复制的方式以20MHz信道为单位通过80MHz信道来发送RTS帧。也就是说,在80MHz波段处发送四个20MHz RTS帧(即,一个20MHzRTS帧和三个复制的RTS帧)。出于减少用于发送RTS帧的STA的PAPR的目的,可以将每个20MHz信道乘以{1,-1,-1,-1}的值。
在STA2中,只有40MHz信道是空闲的,并且因此仅通过40MHz信道来接收RTS帧。STA2在40MHz信道中使用CTS帧对STA1进行响应。
虽然STA1通过80MHz信道来发送RTS帧,但是仅通过40MHz信道来接收CTS帧。因此,在稍后的时间发送的HEW PPDU的传输带宽可以被设置为在其中使用CTS帧来接收响应的40MHz信道带宽。
还可以以20MHz为单位以复制的方式发送CTS帧。出于减少用于发送多个CTS帧的STA2的PAPR的目的,可以将每个20MHz信道乘以{1,j}的值。
可以由发送机STA通过独立地划分信道而同时地向多个目的地STA发送HEW PPDU。在图9中,关于由STA1发送的PSDU,一个PSDU通过使用最低20MHz信道被发送到STA2,并且同时,另一PSDU被通过使用在其上面的20MHz信道发送到STA3。然而,可选地,发送机STA(即STA1)仅向一个目的地STA执行传输而不必独立地划分所有可用信道也是可能的。
当HEW PPDU通过独立地划分信道而同时地被发送到多个目的地STA时,寻址到每个目的地STA的每个PSDU的信道带宽可以局限于小于或等于在其中使用CTS帧来接收响应的信道带宽。并且,HEW PPDU中的所有PSDU的信道带宽之和可以局限于小于或等于在其中使用CTS帧来接收响应的信道带宽。在交换RTS/CTS帧之后,被同时地发送到多个目的地STA的HEW PPDU可以具有寻址到对CTS帧进行响应的STA的PSDU。在图9中,由于STA2用CTS帧进行响应,所以寻址到STA2的PSDU被包括在HEW PPDU中。
可以基于HEW PPDU的传输带宽来确定HEW PPDU的相位旋转序列。当HEW PPDU的传输带宽相同时,发送到单个目的地STA或发送到多个目的地STA的HEW PPDU的相位旋转序列是相同的。在图9中,在40MHz信道中使用512FFT的HEW PPDU正在应用如图6中描述的相同相位旋转序列,尽管HEW PPDU的PSDU被寻址到多个目的地STA。
当在2.4GHz波段处发送HEW PPDU时,需要通过非OFDM帧来发送RTS/CTS以实现与支持IEEE 802.11b/g的传统STA的兼容性。
图10示出了在IEEE 802.11b/g中使用的直接序列扩展频谱(DSSS)PPDU。
如果RTS/CTS帧被以DSSS PPDU格式发送,则如下在8位SERVICE字段中对在该处发送RTS/CTS帧的信道带宽进行编码。
【表2】
Figure BDA0001193995420000171
CH_BANDWIDTH_IN_NON_HT的值被包括在SERVICE字段的B4-B5中,并且被如下编码。
【表3】
CH_BANDWIDTH_IN_NON_HT
CBW5 0
CBW20 1
CBW40 2
CBW80 3
当发送机STA发送RTS帧时,CH_BANDWIDTH_TN_NON_HT被以下述这样的方式编码,即由于被确定为当前空闲而被用来发送RTS帧的全信道带宽具有5MHz、20MHz、40MHz以及80MHz的值。当目的地STA用CTS帧进行响应时,CH_BANDWIDTH_IN_NON_HT被以下述这样的方式编码,即由于被确定为当前空闲而被用来发送CTS帧的全信道带宽具有5MHz、20MHz、40MHz以及80MHz的值。
标志值‘DYN_BANDWIDTH_IN_NON_HT’被包括在SERVICE字段的B6中,并且通过RTS/CTS来指示是否使用动态信道带宽信号。如果使用动态信道带宽信号,则意味着可以用小于首先由发送机STA发送的RTS的全信道带宽的信道带宽来发送HEW PPDU的DATA帧。因此,当目的地STA用CTS帧进行响应时,可以用CTS进行响应,即使被确定为当前空闲的信道带宽小于RTS的全信道带宽也是如此。然而,如果未使用动态信道带宽信号,则意味着不能用小于首先由发送机STA发送的RTS的全信道带宽的信道带宽来发送HEW PPDU的DATA帧。因此,意味着当目的地STA用CTS帧进行响应时,如果被确定为当前空闲的信道带宽小于RTS的全信道带宽,则不允许用CTS帧进行响应。
同时,控制帧(例如,RTS帧、CTS帧、ACK帧、块ACK帧、CF-END帧)包括持续时间字段,其起到保护随后要发送的帧的作用。例如,持续时间字段可以指示剩余传输机会(TXOP)持续时间或者可以指示传输随后的帧所需的估计时间。如果接收STA不是接收帧的目的地STA,则接收STA可以在持续时间字段所指示的时间期间设定网络分配矢量(NAV)。当NAV被设定时,STA认为信道在忙碌且不访问该信道。
一般地,用传统PPDU格式来发送控制帧(例如,RTS帧、CTS帧、ACK帧、块ACK帧、CF-END帧),使得该控制帧可以被所有STA接收。然而,如同通过HEW PPDU来发送控制针,则HEWSIGA的GROUP ID字段和PARTIAL AID字段在HEW PPDU中被分别地设置成63和0。在除控制帧之外的帧的情况下,如下表中所示地配置GROUP ID和PARTIAL AID字段。
【表4】
Figure BDA0001193995420000181
其中,XOR是逐位异或运算,mod X指示X取模运算,dec(A[b:c])是到十进制运算符的计算,其中b被以20缩放,并且c以2c-b缩放。
基本服务集(BSS)可以包括成功地与AP同步的一组STA。基本服务集标识符(BSSID)是相应BSS的48位标识符。
相对于控制帧而将HEW SIGA的GROUP ID字段和PARTIAL AID字段分别地设置成63和0的原因是要允许除目的地STA之外的STA接收相应控制帧,并且通过持续时间字段来正确地配置NAV。
在被发送到AP的控制帧(例如,RTS帧、CTS帧、ACK帧、块ACK帧、CF-END帧等)中,HEWSIGA的GROUP ID和PARTIAL AID被分别地设置成63和0而不是0和BSSID[39:47]。这意味着即使由AP接收到的帧的GROUP ID和PARTIAL AID值被分别地设置成63和0而不是0和BSSID[39:47],AP也必须处理该帧而不是将帧滤出。在被发送到AP的控制帧(例如,RTS帧、CTS帧、ACK帧、块ACK帧、CF-END帧等)中,HEW SIGA的GROUP ID和PARTIAL AID字段被分别地设置成63和0而不是0和BSSID[39:47]。这也意味着即使由STA接收到的帧的GROUP_ID和PARTIAL_AID字段值分别地为63和0而不是63和(dec(AID[0:8])+dec(BSSID[44:47]XOR BSSID[40:43])×25)模数29,STA也必须处理该帧而不是将该帧滤出。
COLOR(色码)值被用于识别BSS,并且其位数小于BSSID的位数。例如,BSSID可以是48位,而COLOR值可以是3位。BSSID具有与MAC地址相同的格式,而COLOR值是由AP预先报告给STA的任何值。
指示COLOR值的COLOR字段可以被包括在HEW-SIGA中。为了报告COLOR字段是否存在,HEW-SIGA还可以包括COLOR指示字段。例如,如果COLOR指示字段被设置成0,则其指示在HEW-SIGA中存在COLOR字段。例如,如果COLOR指示字段被设置成1,则其指示在HEW-SIGA中不存在COLOR字段。
如果COLOR字段被作为用于识别BSS的标识符而包括在HEW SIGA中,则可以将COLOR字段设置成诸如0之类的特定值。
如果接收帧具有被设置成诸如0之类的特定值的COLOR字段,则这意味着需要将接收帧滤出而不是处理。
如上所述,在HEW PPDU格式中,发送机STA可以用独立划分的信道来执行到所述多个目的地STA的同时传输。另外,出于通过RTS/CTS帧的带宽信令的目的,可以在每个子信道中作为PPDU格式来发送RTS/CTS帧。
图11示出了根据本发明的实施例的数据传输。
这是其中发送机STA通过独立地划分信道而向多个目的地STA发送PPDU的情况。发送机STA STA1可以通过独立地划分信道来同时地向所述多个目的地STA执行传输。如果将STA1视为AP,则这是下行链路OFDMA情况。
STA1在主要信道(在图11中的最下部分中所示的信道)中执行回退程序,并且然后发送PPDU。发送机STA需要子同一传输时间期间向所述多个目的地STA(即,STA 2、3、4和5)执行传输。PPDU可以包括用于所述多个目的地STA的多个PSDU。为了使PSDU具有相同的传输时间,将PPDU生成为聚合介质接入控制(MAC)协议数据单元(A-MPDU)。具有0的长度的无效A-MPDU被附着以将传输时间调整成彼此相等。
在所述多个目的地STA接收到PPDU之后,每个目的地STA向STA1发送响应帧(例如,块ACK)。由每个目的地STA发送到STA1的响应帧也必须用相同的传输时间发送。
可以存在用以发送响应帧的两个选项。在第一选项中,所述多个目的地STA通过独立地划分信道而同时地向发送机STA发送响应帧。在第二选项中,每个目的地STA通过使用全信道带宽来连续地向发送机STA发送响应帧。为了支持来自每个目的地STA的连续响应帧传输,发送机STA发送诸如块ACK请求之类的响应请求帧。
当目的地STA向STA1发送响应帧时,响应帧的传输带宽可以小于由STA1发送的PPDU的传输带宽。用于发送机STA的后续PPDU传输的传输带宽可以小于或等于响应帧的传输带宽。
如图11中所示,可以将A-MPDU中的MPDU的持续时间字段设置成相同的值。比较要发送到STA4和STA5的A-MPDU,组成用于STA4的A-MPDU的MPDU的持续时间字段被设置成‘A’。另外,组成用于STA5的A-MPDU的MPDU的持续时间字段也被设置成‘A’。亦即,在其中发送机STA通过独立地划分信道而向所述多个目的地STA执行同时传输的情况下,MPDU的持续时间字段在两个方面(即,在要发送到不同目的地STA的PPDU方面和要发送到一个目的地STA的PPDU方面)具有相同的值。并且,还可以如下解释那两个方面:在要在不同信道上发送的PPDU方面和要在同一信道上发送的PPDU方面。
如果STA接收到在不同信道中发送的PPDU且PPDU在MAC报头中具有相同的TA字段,则这是其中发送机STA通过独立地划分信道来向所述多个目的地STA执行同时传输的情况。如果在某个信道中的PPDU中发生错误,则不能知道错误PPDU的持续时间字段。STA可以从当前在不同信道中接收到的另一PPDU的持续时间字段获得该错误PPDU的持续时间字段。因此,在这种情况下,这意味着当相应STA执行信道接入程序时可以使用DCF帧间间距(DIFS)而不必使用扩展帧间间距(EIFS)。
在其中在STA的信道接入程序期间接收到的帧中发生错误且因此不能读取持续时间字段的情况下,EIFS是通过出于保护可以在稍后时间发送的ACK控制帧的目的而将帧间间距提供为大于或等于ACK控制帧的传输时间的值而被用于信道接入推迟的值。另一方面,DIFS意指在正常数据帧传输中的信道接入程序中提供的最小帧间间距。
图12示出了根据本发明的另一实施例的数据传输。
多个发送机STA通过独立地划分信道来执行到一个目的地STA的同时传输,其与STA1被视为AP的情况下的上行链路OFDMA情况相同。
STA2在主要信道(在图12中的最下部分中所示的信道)中执行回退程序,并且然后发送PPDU。在这种情况下,发送机STA对应于STA 3、4和5,并且通过独立地划分每个信道来执行同时传输。所述多个发送机STA必须在相同传输时间期间向一个指定STA(即,STA1)执行同时传输。STA2、3、4和5可以向一个目的地STA发送多个PPDU。为了使得PPDU具有相同的传输时间,各PPDU被生成为A-MPDU。具有0的长度的无效A-MPDU被附着以将传输时间调整成彼此相等。
在一个目的地STA接收到PPDU之后,该目的地STA向每个发送机STA发送响应帧(例如,块ACK)。该响应帧被目的地STA以相同的传输时间发送到每个发送机STA。
可以存在用以发送响应帧的两个选项。在第一选项中,所述目的地STA通过独立地划分信道而同时地向所述多个发送机STA发送响应帧。在第二选项中,目的地STA针对所述多个发送机STA配置一个块ACK帧,并且通过使用全信道带宽而以广播方式发送帧。
当目的地STA向发送机STA发送响应帧时,响应帧的传输带宽可以小于或等于由发送机STA发送的PPDU的传输带宽的和。用于发送机STA的后续PPDU传输的传输带宽可以小于或等于响应帧的传输带宽。
如图12中所示,可以将由发送机STA发送的MPDU的持续时间字段设置成相同的值。比较由STA 4和5发送的A-MPDU,组成由STA4发送的A-MPDU的MPDU的持续时间字段被设置成‘A’。另外,组成由STA5发送的A-MPDU的MPDU的持续时间字段也被设置成‘A’。亦即,在其中所述多个发送机STA通过独立地划分信道而向一个目的地STA发送同时传输的情况下,MPDU的持续时间字段在两个方面(即在由不同发送机STA发送的PPDU方面和由一个发送机STA发送的PPDU方面)具有相同的值。并且,还可以如下解释那两个方面:在不同信道上发送的PPDU方面和在同一信道上发送的PPDU方面。
如果STA接收到在不同信道中发送的PPDU且PPDU在MAC报头中具有相同的RA字段或者在PLCP报头中具有相同的部分AID(partial AID),则这是其中所述多个发送机STA通过独立地划分信道而向一个目的地STA执行同时传输的情况。如果在某个信道中的PPDU中发生错误,则不能知道错误PPDU的持续时间字段。STA可以从当前在不同信道中接收到的另一PPDU的持续时间字段获得该错误PPDU的持续时间字段值。因此,在这种情况下,这意味着当相应STA执行信道接入程序时可以使用DIFS而不必使用EIFS。
图13是根据本发明实施例的STA的框图。
STA可以包括处理器21、存储器22和射频(RF)模块23。
处理器21实施根据本发明实施例的STA的操作。处理器21可以根据本发明的实施例生成PPDU,并且可以命令RF模块23发送该PPDU。存储器22存储用于处理器21的操作的指令。存储的指令可以由处理器21执行并且可以被实施以执行STA的上述操作。RF模块23发送和接收无线电信号。
处理器可以包括专用集成电路(ASIC)、其他芯片组、逻辑电路和/或数据处理器。存储器可以包括只读存储器(ROM)、随机存取存储器(RAM)、闪速存储器、存储卡、存储介质和/或其他存储装置。RF单元可以包括用于处理无线电信号的基带电路。当在软件中实施上述实施例时,可以使用执行上述功能的模块(过程或功能)来实施上述方案。该模块可以被存储在存储器中并由处理器执行。存储器可以被布置到处理器内部或外部,并使用各种已知的手段连接到处理器。
在上述示例性系统中,虽然已经基于使用一系列步骤或块的流程图描述了所述方法,但是本发明不限于该步骤的序列,并且一些步骤可以以与其余步骤不同的序列来执行或者可以与其余步骤同时执行。此外,本领域中的那些技术人员将理解的是,在流程图中示出的步骤不是排他性的,而是可以包括其他步骤,或者在不影响本发明的范围的情况下可以删除流程图中的一个或多个步骤。

Claims (10)

1.一种用于在无线局域网中进行通信的方法,所述方法包括:
在接收站处在操作带宽上接收多用户物理层协议数据单元(MU-PPDU),所述MU-PPDU包括信号-A字段、信号-B字段和数据部分;
其中,所述信号-A字段包括带宽信息,所述带宽信息指示在其上接收到所述MU-PPDU的操作带宽;
其中,所述数据部分包括至少一个聚合介质访问控制(MAC)协议数据单元(A-MPDU);
其中,所述信号-B字段包括识别承载了用于所述接收站的至少一个A-MPDU的第一子信道的信息;
其中
所述信号-A字段在至少一个第一子载波组上进行相位旋转,每个第一子载波组在所述操作带宽内具有20MHz的带宽,并且
所述信号-B字段在与所述至少一个第一子载波组不同的多个第二子载波组上进行相位旋转,每个第二子载波组在所述操作带宽内具有小于20MHz的带宽;
确定所请求的块确认的类型,所述块确认指示由所述接收站进行的所述至少一个A-MPDU的成功接收;
如果请求了确认的第一类型,则在第二子信道上发送块确认,所述第二子信道被分配给所述接收站;并且
如果请求了确认的第二类型,则在所述操作带宽的所有子信道上发送块确认。
2.根据权利要求1所述的方法,其中,所述MU-PPDU的每个A-MPDU与所述操作带宽内的多个子信道中的一个子信道相关联并且具有至少一个持续时间字段,并且与所述多个子信道相关联的所有A-MPDU中的所有持续时间字段被设置为相同值。
3.根据权利要求1所述的方法,其中,所述信号-A字段与第一快速傅立叶变换(FFT)尺寸相关联,并且所述数据部分与第二FFT尺寸相关联;并且
其中所述第二FFT尺寸是所述第一FFT尺寸的四倍。
4.根据权利要求3所述的方法
其中,当所述操作带宽为20MHz时,所述第一FFT尺寸为64,并且所述第二FFT尺寸为256;
其中,当所述操作带宽为40MHz时,所述第一FFT尺寸为128,并且所述第二FFT尺寸为512;
其中,当所述操作带宽为80MHz时,所述第一FFT尺寸为256,并且所述第二FFT尺寸为1024;并且
其中,当所述操作带宽为160MHz时,所述第一FFT尺寸为512,并且所述第二FFT尺寸为2048。
5.根据权利要求1所述的方法,其中,所述信号-A字段包括空时块码(STBC)信息,所述STBC信息具有一个位并且指示所述STBC是否被施加到所述数据部分。
6.一种被配置为用于在无线局域网中进行通信的装置,所述装置包括:
射频模块,其被配置为发送和接收无线电信号;以及
处理器,其与所述射频模块可操作地耦合,并且被配置为:
在操作带宽上处理多用户物理层协议数据单元(MU-PPDU),所述MU-PPDU包括信号-A字段、信号-B字段和数据部分;
其中,所述信号-A字段包括带宽信息,所述带宽信息指示在其上接收到所述MU-PPDU的操作带宽;
其中,所述数据部分包括至少一个聚合介质访问控制(MAC)协议数据单元(A-MPDU);
其中,所述信号-B字段包括识别承载了用于所述接收站的至少一个A-MPDU的第一子信道的信息;
其中
所述信号-A字段在至少一个第一子载波组上进行相位旋转,每个第一子载波组在所述操作带宽内具有20MHz的带宽,并且
所述信号-B字段在与所述至少一个第一子载波组不同的多个第二子载波组上进行相位旋转,每个第二子载波组在所述操作带宽内具有小于20MHz的带宽;
确定请求的块确认的类型,所述块确认指示由所述装置进行的所述至少一个A-MPDU的成功接收;
如果请求了确认的第一类型,则致使所述射频模块在第二子信道上发送块确认,所述第二子信道被分配给所述装置;并且
如果请求了确认的第二类型,则致使所述射频模块在所述操作带宽的所有子信道上发送块确认。
7.根据权利要求6所述的装置,其中,所述MU-PPDU的每个A-MPDU与所述操作带宽内的多个子信道中的一个子信道相关联并且具有至少一个持续时间字段,并且与所述多个子信道相关联的所有A-MPDU中的所有持续时间字段被设置为相同值。
8.根据权利要求6所述的装置,其中,所述信号-A字段与第一快速傅立叶变换(FFT)尺寸相关联,并且所述数据部分与第二FFT尺寸相关联;并且
其中所述第二FFT尺寸是所述第一FFT尺寸的四倍。
9.根据权利要求8所述的装置
其中,当所述操作带宽为20MHz时,所述第一FFT尺寸为64,并且所述第二FFT尺寸为256;
其中,当所述操作带宽为40MHz时,所述第一FFT尺寸为128,并且所述第二FFT尺寸为512;
其中,当所述操作带宽为80MHz时,所述第一FFT尺寸为256,并且所述第二FFT尺寸为1024;并且
其中,当所述操作带宽为160MHz时,所述第一FFT尺寸为512,并且所述第二FFT尺寸为2048。
10.根据权利要求6所述的装置,其中,所述信号-A字段包括空时块码(STBC)信息,所述STBC信息具有一个位并且指示所述STBC是否被施加到所述数据部分。
CN201580035091.5A 2014-06-27 2015-06-26 用于发送数据的方法和装置 Active CN107079485B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20140080171 2014-06-27
KR10-2014-0080171 2014-06-27
PCT/IB2015/001260 WO2015198143A2 (en) 2014-06-27 2015-06-26 Method and device for transmitting data

Publications (2)

Publication Number Publication Date
CN107079485A CN107079485A (zh) 2017-08-18
CN107079485B true CN107079485B (zh) 2020-10-30

Family

ID=54938882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580035091.5A Active CN107079485B (zh) 2014-06-27 2015-06-26 用于发送数据的方法和装置

Country Status (4)

Country Link
US (2) US9712297B2 (zh)
EP (1) EP3162152A4 (zh)
CN (1) CN107079485B (zh)
WO (1) WO2015198143A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344914B2 (en) * 2014-05-21 2016-05-17 Qualcomm Incorporated Modem assisted contention handling of multiple active connections in wireless communications
US20160057657A1 (en) * 2014-08-20 2016-02-25 Newracom, Inc. Physical layer protocol data unit format including padding in a high efficiency wireless lan
KR102178127B1 (ko) * 2014-11-28 2020-11-13 주식회사 윌러스표준기술연구소 다중 사용자 상향 전송을 위한 무선 통신 방법 및 무선 통신 단말
EP3229433B1 (en) * 2014-12-05 2023-11-29 LG Electronics Inc. Method for transmitting/receiving ppdu in wireless communication system and apparatus therefor
US9967877B2 (en) 2015-02-17 2018-05-08 Newracom, Inc. Method and apparatus for frame exchange in a high efficiency wireless LAN
US10863539B2 (en) * 2016-09-22 2020-12-08 Qualcomm Incorporated Transmission opportunity truncation
WO2019040345A1 (en) * 2017-08-22 2019-02-28 Intel Corporation APPARATUS, SYSTEM AND METHOD FOR MULTIPLE ACCESS POINT (AP) CHANNEL (MACB) CHANNEL LINKAGE
WO2023200283A1 (ko) * 2022-04-14 2023-10-19 엘지전자 주식회사 무선랜 시스템에서 새로운 뉴머롤로지에 대한 톤 할당 기반 송신 또는 수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074316A3 (en) * 2010-12-01 2012-07-26 Lg Electronics Inc. Method and apparatus of link adaptation in wireless local area network
WO2013074917A1 (en) * 2011-11-16 2013-05-23 Marvell World Trade Ltd. Frequency duplication mode for use in wireless local area networks (wlans)
WO2013130793A1 (en) * 2012-03-01 2013-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054296B1 (en) 1999-08-04 2006-05-30 Parkervision, Inc. Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation
US6721315B1 (en) 1999-09-30 2004-04-13 Alcatel Control architecture in optical burst-switched networks
US20030055881A1 (en) 2001-09-14 2003-03-20 Ngo Kim Cuc Method and apparatus for transmitting data over a network
FR2841769B1 (fr) 2002-07-02 2004-09-03 Berrehail Mohammed Immobilisateur dynamique elastique pour doigts ou orteils
US7412254B2 (en) 2004-10-05 2008-08-12 Nortel Networks Limited Power management and distributed scheduling for uplink transmissions in wireless systems
KR100765776B1 (ko) 2005-12-13 2007-10-12 삼성전자주식회사 무선랜에서 매체 접근에 대한 충돌을 방지하는 방법 및장치
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
US8787841B2 (en) 2006-06-27 2014-07-22 Qualcomm Incorporated Method and system for providing beamforming feedback in wireless communication systems
US20080019373A1 (en) 2006-07-20 2008-01-24 Motorola, Inc. System and method for scheduling data transmissions
KR100880885B1 (ko) 2006-12-31 2009-01-30 포스데이타 주식회사 무선통신 시스템에서의 상향링크 신호 전송 장치 및 방법
US7907909B2 (en) 2008-09-18 2011-03-15 Motorola Mobility, Inc. Method and system for radio frequency (RF) group delay compensation in a broadcast system
US8264946B2 (en) 2008-12-31 2012-09-11 Qualcomm Incorporated Methods and systems for PAPR reduction in SC-FDMA systems
US8879523B2 (en) 2009-06-05 2014-11-04 Broadcom Corporation Management frame directed cluster assignment within multiple user, multiple access, and/or MIMO wireless communications
US8885535B2 (en) 2009-06-05 2014-11-11 Broadcom Corporation Management frame map directed operational parameters within multiple user, multiple access, and/or MIMO wireless communications
EP2441200A1 (en) 2009-06-12 2012-04-18 Fundacio Privada Centre Tecnologic de Telecomunicacions de Catalunya Method and apparatus for medium access control in a wireless broadband system with multiple-input multiple-output or multiple-input single-output technology with multiuser capabilities
US20110013575A1 (en) 2009-07-16 2011-01-20 Yen-Chin Liao Method of generating preamble sequence for wireless local area network system and device thereof
US8488539B2 (en) 2009-07-16 2013-07-16 Ralink Technology Corp. Method of generating preamble sequence
US8681815B1 (en) 2009-08-28 2014-03-25 Marvell International Ltd. Method and apparatus for multi-user frame aggregation
US8582418B2 (en) 2009-10-26 2013-11-12 Electronics And Telecommunications Research Institute Packet mode auto-detection in multi-mode wireless communication system, signal field transmission for the packet mode auto-detection, and gain control based on the packet mode
US8886755B1 (en) 2009-12-09 2014-11-11 Marvell International Ltd. Method and apparatus for facilitating simultaneous transmission from multiple stations
AU2010343746B2 (en) 2010-01-22 2015-02-05 Sony Corporation OFDM Generation and Apparatus in a Multi-carrier Data Transmission System
KR101621103B1 (ko) * 2010-02-26 2016-05-16 엘지전자 주식회사 무선랜 시스템에서 전송 채널 할당 방법 및 장치
US8982758B2 (en) 2010-03-29 2015-03-17 Intel Corporation Techniques for efficient acknowledgement for UL MU MIMO and uplink OFDMA in wireless networks
US8594007B2 (en) * 2010-04-23 2013-11-26 Qualcomm Incorporated Sequential ACK for multi-user transmissions
US8306010B2 (en) 2010-04-28 2012-11-06 Intel Corporation Systems and methods for uplink multi-user multiple input multiple output (MU MIMO) medium access and error recovery
US9337954B2 (en) 2010-07-28 2016-05-10 Qualcomm Incorporated Protocol for channel state information feedback
US10033485B2 (en) 2010-08-25 2018-07-24 Qualcomm Incorporated Managing acknowledgement messages from multiple destinations for multi user MIMO transmissions
US8908555B2 (en) 2010-09-27 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Technique for channel estimation in the presence of a signal phase discontinuity
US8411632B2 (en) 2010-11-04 2013-04-02 Nokia Corporation Transmission protection scheme
AU2011304258B2 (en) 2010-11-26 2014-02-13 Lg Electronics Inc. Method for reporting channel information based on link adaptation in wireless local area network and the apparatus for the same
US9014105B2 (en) 2010-11-30 2015-04-21 Stmicroelectronics, Inc. 80MHZ/160MHZ transmission opportunity (TXOP) protection in 802.11ac transmissions
US9118473B2 (en) 2011-03-15 2015-08-25 Qualcomm Incorporated Efficient multi-user multiple input multiple output (MU-MIMO)
KR101749064B1 (ko) 2011-03-24 2017-06-20 삼성전자주식회사 양방향 이벤트 검출을 지원하는 센서 네트워크의 이벤트 전송 방법 및 장치
KR101538255B1 (ko) 2011-04-26 2015-07-20 인텔 코포레이션 저 전력 무선 네트워크를 위한 방법 및 장치
US9088908B2 (en) * 2011-06-08 2015-07-21 Marvell World Trade Ltd. Efficient transmission for low data rate WLAN
US8923146B2 (en) 2011-08-31 2014-12-30 Nokia Corporation Channel reservation procedure
US8917705B2 (en) 2011-09-29 2014-12-23 Qualcomm Incorporated Collision reduction mechanisms for wireless communication networks
US8897298B2 (en) 2011-11-02 2014-11-25 Qualcomm Incorporated Systems and methods for compressing headers and payloads
JP5651577B2 (ja) 2011-12-28 2015-01-14 株式会社東芝 平滑化装置、プログラム、及びシステム
EP2803175B1 (en) 2012-01-13 2019-06-05 Marvell World Trade Ltd. Data unit format for single user beamforming in long-range wireless local area networks (wlans)
US9271107B2 (en) 2012-01-30 2016-02-23 Lg Electronics Inc. Connection establishment method and apparatus for MTC UE
EP2810493B1 (en) 2012-02-03 2016-08-17 LG Electronics Inc. Method for transmitting and receiving frame performed by station operating in power save mode in wireless local area network system and apparatus for the same
US9467211B2 (en) 2012-03-15 2016-10-11 Telefonatiebolaget L M Ericsson Induced incoherency for joint transmission
WO2013147532A1 (ko) 2012-03-28 2013-10-03 엘지전자 주식회사 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
US9887821B2 (en) 2012-04-15 2018-02-06 Lg Electronics Inc. Method and apparatus for transmitting and receiving feedback trigger frames in wireless LAN systems
EP2849358B1 (en) 2012-05-06 2019-08-07 LG Electronics Inc. Method and apparatus for transmitting data
US20130343300A1 (en) 2012-06-21 2013-12-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
US9078277B2 (en) 2012-08-21 2015-07-07 International Business Machines Corporation Network and user behavior based time-shifted mobile data transmission
US9179397B2 (en) 2012-08-22 2015-11-03 Qualcomm Incorporated Wireless local area network discovery using non-WLAN timing reference
WO2014100932A1 (zh) 2012-12-24 2014-07-03 华为技术有限公司 资源竞争的方法、利用资源竞争的方法及其装置
US9001797B2 (en) 2013-01-04 2015-04-07 Qualcomm Incorporated Systems and for reducing interference in long-range wireless communication
CN104066145B (zh) 2013-03-22 2017-08-29 华为技术有限公司 Ofdma竞争方法及接入点
WO2014158208A1 (en) 2013-03-29 2014-10-02 Intel Corporation Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo)
US9941982B2 (en) 2013-04-10 2018-04-10 Marvell World Trade Ltd. Method and apparatus for testing the beamforming performance of a wireless communication device
EP2996271B1 (en) * 2013-05-07 2019-09-11 LG Electronics Inc. Method and device for transmitting data unit
US20150110046A1 (en) 2013-10-17 2015-04-23 Qualcomm Incorporated Methods and apparatus for channel state information feedback
US20160142122A1 (en) 2013-10-17 2016-05-19 Qualcomm Incorporated Methods and apparatus for channel state information feedback
US9961510B2 (en) 2013-11-01 2018-05-01 Qualcomm Incorporated Protocols for multiple user frame exchanges
US10230497B2 (en) 2013-11-01 2019-03-12 Qualcomm Incorporated Protocols for multiple user frame exchanges
WO2015081132A1 (en) * 2013-11-27 2015-06-04 Marvell World Trade Ltd. Orthogonal frequency division multiple access for wireless local area network
US9755795B2 (en) * 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format
JP6244998B2 (ja) 2014-03-11 2017-12-13 富士通株式会社 情報通信方法及び情報処理装置
CN106031123A (zh) 2014-03-28 2016-10-12 英特尔Ip公司 上行链路mu-mimo中的改进信令字段
US9894561B2 (en) 2014-05-23 2018-02-13 Qualcomm, Incorporated Signaling soft time division multiplexing in enhanced distributed channel access
US9912388B2 (en) * 2014-06-12 2018-03-06 Marvell World Trade Ltd. Sub-channel allocation in orthogonal frequency division multiplex WLAN
US9681335B2 (en) * 2014-06-19 2017-06-13 Samsung Electronics Co., Ltd. Methods for bandwidth efficient operations in wireless local area networks
US9936492B2 (en) * 2014-07-11 2018-04-03 Qualcomm Incorporated Methods and systems for multi user uplink compatibility with legacy devices
CN105337705B (zh) 2014-08-06 2020-06-23 中兴通讯股份有限公司 数据发送反馈、数据发送方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074316A3 (en) * 2010-12-01 2012-07-26 Lg Electronics Inc. Method and apparatus of link adaptation in wireless local area network
WO2013074917A1 (en) * 2011-11-16 2013-05-23 Marvell World Trade Ltd. Frequency duplication mode for use in wireless local area networks (wlans)
WO2013130793A1 (en) * 2012-03-01 2013-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems

Also Published As

Publication number Publication date
WO2015198143A3 (en) 2016-02-18
US9712297B2 (en) 2017-07-18
EP3162152A4 (en) 2018-03-07
CN107079485A (zh) 2017-08-18
US20170104565A1 (en) 2017-04-13
US10355837B2 (en) 2019-07-16
EP3162152A2 (en) 2017-05-03
US20170317802A1 (en) 2017-11-02
WO2015198143A2 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
US11716651B2 (en) Method and device for transmitting data
US10355755B2 (en) Method and device for transmitting data unit
CN106538029B (zh) 用于发送数据单元的方法和装置
CN107079485B (zh) 用于发送数据的方法和装置
CN106664177B (zh) 用于发送数据的方法和装置
CN106664178B (zh) 带宽信令

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200507

Address after: Sejong special municipality of South Korea

Applicant after: Tekovlex

Address before: Sejong special municipality of South Korea

Applicant before: TECHFLUX, Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211202

Address after: Gyeonggi Do, South Korea

Patentee after: SAMSUNG ELECTRONICS Co.,Ltd.

Address before: South Korea Sejong City

Patentee before: Tekovlex

TR01 Transfer of patent right