WO2017061088A1 - サーボモータ、サーボモータシステムおよび電力供給方法 - Google Patents

サーボモータ、サーボモータシステムおよび電力供給方法 Download PDF

Info

Publication number
WO2017061088A1
WO2017061088A1 PCT/JP2016/004398 JP2016004398W WO2017061088A1 WO 2017061088 A1 WO2017061088 A1 WO 2017061088A1 JP 2016004398 W JP2016004398 W JP 2016004398W WO 2017061088 A1 WO2017061088 A1 WO 2017061088A1
Authority
WO
WIPO (PCT)
Prior art keywords
servo motor
data
electrodes
power supply
control circuit
Prior art date
Application number
PCT/JP2016/004398
Other languages
English (en)
French (fr)
Inventor
伸郎 本橋
龍一 鈴木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017544176A priority Critical patent/JPWO2017061088A1/ja
Publication of WO2017061088A1 publication Critical patent/WO2017061088A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • This technology relates to a servo motor, a servo motor system, and a power supply method used for, for example, a biped walking hobby robot.
  • Patent Document 1 energy is supplied from the outside by electromagnetic coupling formed with an external magnetic field using an exciting coil that is a component of a distributed stepping motor built in as a drive source.
  • an invention related to a robot configured to send and receive signals to and from the outside is disclosed.
  • Patent Document 2 describes a technique for performing power transmission and communication between electronic devices by using both a power receiving coil and a wireless communication coil. More specifically, a method of superimposing or modulating a signal made up of information related to power transmission / reception on a power wave or carrier wave for supplying power and transmitting / receiving, a power wave for transmitting / receiving power and a carrier wave for wireless communication are used in combination. A method of performing wireless communication simultaneously during power transmission / reception is disclosed.
  • JP-A-8-323657 (paragraph [0009] etc.)
  • JP 2010-130835 A (paragraphs [0009]-[0010] etc.)
  • a servo motor is used as an element constituting the robot.
  • the servo motor realizes work corresponding to work of human muscles and joints in a robot such as a humanoid biped robot.
  • a robot such as a humanoid biped robot.
  • problems to be improved in various points, and the solution is required.
  • an object of the present technology is to provide a servo motor, a servo motor system, and a power supply method that solve various problems associated with a servo motor and a system using the servo motor.
  • the servo motor according to the first embodiment of the present technology is A first main body and a second main body configured to be rotatable relative to each other;
  • the second body is
  • the communication information is modulated by the period of the pulse, and has two first electrodes to which two voltages having opposite phases are applied as a PWM power supply,
  • the first body includes A motor, A first control circuit that generates a DC voltage from the two voltages supplied through the two first electrodes of the second main body and extracts the communication information; And two second electrodes each individually conducting to the two first electrodes of the second body.
  • At least one of the first electrode and the second electrode includes a permanent magnet so that the two first electrodes and the two second electrodes can be bonded to each other by magnetic force. Good.
  • the first control circuit may be configured to vary energy supplied to the motor based on a difference between the generated DC voltage value and a predetermined reference value.
  • the first control circuit generates an operation amount of the motor by PID control using a target value and an actual control amount of the control amount of the motor, and the operation amount is determined as a value of the DC voltage and a predetermined reference You may comprise so that it may correct
  • a servo motor system is A power supply module and a servo motor;
  • the power supply module includes: Two third electrodes;
  • a second control circuit that modulates communication information according to a pulse period, generates two voltages having opposite phases to each other as a PWM power supply, and individually applies the two voltages to the two third electrodes;
  • the servo motor is A first main body and a second main body configured to be rotatable relative to each other;
  • the second body is Two first electrodes connectable to the two third electrodes of the power supply module;
  • the first body includes A motor, A first control circuit that generates a DC voltage from the two voltages supplied through the two first electrodes of the second main body and extracts the communication information; And two second electrodes respectively conducting to the two first electrodes of the second main body.
  • the plurality of servo motors may be connected in a chain by connecting the two first electrodes and the two second electrodes.
  • the second control circuit includes: A command in which a data response period is set as the communication information is generated, One of the third electrodes is connected to a predetermined constant current source during the data response period;
  • the first control circuit includes: A switching circuit capable of judging a first electrode connected to the one third electrode out of the two first electrodes and switching on / off of a short circuit of the first electrode; , Configured to control the switching circuit to transmit response data during the data response period in the received command,
  • the second control circuit may further include a detection circuit that detects the response data based on a change in potential of the one third electrode during the data response period.
  • the second control circuit includes: A broadcast method command in which a first data response period and a second data response period after the first data response period are set as the data response period is generated.
  • the first control circuit includes: The first response data is transmitted by controlling the switching circuit during the first data response period in the received command, the transmission result of the first response data is read through the first electrode, and the transmission A determination is made as to whether or not there is an error as a result. If an error is determined, a second data indicating that the first response data is invalid by controlling the switching circuit during the second data response period in the received command. It may be configured to send response data.
  • the second control circuit includes: As the data response period, generate a broadcast command in which a first data response period and a second data response period are set,
  • the first control circuit includes: The master circuit is transmitted by controlling the switching circuit in the first data response period in the received command, and the switching circuit is controlled in the second data response period in the command to control the DC voltage.
  • Send value The second control circuit includes: A pair of the master ID and the value of the DC voltage respectively responded from the first control circuit of the plurality of servo motors connected in the chain shape is stored, and the plurality of the DC voltage values are in descending order.
  • a connection order close to the power supply module may be sequentially assigned to the master ID.
  • the second control circuit includes: A temporary ID associated with the part to be controlled may be further assigned to the plurality of master IDs.
  • the electric power supply method which is another form concerning this art is A power supply method from a power supply module to a servo motor
  • the power supply module includes: Two third electrodes and a second control circuit;
  • the second control circuit modulates communication information according to a pulse period, generates two voltages having opposite phases to each other as a PWM power supply, and individually applies the two voltages to the two third electrodes.
  • the servo motor is Two first electrodes connectable to the two third electrodes of the power supply module; A motor, A first control circuit;
  • the first control circuit generates a DC voltage from the two voltages supplied through the two first electrodes and extracts the communication information.
  • FIG. 3 is a side view showing rotation of a motor case 10 and an arm 30 in the servo motor 1 of FIG. 2.
  • 3 is a side view showing the rotation of the motor case 10 and the arm 30 in the servo motor 1 of FIG. 3 is a side view showing the rotation of the motor case 10 and the arm 30 in the servo motor 1 of FIG.
  • It is a side view which shows the chain connection of the servomotor 1 of FIG.
  • FIG. 5A from the right side by the paper surface.
  • FIG. 6A is sectional drawing of the counter electrode 36 in the servomotor 1 of FIG.
  • FIG. 6A is the top view which looked at the counter electrode 36 of FIG. 6A from the right side by the paper surface.
  • 3 is a cross-sectional view showing a magnetic electrode 34 and a counter electrode 36.
  • FIG. 4 is a side view showing a method for fixing the counter electrode 36 to the motor case 10.
  • FIG. It is a figure which shows the internal structure of the servomotor 1 of this embodiment. It is a figure which shows the structural example of the robot using the servomotor 1 of this embodiment. It is a figure which shows the electrical structure of the electric power supply module 250 in the servomotor 1 of this embodiment.
  • FIG. It is a figure which shows the electrical structure of the servo control module 18 in the servomotor 1 of this embodiment. It is a figure which shows the example of the PWM signal waveform of the data write command 3.
  • FIG. It is a figure which shows the example of the PWM signal waveform of the data read command. It is a figure which shows the example of the PWM signal waveform of the data read command 5 of a broadcast system. It is a figure which blocks and shows the whole structure of the robot of FIG. It is a figure which shows the example of the conversion table of master ID, connection order, and temporary ID produced in the power supply modules 250, 260, 270, and 280.
  • positioned is connected to the servomotor 1 of FIG. 2 at one arm part 33L of the arm.
  • FIG. 1 is a diagram showing a configuration of a typical servo motor 1A. Similar to the servo motor of this embodiment, this typical servo motor 1A is for realizing a work corresponding to the work of human muscles and joints in a robot such as a humanoid biped walking hobby robot. is there.
  • this typical servo motor 1A has a motor case 10A having a specific shape.
  • a motor 11A In the motor case 10A, a motor 11A, a gear box 14A that decelerates the drive of the drive shaft 12A of the motor 11A and transmits it to the output shaft 13A, an encoder 15A for detecting the rotation angle of the output shaft 13A, and an encoder A servo amplifier circuit 17A that controls the driving of the motor 11A so as to rotate the output shaft 13A to a target rotation angle based on the output of 15A is housed.
  • the final gear 16A is a gear that is coaxially fixed to the output shaft 13A protruding from the gear box 14A to the outside of the motor case 10A.
  • a horn 21A for connection to parts (not shown) for forming a skeleton such as a frame or a bracket is fixed to the final gear 16A.
  • the robot is configured by fixing a plurality of servo motors 1A corresponding to various muscles and joints to parts such as a frame and a bracket via a horn 21A.
  • Each of the servo motors 1A is electrically connected to the control board through one or more communication lines 18A for control signals, and receives power from the power supply board through the two power supply lines 19A and 20A. It has become.
  • one or more communication lines 18A and two power supply lines 19A and 20A are accommodated in one connector 22A.
  • the connector 22A is connected to a connector (not shown) on the supply side, and receives a control signal and power.
  • the servo amplifier circuit 17A of the servo motor 1A is configured so that the output shaft 13A is the target rotation angle based on the target rotation angle of the output shaft 13A given by the control signal from the control board and the current rotation angle of the output shaft 13A obtained from the output of the encoder 15A. The amount of control required to reach the rotation angle is calculated.
  • the servo amplifier circuit 17A generates a motor drive signal corresponding to the calculated control amount using the power supplied from the power supply board by the power supply lines 19A and 20A, and supplies the motor drive signal to the motor 11A.
  • the motor 11A is driven, and the drive of the drive shaft 12A of the motor 11A is decelerated and transmitted to the output shaft 13A by the gear box 14A.
  • parts not shown
  • parts such as a frame and a bracket connected to the output shaft 13A via the horn 21A are operated.
  • the robot operates.
  • the control signal and power supply to the servo motor 1A are roughly divided into a PWM (Pulse Width Modulation) method that uses a total of three wires, one for control and two for power supply, and two for control. There is a serial system that uses a total of four wires for power supply.
  • PWM Pulse Width Modulation
  • the PWM method is a method in which a target rotation angle of the output shaft 13A of the servo motor 1A is indicated by a PWM signal in which a bit value is expressed by a cycle of a pulse output from the control board to the servo amplifier circuit 17A of the servo motor 1A. .
  • the PWM method is one-way communication in which only transmission from the control board to the servo amplifier circuit 17A of the servo motor 1A is possible. For this reason, the control board cannot know the status such as the load state of the servo motor 1A and the current rotation angle of the output shaft 13A. In other words, the PWM method can be said to have a limit in control accuracy.
  • the control board and each servo motor 1A constituting the robot need to be individually connected by control wiring, and the power supply board and each servo motor 1A are individually connected by power supply lines. Therefore, the total number of wires increases. When the number of wirings increases, there is a possibility that the degree of freedom of assembly and movement of the robot may be lost due to the large number of wirings.
  • control is performed by designating an ID for each servo motor 1A. Therefore, when a general user assembles a hobby-use robot using a plurality of servo motors 1A, it is very troublesome that the user needs to manually set an ID for each servo motor 1A.
  • the servo motor according to the first embodiment of the present technology can solve, for example, the problem of the typical servo motor 1A.
  • the present embodiment will be described in the following order. 1.
  • Configuration of servo motor of first embodiment according to the present technology 2.
  • Structure of magnetic electrode 34 and counter electrode 36 3.
  • Internal configuration of servo motor 1 4.
  • Configuration example of robot using servo motor 1 5.
  • Configuration of power supply module 250 7.
  • Configuration of servo control module 18 7.
  • Two types of command transmission protocols 8.
  • FIG. 2 is a perspective view showing the configuration of the servo motor 1 of the present embodiment.
  • the servo motor 1 includes a rectangular parallelepiped motor case 10 (first main body) and an arm 30 (second main body) rotatably connected to the motor case 10.
  • each end of the arm 30 is rotatably supported, and two surfaces formed by the X axis and the Z axis in the figure are referred to as left and right “arm support surfaces R and L”.
  • one of the two surfaces formed by the Y-axis and the Z-axis is referred to as “front surface F”, and the other is referred to as “back surface B”.
  • one of the two surfaces formed by the X axis and the Y axis is referred to as “upper surface U”, and the other is referred to as “lower surface D”.
  • the arm 30 includes left and right arm portions 31R and 31L and an arm connecting portion 33 that connects one end portions of the left and right arm portions 31R and 31L.
  • the other end of each of the left and right arm portions 31R, 31L is a gear holding portion 32R for holding one end portion of the metal gears 11R, 11L with one end projecting from the left and right arm support surfaces R, L of the motor case 10.
  • 32L first connecting portion
  • the servo motor 1 is configured to be able to rotate the motor case 10 with respect to the arm 30 over the entire rotation angle.
  • the range of rotation is limited for control.
  • Two magnetic electrodes 34R and 34L are disposed on the surface opposite to the side facing the motor case 10 in the arm connecting portion 33 of the arm 30.
  • the two magnetic electrodes 34R and 34L are disposed at positions separated from each other in the X-axis direction.
  • the two magnetic electrodes 34R and 34L are electrodes made of a material having magnetism and conductivity, and are electrically connected to the two counter electrodes 36R and 36L to be connected while being magnetized.
  • the magnetic electrodes 34R and 34L are configured using a conductive metal magnet such as a neodymium magnet.
  • the magnetic electrodes 34R, 34L and the counter electrodes 36R, 36L are attracted to each other with an attractive force that can sufficiently withstand the stress generated during the operation of the robot by the magnetic force of the permanent magnets of the magnetic electrodes 34R, 34L. Details of the configuration of the magnetic electrodes 34R and 34L using the permanent magnet will be described later.
  • two counter electrodes 36R and 36L (second electrodes) are disposed on the front surface F of the motor case 10.
  • the two counter electrodes 36R and 36L are electrodes for electrical connection while being magnetically attached to the two magnetic electrodes 34R and 34L of the servo motor to be connected.
  • the front surface F of the motor case 10 is provided with two concave engaging portions 37R and 37L used for positioning at the time of connection with a connection partner. That is, when the two concave engaging portions 37R, 37L of the motor case 10 and the two engaging portions 35R, 35L of the servo motor to be connected are fitted to each other, the two counter electrodes of the motor case 10 are fitted.
  • the center positions of 36R and 36L and the center positions of the two magnetic electrodes 34R and 34L of the servo motor to be connected are magnetized to each other.
  • the servo motor 1 of this embodiment corresponds to chain connection. That is, as shown in FIG. 4, the two opposing electrodes 36R, 36L provided on the motor case 10 (front surface F) of one servo motor 1 (1-1) are connected to the other servo motor having the same structure. It is possible to connect two magnetic electrodes 34R and 34L provided on the arm 30 (arm communication portion 33) of 1 (1-2). Further, another servo motor (not shown) having the same structure can be connected to the other servo motor 1-2 in the same manner. Such a connection form is referred to as “chain connection”.
  • the two magnetic electrodes 34R and 34L provided on the arm 30 of the servo motor 1 are provided on the connection interface 2 of the power supply module.
  • Two counter electrodes 40R and 40L (third electrode) can be magnetized.
  • the magnetic electrodes 34R and 34L of the most upstream servo motor 1 (1-1) among the plurality of chain-connected servo motors 1 (1-1 and 1-2) are connected to the power supply module described above.
  • the counter electrodes 40R and 40L of the connection interface 2 are magnetized.
  • the connection interface 2 is provided with two concave engaging portions 37a and 37a used for positioning when connecting to the servo motor 1.
  • the power supply module will be described later.
  • the magnetic electrodes 34R and 34L are arranged on the front surface of the arm connecting portion 33.
  • the left and right arm portions 31R are arranged.
  • 31L may be a servo motor 1B in which magnetic electrodes 34R, 34L are arranged.
  • FIG. 5A is a cross-sectional view of the magnetic electrode 34
  • FIG. 5B is a plan view of the magnetic electrode 34 of FIG.
  • the magnetic electrode 34 includes a cylindrical neodymium magnet 341 and a magnetic cap 343 formed of a material having magnetism and conductivity and enclosing the neodymium magnet 341.
  • the magnetic cap 343 is a cylindrical member that is open at one end, and includes a disc-shaped bottom plate portion 343a and a cylindrical-shaped side wall portion 343b.
  • the neodymium magnet 341 is accommodated by the bottom plate part 343a and the side wall part 343b.
  • a cylindrical space having one end opened is formed.
  • One end surface 341 a of the neodymium magnet 341 on the opening side of the magnetic cap 343 is exposed at the opening of the magnetic cap 343.
  • the one end surface 341a on the opening side of the magnetic cap 343 of the neodymium magnet 341 and the one end surface 343c on the opening side of the magnetic cap 343 are both arranged at the same height so as to be magnetically attached to the counter electrode 36. ing.
  • One end surface of the neodymium magnet 341 is adhered to the inner surface of the bottom plate portion 343a of the magnetic cap 343 by a conductive material 345 such as an adhesive metal paste.
  • An adhesive 347 is filled between the outer peripheral surface of the neodymium magnet 341 and the inner peripheral surface of the side wall portion 343b of the magnetic cap 343.
  • This adhesive 347 may also be conductive. In this way, the entire outer peripheral surface of the neodymium magnet 341 is adhered to the inner peripheral surface of the side wall portion 343b of the magnetic cap 343 by the adhesive 347, so that the neodymium magnet 341 is sufficiently attached to the inner peripheral surface of the side wall portion 343b of the magnetic cap 343.
  • the electrode part 349 electrically connected to one end of the wiring in the arm 30 is fixed to the outer surface of the bottom plate part 343a of the magnetic cap 343.
  • the magnetic electrode 34 having such a structure is held by adhering the bottom surface and the outer peripheral surface of the magnetic cap 343 to the electrode holding portion 33a provided on the arm 30 with an adhesive or the like.
  • FIG. 6A is a cross-sectional view of the counter electrode 36
  • FIG. 6B is a plan view of the counter electrode 36 of FIG.
  • the counter electrode 36 includes an electrode plate 361 formed of a material having magnetism and conductivity, such as iron.
  • the electrode plate 361 is, for example, a disk-shaped component having a hole portion 362 in which a head portion of a screw (13 in FIG. 8) fits in an axial center portion.
  • a surface 363 of the electrode plate 361 that is magnetically attached to the magnetic electrode 34 is a flat surface. As shown in FIG.
  • the counter electrode 36 is electrically connected to a flat surface 363 of the electrode plate 361 while being magnetically attached to one end surface 343 c of the magnetic cap 343 of the magnetic electrode 34 and one end surface 343 c of the neodymium magnet 341.
  • An electrode portion 367 to which one end of the wiring in the motor case 10 is connected is fixed to a surface 365 of the electrode plate 361 opposite to the side magnetically attached to the magnetic electrode 34.
  • the counter electrode 36 is fixed to the electrode holding portion 12 provided on the front surface F of the motor case 10 with a screw 13.
  • the magnetic electrode 34 and the counter electrode 36 are configured to be attracted to each other by a magnetic force and electrically connected.
  • the servomotors 1 can be easily connected or separated, and the assembly of the robot can be easily performed. Furthermore, since it can be easily separated, the assembly of the robot can be easily changed.
  • the magnetic electrode 34 and the counter electrode 36 are connected to each other by an attractive force due to a magnetic force, when a relatively large external force is applied at the time of a collision or a fall, the two connected portions are subjected to a large stress before being subjected to a large stress. To separate. Thereby, it can prevent that a connection part deform
  • the counter electrode 36 is fixed to the electrode holding portion 12 of the motor case 10 with the screw 13.
  • a flange portion is provided on the side wall of the counter electrode 36.
  • the counter electrode 36 may be fixed to the electrode holding portion 12 by pressing the portion with a stopper made of a non-conductive material.
  • FIG. 9 is a diagram showing an internal configuration of the servo motor 1 of the present embodiment.
  • one end is connected to one magnetic electrode 34R, and the other end is electrically connected to one gear holder 38R (first connecting portion) fixed to one end portion of the right arm portion 31R.
  • a wiring 39R is provided.
  • one end is connected to the other magnetic electrode 34L, and the other end is electrically connected to the other gear holder 38L (first connecting portion) fixed to one end portion of the left arm portion 31L.
  • a connected wiring 39L is provided.
  • a servo control module 18 (first control circuit) for controlling the servo motor 1 is accommodated.
  • the detailed configuration of the servo control module 18 will be described later.
  • two metal gears 11 ⁇ / b> R and 11 ⁇ / b> L are rotatably disposed in a state in which a part protrudes from the left and right arm support surfaces R and L of the motor case 10.
  • the metal gears 11R and 11L are made of a conductive metal material.
  • the two metal gears 11 ⁇ / b> R and 11 ⁇ / b> L are fixed to both ends of the shaft 14 disposed in the motor case 10.
  • the shaft parts 14R and 14L (two power transmission parts) of both sides are electrically insulated by the insulation part 14a provided in the intermediate part in the axial direction.
  • a metal gear 11R is fixed to one end of the shaft portion 14R.
  • a metal gear 11L is fixed to one end of the shaft portion 14L.
  • the shaft portion 14R is electrically connected to one end of the wiring 15R in the motor case 10 through a movable contact 16R such as a brush.
  • the wiring 15R is branched in the motor case 10, one of which is connected to one PWM power input terminal 181 of the servo control module 18, and the other is connected to one counter electrode 36R disposed on the front surface F of the motor case 10.
  • the shaft portion 14L is electrically connected to one end of the wiring 15L in the motor case 10 through a movable contact 16L such as a brush.
  • the wiring 15L is branched in the motor case 10, one of which is connected to the other PWM power input terminal 182 of the servo control module 18, and the other is connected to the other counter electrode 36L disposed on the front surface F of the motor case 10. Is done.
  • the gear 17 (final gear) that transmits the power of a motor (not shown) disposed in the motor case 10 is meshed with the metal gear 11R fixed to the shaft portion 14R.
  • a conductive gear holder 38R (first connecting portion) that holds the metal gear 11R is fixed to one end portion of one arm portion 31R of the arm 30.
  • a conductive gear holder 38L (first connecting portion) for holding the metal gear 11L is fixed to one end portion of the other arm portion 31L of the arm 30.
  • one magnetic electrode 34R is connected to one PWM power source of the servo control module 18 through the wiring 39R, the gear holder 38R, the metal gear 11R, the shaft portion 14R, the movable contact 16R, and the wiring 15R.
  • the input terminal 181 and one counter electrode 36R are electrically connected.
  • the other magnetic electrode 34L is connected to the other PWM power input terminal 182 of the servo control module 18 and the other through the wiring 39L, the gear holder 38L, the metal gear 11L, the shaft portion 14L, the movable contact 16L, and the wiring 15L. It is electrically connected to the electrode 36L.
  • FIG. 10 is a diagram illustrating a configuration example of a robot using the servo motor 1.
  • FIG. 16 is a block diagram showing the overall configuration of the robot shown in FIG.
  • the robot 100 includes a body portion 101 having a head and servo motor chains 110, 120, 130, and 140 corresponding to the four limbs (right arm, left arm, right leg, and left leg on the paper surface) of the body portion 101. Is done.
  • the servo motor chains 110, 120, 130, 140 are composed of one or more servo motors 1 connected in a chain. In the present embodiment, each servo motor chain 110, 120, 130, 140 is composed of two servo motors 1.
  • the servo motor chain 110 corresponding to the right arm on the paper is the “first servo motor chain 110”
  • the servo motor chain 120 corresponding to the left arm on the paper is the “second servo motor chain 120”
  • the right leg on the paper is the right leg on the paper.
  • the servo motor chain 130 corresponding to is referred to as a “third servo motor chain 130”, and the servo motor chain 140 corresponding to the left leg on the paper surface is referred to as a “fourth servo motor chain 140”.
  • the two servo motors 1 constituting the first servo motor chain 110 are “servo motor 1-1” and “servo motor 1-2”, and the two servo motors 1 constituting the second servo motor chain 120 are “servo”.
  • the two servo motors 1 constituting the “motor 1-3”, “servo motor 1-4”, and third servo motor chain 130 are “servo motor 1-5”, “servo motor 1-6”, and the fourth The two servo motors 1 constituting the servo motor chain 140 are referred to as “servo motor 1-7” and “servo motor 1-8”.
  • Each servo motor chain 110, 120, 130, 140 may be composed of three or more servo motors 1.
  • the number of servo motors 1 constituting each servo motor chain 110, 120, 130, 140 need not be the same.
  • the body unit 101 includes a central processing module 102, a secondary power supply device 103 having a battery, and power supply modules 250, 260, 270, and 280 corresponding to the servo motor chains 110, 120, 130, and 140, respectively.
  • the central processing module 102 includes a central processing module 102, a secondary power supply device 103 having a battery, and power supply modules 250, 260, 270, and 280 corresponding to the servo motor chains 110, 120, 130, and 140, respectively.
  • the central processing module 102 can communicate wirelessly with a remote controller of the user through a network 104.
  • the central processing module 102 executes various commands sent wirelessly from the remote controller to cause the robot 100 to execute a predetermined operation.
  • the central processing module 102 includes a CPU (Central Processing Unit), a main memory, a ROM (Read Only Memory), a communication interface, and the like.
  • the CPU executes a program stored in the main memory and the ROM to control each servo motor chain 110, 120, 130, 140 and perform arithmetic processing for causing the robot 100 to execute a predetermined operation.
  • the main memory is used as a work area for the CPU.
  • the ROM stores a program executed by the CPU and various parameters necessary for executing the program in a fixed manner.
  • the communication interface is used for communication between the CPU of the central processing module 102 and the power supply modules 250, 260, 270, and 280 for each of the servo motor chains 110, 120, 130, and 140.
  • USB Universal Serial Bus
  • UART Universal Asynchronous Receiver Transmitter
  • Each power supply module 250, 260, 270, 280 has a connection interface 2-1, 2-2, 2-2 for mechanical connection and electrical connection with the servo motor chain 110, 120, 130, 140. 3, 2-4.
  • each connection interface 2-1, 2-2, 2-3, 2-4 is provided at a portion to which the individual servo motor chains 110, 120, 130, 140 are connected.
  • connection interface 2 (2-1, 2-2, 2-3, 2-4) has two magnetic electrodes provided on the arm 30 (arm connecting portion 33) of the servo motor 1.
  • Two opposing electrodes 40R, 40L that can be electrically connected while being magnetically attached to 34R, 34L, and two convex engaging portions 35R, 35L provided on the arm 30 (arm connecting portion 33) of the servo motor 1
  • two concave engaging portions 37R and 37L that can be engaged with each other.
  • the structure of the two counter electrodes 40R and 40L of the connection interface 2 is the same as the structure of the counter electrodes 36R and 36L of the servo motor 1.
  • the two counter electrodes 40R, 40L of the connection interface 2 (2-1, 2-2, 2-3, 2-4) have the servos on the most upstream side of the corresponding servo motor chains 110, 120, 130, 140 respectively.
  • Two magnetic electrodes 34R and 34L provided on the arms 30 of the motors 1-1, 1-3, 1-5, and 1-7 are magnetized.
  • the two counter electrodes 36R, 36L of the servo motors 1-1, 1-3, 1-5, 1-7 on the most upstream side are respectively connected to the second servo motor 1-2, 1-4 from the upstream side.
  • 1-6, 1-8, two magnetic electrodes 34R, 34L provided on the arm 30 are magnetized.
  • connection interfaces 2 (2-1, 2-2, 2-3, 2-4) are connected to the upstreammost servo motors 1-1, 1-3, 1-5, 1-7 and the upstream side.
  • the second servo motors 1-2, 1-4, 1-6, and 1-8 are connected in a chain to form each servo motor chain 110, 120, 130, and 140.
  • the power supply modules 250, 260, 270, and 280 and the servo motor 1 connected thereto are referred to as “servo motor system”.
  • FIG. 11 is a block diagram showing the configuration of the power supply module 250.
  • the structure of each power supply module 250, 260, 270, 280 is the same, only the structure of the power supply module 250 is demonstrated here.
  • the power supply module 250 includes a communication interface 151, a CPU 152, an inverter 153, a power input terminal 154, a constant voltage circuit 155, a protection circuit 156, a constant current source 157, a power amplification circuit 158, detectors 159 and 2
  • Two PWM power output terminals 160 and 161 are provided.
  • one PWM power output terminal 160 is electrically connected to one counter electrode 40R (one third electrode) of the connection interface 2 through a wiring.
  • the other PWM power output terminal 161 is electrically connected to the other counter electrode 40L (the other third electrode) of the connection interface 2 through a wiring.
  • the CPU 152, the inverter 153, the power amplification circuit 158, and the like correspond to a “second control circuit” in the claims.
  • the communication interface 151 receives the control command transmitted from the central processing module 102 and supplies it to the CPU 152.
  • the CPU 152 receives a control command sent from the central processing module 102 through the communication interface 151, generates a PWM signal corresponding to this control command, and inputs this PWM signal to the power amplifier circuit 158 as a positive phase PWM signal. At the same time, it is input to the inverter 153.
  • the inverter 153 inverts the PWM signal input from the CPU 152 and inputs the inverted PWM signal to the power amplifier circuit 158 as a reverse phase PWM signal.
  • the power input terminal 154 is a terminal electrically connected to the secondary power supply device 103 (FIG. 10) in the body portion 101, and applies DC power from the secondary power supply device 103 to the constant voltage circuit 155.
  • the constant voltage circuit 155 is a circuit that generates a predetermined voltage necessary for operating the CPU 152 from the DC power supplied through the power input terminal 154.
  • the protection circuit 156 is a circuit for protecting the power amplifier circuit 158 by preventing an overcurrent from flowing from the power input terminal 154 to the power input terminal of the power amplifier circuit 158.
  • the power amplification circuit 158 is a circuit that amplifies the normal phase PWM signal from the CPU 152 and the reverse phase PWM signal obtained by inverting the PWM signal by the inverter 153 to a level necessary for driving the servo motor 1. is there.
  • the power amplifier circuit 158 includes two H bridges, and a positive phase PWM signal is input to one of the H bridges, and a reverse phase inverted PWM signal is input to the other H bridge.
  • the power amplifier circuit 158 has two output terminals, outputs a positive phase PWM signal amplified by one H bridge from one output terminal as a positive phase PWM power supply 163, and outputs from the other output terminal to the other.
  • the reversed-phase inverted PWM signal amplified by the H bridge is output as the reversed-phase PWM power supply 164.
  • the power amplifier circuit 158 includes a terminal 162 for setting the duty ratio.
  • the CPU 152 applies a control signal for setting the duty ratio to the terminal 162 for setting the duty ratio as necessary.
  • the power amplifier circuit 158 updates the duty ratio setting value based on the control signal applied to the duty ratio setting terminal.
  • One output terminal of the power amplification circuit 158 is connected to one PWM power supply output terminal 160 of the power supply module 250, and the other output terminal of the power amplification circuit 158 is connected to the other PWM power supply output terminal 161 of the power supply module 250. Is done.
  • the constant current source 157 includes a pull-up resistor or the like interposed between the power input terminal 154 and one PWM power output terminal 160.
  • the detector 159 performs servo control based on a change in potential difference between the two PWM power output terminals 160 and 161 during a data response period (Data (R)) set by a data read command to be described later.
  • Data (R) data response period
  • This is a circuit for detecting a bit string constituting read data including various statuses returned from the module 18.
  • the status returned from the servo control module 18 includes the rotation angle of the servo motor 1 and the value of the DC voltage generated from the PWM power supply.
  • FIG. 12 is a diagram showing an electrical configuration of the servo control module 18 in the servo motor 1.
  • the servo control module 18 includes two PWM power input terminals 181, 182, a PWM power rectifier circuit 183, a diode 184, a capacitor 185, a constant voltage circuit 186, a CPU 187, an H bridge circuit 188, a motor 189, a motor rotation angle detector 190, A reference voltage generation circuit 191 and two open drain circuits 192 and 193 are included.
  • one PWM power input terminal 181 of the two PWM power input terminals 181 and 182 is electrically connected to one magnetic electrode 34R (one first electrode of the two first electrodes).
  • the other PWM power input terminal 182 is electrically connected to the other magnetic electrode 34L (the other first electrode).
  • the PWM power supply rectifier circuit 183, the CPU 187, and the like correspond to the “first control circuit” in the claims.
  • the two PWM power supply input terminals 181 and 182 are respectively a normal-phase PWM power supply 163 and a reverse power supply supplied from the power supply module 250 or the upstream servomotor 1 in the servomotor chain 110 from the power supply module 250. This is a terminal for inputting the phase PWM power supply 164.
  • the PWM power supply rectifier circuit 183 generates a DC voltage for operating the motor 189 by full-wave rectifying the positive-phase PWM power supply 163 and the reverse-phase PWM power supply 164 input from the two PWM power supply input terminals 181 and 182. To do. Further, the PWM power supply rectifier circuit 183 extracts a PWM signal component by half-wave rectifying either one of the positive phase PWM power supply 163 and the reverse phase PWM power supply 164 and outputs the PWM signal component to the CPU 187. The DC power generated by the PWM power rectifier circuit 183 is given to the constant voltage circuit 186 through the diode 184 and the capacitor 185.
  • the constant voltage circuit 186 generates a predetermined voltage for operating the CPU 187 and applies it to the CPU 187 as an operating voltage.
  • the DC voltage generated by the PWM power supply rectifier circuit 183 is supplied to the H bridge circuit 188.
  • the H bridge circuit 188 generates a drive voltage to be applied to the motor 189 based on the control PWM signal from the CPU 187.
  • the motor rotation angle detection unit 190 detects the angular position of the output shaft of the motor 189 and notifies the CPU 187 of the detection result.
  • the CPU 187 A / D converts the PWM signal supplied from the PWM power supply rectifier circuit 183, demodulates the command, and executes this command.
  • the CPU 187 A / D converts the value obtained by A / D converting the DC voltage generated by the PWM power supply rectifier circuit 183 and the reference voltage generated by the reference voltage generating circuit 191 such as a shunt regulator, for example. Then, the duty ratio of the control PWM signal given to the H bridge circuit 188 is variably controlled based on the difference.
  • the command includes a data write command used to give data such as a command from the power supply module 250 to the servo control module 18 in one direction, and the power supply module 250 requests various data from the servo control module 18.
  • a data read command used to do this.
  • the data write command and the data read command are transmitted using different command transmission protocols. These command transmission protocols will be described later.
  • the CPU 187 controls the positive-side open drain circuit 192 of the two open drain circuits 192 and 193 (switching circuit) during the data response period set by the data read command, whereby the power supply module 250. It is possible to generate response data to Details thereof will be described later.
  • FIG. 13 is a diagram illustrating an example of a PWM signal waveform of the data write command 3.
  • FIG. 14 is a diagram illustrating an example of a PWM signal waveform of the data read command 4.
  • the PWM signal waveforms of the data write command 3 and the data read command 4 are basically composed of a plurality of types of pulses having different periods. In this example, three types of pulses of 50 us period, 100 us period, and 200 us period are used.
  • the data write command 3 includes a preamble (Preamble), an ID address (M-ID Address / T-ID Address), a command (Command), and write data (Data 1 ... Data N). , CRC, etc.
  • the preamble indicates the head of the data write command 3 and is composed of a pulse waveform with a period of 50 us. Since the 50-us pulse waveform is used only in the preamble (Preamble), the length of the preamble (Preamble) may be arbitrary. Between the preamble (Preamble) and the ID address (M-ID Address / T-ID Address), one pulse waveform having a period of 200 us indicating these divisions is arranged.
  • the ID address (M-ID Address / T-ID Address) is information for specifying the destination servo motor 1.
  • the ID address (M-ID Address / T-ID Address) is composed of 8 bits, with the pulse waveform of 100us cycle being "1" and the pulse waveform of 200us cycle being "0".
  • the ID address (M-ID Address / T-ID Address) means a device-specific master ID (M-ID Address) when the first bit is “1”, and the first bit is “0”. It indicates a temporary ID (T-ID Address) temporarily assigned to the device. In the example of FIG. 13, since the first bit is “1”, the ID address (M-ID Address / T-ID) Address) is a device-specific master ID (M-ID ⁇ Address).
  • the command is composed of 7 bits, with the pulse waveform of 100us cycle being “1" and the pulse waveform of 200us cycle being "0". Between the command (Command) and the write data (Data 1... Data N), one pulse waveform with a period of 200 us indicating the separation is arranged.
  • Individual write data consists of 8 bits, with the pulse waveform of 100us cycle being "1" and the pulse waveform of 200us cycle being "0".
  • the number of write data is variable according to the type of command. Between the last write data (Data N) and the CRC, one pulse waveform having a period of 200 us indicating these divisions is arranged.
  • the CRC is added to the data write command 3 only, and is composed of 8 bits, with the pulse waveform having a 100 us period as “1” and the pulse waveform having a 200 us period as “0”. Finally, one pulse waveform having a period of 200 us indicating the end of the data write command 3 is arranged.
  • the data read command 4 includes a preamble (Preamble), an ID address (M-ID Address / T-ID Address), a command (Command), a data prepare (Data-Prepare), and read data ( Data (R)).
  • Preamble a preamble
  • ID address M-ID Address / T-ID Address
  • Command a command
  • Data-Prepare a data prepare
  • R read data
  • Preamble and ID address are the same as in data write command 3.
  • the command (Command) is, for example, a command statement for causing the servo control module 18 to read data such as the status of the servo motor 1.
  • a data prepare (Data-Prepare) is placed with one pulse waveform with a period of 200us.
  • Data Prepare indicates a preparation period for transmitting read data as response data from the servo control module 18 to the power supply module 250 during a response period of read data (Data (R)).
  • This data prepare (Data-Prepare) is composed of a 7-bit predetermined waveform pattern using a pulse waveform with a cycle of 100 us and a pulse waveform with a cycle of 200 us.
  • a response period (data response period) of read data (Data (R)) is provided with one pulse waveform having a cycle of 200 us.
  • the read data (Data (R)) is composed of a total of 9 bits, for example, 8 bits of data and parity bits.
  • the servo control module 18 has two open drain circuits 192 and 193 (switching circuits) having drains connected to the two PWM power input terminals 182 and 183, respectively.
  • the CPU 187 of the servo control module 18 has a PWM power input terminal that is electrically connected to the PWM power input terminal 181 connected to the constant current source 157 in the power supply module 250, that is, the positive side of the two open drain circuits 192 and 193.
  • the open drain circuit (open drain circuit 192 in this example) with the drain connected to 181 is determined, and the on / off state of the open drain circuit is switched based on the value of each bit of the response data.
  • the potential of the PWM power output terminal 160 becomes higher than the potential of the other PWM power output terminal 161.
  • the positive-side open drain circuit 192 is off, the potential difference between the two PWM power output terminals 160 and 161 is zero or substantially zero.
  • the detector 159 measures the potential difference between the two PWM power supply output terminals 160 and 161, evaluates this potential difference using a predetermined threshold value, and determines the logic level.
  • the detector 159 determines the logic level of “High” with respect to the potential difference between the two PWM power supply output terminals 160 and 161 generated when the positive-side open drain circuit 192 is on.
  • the detector 159 determines the logic level of “Low” with respect to the potential difference between the two PWM power supply output terminals 160 and 161 when the positive-side open drain circuit 192 is off.
  • the CPU 187 of the servo control module 18 generates read data such as the status of the servo motor 1 according to the command included in the data read command 4.
  • the read data is composed of a total of 9 bits including an 8-bit data body plus a 1-bit parity bit.
  • the CPU 187 of the servo control module 18 sequentially turns on / off the positive-side open drain circuit 192 in accordance with the value of each bit constituting the read data.
  • 9 bits are detected by the detector 159 of the power supply module 250 and transmitted to the CPU 152.
  • the CPU 152 detects an error in the received 9 bits using a parity bit, and if there is no error, determines 8 bits from the head as the data body of the read data.
  • the PWM power supply taken from the two PWM power supply input terminals 181 and 182 is full-wave rectified by the PWM power supply rectifier circuit 183 and used as a DC power supply, and the taken-in PWM power supply is half-wave rectified.
  • the original PWM signal is restored.
  • the PWM power input terminal 182 of the servo control module 18 is connected to the PWM power output terminal 160 on the positive electrode side of the power supply module 250, the open drain circuit 193 is determined as a target for on / off switching control. Is done.
  • 450 us is given as the length of the response period of the read data (Data (R)).
  • PWM power transmission from the power supply module 250 to the servo control module 18 is not performed, so that power for operating the CPU 187 in the servo control module 18 is generated from the charge stored in the capacitor 185. .
  • the capacitor 185 needs to have a capacity sufficient to supply power to the CPU 187 for a read data (Data (R)) response period or longer.
  • the power supply to the motor 189 is suspended.
  • FIG. 15 is a diagram illustrating an example of a PWM signal waveform of the data read command 5 of the broadcast method.
  • the data read command 5 of the broadcast method includes a preamble (Preamble), an ID address (B-ID Address), a command (Command), a first data prepare (Data-Prepare1), and a first read data (M-ID ( R)), second data prepare (Data-Prepare2), second read data (Data (R)), and the like.
  • the preamble is similar to the data write command 3 and the data read command 4 described above.
  • the ID address (B-ID Address) is a broadcast address that specifies all the servo motors 1 constituting the servo motor chain 110.
  • the command (Command) is a command for requesting the servo control module 18 for read data. Between the ID address (B-ID Address) and the command (Command), there is one pulse waveform with a cycle of 200us and one pulse waveform (R) with a cycle of 100us that identifies the data read command. Be placed.
  • the first data prepare (Data-Prepare1) arranged next to the command (Command) is a servo control module in the response period (first data response period) of the first read data (M-ID (R)).
  • 18 shows a preparation period for responding read data from 18 to the power supply module 250.
  • the first data prepare (Data-Prepare1) is composed of a 7-bit predetermined waveform pattern using a pulse waveform with a cycle of 100 us and a pulse waveform with a cycle of 200 us.
  • a response period (first data response period) of the first read data (M-ID (R)) is provided with one pulse waveform having a cycle of 200 us. .
  • the first read data (M-ID (R)) is composed of a total of 9 bits, for example, 8 bits of data and parity bits.
  • the second data prepare (Data-Prepare2) is arranged after one pulse waveform with a cycle of 200 us after the response period of the first read data (M-ID (R)).
  • the second data prepare (Data-Prepare2) is composed of a 7-bit predetermined waveform pattern using a pulse waveform with a cycle of 100 us and a pulse waveform with a cycle of 200 us.
  • a response period (second data response period) of the second read data (Data (R)) is provided with one pulse waveform having a cycle of 200 us.
  • the transmission of the PWM power supply from the power supply module 250 to the servo control module 18 is suspended, and the power supply from the servo control module 18 is performed.
  • data such as the status of the servo motor 1 is transmitted to the module 250 as second read data (Data (R)).
  • the second read data (Data (R)) is composed of a total of 9 bits, for example, 8 bits of data and parity bits.
  • the servo control module 18 When the servo control module 18 receives the data read command 5 of the broadcast method, the servo control module 18 switches on / off of the positive-side open drain circuit 192 during the response period of the first read data (M-ID (R)). Then, the servo motor 1 master ID is returned as the first read data (M-ID (R)), and then data such as the status of the servo motor 1 during the response period of the second read data (Data (R)). As the second read data (Data (R)).
  • one PWM power supply output terminal 160 of the power supply module 250 is electrically connected to one PWM power supply input terminal 181 of each of the servo control modules 18 of the plurality of servo motors 1-1 and 1-2 constituting the servo motor chain 110.
  • the other PWM power source output terminal 161 of the power supply module 250 is connected to the other PWM power source input terminal 182 of the servo control module 18 of each of the plurality of servo motors 1-1 and 1-2 constituting the servo motor chain 110.
  • a collision occurs because the servo control modules 18 of the plurality of servo motors 1-1 and 1-2 simultaneously respond to data to the broadcast-type data read command 5 transmitted from the power supply module 250. There is a possibility that the read data is not correctly transmitted to the power supply module 250.
  • the CPU 187 of the servo control module 18 uses the PWM power supply input terminal 181 and the PWM power supply rectifier circuit 183 at the same time as setting the first read data (M-ID (R)) under the control of the open drain circuit 192.
  • the first read data (M-ID (R)) in the read data read command 5 is read.
  • the CPU 187 determines whether or not the master ID that is the content of the read first read data (M-ID (R)) matches the correct master ID set by itself. If they match, the above-mentioned collision does not occur, so the CPU 187 controls the next process for the data read command 5, that is, the open drain circuit 192 to set the second read data (Data (R)). Proceed to processing.
  • the CPU 187 of the servo control module 18 uses this read data (M-ID (R)). Is invalidated, error data is set as the second read data (Data (R)) in the data read command 5. For example, the CPU 187 of the servo control module 18 sets an error by setting all the 8-bit data values of the second read data (Data (R)) to “0” and the parity bit value to “1”. Set the data. As a result, the CPU 152 of the power supply module 250 determines that the second read data (Data (R)) is an error by error detection using the parity bit, and responds to the current data read command 5. The read data (M-ID (R)) and (Data (R)) are discarded.
  • the CPU 187 of the servo control module 18 that failed to respond to the read data due to the collision waits for a new data read command 5 after a predetermined time or a randomly determined time has elapsed, and changes to the new data read command 5.
  • the response of the first read data (M-ID (R)), the verification of the master ID, and the response of the second read data (Data (R)) are performed.
  • the CPU 187 of the servo control module 18 repeats the same operation until the master ID is successfully verified.
  • the CPU 152 of the power supply module 250 receives valid first read data (M-ID (R)) from the servo control modules 18 of all the servo motors 1-1 and 1-2 constituting the servo motor chain 110. Until the response is received, the same data read command 5 is continuously transmitted.
  • M-ID (R) valid first read data
  • the power supply module 250 includes all the servo motors 1-1 constituting the servo motor chain 110.
  • Valid response data can be received from the servo control module 18 of 1-2. The same applies to the other power supply modules 260, 270, and 280.
  • the IDs of all the servo motors 1-1 and 1-2 in the servo motor chain 110 connected to the power supply module 250 are associated with the information indicating the connection order from the power supply module 250 in a memory. Saved in.
  • the servo motors 1-1 and 1-2 are assigned as control targets for each part of the robot 100 in the order of connection. The same applies to the other power supply modules 260, 270, and 280.
  • each power supply module 250, 260, 270, 280 refers to the ID of the servo motor 1 corresponding to the part to be controlled designated by the central processing module 102 from the memory, and the servo motor 1
  • the data write command 3 and the data read command 4 are given to the servo motor 1 to be controlled.
  • an ID of the servo motor 1 a master ID assigned to the servo motor 1 at the time of manufacture can be used.
  • a manual setting operation for associating the master ID of each servo motor 1 with each part of the robot 100 is required, which is troublesome.
  • the servo motor 1 ID and connection order are automatically associated with each servo motor chain 110, 120, 130, 140. This function will be described below.
  • the voltage of the PWM power supply supplied to each of the servo motors 1-1 and 1-2 constituting the servo motor chain 110 decreases because the wiring resistance component increases as the transmission distance increases.
  • the voltage of the PWM power supply supplied to the servomotor 1-2 is slightly lower than the voltage of the PWM power supply supplied to the servomotor 1-1. Therefore, the power supply module 250 of each servo motor 1-1, 1-2 constituting the servo motor chain 110 is determined from the magnitude relationship of the voltage drop of the PWM power supply supplied to each servo motor 1-1, 1-2. You can know the connection order from.
  • the CPU 152 of the power supply module 250 sends the value of the PWM power supply voltage to the servo control module 18 of each of the servo motors 1-1 and 1-2 constituting the servo motor chain 110 by the above-described data read command of the broadcast method. Request using 5.
  • the CPU 187 of the servo control module 18 When the CPU 187 of the servo control module 18 receives this data read command 5, it performs A / D conversion on the DC voltage generated from the PWM power supply by the PWM power supply rectifier circuit 183. The CPU 187 of the servo control module 18 responds to the power supply module 250 with its own master ID as the first read data (M-ID (R)), and then sets the DC voltage value to the second read data (Data ( R)) to respond to the power supply module 250.
  • M-ID (R) the first read data
  • Data ( R) the DC voltage value to the second read data
  • the CPU 152 of the power supply module 250 stores the master ID and voltage value pair returned from the servo control module 18 in the memory.
  • the CPU 152 of the power supply module 250 stores in the memory the master ID and voltage value pairs of all the servo motors 1-1 and 1-2 that constitute the servo motor chain 110, the CPU 152 of the servo motor chain 110 increases the voltage values in descending order.
  • the connection order close to the power supply module 250 is sequentially assigned to the master ID.
  • This assignment is performed, for example, such that the top connection order is assigned to the master ID having the highest voltage value, and the top connection order is assigned to the master ID having the next highest voltage value.
  • the above processing is similarly performed in the power supply modules 260, 270, and 280.
  • the CPU 152 of the power supply module 250 assigns a temporary ID to each master ID.
  • a temporary ID a number uniquely associated in advance with each part determined as a control target of the robot 100 can be used.
  • FIG. 17 is a diagram showing the configuration of the information correspondence table obtained by the processing so far.
  • the temporary IDs are “A01” and “A02”.
  • “B01”, “B02”, “C01”, “C02”, “D01”, and “D02” are associated in advance.
  • the power supply module 250 is assigned the connection order “1” for the servo motor whose master ID is “***** 145”, and “A01” corresponding to the right shoulder joint is assigned as the temporary ID. It is done. Further, the connection order “2” is assigned to the servo motor whose master ID is “***** 254”, and “A02” corresponding to the right elbow joint is assigned as the temporary ID. Similarly, in the other power supply modules 260, 270, and 280, a correspondence table of connection order, master ID, and temporary ID is created.
  • the CPU 152 of the power supply module 250 transmits a temporary ID using the data write command 3 to the servo control modules 18 of all the servo motors 1-1 and 1-2 constituting the servo motor chain 110.
  • the data write command 3 is a command in which a master ID is designated as an ID address and a temporary ID is stored as write data.
  • the CPU 187 of the servo control module 18 When the CPU 187 of the servo control module 18 receives the data write command 3, the CPU 187 stores the temporary ID included in the data write command 3 as write data in the memory. Thereafter, this temporary ID is used as its own ID address for the CPU 187 of the servo control module 18 to receive the data write command 3 and the data read command 4 using the temporary ID (T-ID Address) as the ID address.
  • T-ID Address temporary ID address
  • setting a temporary ID is not essential. This is because the command destination can be specified using the master ID. In this case, in the above operation, the process for assigning the temporary ID to the master ID and setting the temporary ID to the servo motors 1-1 and 1-2 can be omitted.
  • the voltage of the PWM power supply supplied to each of the servo motors 1-1 and 1-2 constituting the servo motor chain 110 becomes lower as it is connected farther from the power supply module 250. If the robot 100 is controlled as it is, there will be variations in torque and speed between the servomotors 1-1 and 1-2, which may adversely affect the operation of the robot 100. In addition, the voltage of the PWM power supply supplied to each servo motor 1-1 and 1-2 also varies depending on the remaining battery capacity in the secondary power supply device 103 mounted on the robot 100.
  • the CPU 187 of the servo control module 18 performs PID (Proportional-Integral-Derivative) control in order to suppress fluctuations in torque and speed of the servomotors 1-1 and 1-2 due to fluctuations in the voltage of the PWM power supply.
  • PID Proportional-Integral-Derivative
  • the amount of fluctuation from the reference value of the voltage of the PWM power supply is added to the operation amount generated by feedback control such as the above.
  • FIG. 18 is a block diagram illustrating a configuration of a motor control system 300 according to this modification.
  • This motor control system is realized by a CPU 187 (first control circuit) in the servo control module 18. Alternatively, it may be realized by dedicated hardware.
  • the motor control system 300 includes a change amount calculation unit 301, a subtraction unit 302, a PID control unit 303, a voltage error calculation unit 304, an operation amount correction unit 305, and a PWM control unit 306.
  • the change amount calculation unit 301 calculates a change amount per unit time from the rotation angle of the motor 189 measured by the motor rotation angle detection unit 190, and outputs this change amount to the subtraction unit 302.
  • the subtraction unit 302 subtracts the change amount supplied from the change amount calculation unit 301 from the target rotation angle included as data in the received data write command 3 to obtain a deviation for the proportional operation. In addition, the subtraction unit 302 accumulates the change amount supplied from the change amount calculation unit 301 to obtain a deviation for the integration operation. Further, the subtraction unit 302 obtains a difference between two change amounts continuously supplied from the change amount calculation unit 301 and an increase / decrease direction as a deviation for the integration operation.
  • the PID control unit 303 generates an operation amount by PID calculation using each deviation input from the subtraction unit 302.
  • the voltage error calculation unit 304 generates a difference between the input voltage, that is, the input voltage input from the PWM power supply rectifier circuit 183 and the reference voltage generated by the reference voltage generation circuit 191, and supplies the difference to the operation amount correction unit 305.
  • the operation amount correction unit 305 corrects the operation amount generated by the PID control unit 303 using the difference generated by the voltage error calculation unit 304, that is, the fluctuation amount of the input voltage. That is, the operation amount correction unit 305 corrects the operation amount to be increased when the input voltage is lower than the reference voltage, and corrects the operation amount to be decreased when the input voltage is higher than the reference voltage.
  • the PWM control unit 306 controls the energy supplied to the motor 189 by determining the duty ratio of the control PWM signal supplied to the H bridge circuit 188 based on the operation amount corrected by the operation amount correction unit 305.
  • the servo motors 1-1 and 1-2 are corrected by correcting the amount of fluctuation generated from the reference value of the voltage of the supplied PWM power supply to the operation amount generated by the PID control. Variations in torque and speed due to voltage fluctuations of the PWM power supply supplied to can be suppressed.
  • this technique can also take the following structures. (1) comprising a first main body and a second main body configured to be rotatable relative to each other;
  • the second body is
  • the communication information is modulated by the period of the pulse, and has two first electrodes to which two voltages having opposite phases are applied as a PWM power supply,
  • the first body includes A motor, A first control circuit that generates a DC voltage from the two voltages supplied through the two first electrodes of the second main body and extracts the communication information;
  • a servo motor comprising: two second electrodes each individually conducting to the two first electrodes of the second body.
  • the servo motor according to (1) or (2) The first control circuit is configured to vary energy supplied to the motor based on a difference between the generated DC voltage value and a predetermined reference value.
  • the servo motor according to (1) or (2) The first control circuit generates an operation amount of the motor by PID control using a target value and an actual control amount of the control amount of the motor, and the operation amount is determined as a value of the DC voltage and a predetermined reference Servo motor configured to correct based on the difference from the value.
  • the power supply module includes: Two third electrodes; A second control circuit that modulates communication information according to a pulse period, generates two voltages having opposite phases to each other as a PWM power supply, and individually applies the two voltages to the two third electrodes;
  • the servo motor is A first main body and a second main body configured to be rotatable relative to each other; The second body is Two first electrodes connectable to the two third electrodes of the power supply module;
  • the first body includes A motor, A first control circuit that generates a DC voltage from the two voltages supplied through the two first electrodes of the second main body and extracts the communication information; 2.
  • a servo motor system comprising: two second electrodes each individually conducting to the two first electrodes of the second body.
  • the second control circuit includes: A command in which a data response period is set as the communication information is generated, One of the third electrodes is connected to a predetermined constant current source during the data response period;
  • the first control circuit includes: A switching circuit capable of judging a first electrode connected to the one third electrode out of the two first electrodes and switching on / off of a short circuit of the first electrode; , Configured to control the switching circuit to transmit response data during the data response period in the received command,
  • the second control circuit further includes a detection circuit that detects the response data based on a change in potential of the one third electrode during the data response period.
  • the servo motor system includes: A broadcast method command in which a first data response period and a second data response period after the first data response period are set as the data response period is generated.
  • the first control circuit includes: The first response data is transmitted by controlling the switching circuit during the first data response period in the received command, the transmission result of the first response data is read through the first electrode, and the transmission A determination is made as to whether or not there is an error as a result. If an error is determined, a second data indicating that the first response data is invalid by controlling the switching circuit during the second data response period in the received command.
  • Servo motor system configured to send response data.
  • the second control circuit includes: As the data response period, generate a broadcast command in which a first data response period and a second data response period are set,
  • the first control circuit includes: The master circuit is transmitted by controlling the switching circuit in the first data response period in the received command, and the switching circuit is controlled in the second data response period in the command to control the DC voltage.
  • Send value The second control circuit includes: A pair of the master ID and the value of the DC voltage respectively responded from the first control circuit of the plurality of servo motors connected in the chain shape is stored, and the plurality of the DC voltage values are in descending order.
  • Servo motor system configured to sequentially assign a connection order close to the power supply module to the master ID

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

このサーボモータは、互いに相対的に回動自在に構成された第1の本体および第2の本体とを具備し、第2の本体は、通信情報がパルスの周期によって変調され、互いに逆位相の2つの電圧がPWM電源として印加される2つの第1の電極を有し、第1の本体は、モータと、前記第2の本体の前記2つの第1の電極を通じて各々供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを具備する。

Description

サーボモータ、サーボモータシステムおよび電力供給方法
 本技術は、例えば二足歩行ホビーロボットなどに用いられるサーボモータ、サーボモータシステムおよび電力供給方法に関する。
 特許文献1には、駆動源として内蔵されている分散配置型のステッピングモータの構成部品である励磁コイルを用いて、外部磁界との間に形成される電磁結合によって、外部からエネルギーの供給を行うと共に、外部との間で信号の送受を行うように構成されたロボットに関する発明が開示されている。
 特許文献2には、電子機器間での電力の伝送と通信を電力受電用のコイルと無線通信用のコイルとを兼用して行う技術に関して記載されている。より具体的には、電力を供給する電力波もしくは搬送波に、電力の送受電に関する情報からなる信号を重畳または変調して送受信する方法、電力を送受電する電力波と無線通信する搬送波を併用し、電力の送受電中に同時に無線通信を行う方法などが開示されている。
特開平8-323657号公報(段落[0009]等) 特開2010-130835号公報(段落[0009]-[0010]等)
 ロボットを構成する要素としてサーボモータが用いられる。サーボモータは、例えばヒューマノイド型の二足歩行ロボットなどのロボットにおいて、人間の筋肉と関節の仕事に相当する仕事を実現するものである。
 しかし、サーボモータおよびこのサーボモータを用いたシステムにおいては様々な点で改善すべき課題が残されており、その解決が求められる。
 以上のような事情に鑑み、本技術の目的は、サーボモータおよびこのサーボモータを用いたシステムがかかえる様々な課題を解決したサーボモータ、サーボモータシステムおよび電力供給方法を提供することにある。
 上記課題を解決するために、本技術に係る第1の形態のサーボモータは、
 互いに相対的に回動自在に構成された第1の本体および第2の本体とを具備し、
 前記第2の本体は、
 通信情報がパルスの周期によって変調され、互いに逆位相の2つの電圧がPWM電源として印加される2つの第1の電極を有し、
 前記第1の本体は、
 モータと、
 前記第2の本体の前記2つの第1の電極を通じて各々供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
 前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを具備する。
 上記のサーボモータにおいて、
 前記2つの第1の電極と前記2つの第2の電極は互いに磁力により接合可能なように前記第1の電極および前記第2の電極のうち少なくとも一方の電極が永久磁石を備えるものであってよい。
 上記のサーボモータにおいて、
 前記第1の制御回路は、前記生成された前記直流電圧の値と予め決められた基準値との差分をもとに、前記モータに供給するエネルギーを可変するように構成されてもよい。
 上記のサーボモータにおいて、
 前記第1の制御回路は、前記モータの制御量の目標値と実制御量を用いてPID制御によって前記モータの操作量を生成し、この操作量を前記直流電圧の値と予め決められた基準値との差分をもとに補正するように構成されてもよい。
 本技術に係る別の形態であるサーボモータシステムは、
 電力供給モジュールとサーボモータとを有し、
 前記電力供給モジュールは、
 2つの第3の電極と、
 通信情報をパルスの周期によって変調し、互いに逆位相の2つの電圧をPWM電源として生成し、前記2つの電圧を前記2つの第3の電極に各々個別に印加する第2の制御回路とを有し、
 前記サーボモータは、
 互いに相対的に回動自在に構成された第1の本体および第2の本体を具備し、
 前記第2の本体は、
 前記電力供給モジュールの前記2つの第3の電極と接続可能な2つの第1の電極を有し、
 前記第1の本体は、
 モータと、
 前記第2の本体の前記2つの第1の電極を通じて供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
 前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを有する。
 上記のサーボモータシステムにおいて、
 複数の前記サーボモータが、前記2つの第1の電極と前記2つの第2の電極との接続によってチェーン状に接続されてよい。
 上記のサーボモータシステムにおいて、
 前記第2の制御回路は、
 前記通信情報としてデータ応答期間が設定されたコマンドを生成し、
 前記データ応答期間に一方の前記第3の電極を所定の定電流源と接続し、
 前記第1の制御回路は、
 前記2つの第1の電極のうち前記一方の前記第3の電極と接続された第1の電極を判断し、この第1の電極の短絡のオン/オフを切り替え可能な切替回路をさらに具備し、
 受信した前記コマンド中の前記データ応答期間に前記切替回路を制御して応答データを送信するように構成され、
 前記第2の制御回路は、前記データ応答期間に前記一方の第3の電極の電位の変化をもとに前記応答データを検出する検出回路をさらに具備するものであってよい。
 上記のサーボモータシステムにおいて、
 前記第2の制御回路は、
 前記データ応答期間として、第1のデータ応答期間とこの第1のデータ応答期間よりも後の第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
 前記第1の制御回路は、
 受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御して第1の応答データを送信し、前記第1の電極を通じて前記第1の応答データの送信結果を読み取り、前記送信結果のエラーの有無を判定し、エラーが判定された場合、前記受信したコマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記第1の応答データの無効を示す第2の応答データを送信するように構成されてもよい。
 上記のサーボモータシステムにおいて、
 前記第2の制御回路は、
 前記データ応答期間として、第1のデータ応答期間と第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
 前記第1の制御回路は、
 受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御してマスターIDを送信し、前記コマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記直流電圧の値を送信し、
 前記第2の制御回路は、
 前記チェーン状に接続された複数の前記サーボモータの前記第1の制御回路から各々応答された前記マスターIDと前記直流電圧の値とのペアを記憶し、前記直流電圧の値が高い順に、複数の前記マスターIDに対して、前記電力供給モジュールに近い接続順を順次割り当てるように構成されてよい。
 上記のサーボモータシステムにおいて、
 前記第2の制御回路は、
 前記複数のマスターIDに対して、制御対象の部位に対応付けられたテンポラリIDをさらに割り当てるように構成されてもよい。
 本技術に係るさらに別の形態である電力供給方法は、
 電力供給モジュールからサーボモータへの電力供給方法であって、
 前記電力供給モジュールは、
 2つの第3の電極と、第2の制御回路とを有し、
 前記第2の制御回路は、通信情報をパルスの周期によって変調し、互いに逆位相の2つの電圧をPWM電源として生成し、前記2つの電圧を前記2つの第3の電極に各々個別に印加し、
 前記サーボモータは、
 前記電力供給モジュールの前記2つの第3の電極と接続可能な2つの第1の電極と、
 モータと、
 第1の制御回路と有し、
 前記第1の制御回路は、前記2つの第1の電極を通じて供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する。
 以上のように、本技術によれば、サーボモータおよびこのサーボモータを用いたシステムがかかえる様々な課題を解決することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
典型的なサーボモータ1Aの構造を示す図である。 本技術に係る第1の実施形態のサーボモータ1の構成を示す斜視図である。 図2のサーボモータ1におけるモータケース10とアーム30との回動を示す側面図である。 同じく図2のサーボモータ1におけるモータケース10とアーム30との回動を示す側面図である。 同じく図2のサーボモータ1におけるモータケース10とアーム30との回動を示す側面図である。 図2のサーボモータ1のチェーン接続を示す側面図である。 図2のサーボモータ1における磁気電極34の断面図である。 図5Aの磁気電極34を紙面で右側から見た平面図である。 図2のサーボモータ1における対向電極36の断面図である。 図6Aの対向電極36を紙面で右側から見た平面図である。 磁気電極34と対向電極36を示す断面図である。 対向電極36のモータケース10への固定方法を示す側面図である。 本実施形態のサーボモータ1の内部構成を示す図である。 本実施形態のサーボモータ1を用いたロボットの構成例を示す図である。 本実施形態のサーボモータ1における電力供給モジュール250の電気的な構成を示す図である。 本実施形態のサーボモータ1におけるサーボ制御モジュール18の電気的な構成を示す図である。 データライト・コマンド3のPWM信号波形の例を示す図である。 データリード・コマンド4のPWM信号波形の例を示す図である。 ブロードキャスト方式のデータリード・コマンド5のPWM信号波形の例を示す図である。 図10のロボットの全体構成をブロック化して示す図である。 電力供給モジュール250、260、270、280において作成されるマスターID、接続順、テンポラリIDの対応表の例を示す図である。 変形例のモータ制御システム300の構成を示すブロック図である。 図2のサーボモータ1に、アームの一方のアーム部33Lに2つの磁気電極34R、34Lが配設されたサーボモータ1Aが接続された様子を示す側面図である。
 以下、典型的なサーボモータの説明に続いて、本技術に係る実施の形態を説明する。
 <典型的なサーボモータ>
 図1は典型的なサーボモータ1Aの構成を示す図である。
 本実施形態のサーボモータと同様、この典型的なサーボモータ1Aは、例えばヒューマノイド型の二足歩行ホビーロボットなどのロボットにおいて、人間の筋肉と関節の仕事に相当する仕事を実現するためのものである。
 図1に示すように、この典型的なサーボモータ1Aは特定の形状のモータケース10Aを有する。モータケース10A内には、モータ11Aと、モータ11Aの駆動軸12Aの駆動を減速して出力軸13Aに伝達するギアボックス14Aと、出力軸13Aの回転角度を検出するためのエンコーダ15Aと、エンコーダ15Aの出力をもとに出力軸13Aを目標とする回転角度まで回転させるようにモータ11Aの駆動を制御するサーボアンプ回路17Aが収容される。
 ファイナルギア16Aは、ギアボックス14Aからモータケース10Aの外に突出した出力軸13Aに同軸的に固定されたギアである。ファイナルギア16Aには、フレームやブラケットなどの骨格を形成するためのパーツ(図示せず)との接続のためのホーン21Aが固定される。ロボットは、フレームやブラケットなどのパーツに、各種の筋肉と関節に相当する複数のサーボモータ1Aをホーン21Aを介して固定することによって構成される。
 サーボモータ1Aは各々、コントロールボードと制御信号用の一本以上の通信線18Aを通じて電気的に接続されるとともに、2本の電源供給線19A、20Aを通じて電源ボードからの電源の供給を受けるようになっている。例えば、一本以上の通信線18Aおよび2本の電源供給線19A、20Aは1つのコネクタ22Aに収容される。コネクタ22Aは供給側のコネクタ(図示せず)に連結されることによって、制御信号と電源の供給を受ける。
 サーボモータ1Aのサーボアンプ回路17Aは、コントロールボードから制御信号によって与えられた出力軸13Aの目標回転角度と、エンコーダ15Aの出力から求められる出力軸13Aの現在の回転角度から、出力軸13Aが目標回転角度に達するまでに必要な制御量を算出する。サーボアンプ回路17Aは、算出した制御量分のモータ駆動信号を、電源供給線19A、20Aによって電源ボードより供給された電源を用いて生成し、モータ11Aに供給する。これによりモータ11Aが駆動され、モータ11Aの駆動軸12Aの駆動がギアボックス14Aによって出力軸13Aに減速して伝達される。出力軸13Aが回転することによって、出力軸13Aにホーン21Aを介して連結されたフレームやブラケットなどのパーツ(図示せず)が動作される。これによってロボットが動作する。
 サーボモータ1Aに制御信号および電源を供給する方式には、大別して、制御用に1本、電源供給に2本の計3本の配線を用いるPWM(Pulse Width Modulation)方式と、制御用に2本、電源供給に2本の計4本の配線を用いるシリアル方式がある。
 PWM方式は、コントロールボードからサーボモータ1Aのサーボアンプ回路17Aに出力されるパルスの周期によってビットの値が表現されたPWM信号によってサーボモータ1Aの出力軸13Aの目標回転角度を指示する方式である。PWM方式は、コントロールボードからサーボモータ1Aのサーボアンプ回路17Aへの送信のみが可能とされた片方向通信である。このため、コントロールボードはサーボモータ1Aの負荷状態や出力軸13Aの現在の回転角度などのステータスを知ることができない。すなわち、PWM方式は制御の精度に限界がある方式と言える。また、PWM方式では、コントロールボードとロボットを構成する各々のサーボモータ1Aとを個々に制御用配線で接続する必要があるとともに、電源ボードと各々のサーボモータ1Aとを個々に電源供給線で接続する必要があるため全体の配線数が多くなる。配線数が多くなると、多数の配線によってロボットの組み立てや動きの自由度が損われる可能性がある。
 一方、シリアル方式は、コントロールボードとサーボモータ1A間の双方向通信が可能である。しかしながら、シリアル方式は、2本の制御用配線を必要とするため、一般ユーザが複数のサーボモータを用いてホビー用途のロボットを組み立てる場面では、接続が煩雑になるため接続誤りなどが発生しやすい方式である。また、シリアル方式は、通信のプロトコルがPWM方式に比べて複雑であり、より専門的な知識を必要とする。この点でも、一般ユーザにとっては比較的ハードルの高い方式である。
 さらに、シリアル方式では、サーボモータ1A毎にIDを指定して制御が行われる。そのため、一般ユーザが複数のサーボモータ1Aを用いてホビー用途のロボットを組み立てる場面では、各サーボモータ1Aに対するIDの設定をユーザが手作業で行う必要があるなど、大変面倒である。
 ここまでPWM方式およびシリアル方式の課題について説明したが、複数のサーボモータを用いて構成されるロボットそのものの課題としては次のような点がある。
 フレームやブラケットにサーボモータ1Aを固定的に連結することによって構成されたロボットは、衝突や転倒時に大きな応力が連結部分に集中し、変形や破損が発生するおそれがある。あるいは、連結部分でユーザの指が挟まれて怪我等を負わせてしまう可能性もある。さらに、固定的な連結を解除するための面倒な作業が発生するため、ロボットの構成を容易に変更できない。
 <第1の実施形態>
 本技術に係る第1の実施形態のサーボモータは、例えば、上記典型的なサーボモータ1Aの課題等を解決することができるものである。
 以下、本実施形態を以下の順番に説明する。
 1.本技術に係る第1の実施形態のサーボモータの構成
 2.磁気電極34および対向電極36の構造
 3.サーボモータ1の内部構成
 4.サーボモータ1を用いたロボットの構成例
 5.電力供給モジュール250の構成
 6.サーボ制御モジュール18の構成
 7.2種類のコマンド送信プロトコル
 8.サーボモータ1の応答データの伝送方式
 9.ブロードキャスト方式のデータリード・コマンド
 10.各サーボモータ1と接続順との対応付け方法
 [1.本実施形態のサーボモータの構成]
 図2は本実施形態のサーボモータ1の構成を示す斜視図である。
 このサーボモータ1は、直方体形状のモータケース10(第1の本体)と、このモータケース10に回動自在に連結されたアーム30(第2の本体)とで構成される。
 直方体形状のモータケース10において、アーム30の各々の端部が回動自在に支持され、かつ図中X軸とZ軸がなす2つの面を左右の「アーム支持面R、L」と呼ぶ。図中Y軸とZ軸がなす2つの面の一方を「前面F」、他方を「背面B」と呼ぶ。そして図中X軸とY軸がなす2つの面の一方を「上面U」、他方を「下面D」と呼ぶ。
 アーム30は左右のアーム部31R、31Lと、左右のアーム部31R、31Lの一端部同士を繋ぐアーム連絡部33とで構成される。左右のアーム部31R、31Lの各々の他端部は、モータケース10の左右のアーム支持面R、Lに一端部が突出されたメタルギア11R、11Lの一端部を保持するギア保持部32R、32L(第1の連結部)が設けられる。これにより、図3A、図3B、図3Cに示すように、サーボモータ1は、モータケース10をアーム30に対して全回転角度にわたって回動させることができるように構成される。但し、複数のサーボモータ1を用いて構成されるロボットにおいては、制御上、回動の範囲が制限される。
 アーム30のアーム連絡部33においてモータケース10に対向する側と逆側の面には2つの磁気電極34R、34L(第1の電極)が配設される。2つの磁気電極34R、34LはX軸方向において互いに離間した位置に配設される。2つの磁気電極34R、34Lは、磁性および導電性を有する素材で構成された電極であり、接続相手の2つの対向電極36R、36Lと各々磁着しつつ電気的に接続される。磁気電極34R、34Lは、例えば、ネオジウム磁石など、導電性を有する金属磁石を用いて構成される。磁気電極34R、34Lと対向電極36R、36Lは、磁気電極34R、34Lの永久磁石のもつ磁力によって、ロボットの動作時に発生する応力に十分耐え得る吸着力で互いに吸着する。この永久磁石を用いた磁気電極34R、34Lの構成の詳細については後で説明する。
 アーム連絡部33の2つの磁気電極34R、34Lが配設された面には、接続相手との接続の際の位置決めに用いられる凸状の2つの係合部35R、35Lが設けられる。
 一方、モータケース10の前面Fには、2つの対向電極36R、36L(第2の電極)が配設される。2つの対向電極36R、36Lは、接続相手のサーボモータの2つの磁気電極34R、34Lと各々磁着しつつ電気的に接続するための電極である。また、モータケース10の前面Fには、接続相手との接続の際の位置決めに用いられる凹状の2つの係合部37R、37Lが設けられる。すなわち、モータケース10の凹状の2つの係合部37R、37Lと接続相手のサーボモータの2つの係合部35R、35Lとが各々嵌り合った状態にあるとき、モータケース10の2つの対向電極36R、36Lの各々の中心位置と接続相手のサーボモータの2つの磁気電極34R、34Lの各々の中心位置とが一致した状態で互いに磁着するようになっている。
 本実施形態のサーボモータ1はチェーン接続に対応するものである。すなわち、図4に示すように、一方のサーボモータ1(1-1)のモータケース10(の前面F)に設けられた2つの対向電極36R、36Lには、同じ構造を有する他方のサーボモータ1(1-2)のアーム30(アーム連絡部33)に設けられた2つの磁気電極34R、34Lを接続することが可能である。さらに、他方のサーボモータ1-2には、同じ構造を有する別のサーボモータ(図示せず)を同様に接続することができる。このような接続形態を「チェーン接続」と呼ぶこととする。
 さらに、図2、図3A、3B、3C、図4に示すように、サーボモータ1のアーム30に設けられた2つの磁気電極34R、34Lには、電力供給モジュールの接続インタフェース2に設けられた2つの対向電極40R、40L(第3の電極)を磁着させることが可能である。本例では、チェーン接続された複数のサーボモータ1(1-1、1-2)のうちの最上流のサーボモータ1(1-1)の磁気電極34R、34Lが、上記の電力供給モジュールの接続インタフェース2の対向電極40R、40Lと磁着される。接続インタフェース2には、サーボモータ1との接続の際の位置決めに用いられる凹状の2つの係合部37a、37aが設けられる。電力供給モジュールについては後で説明する。
 なお、ここでは、図2に示したように、サーボモータ1においてアーム連絡部33の前面に磁気電極34R、34Lを配設した構成としたが、図19に示すように、左右のアーム部31R、31Lのいずれかに磁気電極34R、34Lが配設されたサーボモータ1Bとしてもよい。このように、磁気電極34R、34Lの配設位置が異なる2タイプのサーボモータ1、1Bを用いることによって、ロボットの設計自由度を高めることができる。
 [2.磁気電極34および対向電極36の構造]
 図5Aは磁気電極34の断面図、図5Bは図5Aの磁気電極34を紙面で右側から見た平面図である。
 磁気電極34は、円筒型のネオジウム磁石341と、磁性および導電性を有する素材で形成され、ネオジウム磁石341を内包する磁気キャップ343とを有する。磁気キャップ343は、一端が開口した円筒状の部材であり、円板型の底板部343aと円筒型の側壁部343bとで構成される。底板部343aと側壁部343bとでネオジウム磁石341を収容する。一端が開口した円筒形の空間を形成する。ネオジウム磁石341の磁気キャップ343の開口側の一端面341aは磁気キャップ343の開口において露出される。そして、ネオジウム磁石341の磁気キャップ343の開口側の一端面341aと磁気キャップ343の開口側の一端面343cは、どちらも対向電極36と磁着される面とするために同じ高さに揃えられている。
 ネオジウム磁石341の一端面は磁気キャップ343の底板部343aの内側の面に粘着性を有する金属ペーストなどの導通材345によって密着される。また、ネオジウム磁石341の外周面と磁気キャップ343の側壁部343bの内周面との間には接着剤347が充填される。この接着剤347も導電性を有するものであってよい。このようにネオジウム磁石341の外周面全体が磁気キャップ343の側壁部343bの内周面に接着剤347によって接着されることによって、ネオジウム磁石341は磁気キャップ343の側壁部343bの内周面に十分な接着力で接着される。これにより、磁気電極34R、34Lと対向電極36R、36Lとを磁着力に逆らって互いに分離させるとき、ネオジウム磁石341が磁気キャップ343内から離脱しにくい構造となっている。
 磁気キャップ343の底板部343aの外側面には、アーム30内の配線の一端と電気的に接続された電極部349が固定される。そして、このような構造を有する磁気電極34は、磁気キャップ343の底面および外周面がアーム30に設けられた電極保持部33aに接着剤などにより接着されて保持される。
 次に、対向電極36の構造について説明する。
 図6Aは対向電極36の断面図、図6Bは図6Aの対向電極36を紙面で左側から見た平面図である。
 対向電極36は、例えば鉄など、磁性および導電性を有する素材により形成される電極板361を有する。電極板361は例えば軸心部分にネジ(図8の13)のヘッド部が収まる孔部362を有する円板形の部品である。電極板361の磁気電極34と磁着される側の面363は平坦面となっている。対向電極36は、図7に示すように、電極板361の平坦な面363で、磁気電極34の磁気キャップ343の一端面343cおよびネオジウム磁石341の一端面343cと磁着しつつ電気的に接続されるように構成される。電極板361の磁気電極34と磁着される側の逆側の面365には、モータケース10内の配線の一端が接続された電極部367が固着される。
 図8に示すように、対向電極36は、モータケース10の前面Fに設けられた電極保持部12にネジ13で固定される。
 このように、磁気電極34と対向電極36は磁力により互いに吸着し、かつ電気的に接続されるように構成される。これにより、サーボモータ1同士を容易に接続したり分離したりすることができ、ロボットの組み立てを容易に行うことができる。さらには容易に分離できるので、ロボットの組み立ての変更を容易に行うことができる。
 また、磁気電極34と対向電極36とは磁力による吸着力によって互いに連結されるため、衝突や転倒時などに比較的大きな外力が加わったときに双方の連結部分に大きなストレスを受けるよりも先に分離する。これにより、連結部分が変形したり、破損したりするのを防止できる。ユーザが指を挟むような部位も発生しないので、安全性においても優れる。
 なお、本例では、図8に示したように、対向電極36をネジ13でモータケース10の電極保持部12に固定することとしたが、対向電極36の側壁にフランジ部を設け、このフランジ部を非導電性材料からなる止め具で押さえることによって、対向電極36を電極保持部12に固定してもよい。
 [3.サーボモータ1の内部構成]
 図9は本実施形態のサーボモータ1の内部構成を示す図である。
 アーム30内には、一端が一方の磁気電極34Rに接続され、他端が右側のアーム部31Rの一端部に固定された一方のギアホルダー38R(第1の連結部)に電気的に接続された配線39Rが設けられる。同様にアーム30内には、一端が他方の磁気電極34Lに接続され、他端が左側のアーム部31Lの一端部に固定された他方のギアホルダー38L(第1の連結部)に電気的に接続された配線39Lが設けられる。
 モータケース10には、サーボモータ1の制御を行うサーボ制御モジュール18(第1の制御回路)が収容される。サーボ制御モジュール18の詳細な構成については後で説明する。
 モータケース10には、2つのメタルギア11R、11L(第2の連結部)がモータケース10の左右のアーム支持面R、Lから一部を突出させた状態で回動自在に配設される。メタルギア11R、11Lは導電性を有する金属材料からなる。2つのメタルギア11R、11Lはモータケース10内に配設されたシャフト14の両端部に各々固定される。シャフト14は、軸方向における中間部に設けられた絶縁部14aによって両側のシャフト部分14R、14L(2つの動力伝達部)が電気的に絶縁される。シャフト部14Rの一端部にはメタルギア11Rが固定される。シャフト部14Lの一端部にはメタルギア11Lが固定される。
 シャフト部14Rはモータケース10内の配線15Rの一端とブラシなどの可動接点16Rを通じて電気的に接続される。配線15Rはモータケース10内で分岐され、その一方はサーボ制御モジュール18一方のPWM電源入力端子181と接続され、他方はモータケース10の前面Fに配設された一方の対向電極36Rと接続される。
 シャフト部14Lはモータケース10内の配線15Lの一端とブラシなどの可動接点16Lを通じて電気的に接続される。配線15Lはモータケース10内で分岐され、その一方はサーボ制御モジュール18の他方のPWM電源入力端子182と接続され、他方はモータケース10の前面Fに配設された他方の対向電極36Lと接続される。
 シャフト部14Rに固定されたメタルギア11Rには、モータケース10内に配置されたモータ(図示せず)の動力を伝達するギア17(ファイナルギア)が噛合される。
 一方、アーム30における一方のアーム部31Rの一端部には、メタルギア11Rを保持する導電性のギアホルダー38R(第1の連結部)が固定されている。アーム30における他方のアーム部31Lの一端部には、メタルギア11Lを保持する導電性のギアホルダー38L(第1の連結部)が固定されている。ギア17からモータの動力が伝達されてシャフト14が回動すると、その回動はメタルギア11R、11L(第2の連結部)を介してギアホルダー38R、38Lに伝達される。これにより、アーム30が回動するようになっている。
 以上のように構成されたサーボモータ1において、一方の磁気電極34Rは、配線39R、ギアホルダー38R、メタルギア11R、シャフト部14R、可動接点16R、配線15Rを通じて、サーボ制御モジュール18一方のPWM電源入力端子181および一方の対向電極36Rと電気的に接続される。同様にして、他方の磁気電極34Lは、配線39L、ギアホルダー38L、メタルギア11L、シャフト部14L、可動接点16L、配線15Lを通じて、サーボ制御モジュール18の他方のPWM電源入力端子182および他方の対向電極36Lと電気的に接続される。
 [4.サーボモータ1を用いたロボットの構成例]
 図10はサーボモータ1を用いたロボットの構成例を示す図である。
 図16は図10のロボットの全体構成をブロック化して示す図である。
 このロボット100は、頭部を供えた胴体部101と、この胴体部101の四肢(紙面上の右腕、左腕、右脚、左脚)各々にあたるサーボモータチェーン110、120、130、140とで構成される。サーボモータチェーン110、120、130、140は、チェーン接続された1以上のサーボモータ1で構成される。本実施形態では、各々のサーボモータチェーン110、120、130、140は2つのサーボモータ1で構成される。本例では、紙面上右腕に相当するサーボモータチェーン110を「第1のサーボモータチェーン110」、紙面上左腕に相当するサーボモータチェーン120を「第2のサーボモータチェーン120」、紙面上右脚に相当するサーボモータチェーン130を「第3のサーボモータチェーン130」、そして紙面上左脚に相当するサーボモータチェーン140を「第4のサーボモータチェーン140」と呼ぶこととする。第1のサーボモータチェーン110を構成する2つのサーボモータ1を「サーボモータ1-1」、「サーボモータ1-2」、第2のサーボモータチェーン120を構成する2つのサーボモータ1を「サーボモータ1-3」、「サーボモータ1-4」、第3のサーボモータチェーン130を構成する2つのサーボモータ1を「サーボモータ1-5」、「サーボモータ1-6」、そして第4のサーボモータチェーン140を構成する2つのサーボモータ1を「サーボモータ1-7」、「サーボモータ1-8」と呼ぶこととする。
 なお、各々のサーボモータチェーン110、120、130、140は3つ以上のサーボモータ1で構成されてもよい。各々のサーボモータチェーン110、120、130、140を構成するサーボモータ1の数は同じである必要はない。
 胴体部101には、中央処理モジュール102と、バッテリを有する二次電源装置103と、各々のサーボモータチェーン110、120、130、140に対応する電力供給モジュール250、260、270、280が配置される。
 図16に示すように、中央処理モジュール102はネットワーク104を通じてユーザのもつリモートコントローラと無線で通信することができる。中央処理モジュール102は、リモートコントローラより無線で送られてきた各種の命令を実行してロボット100に所定の動作を実行させる。
 中央処理モジュール102は、CPU(Central Processing Unit)、メインメモリ、ROM(Read Only Memory)、通信インタフェースなどにより構成される。CPUは、メインメモリおよびROMに記憶されたプログラムを実行して各々のサーボモータチェーン110、120、130、140を制御してロボット100に所定の動作を実行させるための演算処理を行う。メインメモリはCPUの作業領域などとして用いられる。ROMには、CPUにより実行されるプログラムやプログラムの実行に必要な各種のパラメータなどが固定的に格納される。通信インタフェースは、中央処理モジュール102のCPUとサーボモータチェーン110、120、130、140毎の電力供給モジュール250、260、270、280との通信を行うためのものである。通信インタフェースは、例えば、USB(Universal Serial Bus)、UART(Universal Asynchronous Receiver Transmitter)などが用いられる。
 各々の電力供給モジュール250、260、270、280は、サーボモータチェーン110、120、130、140とのメカ的な接続および電気的な接続のための接続インタフェース2-1、2-2、2-3、2-4を有する。胴体部101において各々の接続インタフェース2-1、2-2、2-3、2-4は、個々のサーボモータチェーン110、120、130、140が接続される部位に設けられる。
 図2に示したように、接続インタフェース2(2-1、2-2、2-3、2-4)は、サーボモータ1のアーム30(アーム連絡部33)に設けられた2つの磁気電極34R、34Lと磁着しつつ電気的に接続可能な2つの対向電極40R、40Lと、サーボモータ1のアーム30(アーム連絡部33)に設けられた2つの凸状の係合部35R、35Lと各々係合可能な凹状の2つの係合部37R、37Lを有する。接続インタフェース2の2つの対向電極40R、40Lの構造は、サーボモータ1の対向電極36R、36Lの構造と同じである。
 接続インタフェース2(2-1、2-2、2-3、2-4)の2つの対向電極40R、40Lには、対応するサーボモータチェーン110、120、130、140各々の最上流側のサーボモータ1-1、1-3、1-5、1-7のアーム30に設けられた2つの磁気電極34R、34Lが磁着される。そして、最上流側のサーボモータ1-1、1-3、1-5、1-7各々の2つの対向電極36R、36Lには、上流側より2番目のサーボモータ1-2、1-4、1-6、1-8のアーム30に設けられた2つの磁気電極34R、34Lが磁着される。このようにして接続インタフェース2(2-1、2-2、2-3、2-4)に最上流側のサーボモータ1-1、1-3、1-5、1-7と上流側より2番目のサーボモータ1-2、1-4、1-6、1-8がチェーン接続されることによって各々のサーボモータチェーン110、120、130、140が構成される。
 なお、電力供給モジュール250、260、270、280とこれに接続されるサーボモータ1とを「サーボモータシステム」と呼ぶ。
 [5.電力供給モジュール250の構成]
 図11は電力供給モジュール250の構成を示すブロック図である。
 なお、各々の電力供給モジュール250、260、270、280の構成は同じであるため、ここでは電力供給モジュール250の構成についてのみ説明する。
 同図に示すように、電力供給モジュール250は、通信インタフェース151、CPU152、インバータ153、電源入力端子154、定電圧回路155、保護回路156、定電流源157、電力増幅回路158、ディテクタ159および2つのPWM電源出力端子160、161を備える。ここで、一方のPWM電源出力端子160は接続インタフェース2の一方の対向電極40R(一方の第3の電極)と配線を通じて電気的に接続される。他方のPWM電源出力端子161は接続インタフェース2の他方の対向電極40L(他方の第3の電極)と配線を通じて電気的に接続される。電力供給モジュール250において、例えば、CPU152、インバータ153および電力増幅回路158などは特許請求の範囲の「第2の制御回路」に相当する。
 通信インタフェース151は、中央処理モジュール102より送信された制御コマンドを受信し、CPU152に供給する。
 CPU152は、通信インタフェース151を通じて中央処理モジュール102より送られてきた制御コマンドを受け取り、この制御コマンドに対応するPWM信号を生成し、このPWM信号を電力増幅回路158に正相のPWM信号として入力するとともにインバータ153に入力する。インバータ153は、CPU152から入力されたPWM信号を反転し、電力増幅回路158に逆相のPWM信号として入力する。
 電源入力端子154は、胴体部101内の二次電源装置103(図10)と電気的に接続された端子であり、二次電源装置103からの直流電源を定電圧回路155に印加する。
 定電圧回路155は、電源入力端子154を通じて供給された直流電源からCPU152を動作させるために必要な所定の電圧を生成する回路である。
 保護回路156は、電源入力端子154から電力増幅回路158の電源入力端への過電流の流れ込みを防止して電力増幅回路158を保護するための回路である。
 電力増幅回路158は、CPU152からの正相のPWM信号およびそのPWM信号をインバータ153にて反転させた逆相のPWM信号を各々、サーボモータ1を駆動するために必要なレベルに増幅する回路である。例えば、電力増幅回路158は2つのHブリッジなどで構成され、一方のHブリッジには正相のPWM信号が入力され、他方のHブリッジには逆相の反転PWM信号が入力される。電力増幅回路158は、2つの出力端を有し、一方の出力端から一方のHブリッジによって増幅された正相のPWM信号を正相のPWM電源163として出力し、他方の出力端から他方のHブリッジによって増幅された逆相の反転PWM信号を逆相のPWM電源164として出力する。さらに、電力増幅回路158は、デューティ比の設定用の端子162を備える。CPU152は必要に応じてデューティ比の設定用の端子162にデューティ比を設定するための制御信号を印加する。電力増幅回路158は、デューティ比の設定用の端子に印加された制御信号をもとにデューティ比の設定値を更新する。
 電力増幅回路158の一方の出力端は電力供給モジュール250の一方のPWM電源出力端子160と接続され、電力増幅回路158の他方の出力端は電力供給モジュール250の他方のPWM電源出力端子161と接続される。
 定電流源157は、電源入力端子154と一方のPWM電源出力端子160との間に介挿されたプルアップ抵抗などで構成される。
 ディテクタ159(検出回路)は、後述するデータリード・コマンドにより設定されるデータ応答期間(Data(R))に、2つのPWM電源出力端子160、161間の電位差の変化をもとに、サーボ制御モジュール18から応答される各種のステータスなどを含むリードデータを構成するビット列を検出する回路である。サーボ制御モジュール18から応答されるステータスには、サーボモータ1の回転角度、PWM電源から生成された直流電圧の値などがある。また、サーボモータ1のステータスの他には、サーボモータ1のマスターIDなどがある。
 [6.サーボ制御モジュール18の構成]
 図12はサーボモータ1内のサーボ制御モジュール18の電気的な構成を示す図である。
 サーボ制御モジュール18は、2つのPWM電源入力端子181、182、PWM電源整流回路183、ダイオード184、キャパシタ185、定電圧回路186、CPU187、Hブリッジ回路188、モータ189、モータ回転角度検出部190、基準電圧生成回路191および2つのオープンドレイン回路192、193を有する。ここで、2つのPWM電源入力端子181、182のうち一方のPWM電源入力端子181は、一方の磁気電極34R(2つの第1の電極のうち一方の第1の電極)と電気的に接続される。他方のPWM電源入力端子182は、他方の磁気電極34L(他方の第1の電極)と電気的に接続される。サーボ制御モジュール18において、例えば、PWM電源整流回路183、CPU187などは、特許請求の範囲の「第1の制御回路」に相当する。
 2つのPWM電源入力端子181、182は各々、電力供給モジュール250または、電力供給モジュール250からサーボモータチェーン110における上流側のサーボモータ1を径由して供給される正相のPWM電源163および逆相のPWM電源164を各々入力する端子である。
 PWM電源整流回路183は、2つのPWM電源入力端子181、182より入力された正相のPWM電源163と逆相のPWM電源164を全波整流してモータ189を動作させるための直流電圧を生成する。また、PWM電源整流回路183は、正相のPWM電源163および逆相のPWM電源164のいずれか一方を半波整流してPWM信号成分を抽出し、CPU187に出力する。PWM電源整流回路183にて生成された直流電源はダイオード184およびキャパシタ185を通じて定電圧回路186に与えられる。
 定電圧回路186はCPU187を動作させるための所定の電圧を生成し、CPU187に動作電圧として印加する。
 PWM電源整流回路183にて生成された直流電圧はHブリッジ回路188に与えられる。Hブリッジ回路188はCPU187からの制御用のPWM信号をもとにモータ189に印加する駆動電圧を生成する。モータ回転角検出部190は、モータ189の出力軸の角度位置を検出し、CPU187に検出結果を通知する。
 CPU187は、PWM電源整流回路183より与えられたPWM信号をA/D変換してコマンドを復調し、このコマンドを実行する。また、CPU187は、PWM電源整流回路183より生成された直流電圧をA/D変換して得た値と、例えばシャントレギュレータなどの基準電圧生成回路191にて生成された基準電圧をA/D変換して得た値とを比較し、その差分をもとにHブリッジ回路188に与える制御用PWM信号のデューティ比を可変制御する。
 コマンドとしては、電力供給モジュール250からサーボ制御モジュール18にコマンドなどのデータを一方向に与えるために用いられるデータライト・コマンドと、電力供給モジュール250がサーボ制御モジュール18に対して各種のデータを要求するために用いられるデータリード・コマンドがある。データライト・コマンドとデータリード・コマンドは互いに異なるコマンド送信プロトコルを用いて伝送される。これらのコマンド送信プロトコルについては後で説明する。
 また、CPU187は、データリード・コマンドにより設定されるデータ応答期間に、2つのオープンドレイン回路192、193(切替回路)のうち、正極側のオープンドレイン回路192を制御することによって、電力供給モジュール250への応答データを生成することが可能である。その詳細については後で説明する。
 [7.2種類のコマンド送信プロトコル]
 次に、上記のコマンド送信プロトコルの詳細を説明する。
 図13はデータライト・コマンド3のPWM信号波形の例を示す図である。
 図14はデータリード・コマンド4のPWM信号波形の例を示す図である。
 データライト・コマンド3およびデータリード・コマンド4のPWM信号波形は、基本的に周期の異なる複数の種類のパルスで構成される。この例では、50us周期、100us周期、200us周期の3種類の周期のパルスが用いられる。
 図13に示したように、データライト・コマンド3は、プリアンブル(Preamble)、IDアドレス(M-ID Address/T-ID Address)、コマンド(Command)、ライトデータ(Data 1・・・Data N)、CRCなどで構成される。
 プリアンブル(Preamble)は、データライト・コマンド3の先頭を示すものであり、50us周期のパルス波形で構成される。50us周期のパルス波形はプリアンブル(Preamble)のみで用いられるため、プリアンブル(Preamble)の長さは任意であってよい。プリアンブル(Preamble)とIDアドレス(M-ID Address/T-ID Address)との間にはこれらの区切りを示す200us周期の1つのパルス波形が配置される。
 IDアドレス(M-ID Address/T-ID Address)は、送信先のサーボモータ1を特定する情報である。IDアドレス(M-ID Address/T-ID Address)は100us周期のパルス波形を"1"、200us周期のパルス波形を"0"として8ビットで構成される。IDアドレス(M-ID Address/T-ID Address)は、先頭ビットが"1"であるとき機器固有のマスターID(M-ID Address)であることを意味し、先頭ビットが"0"であるとき機器に一時的に割り当てられたテンポラリID(T-ID Address)であることを示す。図13の例では、先頭ビットが"1"であるから、IDアドレス(M-ID Address/T-ID Address)は機器固有のマスターID(M-ID Address)である場合を示す。IDアドレス(M-ID Address/T-ID Address)とコマンド(Command)との間にはこれらの区切りを示す200us周期の1つのパルス波形と、データライト・コマンドであることを識別する200us周期の1つのパルス波形(W)が配置される。
 コマンド(Command)は、100us周期のパルス波形を"1"、200us周期のパルス波形を"0"として7ビットで構成される。コマンド(Command)とライトデータ(Data 1・・・Data N)との間にはこれらの区切りを示す200us周期の1つのパルス波形が配置される。
 個々のライトデータは、100us周期のパルス波形を"1"、200us周期のパルス波形を"0"として8ビットで構成される。ライトデータの数はコマンドの種類に応じて可変される。最後のライトデータ(Data N)とCRCとの間にはこれらの区切りを示す200us周期の1つのパルス波形が配置される。CRCは、データライト・コマンド3のみに付加され、100us周期のパルス波形を"1"、200us周期のパルス波形を"0"として8ビットで構成される。最後にデータライト・コマンド3の終わりを示す200us周期の1つのパルス波形が配置される。
 次に、データリード・コマンド4の構成を説明する。
 図14に示したように、データリード・コマンド4は、プリアンブル(Preamble)、IDアドレス(M-ID Address/T-ID Address)、コマンド(Command)、データプリペア(Data-Prepare)、リードデータ(Data(R))などで構成される。
 プリアンブル(Preamble)およびIDアドレス(M-ID Address/T-ID Address)はデータライト・コマンド3と同様である。コマンド(Command)は、例えば、サーボモータ1のステータスなどのデータのリードをサーボ制御モジュール18に実行させるための命令文である。IDアドレス(M-ID Address/T-ID Address)とコマンド(Command)との間には、200us周期の1つのパルス波形と、データリード・コマンドであることを識別する100us周期の1つのパルス波形(R)とが配置される。
 コマンド(Command)の後には、200us周期の1つのパルス波形を挟んでデータプリペア(Data-Prepare)が配置される。データプリペア(Data-Prepare)は、リードデータ(Data(R))の応答期間にサーボ制御モジュール18から電力供給モジュール250にリードデータを応答データとして伝送するための準備期間を示す。このデータプリペア(Data-Prepare)は、100us周期のパルス波形と200us周期のパルス波形を用いた7ビットの所定の波形パターンで構成される。このデータプリペア(Data-Prepare)の後に200us周期の1つのパルス波形を挟んでリードデータ(Data(R))の応答期間(データ応答期間)が設けられる。
 このリードデータ(Data(R))の応答期間において、電力供給モジュール250からサーボ制御モジュール18へのPWM電源の伝送は休止され、サーボ制御モジュール18から電力供給モジュール250にサーボモータ1のステータスなどのリードデータ(Data(R))が伝送される。リードデータ(Data(R))は、例えば、8ビットのデータとパリティビットの計9ビットで構成される。
 [8.サーボモータ1の応答データの伝送方式]
 サーボ制御モジュール18から電力供給モジュール250への応答データの伝送は以下のように行われる。
 サーボ制御モジュール18は、2つのPWM電源入力端子182、183のそれぞれにドレインが接続された2つのオープンドレイン回路192、193(切替回路)を有する。サーボ制御モジュール18のCPU187は2つのオープンドレイン回路192、193のうち正極側、つまり電力供給モジュール250において定電流源157に接続されたPWM電源入力端子181と電気的に接続されたPWM電源入力端子181にドレインが接続されたオープンドレイン回路(本例ではオープンドレイン回路192)を判断し、応答データのビット毎の値をもとに、そのオープンドレイン回路のオン/オフ状態を切り替える。
 正極側のオープンドレイン回路192がオンのとき、電力供給モジュール250において定電流源157が接続されたPWM電源出力端子160と、対向電極40Rと磁気電極34Rを介して電気的に接続されたPWM電源入力端子181が短絡されることによって、PWM電源出力端子160の電位が他方のPWM電源出力端子161の電位よりも高くなる。正極側のオープンドレイン回路192がオフのときは2つのPWM電源出力端子160、161の間で電位差はゼロまたは略ゼロとなる。ディテクタ159は、2つのPWM電源出力端子160、161間の電位差を測定し、この電位差を所定の閾値を用いて評価し、論理レベルを決定する。すなわち、ディテクタ159は、正極側のオープンドレイン回路192がオンのときに発生する2つのPWM電源出力端子160、161間の電位差に対して"High"の論理レベルを判定する。また、ディテクタ159は、正極側のオープンドレイン回路192がオフのときの2つのPWM電源出力端子160、161間の電位差に対して"Low"の論理レベルを判定する。
 サーボ制御モジュール18のCPU187は、データリード・コマンド4に含まれるコマンドに応じて、例えば、サーボモータ1のステータスなどのリードデータを生成する。ここでリードデータは8ビットのデータ本体に1ビットのパリティビットを加えた計9ビットで構成される。サーボ制御モジュール18のCPU187は、このリードデータを構成する各ビットの値に対応して順次、正極側のオープンドレイン回路192のオン/オフを切り替える。これにより、電力供給モジュール250のディテクタ159において9ビットが検出され、CPU152に伝送される。CPU152は受信した9ビットをパリティビットで誤り検出し、誤りがなければ先頭より8ビットをリードデータのデータ本体として判定する。
 ところで、サーボ制御モジュール18では、2つのPWM電源入力端子181、182より取り込んだPWM電源をPWM電源整流回路183にて全波整流して直流電源として利用するとともに、取り込んだPWM電源を半波整流して元のPWM信号を復元する。このため電力供給モジュール250の2つのPWM電源出力端子160、160とサーボ制御モジュール18の2つのPWM電源入力端子181、182とは互いに入れ替わって接続されても動作上問題はない。もし、電力供給モジュール250の正極側のPWM電源出力端子160に、サーボ制御モジュール18のPWM電源入力端子182が接続されている場合にはオープンドレイン回路193がオン/オフの切り替え制御の対象として判断される。
 本実施形態では、リードデータ(Data(R))の応答期間の長さとして例えば450usが与えられる。この応答期間は、電力供給モジュール250からサーボ制御モジュール18へのPWM電源伝送が行われないので、サーボ制御モジュール18内のCPU187を動作させるための電力はキャパシタ185に蓄えられた電荷から生成される。そのため、キャパシタ185はリードデータ(Data(R))の応答期間以上、CPU187に電力を供給できるだけの容量をもつ必要がある。また当然ながらリードデータ(Data(R))の応答期間は電力供給モジュール250からサーボ制御モジュール18へのPWM電源伝送が行われないので、モータ189への電力供給は休止される。
 [9.ブロードキャスト方式のデータリード・コマンド]
 次に、電力供給モジュール250からサーボモータチェーン110を構成するすべてのサーボ制御モジュール18にブロードキャスト方式でリードデータを要求するデータリード・コマンドについて説明する。
 図15は、このブロードキャスト方式のデータリード・コマンド5のPWM信号波形の例を示す図である。
 ブロードキャスト方式のデータリード・コマンド5は、プリアンブル(Preamble)、IDアドレス(B-ID Address)、コマンド(Command)、第1のデータプリペア(Data-Prepare1)、第1のリードデータ(M-ID(R))、第2のデータプリペア(Data-Prepare2)、第2のリードデータ(Data(R))などで構成される。
 プリアンブル(Preamble)は上記のデータライト・コマンド3およびデータリード・コマンド4と同様である。
 IDアドレス(B-ID Address)はサーボモータチェーン110を構成するすべてのサーボモータ1を指定するブロードキャスト・アドレスである。
 コマンド(Command)は、サーボ制御モジュール18に対してリードデータを要求するコマンドである。IDアドレス(B-ID Address)とコマンド(Command)との間には、200us周期の1つのパルス波形と、データリード・コマンドであることを識別する100us周期の1つのパルス波形(R)とが配置される。
 コマンド(Command)の次に配置される第1のデータプリペア(Data-Prepare1)は、第1のリードデータ(M-ID(R))の応答期間(第1のデータ応答期間)にサーボ制御モジュール18から電力供給モジュール250にリードデータを応答するための準備期間を示す。この第1のデータプリペア(Data-Prepare1)は、100us周期のパルス波形と200us周期のパルス波形を用いた7ビットの所定の波形パターンで構成される。この第1のデータプリペア(Data-Prepare1)の後に200us周期の1つのパルス波形を挟んで第1のリードデータ(M-ID(R))の応答期間(第1のデータ応答期間)が設けられる。
 この第1のリードデータ(M-ID(R))の応答期間は電力供給モジュール250からサーボ制御モジュール18へのPWM電源の伝送は停止され、これに伴いサーボ制御モジュール18から電力供給モジュール250にサーボモータ1のマスターIDが第1のリードデータ(M-ID(R))として伝送される。第1のリードデータ(M-ID(R))は、例えば、8ビットのデータとパリティビットの計9ビットで構成される。
 第1のリードデータ(M-ID(R))の応答期間の後に200us周期の1つのパルス波形を挟んで第2のデータプリペア(Data-Prepare2)が配置される。この第2のデータプリペア(Data-Prepare2)は100us周期のパルス波形と200us周期のパルス波形を用いた7ビットの所定の波形パターンで構成される。この第2のデータプリペア(Data-Prepare2)の後に200us周期の1つのパルス波形を挟んで第2のリードデータ(Data(R))の応答期間(第2のデータ応答期間)が設けられる。
 この第2のリードデータ(Data(R))の応答期間(第2のデータ応答期間)は電力供給モジュール250からサーボ制御モジュール18へのPWM電源の伝送は休止され、サーボ制御モジュール18から電力供給モジュール250に、例えばサーボモータ1のステータスなどのデータが第2のリードデータ(Data(R))として伝送される。第2のリードデータ(Data(R))は、例えば、8ビットのデータとパリティビットの計9ビットで構成される。
 サーボ制御モジュール18は、このブロードキャスト方式のデータリード・コマンド5を受信すると、第1のリードデータ(M-ID(R))の応答期間に正極側のオープンドレイン回路192のオン/オフを切り替えて、サーボモータ1のマスターIDを第1のリードデータ(M-ID(R))として応答し、続いて第2のリードデータ(Data(R))の応答期間にサーボモータ1のステータスなどのデータを第2のリードデータ(Data(R))として応答する。
 ところで、電力供給モジュール250の一方のPWM電源出力端子160にはサーボモータチェーン110を構成する複数のサーボモータ1-1、1-2各々のサーボ制御モジュール18の一方のPWM電源入力端子181が電気的に互いに並列に接続される。同様に、電力供給モジュール250の他方のPWM電源出力端子161には、サーボモータチェーン110を構成する複数のサーボモータ1-1、1-2各々のサーボ制御モジュール18の他方のPWM電源入力端子182が電気的に互いに並列に接続される。このため、電力供給モジュール250から送信されたブロードキャスト方式のデータリード・コマンド5に複数のサーボモータ1-1、1-2のサーボ制御モジュール18が同時にデータを応答してしまうことによる衝突が発生し、リードデータが正しく電力供給モジュール250に伝送されない事態が発生する可能性がある。
 そこで、サーボ制御モジュール18のCPU187は、オープンドレイン回路192の制御による第1のリードデータ(M-ID(R))の設定と同時にPWM電源入力端子181、PWM電源整流回路183を径由して取り込んだデータリード・コマンド5中の第1のリードデータ(M-ID(R))を読み取る。CPU187は、読み取った第1のリードデータ(M-ID(R))の内容であるマスターIDが、自身が設定した正しいマスターIDと一致するかどうかを判定する。一致する場合には上記の衝突が発生していないので、CPU187はデータリード・コマンド5に対する次の処理、すなわちオープンドレイン回路192を制御して第2のリードデータ(Data(R))を設定する処理に進む。
 一致しない場合には上記の衝突によりリードデータ(M-ID(R))が不正データ(エラー)となっているので、サーボ制御モジュール18のCPU187は、このリードデータ(M-ID(R))を無効化するために、データリード・コマンド5中の第2のリードデータ(Data(R))としてエラーデータを設定する。例えば、サーボ制御モジュール18のCPU187は、第2のリードデータ(Data(R))の8ビットのデータの値をすべて"0"とし、パリティビットの値として"1"を設定するなどしてエラーデータを設定する。これにより、電力供給モジュール250のCPU152は、パリティビットを用いたエラー検出によって第2のリードデータ(Data(R))がエラーであることを判定し、今回のデータリード・コマンド5に対して応答されたリードデータ(M-ID(R))、(Data(R))を破棄する。
 衝突によりリードデータの応答に失敗したサーボ制御モジュール18のCPU187は、一定時間あるいはランダムに決められた時間が経過した後、新たなデータリード・コマンド5を待機し、新たなデータリード・コマンド5に対して上記同様に第1のリードデータ(M-ID(R))の応答、マスターIDの照合、第2のリードデータ(Data(R))の応答を行う。そして、サーボ制御モジュール18のCPU187は、マスターIDの照合に成功するまで同じ動作を繰り返す。一方、電力供給モジュール250のCPU152は、サーボモータチェーン110を構成するすべてのサーボモータ1-1、1-2のサーボ制御モジュール18から有効な第1のリードデータ(M-ID(R))の応答を受けるまで、同じデータリード・コマンド5を周期的に送信し続ける。
 これにより、複数のサーボモータ1-1、1-2間での応答の衝突が発生する可能性がある中で、電力供給モジュール250は、サーボモータチェーン110を構成するすべてのサーボモータ1-1、1-2のサーボ制御モジュール18から有効な応答データを受け取ることができる。他の電力供給モジュール260、270、280についても同様である。
 [10.各サーボモータ1と接続順との対応付け方法]
 電力供給モジュール250においては、自身に接続されたサーボモータチェーン110におけるすべてのサーボモータ1-1、1-2のIDと、電力供給モジュール250からの接続順を示す情報とが対応付けられてメモリに保存される。例えば、サーボモータ1-1、1-2は接続順にロボット100の各部位の制御対象として割り当てられる。他の電力供給モジュール260、270、280についても同様である。
 ロボット100を制御するとき、各電力供給モジュール250、260、270、280は、中央処理モジュール102より指定された制御対象の部位に対応するサーボモータ1のIDをメモリから参照し、そのサーボモータ1のIDを指定して制御対象のサーボモータ1にデータライト・コマンド3やデータリード・コマンド4を与える。ここで、サーボモータ1のIDとしては、サーボモータ1に製造時に割り当てられるマスターIDを使用することができる。しかし、各サーボモータ1のマスターIDをロボット100の各部位と対応付けるための人手による設定作業が必要となり、手間がかかる。
 本実施形態では、サーボモータチェーン110、120、130、140毎にサーボモータ1のIDと接続順との対応付けが自動的に行われる。以下に、この機能について説明する。
 サーボモータチェーン110を構成する各サーボモータ1-1、1-2に供給されるPWM電源の電圧は、伝送距離が長くなるほど配線抵抗成分が増大するので降下する。例えば、サーボモータ1-1に供給されるPWM電源の電圧に比べ、サーボモータ1-2に供給されるPWM電源の電圧は若干低くなる。したがって、各サーボモータ1-1、1-2に供給されるPWM電源の電圧降下分の大小関係から、サーボモータチェーン110を構成する各サーボモータ1-1、1-2の、電力供給モジュール250からの接続順を知ることができる。
 まず、電力供給モジュール250のCPU152は、サーボモータチェーン110を構成する各サーボモータ1-1、1-2のサーボ制御モジュール18に、PWM電源の電圧の値を上記のブロードキャスト方式のデータリード・コマンド5を使って要求する。
 サーボ制御モジュール18のCPU187は、このデータリード・コマンド5を受け取ると、PWM電源整流回路183によってPWM電源から生成された直流電圧をA/D変換する。サーボ制御モジュール18のCPU187は、自身のマスターIDを第1のリードデータ(M-ID(R))として電力供給モジュール250に応答し、続いて直流電圧の値を第2のリードデータ(Data(R))として電力供給モジュール250に応答する。
 電力供給モジュール250のCPU152は、サーボ制御モジュール18から応答されたマスターIDと電圧の値のペアをメモリに保存する。電力供給モジュール250のCPU152は、サーボモータチェーン110を構成するすべてのサーボモータ1-1、1-2のマスターIDと電圧の値のペアをメモリに保存すると、電圧の値が高い順に、それらのマスターIDに対して、電力供給モジュール250に近い接続順を順次割り当てる。
 この割り当ては、例えば、電圧の値が最も高いマスターIDに、トップの接続順を割り当て、電圧の値が次に高いマスターIDにトップの次の接続順を割り当てる、といったように行われる。
 以上の処理は、電力供給モジュール260、270、280においても同様に行われる。
 次に、電力供給モジュール250のCPU152は、各マスターIDに対してテンポラリIDを割り当てる。ここで、テンポラリIDには、ロボット100の制御対象として決められた各部位に対して予め固有に対応付けられた番号を用いることができる。
 図17は、ここまでの処理によって得られる情報の対応表の構成を示す図である。
 例えば、制御対象の部位である右肩関節、右肘関節、左肩関節、左肘関節、右股関節、右膝関節、左股関節、左膝関節に対し、テンポラリIDは、"A01"、"A02"、"B01"、"B02"、"C01"、"C02"、"D01"、"D02"が予め対応付けられていることとする。
 例えば、電力供給モジュール250には、マスターIDが"*****145"であるサーボモータに対して接続順"1"が割り当てられ、テンポラリIDとして右肩関節に対応する"A01"が割り当てられる。また、マスターIDが"*****254"であるサーボモータに対して接続順"2"が割り当てられ、テンポラリIDとして右肘関節に対応する"A02"が割り当てられる。他の電力供給モジュール260、270、280においても同様に接続順、マスターID、テンポラリIDの対応表が作成される。
 次に、電力供給モジュール250のCPU152は、サーボモータチェーン110を構成するすべてのサーボモータ1-1、1-2のサーボ制御モジュール18に、データライト・コマンド3を使ってテンポラリIDを送信する。このデータライト・コマンド3は、IDアドレスにマスターIDが指定され、ライトデータにテンポラリIDが格納されたものである。
 サーボ制御モジュール18のCPU187は、データライト・コマンド3を受け取ると、このデータライト・コマンド3にライトデータとして含まれるテンポラリIDをメモリに保存する。以後、このテンポラリIDは、IDアドレスにテンポラリID(T-ID Address)を用いたデータライト・コマンド3およびデータリード・コマンド4をサーボ制御モジュール18のCPU187が受け取るための自身のIDアドレスとして使用される。
 なお、本技術において、テンポラリIDの設定は必須ではない。マスターIDを使ってコマンドの送り先を指定することができるからである。この場合には、上記の動作において、マスターIDに対するテンポラリIDの割り当て、テンポラリIDのサーボモータ1-1、1-2への設定のための処理は省くことができる。
 <変形例>
 前述のように、サーボモータチェーン110を構成する各サーボモータ1-1、1-2に供給されるPWM電源の電圧は、電力供給モジュール250から遠くに接続されたものほど低くなる。もし、このままロボット100を制御すると、各サーボモータ1-1、1-2間でトルクや速度にバラツキが生じ、ロボット100の動作に悪影響が生じる可能性がある。また、各サーボモータ1-1、1-2に供給されるPWM電源の電圧は、ロボット100に搭載された二次電源装置103内のバッテリの残量によっても変動する。
 本変形例において、サーボ制御モジュール18のCPU187は、PWM電源の電圧変動による各サーボモータ1-1、1-2のトルクや速度の変動を抑制するために、PID(Proportional-Integral-Derivative)制御などのフィードバック制御によって生成される操作量に、PWM電源の電圧の基準値からの変動分の補正を加えることとした。
 図18は、本変形例のモータ制御システム300の構成を示すブロック図である。
 このモータ制御システムは、サーボ制御モジュール18内のCPU187(第1の制御回路)によって実現される。あるいは、専用のハードウェアにより実現されてもよい。
 このモータ制御システム300は、変化量算出部301、減算部302、PID制御部303、電圧誤差算定部304、操作量補正部305およびPWM制御部306を有する。
 変化量算出部301は、モータ回転角度検出部190によって測定されたモータ189の回転角度から単位時間当たりの変化量を算出し、この変化量を減算部302に出力する。
 減算部302は、受信したデータライト・コマンド3にデータとして含まれる目標回転角度から変化量算出部301より供給された変化量を減算して比例動作のための偏差を求める。また、減算部302は、変化量算出部301より供給された変化量を累積して積分動作のための偏差を求める。さらに、減算部302は、変化量算出部301より連続して供給された2つの変化量の差分と増減方向を積分動作のための偏差として求める。
 PID制御部303は、減算部302からの入力された各々の偏差を用いてPID演算によって操作量を生成する。
 電圧誤差算定部304は、入力電圧つまりPWM電源整流回路183より入力された入力電圧と基準電圧生成回路191によって生成された基準電圧との差分を生成して操作量補正部305に供給する。
 操作量補正部305は、PID制御部303によって生成された操作量を電圧誤差算定部304によって生成された差分つまり入力電圧の変動分を用いて補正する。すなわち、操作量補正部305は、入力電圧が基準電圧よりも低い場合には操作量を増やすように補正し、入力電圧が基準電圧よりも高い場合には操作量を減らすように補正を行う。
 PWM制御部306は、操作量補正部305により補正された操作量をもとに、Hブリッジ回路188に与える制御用PWM信号のデューティ比を決定してモータ189に供給するエネルギーを制御する。
 このように、本変形例では、PID制御によって生成される操作量に、供給されたPWM電源の電圧の基準値からの変動分の補正を加えることによって、各サーボモータ1-1、1-2に供給されるPWM電源の電圧変動によるトルクや速度のバラツキを抑制することができる。
 なお、本変形例では、PID制御を採用する場合について説明したが、その他のフィードバック制御において、入力電圧の基準値からの変動分の補正を採用してもよい。
 なお、本技術は以下のような構成もとることができる。
(1)互いに相対的に回動自在に構成された第1の本体および第2の本体とを具備し、
 前記第2の本体は、
 通信情報がパルスの周期によって変調され、互いに逆位相の2つの電圧がPWM電源として印加される2つの第1の電極を有し、
 前記第1の本体は、
 モータと、
 前記第2の本体の前記2つの第1の電極を通じて各々供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
 前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを具備する
 サーボモータ。
(2)前記(1)に記載のサーボモータであって、
 前記2つの第1の電極と前記2つの第2の電極は互いに磁力により接合可能なように前記第1の電極および前記第2の電極のうち少なくとも一方の電極が永久磁石を備える
 サーボモータ。
(3)前記(1)または(2)に記載のサーボモータであって、
 前記第1の制御回路は、前記生成された前記直流電圧の値と予め決められた基準値との差分をもとに、前記モータに供給するエネルギーを可変するように構成された
 サーボモータ。
(4)前記(1)または(2)に記載のサーボモータであって、
 前記第1の制御回路は、前記モータの制御量の目標値と実制御量を用いてPID制御によって前記モータの操作量を生成し、この操作量を前記直流電圧の値と予め決められた基準値との差分をもとに補正するように構成された
 サーボモータ。
(5)電力供給モジュールとサーボモータとを有し、
 前記電力供給モジュールは、
 2つの第3の電極と、
 通信情報をパルスの周期によって変調し、互いに逆位相の2つの電圧をPWM電源として生成し、前記2つの電圧を前記2つの第3の電極に各々個別に印加する第2の制御回路とを有し、
 前記サーボモータは、
 互いに相対的に回動自在に構成された第1の本体および第2の本体を具備し、
 前記第2の本体は、
 前記電力供給モジュールの前記2つの第3の電極と接続可能な2つの第1の電極を有し、
 前記第1の本体は、
 モータと、
 前記第2の本体の前記2つの第1の電極を通じて供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
 前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを有する
 サーボモータシステム。
(6)前記(5)に記載のサーボモータシステムであって、
 複数の前記サーボモータが、前記2つの第1の電極と前記2つの第2の電極との接続によってチェーン状に接続された
 サーボモータシステム。
(7)前記(6)に記載のサーボモータシステムであって、
 前記第2の制御回路は、
 前記通信情報としてデータ応答期間が設定されたコマンドを生成し、
 前記データ応答期間に一方の前記第3の電極を所定の定電流源と接続し、
 前記第1の制御回路は、
 前記2つの第1の電極のうち前記一方の前記第3の電極と接続された第1の電極を判断し、この第1の電極の短絡のオン/オフを切り替え可能な切替回路をさらに具備し、
 受信した前記コマンド中の前記データ応答期間に前記切替回路を制御して応答データを送信するように構成され、
 前記第2の制御回路は、前記データ応答期間に前記一方の第3の電極の電位の変化をもとに前記応答データを検出する検出回路をさらに具備する
 サーボモータシステム
(8)前記(7)に記載のサーボモータシステムであって、
 前記第2の制御回路は、
 前記データ応答期間として、第1のデータ応答期間とこの第1のデータ応答期間よりも後の第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
 前記第1の制御回路は、
 受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御して第1の応答データを送信し、前記第1の電極を通じて前記第1の応答データの送信結果を読み取り、前記送信結果のエラーの有無を判定し、エラーが判定された場合、前記受信したコマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記第1の応答データの無効を示す第2の応答データを送信するように構成された
 サーボモータシステム。
(9)前記(7)または(8)に記載のサーボモータシステムであって、
 前記第2の制御回路は、
 前記データ応答期間として、第1のデータ応答期間と第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
 前記第1の制御回路は、
 受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御してマスターIDを送信し、前記コマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記直流電圧の値を送信し、
 前記第2の制御回路は、
 前記チェーン状に接続された複数の前記サーボモータの前記第1の制御回路から各々応答された前記マスターIDと前記直流電圧の値とのペアを記憶し、前記直流電圧の値が高い順に、複数の前記マスターIDに対して、前記電力供給モジュールに近い接続順を順次割り当てるように構成された
 サーボモータシステム
  1…サーボモータ
 10…モータケース
 11R、11L…メタルギア
 14a…絶縁部
 14R.14L…シャフト部分
 18…サーボ制御モジュール
 30…アーム
 32R、32L…ギア保持部
 34R、34L…磁気電極
 36R、36L…対向電極
 38R、38L…ギアホルダー
 40R、40L…対向電極
 100…ロボット
 102…中央処理モジュール
 152…CPU
 153…インバータ
 157…定電流源
 158…電力増幅回路
 159…ディテクタ
 160、161…PWM電源出力端子
 181、182…PWM電源入力端子
 183…PWM電源整流回路
 187…CPU
 188…Hブリッジ回路
 189…モータ
 190…モータ回転角検出部
 192、193…オープンドレイン回路
 250、260、270、280…電力供給モジュール
 301…変化量算出部
 302…減算部
 303…PID制御部
 304…電圧誤差算定部
 305…操作量補正部
 341…ネオジウム磁石

Claims (11)

  1.  互いに相対的に回動自在に構成された第1の本体および第2の本体とを具備し、
     前記第2の本体は、
     通信情報がパルスの周期によって変調され、互いに逆位相の2つの電圧がPWM電源として印加される2つの第1の電極を有し、
     前記第1の本体は、
     モータと、
     前記第2の本体の前記2つの第1の電極を通じて各々供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
     前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを具備する
     サーボモータ。
  2.  請求項1に記載のサーボモータであって、
     前記2つの第1の電極と前記2つの第2の電極は互いに磁力により接合可能なように前記第1の電極および前記第2の電極のうち少なくとも一方の電極が永久磁石を備える
     サーボモータ。
  3.  請求項2に記載のサーボモータであって、
     前記第1の制御回路は、前記生成された前記直流電圧の値と予め決められた基準値との差分をもとに、前記モータに供給するエネルギーを可変するように構成された
     サーボモータ。
  4.  請求項2に記載のサーボモータであって、
     前記第1の制御回路は、前記モータの制御量の目標値と実制御量を用いてPID制御によって前記モータの操作量を生成し、この操作量を前記直流電圧の値と予め決められた基準値との差分をもとに補正するように構成された
     サーボモータ。
  5.  電力供給モジュールとサーボモータとを有し、
     前記電力供給モジュールは、
     2つの第3の電極と、
     通信情報をパルスの周期によって変調し、互いに逆位相の2つの電圧をPWM電源として生成し、前記2つの電圧を前記2つの第3の電極に各々個別に印加する第2の制御回路とを有し、
     前記サーボモータは、
     互いに相対的に回動自在に構成された第1の本体および第2の本体を具備し、
     前記第2の本体は、
     前記電力供給モジュールの前記2つの第3の電極と接続可能な2つの第1の電極を有し、
     前記第1の本体は、
     モータと、
     前記第2の本体の前記2つの第1の電極を通じて供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する第1の制御回路と、
     前記第2の本体の前記2つの第1の電極に各々個別に導通する2つの第2の電極とを有する
     サーボモータシステム。
  6.  請求項5に記載のサーボモータシステムであって、
     複数の前記サーボモータが、前記2つの第1の電極と前記2つの第2の電極との接続によってチェーン状に接続された
     サーボモータシステム。
  7.  請求項6に記載のサーボモータシステムであって、
     前記第2の制御回路は、
     前記通信情報としてデータ応答期間が設定されたコマンドを生成し、
     前記データ応答期間に一方の前記第3の電極を所定の定電流源と接続し、
     前記第1の制御回路は、
     前記2つの第1の電極のうち前記一方の前記第3の電極と接続された第1の電極を判断し、この第1の電極の短絡のオン/オフを切り替え可能な切替回路をさらに具備し、
     受信した前記コマンド中の前記データ応答期間に前記切替回路を制御して応答データを送信するように構成され、
     前記第2の制御回路は、前記データ応答期間に前記一方の第3の電極の電位の変化をもとに前記応答データを検出する検出回路をさらに具備する
     サーボモータシステム
  8.  請求項7に記載のサーボモータシステムであって、
     前記第2の制御回路は、
     前記データ応答期間として、第1のデータ応答期間とこの第1のデータ応答期間よりも後の第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
     前記第1の制御回路は、
     受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御して第1の応答データを送信し、前記第1の電極を通じて前記第1の応答データの送信結果を読み取り、前記送信結果のエラーの有無を判定し、エラーが判定された場合、前記受信したコマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記第1の応答データの無効を示す第2の応答データを送信するように構成された
     サーボモータシステム。
  9.  請求項8に記載のサーボモータシステムであって、
     前記第2の制御回路は、
     前記データ応答期間として、第1のデータ応答期間と第2のデータ応答期間が設定されたブロードキャスト方式のコマンドを生成し、
     前記第1の制御回路は、
     受信した前記コマンド中の前記第1のデータ応答期間に前記切替回路を制御してマスターIDを送信し、前記コマンド中の前記第2のデータ応答期間に前記切替回路を制御して前記直流電圧の値を送信し、
     前記第2の制御回路は、
     前記チェーン状に接続された複数の前記サーボモータの前記第1の制御回路から各々応答された前記マスターIDと前記直流電圧の値とのペアを記憶し、前記直流電圧の値が高い順に、複数の前記マスターIDに対して、前記電力供給モジュールに近い接続順を順次割り当てるように構成された
     サーボモータシステム
  10.  請求項9に記載のサーボモータシステムであって、
     前記第2の制御回路は、
     前記複数のマスターIDに対して、制御対象の部位に対応付けられたテンポラリIDをさらに割り当てるように構成された
     サーボモータシステム
  11.  電力供給モジュールからサーボモータへの電力供給方法であって、
     前記電力供給モジュールは、
     2つの第3の電極と、第2の制御回路とを有し、
     前記第2の制御回路は、通信情報をパルスの周期によって変調し、互いに逆位相の2つの電圧をPWM電源として生成し、前記2つの電圧を前記2つの第3の電極に各々個別に印加し、
     前記サーボモータは、
     前記電力供給モジュールの前記2つの第3の電極と接続可能な2つの第1の電極と、
     モータと、
     第1の制御回路と有し、
     前記第1の制御回路は、前記2つの第1の電極を通じて供給された前記2つの電圧から直流電圧を生成するとともに前記通信情報を抽出する
     電力供給方法。
PCT/JP2016/004398 2015-10-08 2016-09-29 サーボモータ、サーボモータシステムおよび電力供給方法 WO2017061088A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017544176A JPWO2017061088A1 (ja) 2015-10-08 2016-09-29 サーボモータ、サーボモータシステムおよび電力供給方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199940 2015-10-08
JP2015199940 2015-10-08

Publications (1)

Publication Number Publication Date
WO2017061088A1 true WO2017061088A1 (ja) 2017-04-13

Family

ID=58487400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004398 WO2017061088A1 (ja) 2015-10-08 2016-09-29 サーボモータ、サーボモータシステムおよび電力供給方法

Country Status (2)

Country Link
JP (1) JPWO2017061088A1 (ja)
WO (1) WO2017061088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044712A1 (ja) * 2017-08-31 2019-03-07 川崎重工業株式会社 ロボット及びロボットの組立性確認方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200989A (ja) * 1999-11-09 2001-07-27 Natl Inst Of Advanced Industrial Science & Technology Meti 三次元可動構造物の自動組立体
JP2004174704A (ja) * 2002-11-14 2004-06-24 Sony Corp アクチュエータ装置及び多軸型ロボット
JP2004318439A (ja) * 2003-04-15 2004-11-11 Sendai Nikon:Kk エンコーダ装置、ロボットシステム
JP2006005535A (ja) * 2004-06-16 2006-01-05 Yaskawa Electric Corp 電力線通信システム
WO2008154958A1 (en) * 2007-06-21 2008-12-24 Abb Technology Ab A control system for controlling at least one industrial robot
JP3153534U (ja) * 2009-06-19 2009-09-10 株式会社ブレイブ 無線操縦ができない電動式おもちゃの乗り物を無線操縦ができるようにした無線受信駆動装置と乾電池型ケースと磁石付きコネクター
JP2010052900A (ja) * 2008-08-28 2010-03-11 Anywire:Kk 搬送制御システム及び搬送制御方法
JP2012119312A (ja) * 2011-11-09 2012-06-21 Sharp Corp 面発光照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200989A (ja) * 1999-11-09 2001-07-27 Natl Inst Of Advanced Industrial Science & Technology Meti 三次元可動構造物の自動組立体
JP2004174704A (ja) * 2002-11-14 2004-06-24 Sony Corp アクチュエータ装置及び多軸型ロボット
JP2004318439A (ja) * 2003-04-15 2004-11-11 Sendai Nikon:Kk エンコーダ装置、ロボットシステム
JP2006005535A (ja) * 2004-06-16 2006-01-05 Yaskawa Electric Corp 電力線通信システム
WO2008154958A1 (en) * 2007-06-21 2008-12-24 Abb Technology Ab A control system for controlling at least one industrial robot
JP2010052900A (ja) * 2008-08-28 2010-03-11 Anywire:Kk 搬送制御システム及び搬送制御方法
JP3153534U (ja) * 2009-06-19 2009-09-10 株式会社ブレイブ 無線操縦ができない電動式おもちゃの乗り物を無線操縦ができるようにした無線受信駆動装置と乾電池型ケースと磁石付きコネクター
JP2012119312A (ja) * 2011-11-09 2012-06-21 Sharp Corp 面発光照明装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044712A1 (ja) * 2017-08-31 2019-03-07 川崎重工業株式会社 ロボット及びロボットの組立性確認方法
JP2019042856A (ja) * 2017-08-31 2019-03-22 川崎重工業株式会社 ロボット及びロボットの組立性確認方法
KR20200033913A (ko) * 2017-08-31 2020-03-30 카와사키 주코교 카부시키 카이샤 로봇 및 로봇의 조립성 확인 방법
CN111065492A (zh) * 2017-08-31 2020-04-24 川崎重工业株式会社 机器人以及机器人的组装性确认方法
KR102289013B1 (ko) * 2017-08-31 2021-08-12 카와사키 주코교 카부시키 카이샤 로봇 및 로봇의 조립성 확인 방법

Also Published As

Publication number Publication date
JPWO2017061088A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
Rollinson et al. Design and architecture of a series elastic snake robot
US10541565B2 (en) Wireless power feeding unit, power transmitting module, power receiving module, and wireless power transmission system
CN109416293B (zh) 检测装置以及电动助力转向装置
JP6632299B2 (ja) ワイヤレス送電装置、その制御回路、充電器、およびパワーロスメソッドによる異物検出のキャリブレーション方法
CN106464031B (zh) 使用负载反馈的无线功率传输系统
WO2013190609A1 (ja) インバータシステム、及び通信方法
US8977393B1 (en) Methods and systems for charging a robotic device
JP5824161B2 (ja) 駆動装置
WO2004028753A3 (en) Intelligent, self-contained robotic hand
CA2831436C (en) Converter assembly, method for producing a converter assembly and method for operating a converter assembly
CN106105016B (zh) 无线供电的电动机
WO2017061088A1 (ja) サーボモータ、サーボモータシステムおよび電力供給方法
US20130049670A1 (en) Integrated servo system
CN114123387A (zh) 一种无线充电设备
TWI645643B (zh) Substrate transfer method
WO2008154958A1 (en) A control system for controlling at least one industrial robot
CN108919801A (zh) 一种麦克纳姆轮全向底盘运动方向矫正控制装置
CN103105516A (zh) 测量物理量的系统及与其相关的电源设备和配置方法
CN205363925U (zh) 一种机械臂的伺服驱动装置
JP6583823B2 (ja) 無線電力伝送システム
CN108890634A (zh) 一种用于模块化机器人关节的控制系统及方法
CN208271004U (zh) 一种麦克纳姆轮运动方向矫正装置
CN204450552U (zh) 模块化立体机器人
Van Mulders et al. Bringing Energy to IoT Nodes: An Unmanned Vehicle for Wireless Power Transfer
Gunji et al. Fundamental Research on Control Method for Power Conversion Circuit of Wireless In‐Wheel Motor Using Magnetic Resonance Coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853245

Country of ref document: EP

Kind code of ref document: A1