WO2017061121A1 - オートレベリング装置 - Google Patents

オートレベリング装置 Download PDF

Info

Publication number
WO2017061121A1
WO2017061121A1 PCT/JP2016/004502 JP2016004502W WO2017061121A1 WO 2017061121 A1 WO2017061121 A1 WO 2017061121A1 JP 2016004502 W JP2016004502 W JP 2016004502W WO 2017061121 A1 WO2017061121 A1 WO 2017061121A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
headlight
optical axis
leveling device
Prior art date
Application number
PCT/JP2016/004502
Other languages
English (en)
French (fr)
Inventor
江波 康彦
松本 憲一
真樹 中村
岳志 森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017061121A1 publication Critical patent/WO2017061121A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps

Definitions

  • the present invention relates to an automatic leveling device that adjusts the irradiation direction of a headlight according to the inclination of the vehicle in the elevation direction.
  • Patent Document 1 uses a sensor that detects the tilt of a vehicle and an actuator that tilts and drives the headlight of the vehicle in the vertical direction to change the direction of the headlight according to the tilt of the vehicle.
  • a technique for adjusting the irradiation direction of the headlight is described.
  • the headlight needs to be physically driven with a certain degree of accuracy.
  • the drive system of the headlight may be deteriorated due to vibration or the like accompanying traveling of the car, and the drive accuracy may be deteriorated.
  • an object of the present invention is to provide an auto leveling device that can eliminate the need for physical driving of a headlight.
  • An auto-leveling device includes a headlight mounted on a vehicle, a sensor that detects a tilt of the vehicle in an elevation angle direction, and a control unit that controls a light emission state of the headlight.
  • a first light source that emits light having a first optical axis from the headlight; and a second light that emits light having a second optical axis different from the first optical axis in the elevation angle direction from the headlight.
  • a light source, and the control unit changes a ratio of the light amount of the first light source and the light amount of the second light source in accordance with the inclination detected by the sensor to change the first light source and the first light source.
  • the control is performed by dimming two light sources.
  • the auto leveling device can adjust the irradiation direction of the headlight according to the inclination in the elevation direction of the vehicle without changing the direction of the headlight. For this reason, according to this auto leveling device, the physical drive of the headlight can be made unnecessary.
  • FIG. 1 is a block diagram illustrating a configuration of an auto leveling apparatus according to an embodiment.
  • FIG. 2 is a perspective view of a vehicle equipped with an auto leveling device.
  • FIG. 3A is a front view of the headlight.
  • 3B is a cross-sectional view taken along line XX-XX in FIG. 3A.
  • FIG. 4 is a schematic diagram illustrating an example of an irradiation region irradiated by the headlight.
  • FIG. 5A is a schematic diagram illustrating the relationship between the triaxial direction of the sensor and the front direction of the vehicle.
  • FIG. 5B is a schematic diagram illustrating a relationship between the inclination in the elevation direction of the vehicle and the acceleration in the x-axis direction, the acceleration in the y-axis direction, and the acceleration in the z-axis direction, which are output from the sensor.
  • FIG. 6 is a schematic diagram showing the relationship between the inclination of the vehicle in the elevation direction and the irradiated area.
  • FIG. 7 is an image diagram for explaining dimming performed by the control unit according to the embodiment.
  • FIG. 8 is an image diagram for explaining dimming performed by the control unit in the modification.
  • FIG. 9A is a schematic diagram 1 showing an arrangement shape of light sources in a modified example.
  • FIG. 9B is a second schematic diagram showing the arrangement shape of the light sources in the modification.
  • FIG. 9C is a third schematic diagram illustrating an arrangement shape of light sources in a modification.
  • FIG. 10 is a schematic diagram 4 showing an arrangement shape of light sources in a modified example.
  • FIG. 11 is a schematic diagram No. 5 showing an arrangement shape of light sources in a modified example.
  • FIG. 12 is a perspective view of a vehicle equipped with an automatic leveling device according to a modification.
  • FIG. 1 is a block diagram showing a configuration of an auto leveling apparatus 1 according to the present embodiment.
  • FIG. 2 is a perspective view of the vehicle 40 on which the auto leveling device 1 is mounted.
  • the auto leveling device 1 includes a headlight 10, a control unit 20, and a sensor 30.
  • the headlight 10 includes, for example, a headlight 10a mounted on the front right side of the vehicle 40 and a headlight 10b mounted on the front left side of the vehicle 40, as shown in FIG.
  • a headlight 10a mounted on the front right side of the vehicle 40
  • a headlight 10b mounted on the front left side of the vehicle 40, as shown in FIG.
  • the headlight 10a and the headlight 10b have the same configuration.
  • the headlight 10a will be described as a representative of these.
  • the headlight 10 a is mounted on the vehicle such that the front direction thereof coincides with the front direction of the vehicle 40.
  • the senor 30 is mounted inside the vehicle body of the vehicle 40 and detects the inclination of the vehicle 40 in the elevation angle direction.
  • the sensor 30 is demonstrated as what is implement
  • control unit 20 is mounted inside the vehicle body of the vehicle 40 and controls the light emission state of the headlight 10.
  • control part 20 demonstrates as what is implement
  • Headlight 10a 3A is a front view of the headlight 10a, and FIG. 3B is a cross-sectional view taken along line XX-XX in FIG. 3A.
  • the headlight 10a has 16 light sources (light source 31a, light source 31b, light source 32a, light source 32b, light source 33a, light source 33b, light source) arranged in an array of 8 rows and 2 columns.
  • the light sources are arranged in an array of M rows and N columns (M is an integer of 2 or more, N is an integer of 1 or more), the light sources are in an array of 8 rows and 2 columns.
  • M is an integer of 2 or more
  • N is an integer of 1 or more
  • the light sources are in an array of 8 rows and 2 columns.
  • the light source is not necessarily limited to one specific example arranged in an array of 8 rows and 2 columns, and is expressed by any two or more integers M and any one or more integers N.
  • a specific example is also conceivable, which is arranged in an array of M rows and N columns.
  • the array arrangement plate 29 is a plane perpendicular to the front direction of the headlight 10a.
  • the 16 light sources are arranged on the surface of the array arrangement plate 29 in an array having the elevation direction as a row and the direction perpendicular to both the elevation direction and the front direction of the headlight 10a as the row direction. Has been.
  • Each light source is realized by, for example, an LED (Light Emitting Diode).
  • LED Light Emitting Diode
  • the shape and the maximum light amount of each light source are equal.
  • Each of the light sources arranged in the same row (for example, the light source 31a and the light source 31b) has the same function.
  • the light source 31a, the light source 32a, the light source 33a, the light source 34a, the light source 35a, the light source 36a, the light source 37a, and the light source, which are positioned in the column on the line XX-XX are representative of the light sources arranged in the same row. This will be described with reference to 38a.
  • the lens 39 refracts the light incident from each light source and emits it to the outside. More specifically, the lens 39 refracts the light incident from the light source 31a and emits it as light having the optical axis 51, and refracts the light incident from the light source 32a to have the optical axis 52.
  • Light is emitted as light, refracted light incident from the light source 33a, emitted as light having the optical axis 53, and refracted light incident from the light source 34a, and externally as light having the optical axis 54
  • the light emitted from the light source 35a is refracted and emitted as light having the optical axis 55
  • the light incident from the light source 36a is refracted and emitted as light having the optical axis 56 to the outside.
  • each optical axis with respect to the front direction of the headlight 10a that is, the angle of each optical axis in the elevation direction of the vehicle 40 is as shown in FIG. 3B. That is, the angle of the optical axis 51 is ⁇ 1, the angle of the optical axis 52 is ⁇ 2 ( ⁇ 2 ⁇ 1), the angle of the optical axis 53 is ⁇ 3 ( ⁇ 3 ⁇ 2), the angle of the optical axis 54 is ⁇ 4 ( ⁇ 4 ⁇ 3), and light
  • the angle of the axis 55 is - ⁇ 4, the angle of the optical axis 56 is - ⁇ 3, the angle of the optical axis 57 is - ⁇ 2, and the angle of the optical axis 58 is - ⁇ 1.
  • the headlight 10a is different from the first optical axis in the elevation angle direction from the first light source (for example, the light source 31a) that emits light having the first optical axis (for example, the optical axis 51) from the headlight 10a.
  • a second light source e.g., light source 32a
  • an angular second optical axis e.g., optical axis 52.
  • FIG. 4 is a schematic diagram showing an area irradiated by the headlight 10a when the headlight 10a is oriented in a horizontal plane (a plane perpendicular to the direction of gravity) in the elevation angle direction of the vehicle 40.
  • the irradiation surface 49 is a plane perpendicular to the front direction of the headlight 10a at a position 50 cm away from the front direction of the headlight 10a.
  • the horizontal line 50 is a straight line where the horizontal plane passing through the midpoint of the line segment connecting the center of the light source 33 a and the center of the light source 34 a intersects the irradiation surface 49.
  • the region 41 is a region irradiated with light having an optical axis 51 emitted from the lens 39 to the outside.
  • the regions 42 to 48 are regions irradiated with light having an optical axis 52 to light having an optical axis 58 emitted from the lens 39 to the outside, respectively.
  • the area 41 is an area with an elevation angle of 8.53 degrees to 11.31 degrees with respect to the front direction of the headlight 10a, and the area 42 is in the front direction of the headlight 10a.
  • the elevation angle is in the range of 5.71 degrees to 8.53 degrees
  • the area 43 is in the range of the elevation angle of 2.86 degrees to 5.71 degrees with respect to the front direction of the headlight 10a.
  • the region 44 is a region having an elevation angle of 0 ° to 2.86 ° with respect to the front direction of the headlight 10a
  • the region 45 is an elevation angle of 0 ° to ⁇ 2 with respect to the front direction of the headlight 10a.
  • the region 46 is a region in the range of .86 degrees
  • the region 46 is a region having an elevation angle of ⁇ 2.86 degrees to ⁇ 5.71 degrees with respect to the front direction of the headlight 10a
  • the region 47 is the headlight 10a.
  • the elevation angle is -5.71 degrees to- An area of .53 degrees range, region 41, to the front direction of the headlight 10a, a region in the range of elevation angles -8.53 degrees to -11.31 degrees.
  • FIG. 5A is a schematic diagram showing the relationship between the directions of the three axes (x-axis, y-axis, and z-axis) in the sensor 30 that is a three-axis acceleration sensor and the front direction of the vehicle 40.
  • the senor 30 has an x-axis that matches the front direction of the vehicle 40, a y-axis that matches the right side surface direction of the vehicle 40, and a z-axis that matches the bottom surface direction of the vehicle 40. It is mounted on the vehicle 40 as described above.
  • FIG. 5B is a schematic diagram showing the relationship between the inclination of the vehicle 40 in the elevation angle direction and the acceleration in the x-axis direction, the acceleration in the y-axis direction, and the acceleration in the z-axis direction output from the sensor 30.
  • the sensor 30 can uniquely detect the inclination of the vehicle 40 in the elevation direction by outputting the acceleration in the x-axis direction.
  • the control unit 20 changes the ratio between the light amount of the first light source (for example, the light source 31a) and the light amount of the second light source (for example, the light source 32a) in accordance with the inclination detected by the sensor 30, thereby
  • the light emission state of the headlight 10a is controlled by dimming the light source and the second light source.
  • control unit 20 performs the dimming so that the light emitted from the headlight 10a irradiates a horizontal plane (a plane perpendicular to the direction of gravity) in the elevation angle direction of the vehicle 40.
  • FIG. 6 is a schematic diagram showing a specific example of the relationship between the inclination in the elevation direction of the vehicle 40 detected by the sensor 30 and the region irradiated by the headlight 10a dimmed by the sensor 30.
  • is the inclination in the elevation angle direction of the vehicle 40 detected by the sensor 30.
  • the virtual horizontal irradiation region 60 has a length of L / 2 above and below the intersection line with the horizontal plane passing through the midpoint of the line segment connecting the center of the light source 33a and the center of the light source 34a on the irradiation surface 49. It is a virtual area.
  • L is the length in the vertical direction in the irradiated region when the irradiation surface 49 is irradiated vertically by the light emitted from any one of the light sources 31a to 38a.
  • a part of the virtual horizontal irradiation region 60 overlaps with the region 41 and the other portion overlaps with the region 42.
  • the ratio of the area of the portion where the virtual horizontal irradiation region 60 and the region 41 overlap and the area of the portion where the virtual horizontal irradiation region 60 and the region 42 overlap is 30:70.
  • control unit 20 adjusts the light amount of each light source (light source 31a to light source 38a) so that the ratio between the light amount of the light source 31a and the light amount of the light source 32a is 30:70.
  • the control unit 20 determines that the first optical axis (for example, the optical axis 51) has a second angle (for example, ( ⁇ 1- ⁇ 2) that is higher than the first angle (for example, ( ⁇ 1 + ⁇ 2) / 2) in the elevation direction. ) / 2) is larger in direction (ie, ⁇ 1), and the second optical axis (eg, optical axis 52) is in the elevation direction smaller than the first angle by a second angle (ie, ⁇ 2).
  • the first optical axis for example, the optical axis 51
  • the second optical axis eg, optical axis 52
  • FIG. 7 is an image diagram for explaining dimming performed by the control unit 20.
  • the area A71 is any one of the areas 41 to 47.
  • the area B72 is any one of the areas 42 to 48, which is located immediately below the area A71.
  • the ratio of the area of the portion where the virtual horizontal irradiation region 60 and the region A71 overlap and the area of the portion where the virtual horizontal irradiation region 60 and the region B72 overlap is m: n.
  • the control unit 20 controls the light amount of the light source A (any one of the light sources 31a to 37a) that irradiates the region A71 and the light source B (the light sources 32a to 38a) that irradiates the region B72.
  • the light sources 31a to 38a are dimmed so that becomes zero.
  • the control unit 20 sets the light amount of the light source A to the maximum light amount ⁇ m / (m + n) and the light amount of the light source B to the maximum light amount ⁇
  • the light sources 31a to 38a are dimmed so that the light quantity of the other light sources becomes the maximum light quantity ⁇ 0.
  • the total amount of light emitted from the light sources in each column in the light source array is the maximum amount of light emitted from the headlight 10a.
  • the auto-leveling device 1 having the above-described configuration is configured so that the light emitted from the headlight 10a irradiates the direction of the horizontal plane in the elevation angle direction of the vehicle 40 according to the inclination of the vehicle 40 in the elevation angle direction. Dimming each light source.
  • the headlight 10a does not require physical driving of the headlight 10a, and the horizontal surface of the headlight 10a in the elevation direction of the vehicle 40 is independent of the inclination of the vehicle 40 in the elevation angle direction.
  • the direction can be irradiated.
  • the auto leveling device 1 determines that the control unit 20 calculates the total light amount emitted from the light sources in each column in the light source array as the maximum light amount for one light source. It was an example of the structure which adjusts light so that it becomes.
  • the dimming performed by the control unit 20 is not necessarily performed as long as each light source can be dimmed so that the light emitted from the headlight 10a illuminates the direction of the horizontal plane in the elevation angle direction of the vehicle 40. It is not necessary to be limited to dimming as described in the form.
  • the control unit 20 adjusts the total light amount emitted from the light sources in each column in the light source array so as to be the maximum light amount for two light sources.
  • An example of a configuration that shines can be considered.
  • FIG. 8 is an image diagram for explaining dimming performed by the control unit 20 in the modification.
  • the virtual horizontal irradiation region 80 has a length of L on each of the upper and lower sides of the irradiation surface 49 around the intersection line with the horizontal plane passing through the midpoint of the line segment connecting the center of the light source 33a and the center of the light source 34a. It is a virtual area consisting of
  • L is the length in the vertical direction in the irradiated region when the irradiation surface 49 is irradiated vertically by the light emitted from any one of the light sources 31a to 38a.
  • the area A81 is any one of the areas 41 to 46.
  • the region B82 is any one of the regions 42 to 47, which is located immediately below the region A81.
  • the region C83 is any one of the regions 43 to 48 located immediately below the region B82.
  • Part of the area A81 overlaps the virtual horizontal irradiation area 80.
  • the region B82 entirely overlaps the virtual horizontal irradiation region 80.
  • Part of the region C83 overlaps the virtual horizontal irradiation region 80.
  • the ratio of the area of the portion where the virtual horizontal irradiation region 80 and the region A81 overlap and the area of the portion where the virtual horizontal irradiation region 80 and the region C83 overlap is k: l.
  • the control unit 20 controls the light amount of the light source A (any one of the light sources 31a to 36a) that irradiates the area A81 and the light source B (the light sources 32a to 37a) that irradiates the area B82. (One of them) and the ratio of the light quantity of the light source C (any one of the light sources 33a to 38a) that irradiates the region C83 is k / (k + l): 1: 1 / ( k + 1), and the light sources 31a to 38a are dimmed so that the light amount of the other light sources (light sources other than the light sources A, B, and C among the light sources 31a to 38a) becomes zero.
  • the control unit 20 sets the light amount of the light source A to the maximum light amount ⁇ k / (k + 1) and the light amount of the light source B to the maximum light amount.
  • the light sources 31a to 38a are dimmed so that the light amount of the light source C is the maximum light amount ⁇ 1 / (k + 1) and the light amounts of the other light sources are the maximum light amount ⁇ 0.
  • the total amount of light emitted from the light sources in each column in the light source array is the maximum amount of light emitted from the headlight 10a.
  • the auto leveling device 1 is an example of a configuration in which the headlight 10a has 16 light sources arranged in an array of 8 rows and 2 columns.
  • the headlight 10a has a first light source that emits light having the first optical axis from the headlight 10a and light having a second optical axis that is different from the first optical axis in the elevation direction. If it has the 2nd light source which emits, it does not necessarily need to be limited to the structure as embodiment.
  • the auto leveling device 1 includes an array in which the headlights 10a include first and second rows that are staggered from each other, or first and second columns that are staggered from each other.
  • the headlights 10a include first and second rows that are staggered from each other, or first and second columns that are staggered from each other.
  • FIG. 9A, FIG. 9B, and FIG. 9C are schematic views showing the arrangement shape of the light sources in the modified example.
  • each square figure indicates a light source.
  • a plurality of light sources are arranged in an array including rows or columns that are staggered from each other, so that a plurality of light sources are included in rows or columns that are staggered from each other.
  • the direction in which the light emitted from the headlight 10a is irradiated can be controlled at a finer angle than in the case where the light is emitted from the headlight 10a.
  • the auto leveling device 1 includes a first row of headlights 10a composed of light sources of a first size and a second row of light sources of a second size smaller than the first size.
  • a first row of headlights 10a composed of light sources of a first size
  • a second row of light sources of a second size smaller than the first size.
  • FIG. 10 is a schematic diagram showing an arrangement shape of light sources in a modified example.
  • each square figure represents a light source.
  • the larger square figure indicates that the light source has a larger size.
  • the light source arranged in the center is a light source having a relatively large size.
  • positioned at an edge is a light source with a comparatively small size.
  • positioned at an edge is arrange
  • the direction in which the light emitted from the headlight 10 a is irradiated can be controlled at a finer angle as the inclination of the vehicle 40 increases. It becomes like this.
  • the auto leveling device 1 may have an example in which the headlight 10a has a light source arranged in a shape other than an array.
  • FIG. 11 is a schematic diagram showing an arrangement shape of light sources in a modified example.
  • each square figure represents a light source. These light sources are arranged so as to be elliptical as a whole by removing the light sources at the corners from the 7 ⁇ 6 array.
  • the auto leveling device 1 is an example of a configuration that adjusts the irradiation direction of the headlight 10a according to the inclination of the vehicle 40 in the elevation angle direction.
  • the auto leveling device 1 irradiates the right side of the headlight 10a and the vehicle 40 is curved to the left.
  • An example of a configuration in which each light source is dimmed so that the headlight 10a illuminates the left side is also conceivable.
  • the auto leveling device 1 includes a sensor that detects the handle angle, and the control unit 20 adjusts the light amount of the light sources arranged in the row direction according to the detected handle angle. Can be realized.
  • the auto leveling device 1 is an example of a configuration including the headlight 10a shown in FIGS. 3A and 3B.
  • the headlight 10a includes a plurality of electronic shutters in which the lens 39 can switch between a state in which light is transmitted and a state in which light is not transmitted.
  • An example of a configuration in which the optical axes of the light are different from each other when the light is transmitted can be considered.
  • control unit 20 controls the state of each electronic shutter without controlling the light amount of each LED included in the headlight 10a, so that the light emitted from the headlight 10a is controlled.
  • the irradiation direction can be controlled.
  • the auto leveling device 1 is an example of a configuration in which each light source included in the headlight 10a is realized by an LED.
  • each light source included in the headlight 10a is not necessarily realized by an LED as long as it can function as a light source.
  • the auto leveling device 1 may have a configuration in which each light source is realized by a halogen lamp, a laser, or the like.
  • the auto leveling device 1 turns on each of the light source A and the light source B when the sensor 30 dimmes the light source A and the light source B. It was an example of the structure which performs light control which adjusts the light quantity in a state.
  • the auto leveling device 1 when the sensor 30 dimmes the light source A and the light source B, the auto leveling device 1 performs lighting with a predetermined light amount for each of the light source A and the light source B.
  • An example of a configuration that performs dimming that is one of the alternative executions of turning off the light is also conceivable.
  • the light source A when (a) m ⁇ n, the light source A is turned on with the maximum light amount, and the light source B is turned off.
  • the light source A when (b) m ⁇ n, the light source A is turned on.
  • the light source B may be turned on with the maximum light amount.
  • the light source A and the light source B are dimmed so as to be either 100% or 0% of the maximum light amount, and are not dimmed so as to obtain an intermediate light amount.
  • Such a dimming example functions more effectively when dimming each light source when a plurality of light sources including the light source A and the light source B are arranged in N rows.
  • the auto leveling device 1 is an example of a configuration in which the sensor 30 is a three-axis acceleration sensor.
  • the sensor 30 is not necessarily limited to the three-axis acceleration sensor as long as the inclination of the vehicle 40 in the elevation angle direction can be detected.
  • the auto leveling device 1 may have a configuration example in which the sensor 30 is a uniaxial acceleration sensor that can detect the acceleration in the x-axis direction in FIG. 5A.
  • the auto leveling device 1 may be configured such that the sensor 30 is a gyro sensor that can detect the inclination of the vehicle 40 in the elevation angle direction.
  • the auto leveling device 1 is an example in which the headlight 10a and the headlight 10b have the same configuration.
  • the headlight 10a and the headlight 10b are not necessarily limited to the same configuration as long as there is no difference in the range controlled by auto leveling.
  • the headlight 10a and the headlight 10b have the same function for irradiation in the elevation angle direction, the headlight 10a irradiates the front side and the right side of the vehicle 40, and the headlight 10b
  • the configuration may be such that the front side or the left side is irradiated.
  • the auto leveling device 1 includes two headlights, that is, a headlight 10a mounted on the front right side of the vehicle 40 and a headlight 10a mounted on the front left side of the vehicle 40. It was an example.
  • the number of headlights provided in the auto leveling device 1 is not necessarily limited to two.
  • the auto leveling device 1 may be an example of a configuration including one headlight mounted at the front center of the vehicle.
  • FIG. 12 is a perspective view of a vehicle 140 equipped with an automatic leveling device according to a modification.
  • a single headlight 100 having a function equivalent to that of the headlight 10a in the embodiment is mounted on the front surface of the vehicle 140.
  • the present invention can be widely used in an auto leveling device that adjusts the irradiation direction of a headlight.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

車両(40)に搭載されるヘッドライト(10)と、車両(40)の仰角方向における傾きを検出するセンサ(30)と、ヘッドライト(10)の発光状態を制御する制御部(20)とを備え、ヘッドライト(10)は、ヘッドライト(10)から、第1光軸(51)を持つ光を発する第1光源(31a)と、ヘッドライト(10)から、仰角方向において第1光軸(51)とは異なる角度の第2光軸(52)を持つ光を発する第2光源(32a)とを有し、制御部(20)は、センサ(30)によって検出された傾きに応じて、第1光源(31a)の光量と第2光源(32a)の光量との比率を変化させて、第1光源(31a)と第2光源(32a)とを調光することで、上記制御を行う。

Description

オートレベリング装置
 本発明は、車両の仰角方向における傾きに応じて、ヘッドライトの照射方向を調節するオートレベリング装置に関する。
 従来、車両の仰角方向における傾きに応じて、その車両のヘッドライトの照射方向を調節する技術が知られている。例えば、特許文献1には、車両の傾きを検知するセンサと、その車両のヘッドライトを上下方向に傾斜駆動するアクチュエータとを利用して、車両の傾きに応じてヘッドライトの向きを変えることで、ヘッドライトの照射方向を調節する技術が記載されている。
特開平7-277068号公報
 上記特許文献1記載の技術では、ヘッドライトは、一定程度の精度で物理的に駆動される必要がある。しかしながら、例えば、車の走行に伴う振動等により、ヘッドライトの駆動系が劣化して、その駆動精度が悪化してしまうことがある。
 そこで、本発明は、係る問題に鑑みてなされたものであり、ヘッドライトの物理的な駆動を不要にすることができるオートレベリング装置を提供することを目的とする。
 本発明に係るオートレベリング装置は、車両に搭載されるヘッドライトと、前記車両の仰角方向における傾きを検出するセンサと、前記ヘッドライトの発光状態を制御する制御部とを備え、前記ヘッドライトは、前記ヘッドライトから、第1光軸を持つ光を発する第1光源と、前記ヘッドライトから、前記仰角方向において前記第1光軸とは異なる角度の第2光軸を持つ光を発する第2光源とを有し、前記制御部は、前記センサによって検出された傾きに応じて、前記第1光源の光量と前記第2光源の光量との比率を変化させて、前記第1光源と前記第2光源とを調光することで、前記制御を行うことを特徴とする。
 上記オートレベリング装置は、ヘッドライトの向きを変えなくても、車両の仰角方向における傾きに応じて、ヘッドライトの照射方向を調節することができる。このため、このオートレベリング装置によると、ヘッドライトの物理的な駆動を不要にすることができる。
図1は、実施の形態に係るオートレベリング装置の構成を示すブロック図である。 図2は、オートレベリング装置が搭載された車両の斜視図である。 図3Aは、ヘッドライトの正面図である。 図3Bは、図3Aの線XX-XX部分の断面図である。 図4は、ヘッドライトによって照射される照射領域の一例を示す模式図である。 図5Aは、センサにおける3軸の方向と、車両の正面方向との関係を示す模式図である。 図5Bは、車両の仰角方向の傾きと、センサから出力される、x軸方向の加速度、y軸方向の加速度、及びz軸方向の加速度との関係を示す模式図である。 図6は、車両の仰角方向の傾きと、照射される領域との関係を示す模式図である。 図7は、実施の形態における制御部が行う調光を説明するためのイメージ図である。 図8は、変形例における制御部が行う調光を説明するためのイメージ図である。 図9Aは、変形例における光源の配置形状を示す模式図その1である。 図9Bは、変形例における光源の配置形状を示す模式図その2である。 図9Cは、変形例における光源の配置形状を示す模式図その3である。 図10は、変形例における光源の配置形状を示す模式図その4である。 図11は、変形例における光源の配置形状を示す模式図その5である。 図12は、変形例におけるオートレベリング装置が搭載された車両の斜視図である。
 以下、本発明の一態様に係るオートレベリング装置の具体例について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本発明における好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態、工程、並びに、工程の順序等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明における最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 [1.全体構成]
 図1は、本実施の形態に係るオートレベリング装置1の構成を示すブロック図である。そして、図2は、オートレベリング装置1が搭載された車両40の斜視図である。
 図1に示されるように、オートレベリング装置1は、ヘッドライト10と、制御部20と、センサ30とを含んで構成される。
 ヘッドライト10は、例えば、図2に示されるように、車両40の前面右側に搭載されるヘッドライト10aと、車両40の前面左側に搭載されるヘッドライト10bとから構成される。ここでは、ヘッドライト10aとヘッドライト10bとが同じ構成であるとし、以下、これらを代表して、ヘッドライト10aを用いて説明する。
 ヘッドライト10aは、その正面方向が、車両40の正面方向と一致するように、車両に搭載されている。
 センサ30は、例えば、図2に示されるように、車両40の車体内部に搭載され、車両40の仰角方向における傾きを検出する。ここでは、センサ30は、一例として、3軸加速度センサによって実現されるものとして説明する。
 制御部20は、例えば、図2に示されるように、車両40の車体内部に搭載され、ヘッドライト10の発光状態を制御する。ここでは、制御部20は、一例として、プロセッサとメモリとを含むコンピュータ装置において、プロセッサが、メモリに記憶されたプログラムを実行することで実現されるものとして説明する。
 [2.ヘッドライト10a]
 図3Aは、ヘッドライト10aの正面図であり、図3Bは、図3Aの線XX-XX部分の断面図である。
 図3A、図3Bに示されるように、ヘッドライト10aは8行2列のアレイ状に配置された16個の光源(光源31a、光源31b、光源32a、光源32b、光源33a、光源33b、光源34a、光源34b、光源35a、光源35b、光源36a、光源36b、光源37a、光源37b、光源38a、光源38b)と、アレイ配置版29と、レンズ39とを含んで構成される。
 ここでは、光源が、M行N列(Mは2以上の整数、Nは1以上の整数)のアレイ状に配置されている構成の一具体例として、光源が、8行2列のアレイ状に配置されている例を用いて説明する。しかしながら、必ずしも、光源が、8行2列のアレイ状に配置されている一具体例に限定される必要はなく、任意の2以上の整数Mと、任意の1以上の整数Nとで表現されるM行N列のアレイ状に配置されている具体例も考えられる。
 アレイ配置版29は、ヘッドライト10aの正面方向に対して垂直な平面となっている。そして、上記16個の光源は、このアレイ配置版29の表面上において、仰角方向を列とし、仰角方向とヘッドライト10aの正面方向との双方に垂直な方向を行方向とするアレイ状に配置されている。
 各光源は、例えば、LED(Light Emitting Diode)によって実現される。ここでは、例えば、各光源の形状、最大光量が等しいとする。
 同行に並ぶ光源のそれぞれ(例えば、光源31aと光源31bと)は、同様の機能を有している。このため、ここでは、同行に並ぶ光源のそれぞれを代表して、線XX-XX上の列に位置する、光源31a、光源32a、光源33a、光源34a、光源35a、光源36a、光源37a、光源38aを用いて説明する。
 レンズ39は、各光源から入射された光を屈折させて外部に発する。より具体的には、レンズ39は、光源31aから入射された光を屈折させて、光軸51を持つ光として外部に発し、光源32aから入射された光を屈折させて、光軸52を持つ光として外部に発し、光源33aから入射された光を屈折させて、光軸53を持つ光として外部に発し、光源34aから入射された光を屈折させて、光軸54を持つ光として外部に発し、光源35aから入射された光を屈折させて、光軸55を持つ光として外部に発し、光源36aから入射された光を屈折させて、光軸56を持つ光として外部に発し、光源37aから入射された光を屈折させて、光軸57を持つ光として外部に発し、光源38aから入射された光を屈折させて、光軸58を持つ光として外部に発する。
 ここで、ヘッドライト10aの正面方向に対する各光軸の傾き、すなわち、車両40の仰角方向における各光軸の角度は、図3Bに示されるようになっている。すなわち、光軸51の角度はθ1、光軸52の角度はθ2(θ2<θ1)、光軸53の角度はθ3(θ3<θ2)、光軸54の角度はθ4(θ4<θ3)、光軸55の角度は-θ4、光軸56の角度は-θ3、光軸57の角度は-θ2、光軸58の角度は-θ1となっている。
 このように、ヘッドライト10aは、ヘッドライト10aから、第1光軸(例えば、光軸51)を持つ光を発する第1光源(例えば、光源31a)と、仰角方向において第1光軸と異なる角度の第2光軸(例えば、光軸52)を持つ光を発する第2光源(例えば、光源32a)とを有している。
 図4は、ヘッドライト10aが、車両40の仰角方向において水平面(重力方向と垂直な平面)の方向を向いている場合において、ヘッドライト10aによって照射される領域を示す模式図である。
 同図において、照射面49は、ヘッドライト10aの正面方向に50cm離れた位置において、ヘッドライト10aの正面方向に対して垂直となる平面である。
 水平線50は、光源33aの中心と光源34aの中心とを結ぶ線分の中点を通る水平面が、照射面49と交わる直線である。
 領域41は、レンズ39から外部に発せられた、光軸51を持つ光によって照射される領域である。同様に、領域42~領域48は、それぞれ、レンズ39から外部に発せられた、光軸52を持つ光~光軸58を持つ光によって照射される領域である。
 同図に示されるように、領域41は、ヘッドライト10aの正面方向に対して、仰角8.53度~11.31度の範囲の領域であり、領域42は、ヘッドライト10aの正面方向に対して、仰角5.71度~8.53度の範囲の領域であり、領域43は、ヘッドライト10aの正面方向に対して、仰角2.86度~5.71度の範囲の領域であり、領域44は、ヘッドライト10aの正面方向に対して、仰角0度~2.86度の範囲の領域であり、領域45は、ヘッドライト10aの正面方向に対して、仰角0度~-2.86度の範囲の領域であり、領域46は、ヘッドライト10aの正面方向に対して、仰角-2.86度~-5.71度の範囲の領域であり、領域47は、ヘッドライト10aの正面方向に対して、仰角-5.71度~-8.53度の範囲の領域であり、領域41は、ヘッドライト10aの正面方向に対して、仰角-8.53度~-11.31度の範囲の領域である。
 [3.センサ30]
 図5Aは、3軸加速度センサであるセンサ30における3軸(x軸、y軸、z軸)の方向と、車両40の正面方向との関係を示す模式図である。
 同図に示されるように、センサ30は、x軸が、車両40の正面方向と一致し、y軸が、車両40の右側面方向と一致し、z軸が、車両40の下面方向と一致するように車両40に搭載されている。
 図5Bは、車両40の仰角方向の傾きと、センサ30から出力される、x軸方向の加速度、y軸方向の加速度、及びz軸方向の加速度との関係を示す模式図である。
 同図に示されるように、センサ30は、x軸方向の加速度を出力することで、車両40の仰角方向の傾きを一意に検出できることがわかる。
 [4.制御部20]
 再び図1に戻って、オートレベリング装置1の説明を続ける。
 制御部20は、センサ30によって検出された傾きに応じて、第1光源(例えば、光源31a)の光量と、第2光源(例えば、光源32a)の光量との比率を変化させて、第1光源と第2光源との調光を行うことで、ヘッドライト10aの発光状態を制御する。
 ここで、制御部20は、ヘッドライト10aから発せられる光が、車両40の仰角方向において、水平面(重力方向と垂直な平面)の方向を照射するように、上記調光を行う。
 図6は、センサ30によって検出された、車両40の仰角方向の傾きと、センサ30によって調光されたヘッドライト10aによって照射される領域との関係の一具体例を示す模式図である。
 同図において、θは、センサ30によって検出された、車両40の仰角方向の傾きである。
 仮想水平照射領域60は、照射面49において、光源33aの中心と光源34aの中心とを結ぶ線分の中点を通る水平面との交線を中心として、上下それぞれL/2の長さからなる仮想的な領域である。
 ここで、Lは、光源31a~光源38aのいずれか1つから発せられた光によって照射面49が垂直に照射される場合において、その照射される領域における上下方向の長さである。
 図6に示される例では、仮想水平照射領域60は、その一部が、領域41と重なり合い、他の部分が、領域42と重なり合っている。そして、仮想水平照射領域60と領域41とが重なり合う部分の面積と、仮想水平照射領域60と領域42とが重なり合う部分の面積の比率が、30:70となっている。
 この場合には、制御部20は、光源31aの光量と、光源32aの光量との比率が、30:70となるように、各光源(光源31a~光源38a)の光量を調光する。
 このように、制御部20は、第1光軸(例えば、光軸51)が、仰角方向において、第1角度(例えば、(θ1+θ2)/2)よりも第2角度(例えば、(θ1-θ2)/2)だけ大きい向き(すなわち、θ1)であり、第2光軸(例えば、光軸52)が、仰角方向において、第1角度よりも第2角度だけ小さい向き(すなわち、θ2)である場合において、(1)センサ30によって、第1角度よりも大きい傾きが検知されたときには、第1光源(例えば、光源31a)の光量が、第2光源(例えば、光源32a)の光量よりも大きくなるように調光を行い、(2)センサ30によって、第1角度よりも小さい傾きが検知されたときには、第1光源の光量が、第2光源の光量よりも小さくなるように調光を行う。
 以下、制御部20が行う調光について、より一般的に説明する。
 図7は、制御部20が行う調光を説明するためのイメージ図である。
 同図において、領域A71は、領域41~領域47のうちのいずれか1つの領域である。そして、領域B72は、領域A71の1つ下に位置する、領域42~領域48のうちのいずれか1つの領域である。
 同図において、仮想水平照射領域60と領域A71とが重なり合う部分の面積と、仮想水平照射領域60と領域B72とが重なり合う部分の面積との比率が、m:nとなっている。
 このような場合に、制御部20は、領域A71を照射する光源A(光源31a~光源37aのうちのいずれか1つ)の光量と、領域B72を照射する光源B(光源32a~光源38aのうちのいずれか1つ)の光量との比率が、m/(m+n):n/(m+n)となり、他の光源(光源31a~光源38aのうち、光源A、光源B以外の光源)の光量が0となるように、光源31a~光源38aを調光する。
 例えば、各光源(光源31a~光源38a)の最大光量が同じ場合には、制御部20は、光源Aの光量が、最大光量×m/(m+n)となり、光源Bの光量が、最大光量×n/(m+n)となり、他の光源の光量が、最大光量×0となるように、光源31a~光源38aを調光する。この場合、ヘッドライト10aから発せられる光は、光源アレイにおける各列の光源の発する光量の合計が、光源1個分の最大光量となる。
 [5.効果等]
 上記構成のオートレベリング装置1は、制御部20が、車両40の仰角方向における傾きに応じて、ヘッドライト10aから発せられる光が、車両40の仰角方向において、水平面の方向を照射するように、各光源を調光する。
 このため、このオートレベリング装置1によると、ヘッドライト10aの物理的な駆動を必要とせずとも、車両40の仰角方向における傾きによらず、ヘッドライト10aに、車両40の仰角方向において、水平面の方向を照射させることができるようになる。
 (変形例)
 以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら本開示による技術は、これらに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適用可能である。
 (1)実施の形態において、オートレベリング装置1は、各光源の最大光量が同じ場合において、制御部20が、光源アレイにおける各列の光源の発する光量の合計を、光源1個分の最大光量となるように調光する構成の例であった。
 しかしながら、制御部20が行う調光は、ヘッドライト10aから発せられる光が、車両40の仰角方向において、水平面の方向を照射するように、各光源を調光することができれば、必ずしも、実施の形態に記載された通りの調光に限定される必要はない。
 一例として、オートレベリング装置1は、制御部20が、各光源の最大光量が同じ場合において、光源アレイにおける各列の光源の発する光量の合計を、光源2個分の最大光量となるように調光する構成の例等が考えられる。
 図8は、変形例における制御部20が行う調光を説明するためのイメージ図である。
 同図において、仮想水平照射領域80は、照射面49において、光源33aの中心と光源34aの中心とを結ぶ線分の中点を通る水平面との交線を中心として、上下それぞれLの長さからなる仮想的な領域である。
 ここで、Lは、光源31a~光源38aのいずれか1つから発せられた光によって照射面49が垂直に照射される場合において、その照射される領域における上下方向の長さである。
 領域A81は、領域41~領域46のうちのいずれか1つの領域である。領域B82は、領域A81の1つ下に位置する、領域42~領域47のうちのいずれか1つの領域である。そして、領域C83は、領域B82の1つ下に位置する、領域43~領域48のうちのいずれか1つの領域である。
 領域A81は、その一部が、仮想水平照射領域80に重なる。領域B82は、その全部が、仮想水平照射領域80に重なる。領域C83は、その一部が、仮想水平照射領域80に重なる。そして、仮想水平照射領域80と領域A81とが重なり合う部分の面積と、仮想水平照射領域80と領域C83とが重なり合う部分の面積との比率が、k:lとなっている。
 このような場合に、制御部20は、領域A81を照射する光源A(光源31a~光源36aのうちのいずれか1つ)の光量と、領域B82を照射する光源B(光源32a~光源37aのうちのいずれか1つ)の光量と、領域C83を照射する光源C(光源33a~光源38aのうちのいずれか1つ)の光量との比率が、k/(k+l):1:l/(k+l)となり、他の光源(光源31a~光源38aのうち、光源A、光源B、光源C以外の光源)の光量が0となるように、光源31a~光源38aを調光する。
 例えば、各光源(光源31a~光源38a)の最大光量が同じ場合には、制御部20は、光源Aの光量が、最大光量×k/(k+l)となり、光源Bの光量が、最大光量となり、光源Cの光量が、最大光量×l/(k+l)となり、他の光源の光量が、最大光量×0となるように、光源31a~光源38aを調光する。この場合、ヘッドライト10aから発せられる光は、光源アレイにおける各列の光源の発する光量の合計が、光源2個分の最大光量となる。
 (2)実施の形態において、オートレベリング装置1は、ヘッドライト10aが、8行2列のアレイ状に配置された16個の光源を有する構成の例であった。しかしながら、オートレベリング装置1は、ヘッドライト10aが、ヘッドライト10aから、第1光軸を持つ光を発する第1光源と、仰角方向において第1光軸と異なる角度の第2光軸を持つ光を発する第2光源とを有していれば、必ずしも、実施の形態通りの構成に限定される必要はない。
 一例として、オートレベリング装置1は、ヘッドライト10aが、互いに千鳥状となる第1行と第2行とが含まれる、又は、互いに千鳥状となる第1列と第2列とが含まれるアレイ状に配置された複数の光源を有する構成の例等が考えられる。
 図9A、図9B、図9Cは、変形例における光源の配置形状を示す模式図である。
 図9A、図9B、図9Cにおいて、四角の図形のそれぞれは、光源を示している。
 これらの図で示されるように、複数の光源が、互いに千鳥状となる行又は列が含まれるアレイ状に配置されることで、複数の光源が、互いに千鳥状となる行又は列が含まれないアレイ状に配置される場合に比べて、ヘッドライト10aから発せられる光の照射する方向を、より細かな角度で制御することができるようになる。
 また、別の一例として、オートレベリング装置1は、ヘッドライト10aが、第1サイズの光源からなる第1行と、第1サイズよりも小さい第2サイズの光源からなる第2行とが含まれるアレイ状に配置された複数の光源を有する構成の例等が考えられる。
 図10は、変形例における光源の配置形状を示す模式図である。
 同図において、四角の図形のそれぞれは、光源を示している。そして、より大きな四角の図形の方が、よりサイズが大きい光源であることを示している。
 同図において、中央に配置される光源は、比較的サイズが大きな光源である。そして、端に配置される光源は、比較的サイズが小さな光源である。そして、端に配置される光源は、単位面積当たりの数が、中央よりも多くなるように配置されている。
 複数の光源が、図10で示されるように配置されることで、車両40の傾きがより大きくなるほど、ヘッドライト10aから発せられる光の照射する方向を、より細かな角度で制御することができるようになる。
 さらに別の一例として、オートレベリング装置1は、ヘッドライト10aが、アレイ状以外の形状に配置された光源を有する構成の例等が考えられる。
 図11は、変形例における光源の配置形状を示す模式図である。
 同図において、四角の図形それぞれは、光源を示している。そして、これらの光源は、7行6列のアレイから、角の部分の光源が取り去られて、全体として楕円形となるように配置されている。
 (3)実施の形態において、オートレベリング装置1は、車両40の仰角方向における傾きに応じて、ヘッドライト10aの照射方向を調節する構成の例であった。
 これに対して、別の一例として、オートレベリング装置1は、車両40が右にカーブしている場合には、ヘッドライト10aが右側を照射し、車両40が左にカーブしている場合には、ヘッドライト10aが左側を照射するように、各光源を調光する構成の例等も考えられる。
 このような構成は、例えば、オートレベリング装置1が、ハンドルの角度を検知するセンサを備え、制御部20が、検知されたハンドルの角度に応じて、行方向に並ぶ光源の光量を調整することで実現することができる。
 (4)実施の形態において、オートレベリング装置1は、図3A、図3Bに示されるヘッドライト10aを備える構成の例であった。
 これに対して、別の一例として、ヘッドライト10aは、レンズ39が、光を透過させる状態と光を透過させない状態とを切り替えることができる電子シャッターを複数備え、これら電子シャッターのそれぞれにおいて、光を透過させる場合におけるその光の光軸が互いに異なっている構成の例等が考えられる。
 このような構成の場合には、制御部20は、ヘッドライト10aに含まれる各LEDの光量を制御しなくても、各電子シャッターの状態を制御することで、ヘッドライト10aから発せられる光の照射する方向を制御することができるようになる。
 (5)実施の形態において、オートレベリング装置1は、ヘッドライト10aに含まれる各光源が、LEDによって実現される構成の例であった。
 しかしながらヘッドライト10aに含まれる各光源は、光源として機能することができれば、必ずしもLEDによって実現される必要はない。一例として、オートレベリング装置1は、各光源が、ハロゲンランプやレーザ等によって実現される構成の例が考えられる。
 (6)実施の形態において、オートレベリング装置1は、図7に示されるように、センサ30が、光源Aと光源Bとを調光する場合に、光源Aと光源Bとのそれぞれについて、点灯状態における光量を調整する調光を行う構成の例であった。
 これに対して、別の一例として、オートレベリング装置1は、センサ30が、光源Aと光源Bとを調光する場合に、光源Aと光源Bとのそれぞれについて、所定の光量による点灯と、消灯とのいずれか一方の択一的な実行である調光を行う構成の例等も考えられる。
 この場合には、例えば、図7の例において、(a)m≧nのときには、光源Aを最大光量で点灯させて、光源Bを消灯させ、(b)m<nのときには、光源Aを消灯させて、光源Bを最大光量で点灯させるとしてもよい。
 すなわち、この例は、光源Aと光源Bとを、最大光量の100%か0%かのいずれかとなるように調光し、中間的な光量となるように調光しない例となっている。このような調光例は、光源Aと光源Bとを含む複数の光源がN行に細分化されて配置されている場合において各光源を調光するときに、より効果的に機能する。
 (7)実施の形態において、オートレベリング装置1は、センサ30が、3軸加速度センサである構成の例であった。
 しかしながら、センサ30は、車両40の仰角方向における傾きを検出することができれば、必ずしも3軸加速度センサに限られる必要はない。一例として、オートレベリング装置1は、センサ30が、図5Aにおけるx軸方向の加速度を検出することができる1軸加速度センサである構成の例等が考えられる。また、別の一例として、オートレベリング装置1は、センサ30が、車両40の仰角方向における傾きを検出することができるジャイロセンサである構成の例等も考えられる。
 (8)実施の形態において、オートレベリング装置1は、ヘッドライト10aとヘッドライト10bとが同じ構成である例であった。しかしながら、ヘッドライト10aとヘッドライト10bとは、オートレベリングで制御する範囲において差異がない構成であれば、必ずしも同じ構成に限られる必要はない。一例として、ヘッドライト10aとヘッドライト10bとが、仰角方向の照射については同様の機能を有しつつ、ヘッドライト10aが、車両40の前方やや右側を照射し、ヘッドライト10bが、車両40の前方やや左側を照射するような構成であっても構わない。
 (9)実施の形態において、オートレベリング装置1は、車両40の前面右側に搭載されるヘッドライト10aと、車両40の前面左側に搭載されるヘッドライト10aとの2つのヘッドライトを備える構成の例であった。
 しかしながら、オートレベリング装置1が備えるヘッドライトの数は、必ずしも2つに限定される必要はない。一例として、オートレベリング装置1は、車両の前面中央に搭載されるヘッドライトを1つ備える構成の例等が考えられる。
 図12は、変形例におけるオートレベリング装置が搭載された車両140の斜視図である。
 同図に示されるように、車両140には、その前面中央に、実施の形態におけるヘッドライト10aと同等の機能を有する1つのヘッドライト100が搭載されている。
 本発明は、ヘッドライトの照射方向を調節するオートレベリング装置に広く利用可能である。
 10、10a、10b、100 ヘッドライト
 20 制御部
 30 センサ
 31a~38a、31b~38b 光源
 39 レンズ
 40、140 車両

Claims (13)

  1.  車両に搭載されるヘッドライトと、
     前記車両の仰角方向における傾きを検出するセンサと、
     前記ヘッドライトの発光状態を制御する制御部とを備え、
     前記ヘッドライトは、前記ヘッドライトから、第1光軸を持つ光を発する第1光源と、前記ヘッドライトから、前記仰角方向において前記第1光軸とは異なる角度の第2光軸を持つ光を発する第2光源とを有し、
     前記制御部は、前記センサによって検出された傾きに応じて、前記第1光源の光量と前記第2光源の光量との比率を変化させて、前記第1光源と前記第2光源とを調光することで、前記制御を行う
     オートレベリング装置。
  2.  前記制御部は、前記第1光軸が、前記仰角方向において、第1角度よりも第2角度だけ大きい向きであり、前記第2光軸が、前記仰角方向において、前記第1角度よりも前記第2角度だけ小さい向きである場合において、(1)前記センサによって、前記第1角度よりも大きい傾きが検知されたときには、前記第1光源の光量が、前記第2光源の光量よりも大きくなるように前記調光を行い、(2)前記センサによって、前記第1角度よりも小さい傾きが検知されたときには、前記第1光源の光量が、前記第2光源の光量よりも小さくなるように前記調光を行う
     請求項1に記載のオートレベリング装置。
  3.  前記第1光軸は、前記仰角方向において正の向きであり、前記第2光軸は、前記仰角方向において負の向きである
     請求項1又は2に記載のオートレベリング装置。
  4.  前記第1光軸の前記仰角方向における角度の絶対値と、前記第2光軸の前記仰角方向における角度の絶対値とが等しい
     請求項3に記載のオートレベリング装置。
  5.  前記制御部の行う前記調光は、前記第1光源と前記第2光源とのそれぞれについて、点灯状態における光量の調整である
     請求項1~4のいずれか1項に記載のオートレベリング装置。
  6.  前記制御部の行う前記調光は、前記第1光源と前記第2光源とのそれぞれについて、所定の光量による点灯と、消灯とのいずれか一方の択一的な実行である
     請求項1~4のいずれか1項に記載のオートレベリング装置。
  7.  前記制御部は、前記ヘッドライトから発する光が、前記仰角方向において、水平面の方向を照射するように、前記調光を行う
     請求項1~6のいずれか1項に記載のオートレベリング装置。
  8.  前記ヘッドライトは、さらに、前記第1光源から入射された光を屈折させて、前記第1光軸を持つ光として外部に発し、前記第2光源から入射された光を屈折させて、前記第2光軸を持つ光として外部に発するレンズを有する
     請求項1~7のいずれか1項に記載のオートレベリング装置。
  9.  前記ヘッドライトは、さらに、前記ヘッドライトから、前記仰角方向において前記第1光軸及び前記第2光軸とは異なる角度の第3光軸を持つ光を発する第3光源を有し、
     前記制御部は、さらに、前記センサによって検出された傾きに応じて、前記第1光源の光量と前記第3光源の光量との比率、及び前記第2光源の光量と前記第3光源の光量との比率を変化させて、前記第3光源をも調光することで、前記制御を行う
     請求項1~8のいずれか1項に記載のオートレベリング装置。
  10.  前記ヘッドライトは、前記第1光源と前記第2光源とを含む複数の光源を有し、
     前記複数の光源のそれぞれは、前記仰角方向を列方向とし、前記仰角方向と前記ヘッドライトの正面方向との双方に垂直な方向を行方向とするアレイ状に配置された複数のLEDである
     請求項1~8のいずれか1項に記載のオートレベリング装置。
  11.  前記複数の光源が配置されるアレイには、互いに千鳥状となる第1行と第2行とが含まれる、又は、互いに千鳥状となる第1列と第2列とが含まれる
     請求項10に記載のオートレベリング装置。
  12.  前記複数の光源が配置されるアレイには、第1サイズの光源からなる第1行と、前記第1サイズよりも小さい第2サイズの光源からなる第2行とが含まれる
     請求項10に記載のオートレベリング装置。
  13.  前記アレイには、3つ以上の行が含まれ、
     前記第1行の方が、前記第2行よりも中心行側に位置する
     請求項12に記載のオートレベリング装置。
PCT/JP2016/004502 2015-10-09 2016-10-06 オートレベリング装置 WO2017061121A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562239770P 2015-10-09 2015-10-09
US62/239,770 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061121A1 true WO2017061121A1 (ja) 2017-04-13

Family

ID=58487376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004502 WO2017061121A1 (ja) 2015-10-09 2016-10-06 オートレベリング装置

Country Status (1)

Country Link
WO (1) WO2017061121A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090327A1 (ja) 2021-11-17 2023-05-25 株式会社小糸製作所 灯具システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071409A (ja) * 2002-08-07 2004-03-04 Denso Corp 車両用灯具および車両用灯具の配光制御方法
JP2008081074A (ja) * 2006-09-29 2008-04-10 Fujifilm Corp 前照灯制御システム
JP2008537315A (ja) * 2005-04-21 2008-09-11 マグナ インターナショナル インコーポレイテッド 半導体光源から形成されるビームパターンを有するヘッドランプ
JP2013235859A (ja) * 1999-06-25 2013-11-21 Koninkl Philips Nv 車両ヘッドランプ及び車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235859A (ja) * 1999-06-25 2013-11-21 Koninkl Philips Nv 車両ヘッドランプ及び車両
JP2004071409A (ja) * 2002-08-07 2004-03-04 Denso Corp 車両用灯具および車両用灯具の配光制御方法
JP2008537315A (ja) * 2005-04-21 2008-09-11 マグナ インターナショナル インコーポレイテッド 半導体光源から形成されるビームパターンを有するヘッドランプ
JP2008081074A (ja) * 2006-09-29 2008-04-10 Fujifilm Corp 前照灯制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090327A1 (ja) 2021-11-17 2023-05-25 株式会社小糸製作所 灯具システム

Similar Documents

Publication Publication Date Title
JP5920480B2 (ja) 車両用前照灯装置
JP6883081B2 (ja) 車両用灯具システム、および車両用灯具の制御装置
US9765938B2 (en) Vehicle headlamp
US8979334B2 (en) Automotive headlamp apparatus and light distribution control method
EP2567867B1 (en) Vehicle headlamp and system for controlling the same
US8905604B2 (en) Vehicle lamp control apparatus
US9120420B2 (en) Swivel-mounted vehicle headlamp with multifunctional light distribution patterns
JP5591067B2 (ja) 車両用灯具の制御装置、車両用灯具システム、および車両用灯具の制御方法
US9050926B2 (en) Vehicle headlamp and vehicle headlamp device
JP6905862B2 (ja) 光学ユニット
US9500338B2 (en) Vehicle lamp
JP5869835B2 (ja) 車両用前照灯制御システム
EP2532950A1 (en) Vehicular Headlamp Device
WO2019039051A1 (ja) 車両用灯具
EP3154822A1 (en) Vehicle headlamp control device
US8651712B2 (en) Vehicle headlamp and vehicle headlamp device
JP7084514B2 (ja) 車両用灯具の制御装置
JP2019500731A (ja) ヘッドランプ又は懐中電灯
JP2018092761A (ja) 車両用灯具
WO2017061121A1 (ja) オートレベリング装置
JP6235814B2 (ja) 照明制御システム
WO2016059814A1 (ja) ヘッドライト光源ユニット及びヘッドライト装置
JP2019175685A (ja) 車両用灯具
JP7122604B2 (ja) 投光装置
JP2018092762A (ja) 車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP