WO2017060544A1 - Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental - Google Patents

Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental Download PDF

Info

Publication number
WO2017060544A1
WO2017060544A1 PCT/ES2015/070731 ES2015070731W WO2017060544A1 WO 2017060544 A1 WO2017060544 A1 WO 2017060544A1 ES 2015070731 W ES2015070731 W ES 2015070731W WO 2017060544 A1 WO2017060544 A1 WO 2017060544A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
liquid crystal
polarizer
alignment
structures
Prior art date
Application number
PCT/ES2015/070731
Other languages
English (en)
French (fr)
Inventor
Morten Andreas GEDAY
Patxi Xabier QUINTANA ARREGUI
Jose Manuel OTÓN SÁNCHEZ
Beatriz CERROLAZA MARTÍNEZ
Carlos Carrasco Vela
Original Assignee
Universidad Politecnica De Madrid
Alise Devices, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Madrid, Alise Devices, S.L. filed Critical Universidad Politecnica De Madrid
Priority to US15/766,767 priority Critical patent/US11021001B2/en
Priority to EP15905746.2A priority patent/EP3364378A4/en
Priority to CN201580085226.9A priority patent/CN108369760B/zh
Priority to AU2015411341A priority patent/AU2015411341B2/en
Priority to PCT/ES2015/070731 priority patent/WO2017060544A1/es
Publication of WO2017060544A1 publication Critical patent/WO2017060544A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/364Liquid crystals
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements

Definitions

  • the present invention has application in the field of document security and more specifically refers to the security features provided by optical devices that facilitate the identification of original documents, for example by incorporating a sheet with multiple latent images both in scale of gray as in color taking advantage of the properties of liquid crystals and the polarization of light.
  • PCP polarizers with multiple patterns
  • PCP polarizers that have several zones of different orientations of their axis of passage, all of them parallel to the plane of the polarizer sheet, constituting a motif or pattern that can eventually produce an image.
  • PCP polarizing sheets can be constructed in various ways according to the multiple state-of-the-art documents, such as Myhre et al. (Optics Express (2010) Vol. 18, No. 26 pp.
  • US 20040057113 A1 describes a safety device provided with the so-called zero-order microstructure, which turns out to be very selective in reflections of specific light directions, and at the same time produces a strong polarizing effect on the reflected and transmitted beams.
  • EP 1 486 803 A2 describes how to prepare a surface relief that produces diffraction and polarization over time, and varies in different positions of the structure. The resulting device, based on the birefringence of structures smaller in size than the wavelength of light, generates different images when viewed with polarized light in reflection and transmission.
  • US 2014042738 A1 describes a similar structure that incorporates metal layers, producing a very similar effect.
  • US 20080280107 A1 describes the way in which holographic structures (anisotropic polymeric layers) can selectively polarize light and can align liquid crystals in multiple directions, and also how the structure can be designed to vary the thickness of the liquid crystal sheet.
  • this device When integrated with a polarizing element, this device can create latent images, which become visible when the user examines the device through a circular or linear polarizer.
  • a common feature of all these PCP polarizers is that images are visible when viewed with polarized light, but either in transmission or in reflection, only one motif or pattern and its complementary negative are shown.
  • the degree of visualization of the primary image or its complementary image depends on the orientation of the polarization plane of the incident light, or the orientation of the polarization plane of the analyzer (polarizer without inserted pattern) if the device is observed by illuminating it with natural light.
  • the images can be B&W, monochrome or multicolored, with gray scale and high resolution.
  • WO 98/52077 presents devices based on photo-oriented polymeric layers (PPN), arranged on a substrate and selectively oriented in directions that vary in different surface positions.
  • PPN photo-oriented polymeric layers
  • the PPN layer is covered by another layer, formed by polymeric liquid crystals; This second layer, which is optically anisotropic and has birefringence, acts as an optical retarder.
  • the liquid crystal of the retardant layer spontaneously follows the selective orientation dictated by the PPN layer, which allows obtaining phase delay images that can be visualized with the help of a polarizer, although it has a rather complex structure that needs at least three layers, two of them linear retarders created from polymeric liquid crystal, and the third a linear polarizer.
  • International application WO 2007/137334-A1 shows similar structures with the potential to present independent images; To do this, it uses multiple layers of selectively oriented liquid crystal retarder sheets. However, it pays less attention to PNN tents than that demonstrated in WO 98/52077, and places much more emphasis on the chemical composition of the interlocking components of the polymerizable liquid crystal.
  • the present invention is based on a combination of the techniques discussed above in the state of the art and presents an evolution for the optical elements by disclosing a method of manufacturing polarizing sheets with multiple orientation patterns containing a minimum of two different images (and their complementary negatives) depending on the plane of polarization of the incident light, on whether it works in transmission or reflection and on the face of the element that is oriented towards the polarizer or the polarized light source.
  • images are obtained both in grayscale and in color with a single sheet of polymeric liquid crystal and without the need to dop it with dichroic dyes.
  • a first aspect of the invention relates precisely to a method for manufacturing optical elements for document security with multiple latent images.
  • the method comprises the steps of: a) defining different zones on the inner face of a first confinement structure;
  • step b) induce different alignment directions for the areas defined in step a);
  • c) define a second alignment structure, where the second structure is a polarizer with multiple patterns
  • the polarizer of the second structure may itself align the liquid crystal, but alternatively, in one of the embodiments of the invention it is contemplated to define different zones on the inner face of the second alignment structure and induce different alignment directions for the different defined areas.
  • the induced alignment directions can be arranged by forming a common unidirectional alignment on the inner face of the multi-pattern polarizer to align the liquid crystal placed between the structures.
  • the induced alignment directions comprise several directions of alignment selectively on the inner face of the multi-pattern polarizer to align the liquid crystal placed between the structures.
  • liquid crystal is polymerized and the sheet formed, it is contemplated in an embodiment of the invention, to extract the sheet together with the polarizer of the first confinement structure.
  • the first confinement structure also comprises a multi-pattern polarizer.
  • the definition of the different zones on one or both internal faces of the confinement structures can be carried out selectively by one of the following techniques: nanometric printing; selective laser ablation; photolithography; More expensive; Physical barriers; selective deposition; thermal evaporation; ink-jet; or a combination of the above.
  • the direction of induced alignment is parallel to the plane of the confinement structures following an independent pattern for each structure using at least one of the following techniques: mechanical rubbing of the layer alignment oblique deposition of alignment material; photoalignment of a photosensitive material; creation of micrometric or sub-micrometric structures capable of aligning the liquid crystal; use of interdigitated electrodes generated in confinement structures; or a combination of the above.
  • the alignments of at least two areas of the sheets are non-linear with each other.
  • At least two of the induced alignments are orthogonal to each other. It is contemplated in one of the embodiments of the invention to determine the relative angle between the induced alignments to generate different levels of gray in the latent images.
  • an RGB color matrix can be added to latent images.
  • the color matrix be placed by matching the areas defined in the sheet with the pixels of the RGB matrix and that the RGB matrix be placed on the outer face of the polymerized sheet or the polarizer, or, in the internal face of a polymeric protection sheet that surrounds the optical element.
  • a second aspect of the invention relates to an optical element for documentary security with multiple latent images
  • a polymerized liquid crystal sheet with twist or homogeneous structures combined with a multi-pattern polarizer with several predefined zones by means of at least one structure. of removable confinement, so that said predefined areas maintain their orientation based on an applied alignment pattern, where said orientation differs by an angle less than or equal to 90 ° on at least one of the faces forming visible latent images when illuminated with light polarized
  • the formed sheet may comprise a polymeric protective sheet that wraps it and helps protect the optical element.
  • the alignment directions can take orientations relative to 0 or , 45 °, 90 ° and 135 ° to generate two monochrome images without overlapping on each of the faces of the sheet.
  • the confinement structures have been treated to generate a pattern with different zones and orientations in the liquid crystal sheet. It is contemplated in one of the embodiments of the invention that are reusable. Thus, advantageously, once the polymerized sheet and the polarizer are removed, they can be reused to create another sheet with the same pattern.
  • the optical element of the present invention may, according to one of the embodiments, comprise an RGB matrix placed between the polymerized sheet and the polymeric protection sheet or between the polarizer and the polymeric protection sheet.
  • Figure 1 shows the structure of the central area of the optical element with various alignment orientations for both the first structure (block B) and the second (blocks A and C).
  • Figure 2.- shows an embodiment of the present invention both in transmission and in reflection, where the polarizing sheet is reflective.
  • Figure 3 shows the same embodiment of Figure 2, but for the results of transmission and reflection of the opposite face as in Figure 2.
  • Figure 4. Shows an embodiment of the invention where two polarizing sheets are included.
  • the present invention relates to an optical document security element that contains one or more latent images on each face, visible only when viewed in a transmissive mode with linearly polarized light, commonly known as polarized light, or using an analyzer if the element lighting it with natural light.
  • the element or device is manufactured with a sheet of polymerized liquid crystal (PLC, also called mesogenic reagent), combined with at least one polarizer in which a motif or pattern is engraved with areas of different azimuthal orientations, which in this document is called polarizer with multiple patterns or PCP.
  • PLC polymerized liquid crystal
  • This polarizer can be reflexive in nature, reflecting a polarization and transmitting the perpendicular, or of an absorbent nature, eliminating absorption polarization and allowing the perpendicular to pass.
  • the PLC sheet and the PCP polarizer By creating two elements, the PLC sheet and the PCP polarizer, divided into zones or pixels with different orientations, an image of arbitrary complexity can be generated. The only requirement is a strict restriction of alignments between the PCP polarizer and the PLC sheet.
  • the principle of operation of the device is based on two basic physical properties of the two elements of the device.
  • the PCP polarizer produces selective attenuations of the polarized light incident in the different zones with different passing axes.
  • the attenuation can become total (depending on the quality of the polarizer) or zero (in reality, with the losses of Fresnel dielectric reflection).
  • the primary function of the PLC liquid crystal sheet is to modify the polarization state of the light: in its simplest operation, linearly polarized light from the source (or PCP polarizer) experiences a greater or lesser rotation of the polarization plane through the PLC sheet.
  • polarization remains linear and beam attenuation does not occur.
  • variable helix twist structure capable of rotating the plane of polarization of the incident linear light keeping it linearly polarized
  • homogeneous structure parallel to the confinement plates
  • LMO half wave optical delay
  • the incident polarized light enters the face where the PCP polarizer is located, it will be transmitted to a greater or lesser extent according to the angle formed between the plane of polarization of the incident light and the axis of passage of the polarizer in each zone, according with the law of Malus.
  • the light that passes through the polarizer is transmitted without attenuation through the PLC sheet. As the eye is not able to distinguish polarizations, the image that is observed is substantially that generated by the PCP polarizer.
  • the incident polarized light enters the face where the PLC sheet is located, it will be transmitted without attenuation maintaining the linear polarization state.
  • the output polarization may be rotated with respect to the incident, depending on the twist or LMO structure existing in each zone.
  • PCP attenuating to a greater or lesser extent according to the angle formed between the plane of polarization of the light incident to the PLC and the axis of passage of the polarizer in each zone, in accordance with Malus's law.
  • the image in this case, is generated by the joint action of the PLC sheet and the PCP polarizer.
  • the design of the device contemplates any of the possible combinations of orientations in the polarization patterns of the PCP polarizer and the azimuthal twist angle of the PLC sheet (or the orientation of the LMO, if applicable). Therefore, the images observed from both sides are totally independent.
  • the maximum variation in the transmitted light intensity depends fundamentally on the quality of the polarizers used. If the incident light is only partially polarized, there will be a partial extinction of the light. Of the Similarly, if the PCP polarizer is not ideal, partial extinction will also be obtained. In either case, an image with reduced contrast will be obtained.
  • the present invention is composed of a PCP polarizing element, superimposed on a PLC polymerized liquid crystal sheet in which there are twist or LMO structures that can rotate the polarization state of the light to a greater or lesser extent.
  • the assembled optical element can show several latent images on each face and take advantage that a given relative transmission can be achieved with a positive or negative angle between the polarized light and the polarizing element.
  • an image with areas aligned at 45 ° and -45 ° appears a uniform gray when the incident polarization is at 0 or 90 ° or, while having maximum difference (contrast) between the pixels if the incident polarization is -45 ° or + 45 °.
  • the PLC sheet acts as a selective optical rotator, rotating the polarization of light in specific areas by means of twist structures.
  • a homogeneous orientation parallel to the surface
  • the liquid crystal is polymerized to fix the orientation.
  • the PLC sheet obtained is thus divided into multiple zones or pixels characterized by specific variations of the azimuthal alignment directions on both sides, generating a sheet with twist structures of varying helices between -90 ° and 90 °, or more in overdrawn configurations.
  • These structures rotate the polarization of light to a greater or lesser extent following the rotation of the propeller, and can incorporate scales of gray and false color without the need for external filters, or true color using an external matrix of RGB color filters.
  • the PLC sheet acts as a half wave delay sheet (LMO).
  • LMO half wave delay sheet
  • a homogeneous orientation (parallel to the surface) of varying directions within the plane is induced in the liquid crystal molecules, and subsequently the liquid crystal is polymerized to fix the orientation.
  • the PLC sheet obtained is thus divided into multiple zones or pixels characterized by specific variations in the direction of azimuthal alignment on both sides, generating a sheet with homogeneous structures of varying orientations between -90 ° and 90 °.
  • the resulting sheet has different areas, all of them LMO, oriented in different directions.
  • each zone of the PLC sheet will rotate the polarization to a greater or lesser extent, between -90 ° and 90 °, generating gray scales. Additionally, taking advantage of the variable delay of different regions of the spectrum, these structures can generate false color without the need for external filters, or true color using an external matrix of RGB color filters.
  • the manufacturing method of the present invention uses confinement structures to induce an alignment pattern on the polymerizable liquid crystal. These confinement structures can be part of the final assembly and contain the polarizing elements or be extracted and even reused to create other sheets.
  • the resulting device shows two or more latent images when illuminated on each of the faces, or when the assembly is observed through an analyzer. Unlike the manufacture of standard liquid crystal displays, in the manufacturing method of the present invention, it is directly based on a polymerizable liquid crystal.
  • the glass plates that are usually used as substrates in the manufacture of conventional liquid crystal devices are replaced in the present invention by confinement plates, on each of which a pattern of alignments of different orientation is printed on the internal face, where the variation of orientation is in the plane of the confinement plates, which can also contain polarizing elements and can become part of the final structure.
  • the PLC sheet with engraved twist or LMO structures is achieved in several stages, which can be summarized as follows: first, the liquid crystal is sandwiched between the two confinement plates and the confinement plates orient the liquid crystal with the pattern wanted; second, the liquid crystal is polymerized to ensure that the twist or LMO orientation pattern is permanent; third, and optionally: the polymerized liquid crystal sheet is removed from the sandwich or sandwich once the polymerized liquid crystal is a thin sheet that already contains the alignment pattern and the latent images.
  • the PCP polarizer will preferably be part of the sheet manufacturing process from the early stages; if not, the twist or LMO structure and the PCP polarizer are permanently attached at a later stage.
  • an optical element consisting of a thin device that stores a collection of visible images with the use of a polarized light source, partially polarized light or a polarizer.
  • the device can be flexible, as are the confinement surfaces, since the PLC sheet is completely flexible.
  • the sheet, with its appropriate coating for each application, can be inserted into a document to guarantee its authenticity.
  • the device With natural light, the device appears uniform in transmission, but it can show latent images in reflection, depending on the structure of the polarizing elements.
  • one of the image sets appears; the specific game is determined by the face of the device that faces the incident light.
  • a second set of images appears, for example, by slightly rotating the sheet.
  • Other sets of images can be displayed by illuminating the opposite face with partially polarized light. If the alignment patterns of the two-sided confinement plates generate polarization changes of the incident light, the appearance will depend on the face facing the polarized light source or the polarizer.
  • the polarizer can be constructed as a holographic element that is metallized and selectively demetalized in specific areas, producing a polarizing effect. It can also partially metallize in other areas, creating a final device with completely transparent, completely opaque and partially transparent areas with greater or lesser transmissivity.
  • the present invention can be integrated into one of its embodiments in a system with opaque (reflective) zones, which could be organized around the optical element in the style of a frame.
  • the orientation of the liquid crystal it can be predetermined by properly conditioning the inner faces of the confinement plates used in the production of the PLC sheet.
  • the orientation of the liquid crystal in the plane of the confinement plates is achieved in two different ways:
  • interdigitated electrodes with variation of orientation of the electrodes in the plane of the confinement plates.
  • the electrodes are constructed by photolithographic, micromechanical, metal microprinting or laser ablation techniques, causing them to form a motif.
  • a liquid crystal layer is subsequently deposited whose orientation is controlled by applying voltages to the electrodes, so that the liquid crystal is reoriented by switching in the plane (IPS or in-plane switching). In this way a multiple alignment is obtained that reflects the reason imposed by the electrodes.
  • the liquid crystal is polymerized in situ to generate a thin and flexible sheet with the imprint conferred by the electrodes. Once polymerized, the applied voltage can be eliminated since the material maintains the orientation preset by the voltage distribution of the electrodes.
  • the confinement plates receive various treatments according to the pattern at different points of each of the two surfaces, isolating each other by different procedures according to different embodiments of the invention: masks, photolithography, physical barriers, deposition selective, thermal evaporation, ink jets, or any other procedure commonly used in microelectronic manufacturing. These treatments they promote a homogeneous configuration (also called flat, or parallel to the confinement plates) of the liquid crystal, but with different orientations, which determine the areas that eventually appear light or dark when illuminated with polarized light. This results in several images per face on the resulting PLC sheet when combined with the PCP polarizer and with polarized light or an analyzer.
  • the light enters the face of the PCP polarizer, it automatically generates a gray scale according to the orientation of its step axis. If you enter through the face of the PLC sheet, the variation in the alignment directions allows you to define a gray scale and even color in the images:
  • the gray scale in twist structures can be obtained, for example, by orienting the liquid crystal on the input face parallel to the polarization plane of the input light.
  • the orientation of the exit face is variable, forming an angle between -90 ° and 90 ° with respect to the input orientation, which determines the internal rotation of the material and the propeller pitch (overdrawn configurations of more than +/- 90 0 , doping the liquid crystal with chiral compounds).
  • the orientation of the polarization at the output is controlled, which in turn determines the intensity of light transmitted when passing through the PCP polarizer.
  • the gray scale in LMO structures can be obtained by controlling the relative orientation between the plane of polarization of the incident light and the molecular orientation of the liquid crystal.
  • LMOs produce a 90 ° rotation of linearly polarized light only when the orientations form an angle of ⁇ 45 °. Any other major or minor angle produces linear polarizations that are rotated smaller angles. In this way, the orientation of the polarization at the output is controlled, which in turn determines the intensity of light transmitted when passing through the PCP polarizer.
  • a birefringent sheet such as the PLC sheet designed as a half-wave retarder, can only produce an exact half-wave delay ( ⁇ radians) at a specific wavelength.
  • the shortest wavelengths have greater delays, and the longest, shorter ones. Consequently, the polarization of these waves ceases to be linear and becomes elliptical, allowing their partial transmission in the output polarizer and producing colors in the output image. These colors can be used to produce false color images, in the style of thermal cameras. You can partially select the color range by modifying the thickness of the structure or its birefringence.
  • the color effect is increased if the LMO is not of the first order, that is, it does not introduce a delay of 1 ⁇ 2 wave, but of an integer multiple of wavelengths plus a half wave.
  • the polymerization of the liquid crystal achieves that the sheet can be extracted from the confinement plates, and used in multiple applications autonomously, combined with the PCP polarizing sheet with the latent images already defined. Therefore, the confinement plates may optionally be part of the final structure, if this contributes, for example, to the rigidity or resistance of the device, or they can be eliminated, if it is desired to have thinner, lighter and completely flexible devices.
  • Figure 1 shows the structure of the central area of the optical element according to one of the embodiments of the invention. It contains a PCP polarizing sheet
  • 3a an alignment induction layer (3b), the liquid crystal layer (4) and a second alignment layer (5).
  • 3a and 3b can be a single layer that adopts the two missions, polarization and alignment.
  • the alignment induction layers (3b and 5) may or may not be part of the final device.
  • the device has been divided into four sections with different orientations of one or more of the layers 3a, 3b and 5 mentioned above.
  • several orientations of the PCP polarizing layer (3a) are shown in the x plane, and (0 or , 90 °, 45 ° and -45 ° are used as an example, but in other embodiments they can be any others).
  • block B several orientations of the first layer for alignment induction (3b) in the x-plane are shown, and (0 or , 90 °, 45 ° and -45 ° are used as an example, but in other embodiments they may be other any).
  • blocks A and C several orientations of the second layer for alignment induction (5) are shown in the x-y plane (0 or , 90 °, 45 ° and -45 ° are used as an example, but in other embodiments they may be any others).
  • the schemes 1a, 1b, 1c and 1d of the left part of the figure, and the schemes 2a, 2b, 2c and 2d of the right part show the patterns transmitted when the device is illuminated with polarized light that propagates in the positive Z direction and in the negative Z direction, respectively, with four possible light orientations (0 or , 90 °, 45 ° and -45 ° are used as an example, but in other embodiments they may be any others).
  • the images obtained when the light propagates in opposite directions are totally different.
  • the examples shown, for simplicity, are illustrative of four orientations, but an arbitrary number of orientations can be defined on each face, obtaining high resolution and quality images that are independent of each other.
  • the central block of Figure (B) shows the implementation according to a particular embodiment of the invention, where the PCP polarizing sheet is formed by a dichroic dye aligned by the liquid crystal matrix, or by a selective metallization, or grooves micro or nanometric that selectively absorb and reflect the two orthogonal components of linear polarization.
  • the liquid crystal molecules in direct contact with the polarizing sheet align parallel or perpendicular to the direction of the polarization transmitted by the PCP.
  • the polarizing sheet of either type
  • FIGs 2 and 3 an example of embodiment of the optical element for transmission and reflection is shown, when reflective PCP polarizing sheets are used.
  • the resulting images of Figure 2 and Figure 3 differ because the light strikes opposite faces and, as explained above, the motifs are completely independent.
  • the reflective polarizer transmits a polarization of light and reflects orthogonal polarization. Normally, the two polarizations are linear states, but they could also be circular or elliptical. The contrast of the image is determined primarily by the degree of polarization of the transmitted and reflected light.
  • the alignment layer configuration of the example is the same as shown in Figure 1B; the numbering of the different elements is also the same as in figure 1. Note that the image that appears in reflection when the sample is viewed from the positive Z direction is identical to the transmission image of the sample observed from the negative Z direction, and vice versa.
  • Figure 4 corresponds to a particular embodiment of the invention that serves as a descriptive example of the implementation of an optical element using two polarizing sheets.
  • Liquid crystal molecules in direct contact with the polarizing sheet are typically aligned parallel or perpendicular to the direction of the transmitted polarization.
  • the twist structure of the liquid crystal implies that the light transmitted by the polarizer near the source is also transmitted by the polarizer near the observer. Thus, two independent images will be visible depending on the face where it is observed. It is important that the relationship between the alignment directions and the transmitted polarization coincide on both alignment surfaces.
  • the alignment layer (5) has the double function of alignment layer (5b) and polarizing sheet (5a).
  • the present invention has advantageous technical characteristics and effects on the state of the art.
  • a PCP polarizer with a twist or LMO sheet with areas of different orientations to produce an optical element for application in document security and that dispenses with dichroic dyes to include multiple latent images.
  • the integration of these two main elements introduces a series of innovations that allow this phenomenon to be converted into a product that can be used as a document security system, such as:
  • the PLC sheet with recorded images can be manufactured using independent confinement plates, then combined with the PCP polarizer.
  • the sheet can be manufactured in direct contact with the PCP polarizer, causing the polarizer pattern to act as one of the alignment surfaces;
  • the PLC can also be obtained by placing it between two substrates with the prerecorded confinement pattern, using any of the technologies described above.
  • Either of the two confinement structures, or both, may include the PCP polarizer;
  • Continuous continuously varying the spatial alignment between -180 ° and 180 °.
  • An example of continuous alignment variation is a circular rub on one face, which creates a tangential alignment with respect to the rubbing center,
  • This invention has direct application as an element of documentary security against counterfeiting banknotes, or in the authentication of documents, credit cards, checks, packaging or any element whose intrinsic value makes its identification advisable.
  • the check can be carried out in transmissive mode, observing with polarized light the pattern of dark and light areas that is formed, which depends on the orientation of the liquid crystal at each point and the orientation of the passing axis of the PCP polarizer.
  • the devices show at least two independent images, one for each face.
  • the images can be high resolution, and have gray scale and intrinsic false color (or true color with an external matrix of RGB filters).
  • the effect is observed by illuminating the device with polarized light, which can come from a flat screen of liquid crystal, such as a mobile phone, a tablet or a computer.
  • polarized light can come from a flat screen of liquid crystal, such as a mobile phone, a tablet or a computer.
  • a polarizer can be interposed.
  • the security measure can be considered level 1, 5, since it requires an additional element to be observed, but it is in common use.
  • it can also be considered as a level 1 measure, since it is not strictly necessary to use a polarizer to observe the effect: it is enough to use lightly polarized light, such as that from a flush reflection on the floor or on a table. This fact favors its massive implementation as a security element in labels or banknotes, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

La presente invención se refiere a un método de fabricación de un elemento óptico para seguridad documental con múltiples imágenesque pueden visualizarse dependiendo del modo en que se observadicho elemento. El método comprende los pasos de definir diferentes zonas en la cara interna de una primera estructura de confinamiento; inducir diferentes direcciones de alineamiento para las zonas definidas; definir una segunda estructura de alineamiento, donde la segunda estructura es un polarizador con patrones múltiples; colocar un cristal líquido entre la primera y la segunda estructuras; y polimerizar el cristal líquido formando una lámina. Las imágenes pueden visualizarsepor medio de una fuente de luz polarizada o una lámina polarizadora.

Description

ELEMENTO ÓPTICO Y MÉTODO DE FABRICACIÓN CON MÚLTIPLES IMÁGENES LATENTES PARA SEGURIDAD DOCUMENTAL
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención tiene aplicación en el campo de la seguridad documental y más específicamente se refiere a las características de seguridad provistas por dispositivos ópticos que facilitan la identificación de documentos originales, por ejemplo mediante la incorporación de una lámina con múltiples imágenes latentes tanto en escala de grises como en color aprovechando las propiedades de los cristales líquidos y la polarización de la luz.
ANTECEDENTES DE LA INVENCIÓN Actualmente, se están desarrollando nuevas técnicas de seguridad derivadas del uso de dispositivos ópticos variables iridiscentes y no iridiscentes. En concreto, las propiedades de los cristales líquidos son de especial utilidad en aplicaciones para dispositivos de seguridad como por ejemplo la anisotropía, birrefringencia óptica o la propia secuencia de fases del material cristal líquido que, cuando se manipulan correctamente, permiten crear diferentes efectos ópticos fácilmente verificables a simple vista o mediante el uso de elementos ópticos simples.
El estado del arte divulga diferentes soluciones orientadas hacia la seguridad y autentificación documental. Algunas de ellas emplean polarizadores con orientaciones múltiples sectorizados en zonas, mientras que otras utilizan alineamientos de cristal líquido que contienen dichos patrones. Los dispositivos pueden presentar una o más imágenes diferentes dependiendo del modo de observación del elemento. Los polarizadores con patrones múltiples (en adelante "PCP") son polarizadores que poseen varias zonas de diferentes orientaciones de su eje de paso, todas ellas paralelas al plano de la lámina del polarizador, constituyendo un motivo o patrón que eventualmente puede producir una imagen. Las láminas polarizadoras PCP pueden construirse de varias formas de acuerdo a los múltiples documentos del estado del arte, como por ejemplo Myhre et al. (Optics Express (2010) Vol. 18, N° 26 pp. 27777-27786), donde se divulga la fabricación de un polarizador lineal PCP utilizando fotoalineamiento, colorantes dicroicos y cristales líquidos polimerizables. La patente estadounidense US6391528 B1 , donde se describe un método para preparar elementos ópticos con retículas metálicas, depositando preferentemente el material sobre un sustrato. Se crea un patrón de interferencia electromagnética sobre el propio sustrato, el cual calienta selectivamente ciertas zonas del mismo. A continuación se expone el sustrato al material a depositar en fase gaseosa, y éste tenderá a acumularse preferencialmente en regiones específicas de la superficie de acuerdo con su temperatura. La solicitud internacional WO02/077588-A2, la cual describe un polarizador de rejilla con orientaciones múltiples. El dispositivo contiene un cierto número de elementos paralelos alargados, cuyo tamaño es adecuado para interaccionar con luz visible. La orientación de los elementos alargados varía entre distintas zonas del dispositivo.
Las dimensiones y separación de los elementos se escogen de manera que se transmita sustancialmente una de las polarizaciones, mientras que la otra polarización se refleja. US 20040057113 A1 , describe un dispositivo de seguridad dotado de la así llamada microestructura de orden cero, que resulta ser muy selectiva en reflexiones de direcciones específicas de la luz, y al mismo tiempo produce un fuerte efecto polarizador sobre los haces reflejado y transmitido. EP 1 486 803 A2 describe cómo preparar un relieve superficial que produce difracción y polarización al tiempo, y varía en distintas posiciones de la estructura. El dispositivo resultante, basado en la birrefringencia de estructuras de tamaño más pequeño que la longitud de onda de la luz, genera imágenes distintas cuando se observa con luz polarizada en reflexión y en transmisión. US 2014042738 A1 describe una estructura similar que incorpora capas metálicas, produciendo un efecto muy similar. US 20080280107 A1 describe la forma en que las estructuras holográficas (capas poliméricas anisótropas), pueden reflejar luz polarizada selectivamente y pueden alinear cristales líquidos en múltiples direcciones, y además cómo puede diseñarse la estructura para que varíe el espesor de la lámina de cristal líquido. Cuando se integra con un elemento polarizador, este dispositivo puede crear imágenes latentes, que se hacen visibles cuando el usuario examina el dispositivo a través de un polarizador circular o lineal. Un rasgo común de todos estos polarizadores PCP es que las imágenes son visibles cuando se observan con luz polarizada, pero ya sea en transmisión o en reflexión, solamente se muestra un motivo o patrón y su negativo complementario. El grado de visualización de la imagen primaria o su complementaria depende de la orientación del plano de polarización de la luz incidente, o de la orientación del plano de polarización del analizador (polarizador sin patrón insertado) si se observa el dispositivo iluminándolo con luz natural.
Existen algunas tecnologías que permiten visualizar imágenes diferentes por ambas caras cuando se ilumina el dispositivo en modo transmisivo, como por ejemplo la divulgada en ES2337010-A1 , EP2508358-A1 y US2012/0300156, donde se muestra una lámina transmisiva simple, construida con cristal líquido polimerizado, y aplicada a la seguridad documental. Las láminas de cristal líquido polimerizado muestran una o varias imágenes por cada cara cuando la lámina se ilumina con luz polarizada, mientras que aparecen como láminas transparentes coloreadas y sin imágenes cuando se iluminan con luz natural. Las imágenes se generan dopando el cristal líquido monómero polimerizable con colorantes dicroicos, que siguen la orientación molecular del cristal líquido. Los dos patrones independientes que aparecen en las caras opuestas se generan alineando selectivamente el cristal líquido dopado con colorante durante la polimerización. Las imágenes pueden ser B/N, monocromas o multicolor, con escala de gris y alta resolución. En WO 98/52077 se obtiene un efecto similar incluyendo un polarizador lineal uniforme orientado entre dos láminas retardadoras de cristal líquido dotadas de sendos patrones. WO 98/52077 presenta dispositivos basados en capas poliméricas fotoorientadas (PPN), dispuestas sobre un sustrato y orientados selectivamente en direcciones que varían en diferentes posiciones de la superficie. A su vez, la capa PPN está recubierta por otra capa, formada por cristales líquido polimérico; esta segunda capa, que es ópticamente anisótropa y presenta birrefringencia, actúa como retardador óptico. El cristal líquido de la capa retardadora sigue espontáneamente la orientación selectiva dictada por la capa PPN, lo cual permite la obtención de imágenes por retardo de fase que pueden visualizarse con la ayuda de un polarizador, aunque presenta una estructura bastante compleja que necesita al menos tres capas, dos de ellas retardadores lineales creados a partir de cristal líquido polimérico, y la tercera un polarizador lineal. La solicitud internacional WO 2007/137334-A1 muestra estructuras semejantes con el potencial de presentar imágenes independientes; para ello emplea múltiples capas de láminas retardadoras de cristal líquido orientadas selectivamente. Sin embargo, presta menos atención a las carpas PNN que la demostrada en WO 98/52077, y pone mucho más énfasis en la composición química de los componentes entrelazados del cristal líquido polimerizable.
En cuanto al alineamiento de los cristales líquidos, el estado del arte también ofrece múltiples técnicas, pero en general son técnicas complejas que requieren alta precisión y formación.
DESCRIPCIÓN GENERAL
La presente invención se basa en una combinación de las técnicas comentadas anteriormente en el estado del arte y presenta una evolución para los elementos ópticos divulgando un método de fabricación de láminas polarizadoras con patrones de orientación múltiples que contienen un mínimo de dos imágenes diferentes (y sus negativos complementarios) dependiendo del plano de polarización de la luz incidente, de si se trabaja en transmisión o reflexión y de la cara del elemento que está orientada hacia el polarizador o la fuente de luz polarizada. Se consiguen así imágenes tanto en escala de grises como en color con una sola lámina de cristal líquido polímero y sin necesidad de doparlo con colorantes dicroicos.
Un primer aspecto de la invención se refiere precisamente a un método para fabricar elementos ópticos para seguridad documental con múltiples imágenes latentes. El método comprende los pasos de: a) definir diferentes zonas en la cara interna de una primera estructura de confinamiento;
b) inducir diferentes direcciones de alineamiento para las zonas definidas en el paso a);
c) definir una segunda estructura de alineamiento, donde la segunda estructura es un polarizador con patrones múltiples;
d) colocar un cristal líquido entre la primera y la segunda estructuras;
e) polimerizar el cristal líquido formando una lámina. El polarizador de la segunda estructura puede alinear por sí mismo el cristal líquido, pero alternativamente, en una de las realizaciones de la invención se contempla definir diferentes zonas en la cara interna de la segunda estructura de alineamiento e inducir diferentes direcciones de alineamiento para las diferentes zonas definidas. Opcionalmente, de acuerdo a una de las realizaciones de la invención, las direcciones de alineamiento inducidas pueden disponerse formando un alineamiento común unidireccional en la cara interna del polarizador de patrones múltiples para alinear el cristal líquido colocado entre las estructuras.
Opcionalmente, de acuerdo a una de las realizaciones de la invención, las direcciones de alineamiento inducidas comprenden varias direcciones de alineamiento selectivamente en la cara interna del polarizador de patrones múltiples para alinear el cristal líquido colocado entre las estructuras.
Una vez polimerizado el cristal líquido y formada la lámina, se contempla en una realización de la invención, extraer la lámina junto con el polarizador de la primera estructura de confinamiento.
Se contempla en una de las realizaciones de la invención que la primera estructura de confinamiento también comprenda un polarizador de patrones múltiples.
La definición de las diferentes zonas en una o ambas caras internas de las estructuras de confinamiento puede llevarse a cabo selectivamente mediante una de las siguientes técnicas: impresión nanométrica; ablación selectiva mediante láser; fotolitografía; máscaras; barreras físicas; deposición selectiva; evaporación térmica; chorro de tinta; o una combinación de las anteriores.
En cuanto a la dirección de alineamiento inducida, de acuerdo a una de las realizaciones de la invención, es paralela al plano de las estructuras de confinamiento siguiendo un patrón independiente para cada estructura utilizando al menos una de las siguientes técnicas: frotado mecánico de la capa de alineamiento; deposición oblicua de material de alineamiento; fotoalineamiento de un material fotosensible; creación de estructuras micrométricas o sub-micrométricas capaces de alinear el cristal líquido; utilización de electrodos interdigitados generados en las estructuras de confinamiento; o una combinación de las anteriores.
Se contempla en una de las realizaciones de la invención que los alineamientos de al menos dos zonas de las láminas sean no lineales entre sí.
Se contempla en una de las realizaciones de la invención que al menos dos de los alineamientos inducidos sean ortogonales entre sí. Se contempla en una de las realizaciones de la invención determinar el ángulo relativo entre los alineamientos inducidos para generar diferentes niveles de gris en las imágenes latentes.
Adicionalmente, puede añadirse una matriz de color RGB a las imágenes latentes. Además, se contempla que la matriz de color sea colocada haciendo coincidir las zonas definidas en la lámina con los pixeles de la matriz RGB y que la matriz RGB se coloque en la cara externa de la lámina polimerizada o del polarizador, o bien, en la cara interna de una lámina polimérica de protección que envuelve el elemento óptico.
Un segundo aspecto de la invención se refiere a un elemento óptico para seguridad documental con múltiples imágenes latentes que comprende una lámina de cristal líquido polimerizado con estructuras twist u homogéneas combinada con un polarizador de patrones múltiples con varias zonas predefinidas por medio de al menos una estructura de confinamiento extraíble, de forma que dichas zonas predefinidas mantienen su orientación en función de un patrón de alineamiento aplicado, donde dicha orientación difiere en un ángulo menor o igual a 90° en al menos una de las caras formando imágenes latentes visibles al iluminar con luz polarizada.
Adicionalmente, la lámina formada puede comprender una lámina polimérica de protección que la envuelve y ayuda a proteger el elemento óptico. De acuerdo a una de las realizaciones de la invención, las direcciones de alineamiento pueden tomar orientaciones relativas a 0o, 45°, 90° y 135° para generar dos imágenes monocromas sin solapamiento en cada una de las caras de la lámina. Las estructuras de confinamiento han sido tratadas para generar un patrón con diferentes zonas y orientaciones en la lámina de cristal líquido. Se contempla en una de las realizaciones de la invención que sean reutilizables. Así, ventajosamente, una vez retiradas la lámina polimerizada y el polarizador, pueden volver a utilizarse para crear otra lámina con el mismo patrón. Adicionalmente, el elemento óptico de la presente invención puede, de acuerdo a una de las realizaciones, comprender una matriz RGB colocada entre la lámina polimerizada y la lámina polimérica de protección o entre el polarizador y la lámina polimérica de protección. De forma opcional, se contempla en una de las realizaciones de la presente invención el utilizar imágenes especulares referidas al eje de polarización del polarizador para generar imágenes solapadas con escala de gris.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- muestra la estructura de la zona central del elemento óptico con varias orientaciones de alineamiento tanto para la primera estructura (bloque B) como para la segunda (bloques A y C).
Figura 2.- muestra una realización de la presente invención tanto en transmisión como en reflexión, donde la lámina polarizadora es reflexiva.
Figura 3.- muestra la misma realización de la figura 2, pero para los resultados de transmisión y reflexión de la cara contraria que en la figura 2.
Figura 4.- Muestra una realización de la invención donde se incluyen dos láminas polarizadoras. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un elemento óptico de seguridad documental que contiene una o varias imágenes latentes en cada cara, visibles únicamente cuando se observa en modo transmisivo con luz linealmente polarizada, comúnmente conocida como luz polarizada, o empleando un analizador si se observa el elemento iluminándolo con luz natural.
El elemento o dispositivo se fabrica con una lámina de cristal líquido polimerizado (PLC, también llamado reactivo mesógeno), combinada con al menos un polarizador en el que se graba un motivo o patrón con zonas de diferentes orientaciones azimutales, que en este documento se denomina polarizador con patrones múltiples o PCP. Este polarizador puede ser de naturaleza reflexiva, reflejando una polarización y trasmitiendo la perpendicular, o de naturaleza absorbente, eliminando una polarización por absorción y permitiendo el paso de la perpendicular.
Al crear dos elementos, la lámina PLC y el polarizador PCP, divididos en zonas o píxeles con diferentes orientaciones, se puede generar una imagen de complejidad arbitraria. El único requerimiento es una restricción estricta de alineamientos entre el polarizador PCP y la lámina PLC.
El principio de funcionamiento del dispositivo se basa en dos propiedades físicas básicas de los dos elementos del dispositivo. El polarizador PCP produce atenuaciones selectivas de la luz polarizada incidente en las distintas zonas con diferentes ejes de paso. La atenuación puede llegar a ser total (dependiendo de la calidad del polarizador) o nula (en realidad, con las pérdidas de reflexión dieléctrica Fresnel). Por su parte, la función primaria de la lámina de cristal líquido PLC es modificar el estado de polarización de la luz: en su funcionamiento más simple, la luz linealmente polarizada procedente de la fuente (o del polarizador PCP) experimenta una rotación mayor o menor del plano de polarización al atravesar la lámina PLC. No obstante, la polarización se mantiene lineal y no se produce atenuación del haz.
Existen dos tipos fundamentales de estructuras de cristal líquido capaces de rotar el plano de polarización de la luz lineal incidente manteniéndola linealmente polarizada: la estructura twist de hélice variable y la estructura homogénea (paralela a las placas de confinamiento) con retardo óptico de media onda (LMO). Ambas estructuras pueden realizarse con cristales líquidos polimerizables para crear láminas PLC, ambas poseen escalas de gris intrínsecas, y ambas permiten, en configuraciones especiales que se explican más adelante, generar colores sin necesidad de filtros.
Un dispositivo de este tipo da lugar a imágenes diferentes según la cara por la que se observa:
- Si la luz polarizada incidente entra por la cara donde se encuentra el polarizador PCP, se transmitirá en mayor o menor medida según el ángulo formado entre el plano de polarización de la luz incidente y el eje de paso del polarizador en cada zona, de acuerdo con la ley de Malus. La luz que consigue atravesar el polarizador se transmite sin atenuación por la lámina PLC. Como el ojo no es capaz de distinguir polarizaciones, la imagen que se observa es sustancialmente la generada por el polarizador PCP.
- Si la luz polarizada incidente entra por la cara donde se encuentra la lámina PLC, se transmitirá sin atenuación manteniendo el estado de polarización lineal. Sin embargo, la polarización de salida puede estar girada respecto a la incidente, según la estructura twist o LMO existente en cada zona. La luz de salida del PLC, modificada respecto a la luz incidente, atraviesa el polarizador
PCP, atenuándose en mayor o menor medida según el ángulo formado entre el plano de polarización de la luz incidente al PLC y el eje de paso del polarizador en cada zona, de acuerdo con la ley de Malus. La imagen, en este caso, se genera por la acción conjunta de la lámina PLC y el polarizador PCP.
El diseño del dispositivo contempla cualquiera de las posibles combinaciones de orientaciones en los patrones de polarización del polarizador PCP y el ángulo twist azimutal de la lámina PLC (o la orientación de la LMO, en su caso). Por consiguiente, las imágenes observadas desde ambos lados son totalmente independientes.
La variación máxima en la intensidad luminosa transmitida depende fundamentalmente de la calidad de los polarizadores utilizados. Si la luz incidente solo está parcialmente polarizada, se producirá una extinción parcial de la luz. Del mismo modo, si el polarizador PCP no es ideal, se obtendrá asimismo extinción parcial. En cualquiera de los casos, se obtendrá una imagen con contraste reducido. La presente invención se compone de un elemento polarizador PCP, superpuesto a una lámina de cristal líquido polimerizado PLC en la cual existen estructuras twist o LMO que pueden girar en mayor o menor medida el estado de polarización de la luz.
Así, el elemento óptico ensamblado puede mostrar varias imágenes latentes en cada cara y aprovechar que una transmisión relativa dada se puede conseguir con un ángulo positivo o negativo entre la luz polarizada y el elemento polarizador. Por ejemplo, una imagen con zonas alineadas a 45° y -45° aparenta un gris uniforme cuando la polarización incidente esta a 0o o 90°, mientras que presenta máxima diferencia (contraste) entre los pixeles si la polarización incidente esta a -45° o +45°.
Específicamente, en una de las realizaciones de la invención, la lámina PLC actúa como un rotador óptico selectivo, girando la polarización de la luz en áreas específicas por medio de estructuras twist. En este caso, se induce en las moléculas de cristal líquido una orientación homogénea (paralela a la superficie) de direcciones variables dentro del plano, y posteriormente se polimeriza el cristal líquido para fijar la orientación. La lámina PLC obtenida queda así dividida en múltiples zonas o pixeles caracterizados por variaciones específicas de las direcciones de alineamiento azimutales en ambas caras, generando una lámina con estructuras twist de hélices variables entre -90° y 90°, o más en configuraciones sobregiradas. Dichas estructuras giran la polarización de la luz en mayor o menor medida siguiendo la rotación de la hélice, y pueden incorporar escalas de gris y falso color sin necesidad de filtros externos, o color verdadero empleando una matriz externa de filtros de color RGB.
Una realización alternativa de la invención, contempla que la lámina PLC actúe como una lámina de retardo de media onda (LMO). En este caso, se induce en las moléculas de cristal líquido una orientación homogénea (paralela a la superficie) de direcciones variables dentro del plano, y posteriormente se polimeriza el cristal líquido para fijar la orientación. La lámina PLC obtenida queda así dividida en múltiples zonas o pixeles caracterizados por variaciones específicas de la dirección de alineamiento azimutal en ambas caras, generando una lámina con estructuras homogéneas de orientaciones variables entre -90° y 90°. La lámina resultante posee diferentes áreas, todas ellas LMO, orientadas en distintas direcciones. Dependiendo del ángulo formado entre la orientación de la LMO y la polarización de la luz incidente, cada zona de la lámina PLC girará la polarización en mayor o menor medida, entre -90° y 90°, generando escalas de gris. Adicionalmente, aprovechando el retardo variable de distintas regiones del espectro, estas estructuras pueden generar falso color sin necesidad de filtros externos, o color verdadero empleando una matriz externa de filtros de color RGB.
El método de fabricación de la presente invención utiliza estructuras de confinamiento para inducir un patrón de alineamiento sobre el cristal líquido polimerizable. Estas estructuras de confinamiento pueden formar parte del ensamblado final y contener los elementos polarizadores o extraerse e incluso reutilizarse para crear otras láminas. El dispositivo resultante muestra dos o más imágenes latentes cuando se ilumina por cada una de las caras, o cuando se observa el conjunto a través de un analizador. A diferencia de la fabricación de pantallas de cristal líquido estándar, en el método de fabricación de la presente invención se parte directamente de un cristal líquido polimerizable. Además las placas de vidrio que se emplean habitualmente como substratos en la fabricación de dispositivos de cristales líquidos convencionales, se sustituyen en la presente invención por unas placas de confinamiento, sobre cada una de las cuales se imprime un patrón de alineamientos de diferente orientación en la cara interna, donde la variación de orientación está en el plano de las placas de confinamiento, que además pueden contener elementos polarizadores y pueden llegar a formar parte de la estructura final. Por otro lado, la lámina PLC con estructuras twist o LMO grabadas se consigue en varias etapas, que se pueden resumir en: primero, se empareda el cristal líquido entre las dos placas de confinamiento y las placas de confinamiento orientan el cristal líquido con el patrón deseado; segundo, se polimeriza el cristal líquido para asegurar que el patrón de orientaciones twist o LMO sea permanente; tercero, y de forma opcional: se extrae la lámina de cristal líquido polimerizada del emparedado o sándwich una vez que el cristal líquido polimerizado es una fina lámina que ya contiene el patrón de alineamiento y las imágenes latentes. El polarizador PCP preferentemente formará parte del proceso de fabricación de la lámina desde las primeras etapas; si no es así, la estructura twist o LMO y el polarizador PCP se unen permanentemente en una etapa posterior.
Como resultado final del procedimiento de fabricación se obtiene un elemento óptico que consiste en un dispositivo delgado que almacena una colección de imágenes visibles con el empleo de una fuente de luz polarizada, luz parcialmente polarizada o de un polarizador. El dispositivo puede ser flexible, tanto como lo sean las superficies de confinamiento, ya que la lámina PLC es completamente flexible. La lámina, con su recubrimiento adecuado a cada aplicación, puede insertarse en un documento para garantizar su autenticidad.
Con luz natural, el dispositivo aparece uniforme en transmisión, pero puede mostrar imágenes latentes en reflexión, dependiendo de la estructura de los elementos polarizadores. Cuando se ilumina con luz parcialmente polarizada, aparece uno de los juegos de imágenes; el juego concreto queda determinado por la cara del dispositivo que se enfrenta a la luz incidente. Aparece un segundo conjunto de imágenes, por ejemplo, rotando ligeramente la lámina. Otros conjuntos de imágenes pueden visualizarse iluminando la cara opuesta con luz parcialmente polarizada. Si los patrones de alineamiento de las placas de confinamiento de las dos caras generan cambios de polarización de la luz incidente, la apariencia dependerá de la cara orientada hacia la fuente de luz polarizada o el polarizador.
En una realización particular de la invención, el polarizador puede construirse como un elemento holográfico que se metaliza y se desmetaliza selectivamente en zonas específicas, produciendo un efecto polarizador. También puede metalizarse parcialmente en otras zonas, creando un dispositivo final con zonas completamente transparentes, completamente opacas y parcialmente transparentes con mayor o menor transmisividad.
Se contempla que la presente invención pueda ser integrada en una de sus realizaciones en un sistema con zonas opacas (reflexivas), las cuales podrían organizarse alrededor del elemento óptico al estilo de un marco. En cuanto a la orientación del cristal líquido, se puede predeterminar acondicionando adecuadamente las caras internas de las placas de confinamiento usadas en la producción de la lámina PLC. La orientación del cristal líquido en el plano de las placas de confinamiento se consigue de dos modos distintos:
- Usando técnicas de alineamiento comunes en la producción de dispositivos de cristal líquido, pero definiendo distintas zonas según un patrón (frotado, foto-alineamiento, microsurcos, etc.). En la fabricación estándar de pantallas de cristal líquido, se acondicionan las placas de confinamiento para obtener una misma orientación del cristal líquido en toda la superficie, o un patrón repetido; en este tipo de dispositivos, por el contrario, se generan varias orientaciones en cada superficie para generar una imagen estática.
Empleando electrodos interdigitados con variación de orientación de los electrodos en el plano de las placas de confinamiento. En este caso se requiere el empleo de tensiones eléctricas durante el proceso de fabricación, no así durante el uso ordinario del dispositivo. Los electrodos se construyen por técnicas fotolitográficas, micromecánicas, microimpresión metálica o ablación láser, haciendo que conformen un motivo. Posteriormente se deposita una capa de cristal líquido cuya orientación se controla aplicando tensiones a los electrodos, de modo que el cristal líquido se reoriente por conmutación en el plano (IPS o in-plane switching). De ese modo se obtiene un alineamiento múltiple que refleja el motivo impuesto por los electrodos. Provocado el alineamiento, el cristal líquido se polimeriza in situ para generar una lámina delgada y flexible con la impronta conferida por los electrodos. Una vez polimerizado, se puede eliminar la tensión aplicada ya que el material mantiene la orientación prefijada por la distribución de tensión de los electrodos.
Para conseguir las imágenes, las placas de confinamiento reciben varios tratamientos según el patrón en distintos puntos de cada una de las dos superficies, aislando unos de otros por diferentes procedimientos de acuerdo a diferentes realizaciones de la invención: máscaras, fotolitografía, barreras físicas, deposición selectiva, evaporación térmica, chorros de tinta, o cualquier otro procedimiento empleado habitualmente en fabricación microelectrónica. Estos tratamientos promueven una configuración homogénea (también denominada plana, o paralela a las placas de confinamiento) del cristal líquido, pero con diferentes orientaciones, que determinan las zonas que eventualmente aparecen claras u oscuras al iluminar con luz polarizada. Ello da lugar a varias imágenes por cara en la lámina PLC resultante cuando se combina con el polarizador PCP y con luz polarizada o un analizador.
Si la luz entra por la cara del polarizador PCP, éste genera automáticamente una escala de gris según la orientación de su eje de paso. Si se entra por la cara de la lámina PLC, la variación en las direcciones de alineamiento permite definir una escala de gris e incluso color en las imágenes:
- La escala de gris en estructuras twist puede obtenerse, por ejemplo, orientando el cristal líquido en la cara de entrada paralelamente al plano de polarización de la luz de entrada. La orientación de la cara de salida es variable, formando un ángulo comprendido entre -90° y 90° respecto a la orientación de entrada, el cual determina la rotación interna del material y el paso de hélice (pueden emplearse configuraciones sobregiradas, de más de +/-900, dopando el cristal líquido con compuestos quirales). Así se controla la orientación de la polarización a la salida, la cual determina a su vez la intensidad de luz transmitida al atravesar el polarizador PCP.
- Si la orientación del cristal líquido a la entrada se inclina respecto al plano de polarización de la luz, entonces se generan componentes ortogonales de campo electromagnético que se propagan a distintas velocidades, generándose desfases que devienen en estados de polarización elípticos, los cuales poseen transmisión parcial en el polarizador de salida. Este fenómeno, indeseable en pantallas de cristal líquido, resulta útil en esta invención, porque unas regiones del espectro se propagan mejor que otras y se generan colores en la imagen de salida. Estos colores pueden aprovecharse para producir imágenes en falso color, al estilo de las cámaras térmicas.
- Otro método de generación de falso color en estructuras twist, compatible con las láminas PLC consiste en que para que la polarización lineal de la luz rote con la hélice del cristal líquido, se requiere que el paso de hélice cumpla el límite de Mauguin, lo que equivale a decir que sea significativamente mayor que la longitud de onda. Cuando la estructura se aproxima a dicho límite, la luz que se propaga deja de ser lineal y se hace elíptica, permitiendo su transmisión parcial en el polarizador de salida. Al igual que en el caso anterior, este fenómeno, indeseable en pantallas de cristal líquido, resulta útil en esta invención, porque unas regiones del espectro se propagan mejor que otras y se generan colores en la imagen de salida. Estos colores pueden aprovecharse para producir imágenes en falso color, al estilo de las cámaras térmicas.
- La escala de gris en estructuras LMO puede obtenerse controlando la orientación relativa entre el plano de polarización de la luz incidente y la orientación molecular del cristal líquido. Las LMO producen una rotación de 90° de la luz linealmente polarizada únicamente cuando las orientaciones forman un ángulo de ±45°. Cualquier otro ángulo mayor o menor produce polarizaciones lineales que están rotadas ángulos menores. Así se controla la orientación de la polarización a la salida, la cual determina a su vez la intensidad de luz transmitida al atravesar el polarizador PCP.
- Una lámina birrefringente como la lámina PLC diseñada como retardador de media onda, solo puede producir un retardo exacto de media onda (π radianes) a una longitud de onda concreta. Las longitudes de onda más cortas tienen retardos mayores, y las más largas, menores. En consecuencia, la polarización de estas ondas deja de ser lineal y se hace elíptica, permitiendo su transmisión parcial en el polarizador de salida y produciendo colores en la imagen de salida. Estos colores pueden aprovecharse para producir imágenes en falso color, al estilo de las cámaras térmicas. Se puede seleccionar parcialmente la gama de colores modificando el espesor de la estructura o su birrefringencia.
- El efecto de colores se ve aumentado si el LMO no es de primer orden, o sea que no introduce un retraso de ½ onda, sino de un múltiplo entero de longitudes de ondas más una media onda.
Y finalmente, la polimerización del cristal líquido consigue que la lámina pueda ser extraída de las placas de confinamiento, y utilizada en múltiples aplicaciones de forma autónoma, combinada con la lámina polarizadora PCP con las imágenes latentes ya definidas. Por consiguiente, las placas de confinamiento pueden opcionalmente formar parte de la estructura final, si ello contribuye, por ejemplo, a la rigidez o resistencia del dispositivo, o bien pueden eliminarse, si se desea disponer de dispositivos más delgados, ligeros y completamente flexibles.
La figura 1 muestra la estructura de la zona central del elemento óptico de acuerdo a una de las realizaciones de la invención. Contiene una lámina polarizadora PCP
(3a), una capa para inducción de alineamiento (3b), la capa de cristal líquido (4) y una segunda capa de alineamiento (5). 3a y 3b pueden ser una única capa que adopte las dos misiones, polarización y alineamiento. Las capas de inducción de alineamiento (3b y 5) pueden formar parte o no del dispositivo final.
En cada uno de los bloques A, B, C de la figura se ha dividido el dispositivo en cuatro secciones con diferentes orientaciones de una o varias de las capas 3a, 3b y 5 comentadas arriba. En las figuras de los bloques A y B se muestran varias orientaciones de la capa polarizadora PCP (3a) en el plano x,y (se usan como ejemplo 0o, 90°, 45° y -45°, pero en otras realizaciones pueden ser otras cualesquiera). En el bloque B se muestran varias orientaciones de la primera capa para inducción de alineamiento (3b) en el plano x,y (se usan como ejemplo 0o, 90°, 45° y -45°, pero en otras realizaciones pueden ser otras cualesquiera). En los bloques A y C se muestran varias orientaciones de la segunda capa para inducción de alineamiento (5) en el plano x,y (se usan como ejemplo 0o, 90°, 45° y -45°, pero en otras realizaciones pueden ser otras cualesquiera).
En cada uno de los bloques, los esquemas 1a, 1 b, 1 c y 1 d de la parte izquierda de la figura, y los esquemas 2a, 2b, 2c y 2d de la parte derecha muestran los patrones transmitidos cuando se ilumina el dispositivo con luz polarizada que se propaga en la dirección Z positiva y en la dirección Z negativa, respectivamente, con cuatro posibles orientaciones de la luz (se usan como ejemplo 0o, 90°, 45° y -45°, pero en otras realizaciones pueden ser otras cualesquiera). Tal como puede observarse en la figura 1 , las imágenes obtenidas cuando la luz se propaga en direcciones opuestas son totalmente distintas. Los ejemplos mostrados, por simplicidad, son ilustrativos de cuatro orientaciones, pero pueden definirse un número arbitrario de orientaciones en cada cara, obteniéndose imágenes de alta resolución y calidad que son independientes entre sí. El bloque central de la figura (B) muestra la implementación de acuerdo a una realización particular de la invención, donde la lámina polarizadora PCP está formada por un colorante dicroico alineado por la matriz de cristal líquido, o bien por una metalización selectiva, o surcos micro o nanométricos que absorben y reflejan selectivamente las dos componentes ortogonales de la polarización lineal.
Típicamente, las moléculas de cristal líquido en contacto directo con la lámina polarizadora (de cualquiera de ambos tipos) se alinean paralelas o perpendiculares a la dirección de la polarización transmitida por la PCP. En las figuras 2 y 3, se muestra un ejemplo de realización del elemento óptico para en transmisión y reflexión, cuando se utilizan láminas polarizadoras PCP reflexivas. Las imágenes resultantes de la figura 2 y la figura 3 difieren porque la luz incide por caras opuestas y, como se ha explicado anteriormente, los motivos son completamente independientes.
El polarizador reflexivo transmite una polarización de la luz y refleja la polarización ortogonal. Normalmente, las dos polarizaciones son estados lineales, pero pudieran ser también circulares o elípticos. El contraste de la imagen viene determinado fundamentalmente por el grado de polarización de la luz transmitida y reflejada.
La configuración de capas de alineamiento del ejemplo es la misma que la mostrada en la figura 1 B; la numeración de los distintos elementos es también igual que en la figura 1. Obsérvese que la imagen que aparece en reflexión cuando la muestra se contempla desde la dirección Z positiva es idéntica a la imagen en transmisión de la muestra observada desde la dirección Z negativa, y viceversa.
La figura 4 corresponde a una realización particular de la invención que sirve como ejemplo descriptivo de la implementación de un elemento óptico utilizando dos láminas polarizadoras. Las moléculas de cristal líquido en contacto directo con la lámina polarizadora se alinean típicamente paralelas o perpendiculares a la dirección de la polarización transmitida. La estructura twist del cristal líquido implica que la luz transmitida por el polarizador próximo a la fuente se transmite también por el polarizador próximo al observador. Así pues, se harán visibles dos imágenes independientes según la cara por donde se observe. Es importante que la relación entre las direcciones de alineamiento y la polarización transmitida coincida en ambas superficies de alineamiento.
La numeración de los elementos se mantiene igual que en el resto de figuras, pero es importante destacar que en este caso la capa de alineamiento (5) tiene la doble función de capa de alineamiento (5b) y lámina polarizadora (5a).
En correspondencia con todo lo comentado anteriormente, la presente invención presenta características y efectos técnicos ventajosos sobre el estado del arte. Principalmente, la combinación de un polarizador PCP con una lámina twist o LMO con zonas de diferentes orientaciones para producir un elemento óptico de aplicación en seguridad documental y que prescinde de colorantes dicroicos para incluir múltiples imágenes latentes. La integración de estos dos elementos principales introduce una serie de innovaciones que permiten convertir este fenómeno en un producto utilizable como sistema de seguridad documental, como por ejemplo:
- la creación de un dispositivo compuesto un polarizador PCP y una lámina PLC, que conjuntamente consiguen que la luz polarizada muestre en transmisión dos imágenes no relacionadas;
- la lámina PLC con imágenes grabadas puede fabricarse utilizando placas de confinamiento independientes, combinándose posteriormente con el polarizador PCP. Alternativamente, la lámina se puede fabricar en contacto directo con el polarizador PCP, haciendo que el patrón del polarizador actúe como una de las superficies de alineamiento;
- también puede obtenerse el PLC colocándolo entre dos sustratos con el patrón de confinamiento pregrabado, utilizando cualquiera de las tecnologías descritas anteriormente. Cualquiera de las dos estructuras de confinamiento, o ambas, pueden incluir el polarizador PCP;
- la generación de escalas de gris, por dos métodos diferentes, que permite la creación de imágenes complejas:
• si se desea conseguir una imagen en blanco y negro, se promueven dos alineamientos mutualmente ortogonales en la lámina polarizadora y en las zonas elegidas de las placas de confinamiento del PLC, tal como se ha descrito anteriormente; • si en cambio se requiere una escala de gris, entonces se promueven zonas con orientaciones variables en el plano dentro de la lámina polarizadora de las placas de confinamiento de la PLC. Dichas zonas pueden generarse con alineamientos no lineales continuos o discretos:
o Continuos: variando continuamente la alineación espacial entre -180° y 180°. Un ejemplo de variación continua de alineamiento es un frotado circular en una cara, que crea un alineamiento tangencial con respecto al centro de frotado,
o Discretos: empleando un número finito de direcciones de alineación.
Por ejemplo, se generan imágenes sencillas de tres niveles de gris empleando alineamientos de 0o, de 45° y de 90° con respecto al eje de polarizador. Aumentado el número de ángulos de alineamientos aumenta el número de tonos de gris. Otro ejemplo puede ser con imágenes superpuestas en escala de gris, empleando alineamientos especulares con respecto al eje del polarizador. Así se consiguen dos imágenes por cara. Se puede mejorar el contraste de una u otra imagen empleando un retardador de cuarto de onda y un polarizador circular. - La generación de falso color, al estilo de las cámaras térmicas, por dos métodos diferentes, dependiendo de la estructura. Alternativamente, se puede obtener una imagen con color verdadero superponiendo al dispositivo una matriz de filtros de color RGB. APLICACIÓN INDUSTRIAL
Está invención tiene aplicación directa como elemento de seguridad documental contra la falsificación de billetes de banco, o en autentificación de documentos, tarjetas de crédito, cheques, embalajes o cualquier elemento cuyo valor intrínseco haga aconsejable su identificación. La comprobación puede realizarse en modo transmisivo, observando con luz polarizada el patrón de zonas oscuras y claras que se forma, el cual depende de la orientación del cristal líquido en cada punto y de la orientación del eje de paso del polarizador PCP. Los dispositivos muestran como mínimo dos imágenes independientes, una por cada cara. Las imágenes pueden ser de alta resolución, y disponer de escala de gris y falso color intrínseco (o color verdadero con una matriz externa de filtros RGB).
El efecto se observa iluminando el dispositivo con luz polarizada, la cual puede proceder de una pantalla plana de cristal líquido, como la de un teléfono móvil, una tableta o un ordenador. Alternativamente, puede interponerse un polarizador. De este modo, la medida de seguridad puede considerarse de nivel 1 ,5, ya que requiere un elemento adicional para ser observada, pero que es de uso común. No obstante puede también considerarse como una medida de nivel 1 , ya que no es estrictamente necesario utilizar un polarizador para observar el efecto: basta con emplear luz ligeramente polarizada, como la procedente de un reflejo rasante en el suelo o en una mesa. Este hecho favorece su implementación masiva como elemento de seguridad en etiquetas o billetes de banco, por ejemplo.

Claims

REIVINDICACIONES
1. Un método para fabricar elementos ópticos para seguridad documental con múltiples imágenes latentes caracterizado porque comprende los siguientes pasos: a) definir diferentes zonas en la cara interna de una primera estructura de confinamiento;
b) inducir diferentes direcciones de alineamiento para las zonas definidas en el paso a);
c) definir una segunda estructura de alineamiento, donde la segunda estructura es un polarizador con patrones múltiples;
d) colocar un cristal líquido entre la primera y la segunda estructuras;
e) polimerizar el cristal líquido formando una lámina.
2. - Método de acuerdo a la reivindicación 1 que además comprende definir diferentes zonas en la cara interna de la segunda estructura de alineamiento e inducir diferentes direcciones de alineamiento para las diferentes zonas definidas.
3. - Método de acuerdo a la reivindicación 2 donde las direcciones de alineamiento inducidas forman un alineamiento común unidireccional en la cara interna del polarizador de patrones múltiples para alinear el cristal líquido colocado entre las estructuras.
4.- Método de acuerdo a cualquiera de las reivindicaciones anteriores que además comprende, una vez polimerizado el cristal líquido, extraer la lámina junto con el polarizador de la primera estructura de confinamiento o dejar ambas estructuras de confinamiento como parte del elemento óptico.
5. - Método de acuerdo a cualquiera de las reivindicaciones anteriores donde la primera estructura de confinamiento también comprende un polarizador de patrones múltiples.
6. - Método de acuerdo a cualquiera de las reivindicaciones anteriores donde la definición de las diferentes zonas en una o ambas caras internas de las estructuras de confinamiento se lleva a cabo selectivamente mediante una de las siguientes técnicas:
- impresión nanométrica;
- ablación selectiva mediante láser;
- fotolitografía;
- máscaras; - barreras físicas;
- deposición selectiva;
- evaporación térmica;
- chorro de tinta;
- o una combinación de las anteriores.
7. - Método de acuerdo a cualquiera de las reivindicaciones anteriores donde la dirección de alineamiento inducida es paralela al plano de las estructuras de confinamiento siguiendo un patrón independiente para cada estructura utilizando al menos una de las siguientes técnicas:
- frotado mecánico de la capa de alineamiento;
- deposición oblicua de material de alineamiento;
- fotoalineamiento de un material fotosensible;
- creación de estructuras micrométricas o sub-micrométricas capaces de alinear el cristal líquido;
- utilización de electrodos interdigitados generados en las estructuras de confinamiento;
- o una combinación de las anteriores.
8. - Método de acuerdo a cualquiera de las reivindicaciones anteriores donde los alineamientos de al menos dos zonas de las láminas son no lineales entre sí, y donde al menos dos de los alineamientos inducidos son ortogonales entre sí y que además comprende determinar el ángulo relativo entre los alineamientos inducidos para generar diferentes niveles de gris en la imagen latente.
9. Método de acuerdo a cualquiera de las reivindicaciones anteriores que además comprende un paso adicional de añadir una matriz de color RGB a las imágenes latentes.
10. Método de acuerdo a la reivindicación 9 donde añadir una matriz de color RGB comprende colocar la matriz de color haciendo coincidir las zonas definidas en la lámina con los píxeles de la matriz RGB y donde la matriz RGB se coloca en la cara externa de la lámina PLC polimerizada o de la lámina polarizadora PLC, o bien, en la cara interna de una lámina polimérica de protección del elemento.
11. - Un elemento óptico para seguridad documental con múltiples imágenes latentes caracterizado porque comprende una lámina de cristal líquido polimerizado con estructuras twist u homogéneas combinada con un polarizador de patrones múltiples con varias zonas predefinidas por medio de al menos una estructura de confinamiento extraíble, de forma que dichas zonas predefinidas mantienen su orientación en función de un patrón de alineamiento aplicado, donde dicha orientación difiere en un ángulo menor o igual a 90° en al menos una de las caras formando imágenes latentes visibles al iluminar con luz polarizada.
12. - Elemento óptico de acuerdo a la reivindicación 11 que además comprende una lámina polimérica de protección que envuelve la lámina.
13. - Elemento óptico de acuerdo a la reivindicación 12 que además comprende una matriz RGB colocada entre la lámina de cristal líquido polimerizada y la lámina polimérica de protección o entre el polarizador y la lámina polimérica de protección.
14. - Elemento óptico de acuerdo a cualquiera de las reivindicaciones 1 1-13 donde las direcciones de alineamiento tienen orientaciones relativas a 0°, 45°, 90° y 135° para generar dos imágenes monocromas sin solapamiento en cada una de las caras de la lámina.
15. - Elemento óptico de acuerdo a cualquiera de las reivindicaciones 1 1-14 donde las estructuras de confinamiento, que han sido tratadas para generar un patrón con diferentes zonas y orientaciones en la lámina de cristal líquido, son reutilizables.
PCT/ES2015/070731 2015-10-08 2015-10-08 Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental WO2017060544A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/766,767 US11021001B2 (en) 2015-10-08 2015-10-08 Optical device and method for achieving multiple latent images for document security
EP15905746.2A EP3364378A4 (en) 2015-10-08 2015-10-08 OPTICAL ELEMENT AND MANUFACTURING METHOD WITH MULTIPLE LATENT IMAGES FOR SECURITY OF DOCUMENTS
CN201580085226.9A CN108369760B (zh) 2015-10-08 2015-10-08 用于文件安全的具有多个潜像的光学元件及制造方法
AU2015411341A AU2015411341B2 (en) 2015-10-08 2015-10-08 Optical element and production method with multiple latent images for document security
PCT/ES2015/070731 WO2017060544A1 (es) 2015-10-08 2015-10-08 Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070731 WO2017060544A1 (es) 2015-10-08 2015-10-08 Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental

Publications (1)

Publication Number Publication Date
WO2017060544A1 true WO2017060544A1 (es) 2017-04-13

Family

ID=58488075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070731 WO2017060544A1 (es) 2015-10-08 2015-10-08 Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental

Country Status (5)

Country Link
US (1) US11021001B2 (es)
EP (1) EP3364378A4 (es)
CN (1) CN108369760B (es)
AU (1) AU2015411341B2 (es)
WO (1) WO2017060544A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086726A1 (es) 2017-10-31 2019-05-09 Alise Devices, S.L. Método de fabricación de elementos ópticos de seguridad documental personalizados y elemento obtenido

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11468639B2 (en) * 2015-02-20 2022-10-11 Microsoft Technology Licensing, Llc Selective occlusion system for augmented reality devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2337010A1 (es) * 2009-12-01 2010-04-19 Universidad Politecnica De Madrid Procedimiento y dispositivo de seguridad documental por generacion de imagenes multiples.
EP2259102A1 (en) * 2009-05-26 2010-12-08 FUJIFILM Corporation Viewer and kit for authenticating birefringent pattern, authenticity-verifying medium and method of verifying authenticity
WO2011017749A1 (en) * 2009-08-12 2011-02-17 Securency International Pty Ltd Polarising liquid crystal device
EP2543521A1 (en) * 2011-07-07 2013-01-09 European Central Bank Security document and method for protecting a security document against forgery and for the authentication of the security document

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163765C (zh) * 1997-05-09 2004-08-25 罗利克有限公司 光学元件和包含它的防伪或防拷贝元器件
EP1120737A1 (en) * 2000-01-27 2001-08-01 Rolic AG Optical security device
US6391528B1 (en) 2000-04-03 2002-05-21 3M Innovative Properties Company Methods of making wire grid optical elements by preferential deposition of material on a substrate
CN1265216C (zh) 2000-04-15 2006-07-19 Ovd基尼格拉姆股份公司 表面图案
US20020167727A1 (en) 2001-03-27 2002-11-14 Hansen Douglas P. Patterned wire grid polarizer and method of use
JP3791377B2 (ja) * 2001-09-28 2006-06-28 株式会社日立製作所 液晶表示素子及びそれを用いた表示装置
US7068344B2 (en) * 2003-02-24 2006-06-27 3M Innovative Properties Company Cholesteric liquid crystal optical bodies and methods of manufacture and use
US6975765B2 (en) 2003-05-06 2005-12-13 New Light Industries, Ltd. Optically variable form birefringent structure and method and system and method for reading same
JP2005049865A (ja) * 2003-07-17 2005-02-24 Arisawa Mfg Co Ltd 光学位相差素子の製造方法
DE102004018702B4 (de) * 2004-04-17 2006-05-24 Leonhard Kurz Gmbh & Co. Kg Folie mit Polymerschicht
DE102004021247A1 (de) * 2004-04-30 2005-11-24 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu seiner Herstellung
EP2029373A1 (en) * 2006-05-31 2009-03-04 Securency International Pty Ltd Security document incorporating optical component
JP5380007B2 (ja) * 2008-06-16 2014-01-08 富士フイルム株式会社 偽造防止媒体
DE102009036314A1 (de) * 2009-08-06 2011-02-10 Giesecke & Devrient Gmbh Verfahren zur Herstellung eines Sicherheitselements und nach dem Verfahren erhältliches Sicherheitselement
US8970953B2 (en) * 2009-11-27 2015-03-03 Nhk Spring Co., Ltd. Identification medium and identification method therefor
AU2011100315B4 (en) 2011-03-22 2011-09-08 Innovia Security Pty Ltd Security element
US9789724B2 (en) * 2012-10-15 2017-10-17 Opthentic Corp. Optical security device and system and fabrication methods thereof
WO2014167834A1 (ja) * 2013-04-08 2014-10-16 凸版印刷株式会社 偽造防止媒体、その製造方法及び偽造防止方法
JP2015069070A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 偽造防止用デバイスおよびその真偽判定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259102A1 (en) * 2009-05-26 2010-12-08 FUJIFILM Corporation Viewer and kit for authenticating birefringent pattern, authenticity-verifying medium and method of verifying authenticity
WO2011017749A1 (en) * 2009-08-12 2011-02-17 Securency International Pty Ltd Polarising liquid crystal device
ES2337010A1 (es) * 2009-12-01 2010-04-19 Universidad Politecnica De Madrid Procedimiento y dispositivo de seguridad documental por generacion de imagenes multiples.
EP2543521A1 (en) * 2011-07-07 2013-01-09 European Central Bank Security document and method for protecting a security document against forgery and for the authentication of the security document

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364378A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019086726A1 (es) 2017-10-31 2019-05-09 Alise Devices, S.L. Método de fabricación de elementos ópticos de seguridad documental personalizados y elemento obtenido
CN111602179A (zh) * 2017-10-31 2020-08-28 爱丽丝设备有限公司 用于制造个性化光学文档安全元素的方法以及所获得的元素
CN111602179B (zh) * 2017-10-31 2022-08-02 爱丽丝设备有限公司 用于制造个性化光学文档安全元素的方法以及所获得的元素

Also Published As

Publication number Publication date
US20180290479A1 (en) 2018-10-11
CN108369760B (zh) 2021-10-29
EP3364378A1 (en) 2018-08-22
EP3364378A4 (en) 2019-07-03
AU2015411341B2 (en) 2021-06-24
CN108369760A (zh) 2018-08-03
US11021001B2 (en) 2021-06-01
AU2015411341A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
ES2392342T3 (es) Elemento óptico que comprende un retardador estructurado
Tabiryan et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses
ES2510515T3 (es) Microestructuras con relieve de superficie ópticamente eficaces y método para realizarlas
JP5276847B2 (ja) メソゲン・フィルム内の偏光回折格子
ES2702549T3 (es) Procedimiento y dispositivos de seguridad documental por generación de imágenes múltiples
CN107921803B (zh) 用于通过生成多个反射和透射潜像来实现文件安全的方法和装置
TW200411208A (en) Parallax barrier element, method of producing the same, and display device
JP2008070870A (ja) パッシブ・デポラライザ
ITTO20060303A1 (it) Lettera di incarico segue
EP3126883B1 (en) Optical devices with patterned anisotropy incorporating parallax optic
US20180120491A1 (en) Encrypted optical security device
WO2017060544A1 (es) Elemento óptico y método de fabricación con múltiples imágenes latentes para seguridad documental
TWI245924B (en) Optical sheet, polarizer and liquid-crystal display device
JP6927886B2 (ja) 光学セキュリティ装置
US10889141B2 (en) Multiple hidden image security device
RU2725667C1 (ru) Оптическое защитное устройство (варианты), способ изготовления указанного устройства и способ верификации защищаемого объекта, содержащего указанное оптическое защитное устройство
WO2019086726A1 (es) Método de fabricación de elementos ópticos de seguridad documental personalizados y elemento obtenido
KR101851780B1 (ko) 패턴드 리타더의 제조방법
JP2013088495A (ja) 立体視画像形成体および立体視用具
JPH08262415A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015411341

Country of ref document: AU

Date of ref document: 20151008

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015905746

Country of ref document: EP