WO2017060646A1 - Procédé de solidarisation d'un élément composite et d'un élément rigide - Google Patents

Procédé de solidarisation d'un élément composite et d'un élément rigide Download PDF

Info

Publication number
WO2017060646A1
WO2017060646A1 PCT/FR2016/052594 FR2016052594W WO2017060646A1 WO 2017060646 A1 WO2017060646 A1 WO 2017060646A1 FR 2016052594 W FR2016052594 W FR 2016052594W WO 2017060646 A1 WO2017060646 A1 WO 2017060646A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid material
elements
thermoplastic polymer
joining according
homogeneous
Prior art date
Application number
PCT/FR2016/052594
Other languages
English (en)
Inventor
Christophe Cornu
Richard TOMASI
Pascal THOBIE
Original Assignee
Centre Technique Des Industries Mecaniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Technique Des Industries Mecaniques filed Critical Centre Technique Des Industries Mecaniques
Publication of WO2017060646A1 publication Critical patent/WO2017060646A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3616Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3684Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • B29C65/46Joining a heated non plastics element to a plastics element heated by induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30221Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being point-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof

Definitions

  • the present invention relates to a method of joining two elements of different natures.
  • One envisaged field of application is that of the joining of an element made of thermoplastic composite material and of an element made of homogeneous rigid material, for example metal.
  • a problem that arises and that aims to solve the present invention is to be able to rigidly connect and rigidly a composite material element and a homogeneous rigid material element, without this connection can degrade in time and ensuring that the mechanical strength remains continuous when moving from one element to another.
  • thermoplastic composite material element comprising a thermoplastic polymer and reinforcing fibers embedded in the interior of said thermoplastic polymer
  • assembly method being of the type comprising the following steps: a) treating the surface of said elements; b) the treated surfaces of said elements are applied against each other; and, c) pressing said elements towards each other to be able to join said elements to one another by their surface.
  • step a) generates anfractuosities in the surface of said element made of homogeneous rigid material; and causing said thermoplastic polymer to soften so as to allow said softened thermoplastic polymer and reinforcing fibers to penetrate into said crevices when said elements are pressed in step c).
  • a feature of the invention lies in the treatment of the surface of the element made of homogeneous rigid material, in which anfractuosities are generated and in the implementation of the thermoplastic composite so as to cause its softening so as to be able to penetrate the polymer just as much as the fibers inside the crevices.
  • the implementation of the thermoplastic composite to soften it also proceeds from a surface treatment. In this way, when the thermoplastic polymer regains its hardness, the fibers and a part of the polymer are embedded inside the crevices of the rigid material. Therefore, the connection between the two elements is made more rigid, compared to the assemblies glued according to the prior art. In addition, the bond has an increased cohesion compared to the bonds obtained by the single bond, as well as increased durability.
  • thermoplastic polymer can be accomplished by supplying thermal energy to the thermoplastic composite material member prior to applying it against the surface of the homogeneous rigid material, or also during the pressing step of the two elements .
  • Thermal energy can be supplied in the first case by means of radiation. This radiation may be infrared-type radiation, which can provide thermal energy over a large area. In the second case, it is easier to provide this thermal energy by induction or ultrasound.
  • thermal energy is provided over large areas, greater than 0.5 m 2 for example and at advantageous costs, compared with laser techniques.
  • said element of homogeneous rigid material is a metal element.
  • a metal element For example, it is easy to substitute elements of thermoplastic composite material to metal elements themselves connected to other metal elements. To do this, it is necessary to treat said other metal elements by generating anfractuosities at their junctions with the thermoplastic composite material element.
  • various types of methods can be implemented to achieve these anfractuosities. Cold or hot stamping, mechanical or electro-erosion machining, stamping or chemical etching are all ways to achieve this.
  • said element made of homogeneous rigid material is an element made of a polymer material.
  • the retained material preferably has a high melting point in comparison with that of the thermoplastic polymer of the composite material, which allows it to retain its mechanical characteristics during the step where the thermoplastic polymer is caused to soften and during pressing step.
  • the polymeric material of the element made of homogeneous rigid material is not necessarily a thermosetting compound, but may for example, be a polymer of the polyetheretherketone type, or PEEK, acronym for the corresponding English name "polyether ether ketone".
  • thermoplastic film is applied between the two.
  • This thermoplastic film is advantageously of the same nature as the thermoplastic matrix of the composite material.
  • its melting point is substantially lower than that of the matrix.
  • anfractuosities are generated in the surface of said element of homogeneous rigid material so as to form a plurality of pads.
  • the softened thermoplastic polymer and the fibers it soaks are forced between the pads so that, after the polymer has regained its hardness, these fibers and this polymer embedded between the pads constitute a strong mechanical connection.
  • anfractuosities are generated so as to form a plurality of studs each having a bulged head.
  • swollen head means both a protruding stud head relative to the body of the stud itself, or a hook head at the top of the stud. It is then understood that the softened polymer and the fibers can be forced between the pads and under the swollen heads and that, after curing of the polymer, the mechanical connection is an attachment, more resistant.
  • anfractuosities are generated regularly distributed in the surface of said element made of homogeneous rigid material. In this way, the bonding forces between the two elements are uniformly distributed per unit area, surfaces in contact.
  • a plurality of crossed grooves is housed in said surface to generate said crevices.
  • the pads are then shown. They are thus distributed on a regular basis.
  • all the grooves are arranged in
  • the grooves are formed in U. It is then possible to obtain pads of cubic geometry. As will be explained below, it is possible from this cubic geometry of the pads, to come then treat the surface to make a swollen head to these pads, or remove the material at the base of these studs to clear a bulging head.
  • crevices aims to improve the mechanical anchoring of the thermoplastic composite material element on the element made of rigid material. Also, it is also possible to perform a surface treatment to increase the surface energy, for example by grafting specific chemical functions. This can be done by doping using plasma-type technologies.
  • thermoplastic polymer is supplied to said element made of homogeneous rigid material to cause the softening of said thermoplastic polymer.
  • energy is supplied to said element in homogeneous rigid material by ultrasound. With ultrasound, energy is delivered to large areas at low cost.
  • - Figure 1 is an enlarged schematic perspective view of the surface of a homogeneous rigid material treated according to the invention and according to a first embodiment
  • - Figure 2 is an enlarged perspective view of the surface of a homogeneous rigid material treated according to the invention and according to a second alternative embodiment
  • FIG. 3 is a schematic cross-sectional view of the surface of the material according to the first embodiment
  • FIG. 4 is a schematic cross-sectional view of the surface of the rigid material treated according to a third embodiment
  • FIG. 5 is a schematic cross-sectional view of the surface of the rigid material treated according to a fourth embodiment
  • FIG. 6 is a flowchart of the joining method according to the invention.
  • FIG. 7 is a schematic perspective view of the surface of the rigid material treated according to a fifth embodiment
  • FIG. 8 is a schematic cross-sectional view of the surface of the rigid material treated according to a sixth embodiment
  • FIG. 9 is a schematic cross-sectional view of the surface of the rigid material treated according to a seventh embodiment.
  • FIG. 10 is a schematic perspective view of the surface of the rigid material treated according to an eighth embodiment.
  • the object of the invention relates to a method of joining a thermoplastic composite material element and an element of homogeneous rigid material.
  • the process is schematically represented through the flowchart illustrated in FIG. 6.
  • two elements to be assembled are provided, one made of a thermoplastic composite material, the other made of a material homogeneous rigid, for example a metal.
  • the thermoplastic composite is an organic matrix material made of a thermoplastic polymer and which is reinforced by fibers, for example glass fibers or carbon fibers. Natural fibers from hemp, bamboo or sisal can also be used. The fibers have a diameter of, for example, between 5 ⁇ and 20 ⁇ , advantageously between 5 m and 10 ⁇ .
  • the thermoplastic polymer by its nature, is rigid at room temperature and softens when its temperature rises sufficiently.
  • Polyamide 6, for example is a thermoplastic polymer whose melting point is around 220 ° C., and which may advantageously be used in the composite according to the invention. It becomes rigid again while cooling.
  • the homogeneous rigid material is for example a metal element. It can be made of steel, coated steel or stainless steel. It can also be made of aluminum or titanium, or their respective alloys. However, it is intended to implement a high-melting polymer material element as a homogeneous rigid material.
  • a polymer of the polyetheretherketone type can advantageously be used because it is not only rigid, but also its melting point is about 200 ° C. higher than that of polyamide 6 for example.
  • Polysulfone-type materials are also suitable high-melting polymers.
  • the surface of the element of homogeneous rigid material is treated in such a way as to be able to make anfractuosities thereon.
  • This type of treatment is otherwise referred to as texturing.
  • FIG. 1 illustrates a surface portion 14 of an element made of metallic material, in which two series of perpendicular grooves 16, 18 have been formed forming anfractuosities 15, and making out substantially cubic and more generally parallelepipedic studs 20.
  • the grooves of the first series 16 are substantially parallel and equidistant as are the grooves of the second series 18.
  • the width L of the grooves is for example between 150 ⁇ and 200 ⁇ , while they are spaced from each other by a distance D, for example 500 ⁇ .
  • D for example 500 ⁇ .
  • the fiber diameter of the composite material for example between 5 ⁇ and 10 ⁇ , is very small compared to the size of the crevices 15.
  • These grooves can advantageously be made with laser type techniques or cold, by stamping, punching, graining or even guilloche. Chemical or electrochemical etching techniques are also suitable for producing such grooves. Electroerosion techniques are also likely to be implemented in order to obtain more complex topographies.
  • FIG. 2 illustrates another mode of treatment of another surface portion 22 of a metal material element for which two other series of crossed grooves 24, 26 are relatively wide and sufficiently close to one another to show, not more pins but rods 28.
  • the height of the rods 28 may for example be between 100 ⁇ and 500 ⁇ while they are spaced from each other by a distance between 150 ⁇ and 200 ⁇ .
  • Their depth may also be between 100 ⁇ and 500 ⁇ , while the top of the pyramidal pads 36 are spaced from each other by a distance of between 150 ⁇ and 700 ⁇ .
  • anfractuosities are produced so as to form bulged-head studs 40 and more precisely studs having a hook-shaped head.
  • Mechanical cold treatments of the last portion of surface 38 make it possible to obtain such studs 40.
  • Their height is for example close to 500 ⁇ , while they are spaced apart by a distance for example between 400 ⁇ and 600 ⁇ . .
  • thermal energy is supplied to a surface portion of the thermoplastic composite material element, for example by infrared radiation.
  • the amount of heat energy supplied must be sufficient to cause the softening of the thermoplastic polymer.
  • a second first substep 42 pressing against each other, the surface of the element of homogeneous rigid material having anfractuosities and the surface portion of the softened composite material element. They are pressed together with efforts determined so as to cause the softened thermoplastic polymer and the fibers of the composite material within the crevices. It will be observed that the pressing force takes into account the viscosity of the softened thermoplastic polymer.
  • the two assembled elements are cooled in a cooling step 44 so that the thermoplastic polymer become rigid again.
  • the two elements are secured to one another.
  • the fibers of the composite material element which extend inside said element extend inside the crevices of the element made of rigid material and are trapped there by wedging at the interior of the crevices through the cooled thermoplastic polymer. Therefore, although different in nature, the two elements are integral with each other and together form a single piece, without discontinuity of mechanical strength.
  • a surface portion of the element made of homogeneous rigid material having crevices and a portion is firstly pressed against one another. surface of the composite material element. Then, according to a second second sub-step 50, energy is provided thermal element homogeneous rigid material having the anfractuosities, for example by ultrasound or by induction. It will be observed that the supply of thermal energy by induction could be suitable for a homogeneous rigid polymer-type material, if it were for example loaded with carbon fibers.
  • the thermal energy is dissipated by conduction via the pads of the rigid material resulting from the formation of crevices.
  • the pads are energy directors for focusing the thermal energy directly on the surface portion of the composite element which will then be able to soften.
  • a surface treatment treatment of the surface portion of the composite element is carried out. Consequently, thanks to the pressing, as the thermoplastic polymer softens, it is inserted with the fibers inside the crevices of the element made of rigid material.
  • it also provides a closer contact with the pads of the rigid material member and hence a better adhesion of the thermoplastic polymer and the metal.
  • thermoplastic polymer composite material is softened, so that the composite element retains its shape during the pressing operation which is thereby more effective.
  • the assembly can be carried out independently of the thickness of the composite material element, and also, by preserving it, for example oxidation during the softening phase.
  • the two elements assembled in the cooling step 44 are cooled so that the thermoplastic polymer become rigid again.
  • the two elements integral with one another are obtained.
  • the various topographies illustrated in FIGS. 1 to 5 all have one increased surface area compared to the untreated surface. In itself, this specific surface makes it possible to offer a greater contact surface with the thermoplastic polymer of the composite element.
  • thermoplastic polymer has more or less large adhesive properties depending on the types of polymer. Therefore, when the polymer is less adhesive, it implements, preferably, an element having pads 40 as shown in Figure 5, which have swollen heads. In such circumstances, it is understood that the reinforcing fibers of the composite material will be intertwined between the hook-forming studs. In this way, the adhesion of the polymer may be enhanced by a better adhesion of the fibers kept continuous. Therefore, despite the low adhesion of the polymer to a metal surface, a high bond strength will be obtained between the two elements.
  • thermoplastic polymer of the composite material When the thermoplastic polymer of the composite material is by nature strongly adherent, it is possible to generate pyramidal type fractures as illustrated in FIG. 4, easier to achieve than the previous ones, in order to be able to associate the composite element and the metallic element. with good adhesion.
  • anfractuosities made according to Figures 1 to 3 thanks to cross grooves in U, they allow to associate with the rigid element, a composite material where the thermoplastic polymer does not need to be softened until the glass transition temperature. Indeed, with a low input of thermal energy, and a large pressing force, the geometry of the crevices allows to force the fibers and the thermoplastic polymer inside.
  • the elements of metal material are plates.
  • a first metal plate 54 has stamped orifices 56, 58 in opposition to one another and forming recesses.
  • the thermoplastic polymer can then flow at least partially inside the orifices 56, 58, while the stamped edge sinks into the composite.
  • a second metal plate 60 has protruding tabs 62 obtained by stamping stamping. The protruding tabs 62 are then able to penetrate into the composite through the reinforcing fibers.
  • the surface of the metallic material has concave grooves 64.
  • the softened polymer of the composite material flows inside the concave grooves 64.
  • the composite and the element metal material are thus completely integral with one another, since the composite material has bulging protuberances which extend inside the concave grooves 64.
  • the surface of the metallic material has paired oblique grooves 66, 68 making it possible to form longitudinal dovetails 70.
  • the softened polymer of the metallic material flows into the oblique grooves, and thus, after cooling, the metal element and the composite element are trapped from each other.
  • anfractuosities can be carried out by various methods. Examples include traditional machining, laser ablation, knurling, cold stamping or hot stamping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un procédé de solidarisation d'un élément en matériau composite thermoplastique et d'un élément en matériau rigide homogène, ledit élément en matériau composite thermoplastique comprenant un polymère thermoplastique et des fibres de renfort noyées à l'intérieur dudit polymère thermoplastique, ledit procédé d'assemblage étant du type comprenant les étapes suivantes : a) on traite la surface desdits éléments; b) on applique l'une contre l'autre les surfaces traitées desdits éléments; et, c) on presse lesdits éléments l'un vers l'autre pour pouvoir solidariser lesdits éléments l'un à l'autre par leur surface. A l'étape a) on génère des anfractuosités (15, 34) dans la surface dudit élément en matériau rigide homogène; et en on provoque en outre le ramollissement dudit polymère thermoplastique, de manière à pouvoir faire pénétrer ledit polymère thermoplastique ramolli et les fibres de renfort à l'intérieur desdites anfractuosités lorsque l'on presse lesdits éléments à l'étape c).

Description

Procédé de solidarisation d'un élément composite et d'un élément rigide
La présente invention se rapporte à un procédé de solidarisation de deux éléments de natures différentes.
Un domaine d'application envisagé est celui de la solidarisation d'un élément en matériau composite thermoplastique et d'un élément en matériau rigide homogène, par exemple en métal.
Il est connu, dans l'industrie aéronautique notamment, de relier ensemble des éléments en matériau composite et des éléments métalliques. On y procède, soit par des éléments mécaniques rapportés, tels des rivets, soit par collage. Dans ce dernier cas, on prépare les surfaces des éléments à appliquer l'un contre l'autre puis on enduit d'un adhésif l'une et/ou l'autre des surfaces pour ensuite les appliquer l'une contre l'autre et les presser jusqu'à la polymérisation de l'adhésif lorsqu'il s'agit d'un adhésif réactif. De la sorte, les deux éléments sont solidaires l'un de l'autre par leur surface préparée.
Si le collage présente des avantages par rapport à l'assemblage par rivetage, notamment en termes de poids et d'encombrement, il est dans certains cas moins performant en termes de résistance mécanique et de durabilité de l'assemblage. Et ce d'autant plus, en l'espèce, que les deux éléments présentent des natures différentes.
Dans le domaine de l'industrie automobile on recherche également à alléger les structures et ainsi à substituer des pièces en matériau composite à des pièces métalliques. Toutefois, si les caractéristiques mécaniques des pièces en matériau composite peuvent être l'égale de celle des matériaux métalliques, ce n'est pas le cas de leur liaison qui présente généralement de plus faibles caractéristiques.
Aussi, un problème qui se pose et que vise à résoudre la présente invention est de pouvoir relier et de solidariser de manière rigide un élément en matériau composite et un élément en matériau rigide homogène, sans que cette liaison ne puisse se dégrader dans le temps et en s'assurant que la résistance mécanique demeure continue en passant d'un élément à l'autre. Dans le but de résoudre ce problème, il est proposé un procédé de solidarisation d'un élément en matériau composite thermoplastique et d'un élément en matériau rigide homogène, ledit élément en matériau composite thermoplastique comprenant un polymère thermoplastique et des fibres de renfort noyées à l'intérieur dudit polymère thermoplastique, ledit procédé d'assemblage étant du type comprenant les étapes suivantes : a) on traite la surface desdits éléments ; b) on applique l'une contre l'autre les surfaces traitées desdits éléments ; et, c) on presse lesdits éléments l'un vers l'autre pour pouvoir solidariser lesdits éléments l'un à l'autre par leur surface. En outre, à l'étape a) on génère des anfractuosités dans la surface dudit élément en matériau rigide homogène ; et on provoque le ramollissement dudit polymère thermoplastique, de manière à pouvoir faire pénétrer ledit polymère thermoplastique ramolli et les fibres de renfort à l'intérieur desdites anfractuosités lorsque l'on presse lesdits éléments à l'étape c).
Ainsi, une caractéristique de l'invention réside dans le traitement de la surface de l'élément en matériau rigide homogène, dans laquelle on génère des anfractuosités et dans la mise en œuvre du composite thermoplastique de manière à provoquer son amollissement de façon à pouvoir faire pénétrer le polymère tout autant que les fibres à l'intérieur des anfractuosités. La mise en œuvre du composite thermoplastique visant à le ramollir procède également d'un traitement de surface. De la sorte, lorsque le polymère thermoplastique retrouve sa dureté, les fibres et une partie du polymère sont encastrées à l'intérieur des anfractuosités du matériau rigide. Partant, la liaison entre les deux éléments est rendue plus rigide, par rapport aux assemblages collés selon l'art antérieur. De surcroît, la liaison présente une cohésion accrue par rapport aux liaisons obtenues par le seul collage, ainsi qu'une durabilité augmentée.
Au surplus, générer des anfractuosités dans le matériau rigide, conduit à augmenter également sa surface spécifique et partant, à accroître la surface de contact que vient mouiller le polymère thermoplastique ramolli. Cela conduit à accroître les forces de liaison entre le matériau composite et le matériau rigide. Aussi, le ramollissement du polymère thermoplastique peut être accompli en fournissant de l'énergie thermique à l'élément en matériau composite thermoplastique avant de l'appliquer contre la surface du matériau rigide homogène, ou également, durant l'étape de pressage des deux éléments. On peut fournir de l'énergie thermique, dans le premier cas au moyen d'un rayonnement. Ce rayonnement peut être un rayonnement de type infrarouge, lequel permet de fournir une énergie thermique sur une surface étendue. Dans le second cas, il est plus aisé de fournir cette énergie thermique par induction ou ultrason. Là également, on fournit de l'énergie thermique sur des surfaces étendues, supérieure à 0,5 m2 par exemple et à des coûts avantageux, comparativement aux techniques lasers.
Ainsi, grâce au procédé selon l'invention, on peut assembler des éléments présentant de grandes surfaces de contact.
Selon un premier mode de mise en œuvre, ledit élément en matériau rigide homogène est un élément métallique. Ainsi par exemple, il est aisé de venir substituer des éléments en matériau composite thermoplastique à des éléments métalliques eux-mêmes reliés à d'autres éléments métalliques. Pour ce faire, il convient de traiter lesdits autres éléments métalliques en générant des anfractuosités au niveau de leurs jonctions avec l'élément en matériau composite thermoplastique. Ainsi qu'on l'expliquera plus en détail dans la suite de la description, différents types de méthodes peuvent être mis en œuvre pour réaliser ces anfractuosités. La frappe à froid ou à chaud, l'usinage mécanique ou par électroérosion, l'estampage ou encore la gravure chimique sont des moyens d'y parvenir.
Selon un autre mode de mise en œuvre, ledit élément en matériau rigide homogène est un élément en matériau polymère. En pareille circonstance, le matériau retenu présente de préférence un point de fusion élevé en comparaison de celui du polymère thermoplastique du matériau composite, ce qui lui permet de conserver ses caractéristiques mécaniques durant l'étape où on provoque ramollissement du polymère thermoplastique et durant l'étape de pressage. Le matériau polymère de l'élément en matériau rigide homogène n'est pas nécessairement un composé thermodurcissable, mais peut, par exemple, être un polymère du type polyétheréthercétone, ou PEEK, acronyme du nom anglais correspondant « polyether ether ketone ».
Aussi, dans certaines circonstances, et dans le but d'améliorer l'adhésion entre les deux éléments, on applique un film thermoplastique entre les deux. Ce film thermoplastique est avantageusement de même nature que la matrice thermoplastique du matériau composite. Préférentiellement, son point de fusion est sensiblement inférieur à celui de la matrice.
Préférentiellement, on génère des anfractuosités dans la surface dudit élément en matériau rigide homogène de manière à former une pluralité de plots. Ainsi, le polymère thermoplastique amolli et les fibres qu'il imbibe sont forcés entre les plots de telle sorte que, après que le polymère a retrouvé sa dureté, ces fibres et ce polymère encastrés entre les plots constituent une liaison mécanique résistante.
Selon un mode de réalisation particulier, on génère des anfractuosités de manière à former une pluralité de plots présentant chacun une tête renflée. On entend par tête renflée, aussi bien une tête de plot proéminente par rapport au corps du plot lui-même, ou bien encore une tête formant crochet au sommet du plot. On comprend alors, que le polymère amolli et les fibres peuvent être forcés entre les plots et sous les têtes renflées et qu'alors, après durcissement du polymère, la liaison mécanique est un accrochage, plus encore résistant.
Selon un mode préféré de mise en œuvre, on génère des anfractuosités distribuées régulièrement dans la surface dudit élément en matériau rigide homogène. De la sorte, les forces de liaison entre les deux éléments sont uniformément réparties par unité de surface, des surfaces en contact.
Avantageusement, on ménage une pluralité de rainures croisées dans ladite surface pour générer lesdites anfractuosités. Ainsi, en réalisant deux séries de rainures, une première série de rainures parallèles et une seconde série de rainures perpendiculaires à la première, on fait alors apparaître les plots. Ils sont ainsi distribués de manière régulière.
Selon une variante de réalisation, toutes les rainures sont ménagées en
V. Partant, lorsque l'on réalise deux séries de rainures croisées, et que les rainures sont suffisamment proches les unes des autres, on forme alors des plots de géométrie pyramidale.
Selon une autre variante, les rainures sont ménagées en U. On peut alors obtenir des plots de géométrie cubique. Ainsi qu'on l'expliquera ci-après, il est possible à partir de cette géométrie cubique des plots, de venir ensuite traiter la surface afin de réaliser une tête renflée à ces plots, ou bien retirer de la matière à la base de ces plots pour dégager une tête renflée.
De plus, la génération d'anfractuosités vise à améliorer l'ancrage mécanique de l'élément en matériau composite thermoplastique sur l'élément en matériau rigide. Aussi, il également possible de réaliser au surplus un traitement de la surface visant à augmenter l'énergie de surface, par exemple en venant greffer des fonctions chimiques particulières. On peut notamment y procéder par dopage au moyen de technologies de type plasma.
Par ailleurs, et selon un mode de mise en œuvre de l'invention particulièrement avantageux, on fournit de l'énergie audit élément en matériau rigide homogène pour provoquer le ramollissement dudit polymère thermoplastique. En effet, en fournissant de l'énergie thermique au matériau rigide homogène, celle-ci se dissipe par exemple dans les plots générés par les anfractuosités, et partant l'apport énergétique au polymère thermoplastique est localisé. Conséquemment, ce dernier se déforme localement sans amollir entièrement l'élément composite et ce sont les plots qui viennent alors s'enfoncer dans le polymère amolli à travers les fibres. Avantageusement, on fournit de l'énergie audit élément en matériau rigide homogène par ultrasons. Grâce aux ultrasons, on vient fournir de l'énergie sur des surfaces étendues à faible coût.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la Figure 1 est une vue schématique agrandie en perspective de la surface d'un matériau rigide homogène traité selon l'invention et selon une première variante d'exécution ; - la Figure 2 est une vue agrandie en perspective de la surface d'un matériau rigide homogène traité selon l'invention et selon une deuxième variante d'exécution ;
- la Figure 3 est une vue schématique en coupe droite de la surface du matériau selon la première variante d'exécution ;
- la Figure 4 est une vue schématique en coupe droite de la surface du matériau rigide traité selon une troisième variante d'exécution ;
- la Figure 5 est une vue schématique en coupe droite de la surface du matériau rigide traité selon une quatrième variante d'exécution ;
- la Figure 6 est un organigramme du procédé de solidarisation selon l'invention ;
- la Figure 7 est une vue schématique en perspective de la surface du matériau rigide traité selon une cinquième variante d'exécution ;
- la Figure 8 est une vue schématique en coupe droite de la surface du matériau rigide traité selon une sixième variante d'exécution ;
- la Figure 9 est une vue schématique en coupe droite de la surface du matériau rigide traité selon une septième variante d'exécution ; et,
- la Figure 10 est une vue schématique en perspective de la surface du matériau rigide traité selon une huitième variante d'exécution.
L'objet de l'invention porte sur un procédé de solidarisation d'un élément en matériau composite thermoplastique et d'un élément en matériau rigide homogène. Le procédé est schématiquement représenté à travers l'organigramme illustré sur la Figure 6. Selon une première étape 10 du procédé, on fournit deux éléments à assembler, l'un fait d'un matériau composite thermoplastique, l'autre fait d'un matériau rigide homogène, par exemple un métal.
Le composite thermoplastique est un matériau à matrice organique fait d'un polymère thermoplastique et lequel est renforcé par des fibres, par exemple des fibres de verre ou encore des fibres de carbone. Les fibres naturelles issues du chanvre, du bambou ou encore de la sisal peuvent également être mises en œuvre. Les fibres ont un diamètre compris par exemple entre 5 μιτι et 20 μιτι, avantageusement entre 5 m et 10 μιτι. Quant au polymère thermoplastique, de par sa nature, il est rigide à température ambiante et il se ramollit lorsque sa température s'élève suffisamment. Le polyamide 6, par exemple, est un polymère thermoplastique dont le point de fusion est voisin de 220 °C, et qui peut être avantageusement mis en œuvre dans le composite selon l'invention. Il redevient rigide en refroidissant.
Le matériau rigide homogène est par exemple un élément métallique. Il peut être réalisé en acier, en acier revêtu ou en acier inoxydable. Il peut également être fait d'aluminium ou encore de titane, ou de leurs alliages respectifs. Toutefois, on prévoit de mettre en œuvre un élément en matériau polymère à haut point de fusion, comme matériau rigide homogène. Par exemple, un polymère du type polyétheréthercétone, peut avantageusement être mis en œuvre car, il est non seulement rigide, mais aussi, son point de fusion est d'environ 200 °C supérieur à celui du polyamide 6 par exemple. Les matériaux de type polysulfone sont également des polymères à haut point de fusion adaptés.
Selon une deuxième étape 12 illustrée sur la Figure 6, on traite la surface de l'élément en matériau rigide homogène de manière à pouvoir y réaliser des anfractuosités. Ce type de traitement est autrement dénommé, texturation.
La Figure 1 , illustre une portion de surface 14 d'un élément en matériau métallique, dans laquelle on a réalisé deux séries de rainures 16, 18 perpendiculaires formant des anfractuosités 15 et, faisant apparaître des plots 20 sensiblement cubiques et plus généralement parallélépipédiques. Les rainures de la première série 16 sont sensiblement parallèles et équidistantes tout comme les rainures de la seconde série 18.
Par exemple, tel que représenté en coupe droite sur la Figure 3, on réalise sur la portion de surface 14 des rainures en U d'une profondeur P comprise entre 100 μιτι et 500 μιτι. La largeur L des rainures est par exemple comprise entre 150 μιτι et 200 μιτι, tandis qu'elles sont espacées les unes des autres d'une distance D, par exemple de 500 μιτι. On observera que le diamètre des fibres du matériau composite, compris par exemple entre 5 μιτι et 10 μιτι, est très petit par rapport à la taille des anfractuosités 15. Ces rainures peuvent avantageusement être réalisées avec des techniques de type laser ou bien à froid, par estampage, poinçonnage, grainage ou bien encore guillochage. Des techniques de gravure chimique ou électrochimique sont également adaptées à la réalisation de telles rainures. Les techniques d'électroérosion sont également susceptibles d'être mises en œuvre afin d'obtenir des topographies plus complexe.
La Figure 2 illustre un autre mode de traitement d'une autre portion 22 de surface d'un élément en matériau métallique pour lequel deux autres séries de rainures croisées 24, 26 sont relativement larges et suffisamment rapprochées les unes des autres pour faire apparaître, non plus des plots mais des tiges 28. Aussi, la hauteur des tiges 28 peut par exemple être comprise entre 100 μιτι et 500 μιτι tandis qu'elles sont espacées les unes des autres d'une distance comprise entre 150 μιτι et 200 μιτι.
Selon encore un autre mode de traitement d'encore une autre portion de surface 30, telle que représentée sur la Figure 4, on réalise deux séries de rainures en V 32 contiguës, les deux séries de rainures étant perpendiculaires. De la sorte, on obtient des anfractuosités pyramidales 34 faisant apparaître des plots pyramidaux 36. Ces rainures croisées sont obtenues principalement par des méthodes de traitement à froid.
Leur profondeur peut également être comprise entre 100 μιτι et 500 μιτι, tandis que le sommet des plots pyramidaux 36 sont espacés les uns des autres d'une distance comprise entre 150 μιτι et 700 μιτι.
Selon un dernier mode de traitement d'une dernière portion de surface 38, représentée sur la Figure 5, on réalise des anfractuosités de manière à former des plots à tête renflée 40 et plus précisément des plots présentant une tête en forme de crochet. Des traitements mécaniques à froid de la dernière portion de surface 38 permettent d'obtenir de tels plots 40. Leur hauteur est par exemple voisine de 500 μιτι, tandis qu'ils sont espacés d'une distance comprise par exemple entre 400 μιτι et 600 μιτι.
On se reportera de nouveau à la Figure 6, afin de décrire plus en détail le procédé de solidarisation des deux éléments selon l'invention. Ainsi, après le traitement de la surface de l'élément en matériau rigide homogène selon l'étape 12, deux variantes de réalisation peuvent être mises en œuvre.
Selon une première variante, et conformément à une première première sous-étape 40 de traitement de surface, on fournit de l'énergie thermique à une portion de surface de l'élément en matériau composite thermoplastique, par exemple par rayonnement infrarouge. La quantité d'énergie thermique fournie doit être suffisante pour provoquer le ramollissement du polymère thermoplastique. Ensuite, dans une seconde première sous-étape 42, on presse l'une contre l'autre, la surface de l'élément en matériau rigide homogène présentant des anfractuosités et la portion de surface de l'élément en matériau composite ramolli. On les presse ensemble avec des efforts déterminés de manière à entraîner le polymère thermoplastique ramolli et les fibres du matériau composite à l'intérieur des anfractuosités. On observera que l'effort de pressage tient compte de la viscosité du polymère thermoplastique ramolli.
Après que les deux éléments ont été pressés l'un contre l'autre et maintenus en position fixe l'un par rapport à l'autre, on refroidit les deux éléments assemblés dans une étape 44 de refroidissement de manière à ce que le polymère thermoplastique redevienne rigide. On obtient de la sorte dans une ultime étape 46, les deux éléments solidaires l'un de l'autre.
De la sorte, les fibres de l'élément en matériau composite qui s'étendent à l'intérieur dudit élément, viennent se prolonger à l'intérieur des anfractuosités de l'élément en matériau rigide et y sont rendues prisonnières par coincement à l'intérieur des anfractuosités par l'intermédiaire du polymère thermoplastique refroidi. Partant, bien que de nature différente, les deux éléments sont solidaires l'un de l'autre et forment ensemble une seule pièce, sans discontinuité de résistance mécanique.
Selon une seconde variante, et conformément à une première seconde sous-étape 48, on vient tout d'abord presser, l'une contre l'autre, une portion de surface de l'élément en matériau rigide homogène présentant des anfractuosités et une portion de surface de l'élément en matériau composite. Ensuite, selon une deuxième seconde sous-étape 50, on fournit de l'énergie thermique à l'élément en matériau rigide homogène présentant les anfractuosités, par exemple par ultrason ou encore par induction. On observera que l'apport d'énergie thermique par induction pourrait convenir pour un matériau rigide homogène de type polymère, s'il était par exemple chargé de fibres de carbone.
De la sorte, l'énergie thermique se dissipe par conduction par l'intermédiaire des plots du matériau rigide résultant de la formation des anfractuosités. Ainsi, les plots constituent des directeurs d'énergie permettant de focaliser l'énergie thermique directement sur la portion de surface de l'élément composite qui va alors pouvoir se ramollir. De la sorte, on procède à un traitement de traitement de surface de la portion de surface de l'élément composite. Conséquemment, grâce au pressage, à mesure que le polymère thermoplastique se ramollit, il s'insère avec les fibres à l'intérieur des anfractuosités de l'élément en matériau rigide. En outre, on obtient également un contact plus intime avec les plots de l'élément en matériau rigide et partant, une meilleure adhérence du polymère thermoplastique et du métal.
Au surplus, une faible partie de polymère thermoplastique du matériau composite est ramollie, de sorte que l'élément composite conserve sa forme durant l'opération de pressage qui est par là-même plus efficace. Aussi, selon cette seconde variante, il est possible d'assembler des éléments présentant de grandes surfaces de contact par exemple supérieure à 0,5 m2. De plus, l'assemblage peut être réalisé indépendamment de l'épaisseur de l'élément en matériau composite, et également, en le préservant, par exemple de l'oxydation durant la phase de ramollissement.
Après que les deux éléments ont été pressés et chauffés pour être maintenus l'un contre l'autre en position, tout comme la première variante, on refroidit les deux éléments assemblés dans l'étape 44 de refroidissement de manière à ce que le polymère thermoplastique redevienne rigide. On obtient de la même façon, dans une ultime étape 46, les deux éléments solidaires l'un de l'autre.
S'agissant du traitement de l'élément en matériau rigide homogène, les différentes topographies illustrées sur les Figures 1 à 5, présentent toutes, une surface spécifique augmentée par rapport à la surface non traitée. En soi, cette surface spécifique permet d'offrir une surface de contact supérieur avec le polymère thermoplastique de l'élément composite.
Cependant, le polymère thermoplastique présente des propriétés adhésives plus ou moins grandes selon les types de polymère. Partant, lorsque le polymère est moins adhésif, on met en œuvre, de manière préférentielle, un élément présentant des plots 40 tels que représentés sur la Figure 5, lesquels présentent des têtes renflées. En pareille circonstance, on comprend que les fibres de renfort du matériau composite viendront s'entrelacer entre les plots formant crochets. De la sorte, l'adhésion du polymère pourra être renforcée par un meilleur accrochage des fibres maintenues continues. Partant, on obtiendra, malgré la faible adhésion du polymère sur une surface métallique, une force de liaison élevée entre les deux éléments.
Lorsque le polymère thermoplastique du matériau composite est par nature fortement adhérent, il est possible de générer des anfractuosités de type pyramidal comme illustrée sur la Figure 4, plus aisées à réaliser que les précédentes, pour pouvoir associer l'élément composite et l'élément métallique avec une bonne adhérence.
Quant au type d'anfractuosités réalisées selon les Figures 1 à 3, grâce a des rainures croisées en U, elles permettent d'associer à l'élément rigide, un matériau composite ou le polymère thermoplastique ne nécessite pas d'être ramolli jusqu'à la température de transition vitreuse. En effet, moyennant un faible apport d'énergie thermique, et un effort de pressage important, la géométrie des anfractuosités permet d'engager à force les fibres et le polymère thermoplastique à l'intérieur.
Sur les figures 7 et 10, présentant une cinquième et une huitième variantes d'exécution, les éléments en matériau métallique sont des plaques.
Ainsi, sur la figure 7 une première plaque métallique 54 présente des orifices emboutis 56, 58 en opposition les uns des autres et formant des embrèvements. Le polymère thermoplastique peut venir alors s'écouler au moins partiellement à l'intérieur des orifices 56, 58, tandis que la bordure emboutie s'enfonce dans le composite. Sur la figure 10, une deuxième plaque métallique 60 présente des languettes en saillie 62 obtenues par découpage emboutissage. Les languettes en saillie 62 sont alors aptes à venir s'enfoncer dans le composite à travers les fibres de renfort.
Quant aux figures 8 et 9, elles montrent selon une sixième et une septième variantes d'exécution, des éléments en matériau métallique plus épais.
Sur la figure 8, la surface du matériau métallique présente des rainures concaves 64. Ainsi, on comprend que le polymère ramolli du matériau composite vient s'écouler à l'intérieur des rainures concaves 64. Après refroidissement, le composite et l'élément en matériau métallique sont ainsi totalement solidaires l'un de l'autre, puisque le matériau composite présente des excroissances renflées qui s'étendent à l'intérieur des rainures concaves 64.
Sur la figure 9, la surface du matériau métallique présente des rainures obliques appariées 66, 68 permettant de former des queues d'aronde longitudinales 70. Là également, le polymère ramolli du matériau métallique vient s'écouler dans les rainures obliques, et ainsi, après refroidissement, l'élément métallique et l'élément composite sont prisonniers l'un de l'autre.
Grâce au traitement des surfaces des éléments rigides on obtient par exemple des assemblages de composite polyamide/fibres de verre et aluminium ou acier présentant des résistances à la rupture en traction supérieure à 20 MPa. Sans traitement, ces résistances à la rupture sont inférieures à 10 MPa.
Avec un composite Polysulfure de phénylène/fibres de carbone et aluminium traité selon l'invention, on obtient également des résistances à la rupture comprises entre 20 et 30 MPa.
On observera que les anfractuosités peuvent être réalisées par différents procédés. On citera par exemple, l'usinage traditionnel, l'ablation laser, le moletage, la frappe à froid ou encore, la frappe à chaud.
Aussi, dans le but de renforcer la tenue mécanique de l'assemblage des deux éléments, il est proposé de le surmouler au moyen d'un polymère thermoplastique d'une nature analogue à celle de la matrice du matériau composite.

Claims

REVENDICATIONS
1 . Procédé de solidarisation d'un élément en matériau composite thermoplastique et d'un élément en matériau rigide homogène, ledit élément en matériau composite thermoplastique comprenant un polymère thermoplastique et des fibres de renfort noyées à l'intérieur dudit polymère thermoplastique, ledit procédé d'assemblage étant du type comprenant les étapes suivantes :
- a) on traite la surface desdits éléments ;
- b) on applique l'une contre l'autre les surfaces traitées desdits éléments ; et,
- c) on presse lesdits éléments l'un vers l'autre pour pouvoir solidariser lesdits éléments l'un à l'autre par leur surface ;
caractérisé en ce qu'à l'étape a) on génère des anfractuosités dans la surface dudit élément en matériau rigide homogène ;
et en ce qu'on provoque en outre le ramollissement dudit polymère thermoplastique, de manière à pouvoir faire pénétrer ledit polymère thermoplastique ramolli et les fibres de renfort à l'intérieur desdites anfractuosités lorsque l'on presse lesdits éléments à l'étape c).
2. Procédé de solidarisation selon la revendication 1 , caractérisé en ce que ledit élément en matériau rigide homogène est un élément métallique.
3. Procédé de solidarisation selon la revendication 1 , caractérisé en ce que ledit élément en matériau rigide homogène est un élément en matériau polymère.
4. Procédé de solidarisation selon l'une quelconque des revendications
1 à 3, caractérisé en ce qu'on génère des anfractuosités dans la surface dudit élément en matériau rigide homogène de manière à former une pluralité de plots.
5. Procédé de solidarisation selon la revendication 4, caractérisé en ce qu'on génère des anfractuosités de manière à former une pluralité de plots présentant chacun une tête renflée.
6. Procédé de solidarisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on génère des anfractuosités distribuées régulièrement dans la surface dudit élément en matériau rigide homogène.
7. Procédé de solidarisation selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'on ménage une pluralité de rainures croisées dans ladite surface pour générer lesdites anfractuosités.
8. Procédé de solidarisation selon la revendication 7, caractérisé en ce qu'on ménage lesdites rainures en V.
9. Procédé de solidarisation selon la revendication 7, caractérisé en ce qu'on ménage lesdites rainures en U.
10. Procédé de solidarisation selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'on fournit de l'énergie audit élément en matériau rigide homogène pour provoquer le ramollissement dudit polymère thermoplastique.
1 1 . Procédé de solidarisation selon la revendication 10, caractérisé en ce qu'on fournit de l'énergie audit élément en matériau rigide homogène par ultrasons.
PCT/FR2016/052594 2015-10-07 2016-10-07 Procédé de solidarisation d'un élément composite et d'un élément rigide WO2017060646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559543A FR3042196B1 (fr) 2015-10-07 2015-10-07 Procede de solidarisation d'un element composite et d'un element rigide
FR1559543 2015-10-07

Publications (1)

Publication Number Publication Date
WO2017060646A1 true WO2017060646A1 (fr) 2017-04-13

Family

ID=54478903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052594 WO2017060646A1 (fr) 2015-10-07 2016-10-07 Procédé de solidarisation d'un élément composite et d'un élément rigide

Country Status (2)

Country Link
FR (1) FR3042196B1 (fr)
WO (1) WO2017060646A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564753A (en) * 2017-05-18 2019-01-23 Bae Systems Plc Fastenerless structural assembly
IT201800021358A1 (it) * 2018-12-28 2020-06-28 Nextema S R L Metodo per il fissaggio di componenti, giunzione e relativo corpo accoppiato
DE102019106284A1 (de) * 2019-03-12 2020-09-17 HELLA GmbH & Co. KGaA Verfahren zur Herstellung einer Fügeverbindung zwischen einem Strukturbauteil aus einem Kunststoff und einer Metallkomponente
FR3117936A1 (fr) * 2020-12-18 2022-06-24 Centre Technique des Industries Mécaniques Procédé de fabrication d’une roue de véhicule automobile sans air
GB2606574A (en) * 2021-05-14 2022-11-16 Avalon Consultancy Services Ltd Joining process and system
CN117774340A (zh) * 2024-02-26 2024-03-29 太原理工大学 一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317813A (zh) * 2018-12-07 2019-02-12 上海骄成机电设备有限公司 一种超声波焊头
DE102019106260A1 (de) * 2019-03-12 2020-09-17 HELLA GmbH & Co. KGaA Verfahren zur Herstellung einer Fügeverbindung zwischen einem lichttechnisch wirksamen Kunststoffbauteil und einer Metallkomponente

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042456A1 (en) * 2003-08-22 2005-02-24 Frank Krause Method of connecting shaped parts made of plastics material and metal
US7802799B1 (en) * 2006-09-18 2010-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of joining metallic and composite components
EP2669077A2 (fr) * 2012-05-31 2013-12-04 Fuji Jukogyo Kabushiki Kaisha Structure de joint pour résine renforcée de fibres et de métal
WO2014125999A1 (fr) * 2013-02-12 2014-08-21 ポリプラスチックス株式会社 Pièce moulée en résine rainurée
EP2832526A1 (fr) * 2012-03-29 2015-02-04 Teijin Limited Procédé de fabrication d'un élément de joint et élément de joint
WO2015146767A1 (fr) * 2014-03-25 2015-10-01 ポリプラスチックス株式会社 Article composite moulé et son procédé de fabrication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042456A1 (en) * 2003-08-22 2005-02-24 Frank Krause Method of connecting shaped parts made of plastics material and metal
US7802799B1 (en) * 2006-09-18 2010-09-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of joining metallic and composite components
EP2832526A1 (fr) * 2012-03-29 2015-02-04 Teijin Limited Procédé de fabrication d'un élément de joint et élément de joint
EP2669077A2 (fr) * 2012-05-31 2013-12-04 Fuji Jukogyo Kabushiki Kaisha Structure de joint pour résine renforcée de fibres et de métal
WO2014125999A1 (fr) * 2013-02-12 2014-08-21 ポリプラスチックス株式会社 Pièce moulée en résine rainurée
WO2015146767A1 (fr) * 2014-03-25 2015-10-01 ポリプラスチックス株式会社 Article composite moulé et son procédé de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIHLIPP AMEND ET AL: "Artungleiche Werkstoffe fuegen", KUNSTSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 102, no. 12, 1 January 2012 (2012-01-01), pages 56 - 58, XP001526499, ISSN: 0023-5563 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564753A (en) * 2017-05-18 2019-01-23 Bae Systems Plc Fastenerless structural assembly
GB2564753B (en) * 2017-05-18 2020-06-24 Bae Systems Plc Fastenerless structural assembly
IT201800021358A1 (it) * 2018-12-28 2020-06-28 Nextema S R L Metodo per il fissaggio di componenti, giunzione e relativo corpo accoppiato
DE102019106284A1 (de) * 2019-03-12 2020-09-17 HELLA GmbH & Co. KGaA Verfahren zur Herstellung einer Fügeverbindung zwischen einem Strukturbauteil aus einem Kunststoff und einer Metallkomponente
FR3117936A1 (fr) * 2020-12-18 2022-06-24 Centre Technique des Industries Mécaniques Procédé de fabrication d’une roue de véhicule automobile sans air
GB2606574A (en) * 2021-05-14 2022-11-16 Avalon Consultancy Services Ltd Joining process and system
CN117774340A (zh) * 2024-02-26 2024-03-29 太原理工大学 一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法
CN117774340B (zh) * 2024-02-26 2024-04-23 太原理工大学 一种微胶囊强钉扎金属/碳纤维复合材料接头制备方法

Also Published As

Publication number Publication date
FR3042196B1 (fr) 2019-04-19
FR3042196A1 (fr) 2017-04-14

Similar Documents

Publication Publication Date Title
WO2017060646A1 (fr) Procédé de solidarisation d'un élément composite et d'un élément rigide
EP2882360B1 (fr) Dispositif de coaptation de fragments d'os et procedes de fabrication d'un tel dispositif
EP2307603B1 (fr) Assemblage d'elements fibreux pour l'obtention d'une piece en materiau composite
JP2007076638A (ja) インサートを有する複合材料製自転車用部品およびその製造方法
FR2997034A1 (fr) Procede de collage de deux pieces soumises a des efforts de traction, pieces collees obtenues
CA3055667A1 (fr) Procede de fabrication de pieces en composite polymere thermoplastique, et objet obtenu par ledit procede
EP3154768A1 (fr) Procédé et dispositif d'assemblage métal - composite
FR3019445A1 (fr) Procede d'assemblage d'au moins deux ensembles et structure assemblee correspondante
EP2002164A1 (fr) Accessoire sertissable de raccordement pour canalisations
WO2008142302A1 (fr) Implant endo-osseux composite a accrochage mécanique optimisé et procédé de fabrication d'un tel implant
FR3065663A1 (fr) Procede d'assemblage de deux pieces de materiaux differents et ensemble issu du procede d'assemblage
WO2019081441A1 (fr) Procede de collage structural de pieces de structure et insert de surface texturee pour la mise en oeuvre dudit procede
FR3060441A1 (fr) Structure de composant et procede pour la fabriquer
WO2015155435A1 (fr) Procede de traitement perfectionne d'une surface d'un element de friction
EP2370702A1 (fr) Procede de fabrication d'une bielle en metal, renforcee par des fibres longues
BE1016715A3 (fr) Bielle.
FR3025452B1 (fr) Piece composite renforcee de fibres et procede pour fabriquer une piece composite renforcee de fibres
EP2594375B1 (fr) Procédé de désassemblage de deux éléments soudés par ultrason et élément apte à être soudé par ultrason à un autre élément permettant la mise en oeuvre dudit procédé
FR3083160A1 (fr) Procede de realisation d’un embout de fixation dans un materiau composite
EP1972421A1 (fr) Ensemble fibreux pour pièce composite, pièce composite et procédé de fabrication d'une telle pièce composite
FR3071186A1 (fr) Procede d'assemblage d'un panneau et d'une piece de structure
EP1858818A1 (fr) Systeme d'attache pour fils de verre de renforcement
EP4158221B1 (fr) Dispositif de jonction de bande transporteuse a câbles muni d'elements de blocage de câble
FR2822159A1 (fr) Adhesif composites en bande et procede de depot d'un tel adhesif
WO2023169994A1 (fr) Connecteur de liaison destine a lier entre eux des premier et second elements d'un ouvrage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16793949

Country of ref document: EP

Kind code of ref document: A1