WO2017059761A1 - 用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置 - Google Patents

用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置 Download PDF

Info

Publication number
WO2017059761A1
WO2017059761A1 PCT/CN2016/098955 CN2016098955W WO2017059761A1 WO 2017059761 A1 WO2017059761 A1 WO 2017059761A1 CN 2016098955 W CN2016098955 W CN 2016098955W WO 2017059761 A1 WO2017059761 A1 WO 2017059761A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
voltage signal
pixel
driving voltage
Prior art date
Application number
PCT/CN2016/098955
Other languages
English (en)
French (fr)
Inventor
赵剑
闫龙
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/514,629 priority Critical patent/US10580371B2/en
Publication of WO2017059761A1 publication Critical patent/WO2017059761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a data driving module, a data driving method, and a display device for driving a display panel.
  • the existing display panels are various, such as a liquid crystal display panel, an LED display panel, and an OLED display panel, but without exception, the display panel needs to output a data driving signal from the data driving module to the display panel to drive the display.
  • the panel is displayed.
  • the prior art In order to solve such display defects caused by impedance differences, the prior art generally adopts a method of reducing the difference in the length of the transmission path in the peripheral area, but the above method requires a process flow to be coordinated, which is greatly affected by the process flow.
  • an embodiment of the present disclosure provides a data driving module for driving a display panel, the data driving module has at least one output interface, and the at least one output interface The port is connected to the sub-pixel in the display panel through the data signal transmission line, and the data driving module includes: a driving signal generating module, configured to generate a source driving voltage signal for driving the target sub-pixel, wherein the source driving voltage signal can pass through After the transmission path is transmitted to the target sub-pixel, a target driving voltage signal that causes the target sub-pixel to operate at a working gray level, the working gray level and the target gray level of the sub-pixel are written to the target sub-pixel The difference is less than a predetermined threshold; and the at least one output interface is configured to receive and output the source driving voltage signal generated by the driving signal generating module.
  • the driving signal generating module specifically includes: a signal generating unit configured to generate the source driving voltage signal; and a first control unit configured to control the signal generating unit to enable the source driving
  • a signal amplitude of the voltage signal is a magnitude of the target driving voltage signal, and a signal width of the source driving voltage signal matches the transmission path to enable transmission to the target sub-pixel through a transmission path
  • the data driving module wherein the first control unit specifically includes: a timing control signal generating unit, configured to generate a timing control signal corresponding to an impedance of the signal transmission path, and output the timing control signal to The signal generating unit;
  • the signal generating unit is specifically configured to generate the source driving voltage signal by using the timing control signal, and a signal width of the source driving voltage signal matches the transmission path.
  • the timing control signal includes a high level signal for a first time and an adjacent low level signal for a second time, the sum of the first time and the second time
  • the timing control signal generating unit adjusts the ratio of the first time and the second time according to the impedance of the signal transmission path to generate the timing control signal corresponding to the impedance of the transmission path.
  • the plurality of output interfaces are divided into M interface groups, and M is an integer greater than or equal to 2, and each output interface belongs to and belongs to only one group.
  • the maximum length of the portion of the data signal transmission line corresponding to one output interface group located in the fan-out area is smaller than the minimum length of the portion of the data signal transmission line corresponding to the other output interface group located in the fan-out area.
  • the first control unit sets the same signal width for all output interfaces in the same output interface group, and the corresponding data signal transmission line is flat The larger the average length of the output interface group, the larger the signal width.
  • the data driving module wherein the driving signal generating module specifically includes: a signal generating unit configured to generate the source driving voltage signal; and a second control unit configured to control the signal generating unit to cause the
  • the signal amplitude of the source driving voltage signal is a sum of the amplitude and the compensation amount of the target driving voltage signal
  • the signal width of the source driving voltage signal is a preset value to be transmitted to the target through a transmission path
  • a target driving voltage signal that causes the target sub-pixel to operate at a working gray level can be written to the target sub-pixel, and the difference between the working gray level and the target gray level of the target sub-pixel is less than a predetermined threshold .
  • the data driving module wherein the second control unit specifically includes:
  • a first gray scale control unit configured to adjust the target gray scale, and output the adjusted target gray scale to the signal generating unit
  • a first gamma reference signal generating unit configured to output a preset gamma reference voltage signal to the signal generating unit
  • the signal generating unit is configured to generate, according to the adjusted target gray scale and the preset gamma reference voltage signal, a source driving voltage whose signal amplitude is a sum of a magnitude and a compensation amount of the target driving voltage signal. signal.
  • the data driving module wherein the second control unit specifically includes:
  • a second gray scale control unit configured to output the target gray scale to the signal generating unit
  • a second gamma reference signal generating unit configured to generate a gamma reference voltage signal corresponding to an impedance of the signal transmission path
  • the signal generating unit is specifically configured to generate, according to the target gray scale and the gamma reference voltage signal, a source driving voltage signal whose signal amplitude is a sum of a magnitude and a compensation amount of the target driving voltage signal.
  • the plurality of output interfaces are divided into M interface groups, and M is an integer greater than or equal to 2, and each output interface belongs to and belongs to only one group.
  • the maximum length of the portion of the data signal transmission line corresponding to one output interface group located in the fan-out area is smaller than the minimum length of the portion of the data signal transmission line corresponding to the other output interface group located in the fan-out area.
  • the second control unit sets the same compensation amount under the same target gray level for all output interfaces in the same output interface group, and outputs the interface group The larger the average length of the corresponding data signal transmission line, the larger the absolute value of the compensation amount corresponding to the output interface group.
  • an embodiment of the present disclosure further provides a display device including the above data driving module.
  • an embodiment of the present disclosure further provides a data driving method, where the data driving module has at least one output interface, and the output interface is connected to a sub-pixel in a display panel through a data signal transmission line.
  • the data driven methods include:
  • the data driving method wherein the driving signal generating step specifically includes:
  • the data driving method wherein the driving signal generating step specifically includes:
  • a signal amplitude of the source driving voltage signal generated by the signal generating unit is a sum of a magnitude and a compensation amount of the target driving voltage signal
  • a signal width of the source driving voltage signal is a preset a value, after being transmitted to the target sub-pixel through a transmission path, capable of writing, to the target sub-pixel, a target driving voltage signal that causes the target sub-pixel to operate at a working gray level, the working gray level and the The difference in the target gray level of the sub-pixel is less than a predetermined threshold.
  • the transmission path between the output interface and the sub-pixel is considered, so that the generated driving voltage signal can pass through
  • the ability to operate the target sub-pixel on the working gray scale is also improved, and the display defect caused by the difference in line impedance between sub-pixels is improved.
  • FIG. 1 shows a schematic view of a display panel in accordance with at least one embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a data driving module according to at least one embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing data driving signals in at least one embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a data driving module according to at least one embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing control of a data driving signal by a TP signal in an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a data driving module according to at least one embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing a structure of a gamma reference signal buffer unit and a signal generating unit in at least one embodiment of the present disclosure
  • FIG. 8 is a block diagram showing another structure of a gamma reference signal buffer unit and a signal generating unit in at least one embodiment of the present disclosure
  • FIG. 9 is a flow chart showing a data driving method of at least one embodiment of the present disclosure.
  • At least one data driving module 101 is generally disposed in the non-display area of the panel, and each data driving module 101 corresponds to a plurality of data signal transmission lines.
  • the data driving module 101 is connected to a sub-pixel column in the display panel through a data signal transmission line, and the data signal transmission line includes two parts: a first portion 104 located in the fan-out area 102 and a second portion located in the display area. Part 105. That is, the first portion 104 located in the fan-out area 102 and the second portion 105 located in the display area constitute a path through which the signal is transmitted from the output interface 103 to the TFT.
  • the generated driving when generating a driving voltage signal for driving one sub-pixel, considering a transmission path between the output interface and the sub-pixel, the generated driving is generated.
  • the voltage signal can also have the ability to operate the target sub-pixels on the working gray level after transmission through the transmission line with impedance, improving the display defect caused by the difference in line impedance between sub-pixels.
  • a data driving module for driving a display panel having at least one output interface connected to a sub-pixel in the display panel through a data signal transmission line, such as at least one embodiment of the present disclosure, such as As shown in FIG. 2, the data driving module of the first embodiment of the present disclosure includes:
  • a driving signal generating module configured to generate a source driving voltage signal for driving the target sub-pixel
  • the source driving voltage signal is capable of writing, to the target sub-pixel, a target driving voltage signal that causes the target sub-pixel to operate at a working gray level after being transmitted to the target sub-pixel through a transmission path, the working gray level and The difference in target gray levels of the sub-pixels is less than a predetermined threshold;
  • the output interface is configured to receive and output the source driving voltage signal generated by the driving signal generating module.
  • the data signal transmission line in the peripheral area, the display area data signal transmission line, and the thin film transistor are sequentially written into the pixel electrode of the sub-pixel, and the sub-pixels of the same column are displayed.
  • the lengths of the data signal transmission lines of the area are inconsistent, and for the sub-pixels of the same row, the data signal transmission lines of the peripheral areas passing through are different, and the difference is not only reflected in the length but also in the process.
  • the driving signal generating module considers a different output interface of each sub-pixel to a transmission path between the sub-pixels when generating the source driving voltage signal, so that the generated source driving voltage signal passes through the impedance
  • the ability to operate the target sub-pixel on the working gray scale is also improved, and the display defect caused by the difference in line impedance between sub-pixels is improved.
  • the predetermined threshold may be flexibly set according to the quality requirement of the display panel or the like.
  • the predetermined threshold may be set smaller, and vice versa may be set larger, which will not be described in further detail.
  • the generated source driving voltage signal can be written to the target sub-pixel after the transmission to the target sub-pixel through the transmission path, so that the target sub-pixel is operated at the target driving voltage of the working gray scale. signal.
  • the impedance of the corresponding transmission path is larger, and the degree of charging of the sub-pixels charged by the source driving voltage signal is lower.
  • the voltage signal itself the greater the impedance of the passing transmission path, the weaker its charging capability.
  • the source driving voltage signal can still achieve the expected driving capability after passing through the transmission path, a certain compensation is required, that is, the charging capability reduced by the impedance of the transmission path is compensated.
  • the improvement of charging capability can be started from the following two aspects: charging time and charging voltage, as explained below.
  • the generated source driving voltage signal is a pulse signal including two parameters as shown in FIG. 3: V (signal amplitude) and T (pulse width).
  • V signal amplitude
  • T pulse width
  • the charging capability can be compensated for by reducing the voltage amplitude and/or the pulse width of the source driving voltage signal to compensate for the reduction of the charging capability.
  • the source drive voltage signal can still have the charging capability to cause the target sub-pixel to operate at the target gray level after being transmitted to the target sub-pixel through the transmission path.
  • the impedance of the transmission path between the target sub-pixel to the output interface to be driven is large, it is necessary to increase the signal amplitude of the source driving voltage signal and/or increase the source driving voltage.
  • the pulse width of the signal is necessary to increase the signal amplitude of the source driving voltage signal and/or increase the source driving voltage.
  • the signal driving width (pulse width) is controlled to ensure that the source driving voltage signal can still achieve the desired driving capability after passing through the transmission path, as shown in FIG. 4, the data driving of the embodiment of the present disclosure.
  • Modules including:
  • a signal generating unit configured to generate the source driving voltage signal
  • a first control unit configured to control the signal generating unit, such that a signal amplitude of the source driving voltage signal is a magnitude of the target driving voltage signal, and a signal width of the source driving voltage signal matches the transmission path
  • a target driving voltage signal that enables the target sub-pixel to operate at a working gray level can be written to the target sub-pixel, the working gray level and the The difference in the target gray level of the sub-pixel is less than a predetermined threshold.
  • the method for controlling the signal width of the source driving voltage signal is various.
  • the first control unit may control the signal width of the source driving voltage signal by using a timing control signal, that is, the first
  • the control unit specifically includes:
  • timing control signal generating unit configured to generate an impedance corresponding to the impedance of the signal transmission path a timing control signal, and outputting the timing control signal to the signal generating unit;
  • the signal generating unit is specifically configured to generate the source driving voltage signal by using the timing control signal, and a signal width of the source driving voltage signal matches the transmission path.
  • the timing control signal may be a TP signal output by the timing controller TCON, and the signal width of the source driving voltage signal is controlled by the TP signal.
  • the TP includes the following parameters:
  • T the period of the TP signal, or the signal width of the TP signal
  • A the duration of the high level signal, or the signal width of the high level signal
  • the output source driving voltage signal is started at the falling edge of the high level signal, and the output source driving voltage signal is ended at the rising edge of the low level signal, that is, the source driving
  • the signal width of the voltage signal is the same as the signal width of the low level signal.
  • control of the signal width of the source drive voltage signal can be achieved by adjusting the B parameter of the TP signal.
  • the signal width of the source driving voltage signal can be controlled by adjusting the B parameter.
  • the adjustment B parameters include the following situations:
  • the period of the TP signal needs to be matched with the timing of the gate driving signal.
  • the sum of the A and B values is a fixed value, and the timing control is performed.
  • the signal generating unit adjusts the ratio of the A and B (ie, the duty ratio of the timing control signal) according to the impedance of the signal transmission path, thereby enabling the signal generating unit to pass the timing control signal (corresponding to the impedance of the signal transmission path) Generating the source drive voltage signal (the signal width matches the transmission path).
  • the signal widths of the timing control signals output by the timing control signal generating unit are the same for different sub-pixels
  • the signal width of the timing control signal outputted by the timing control signal generating unit to the same sub-pixel remains unchanged.
  • the timing control signal generated by the timing control signal generating unit corresponds to the impedance of the signal transmission path, and corresponds to the same target gray scale, and the impedance of the signal transmission path is larger, and the timing control signal B The larger, the larger the signal width of the source driving voltage signal generated by the signal generating unit.
  • the above scheme can be performed for each sub-pixel, as explained below.
  • the foregoing solution is performed for each sub-pixel, it is first necessary to pre-acquire each sub-pixel in a manner of actual testing to predetermine the signal amplitude of the source driving voltage signal under each target gray scale. Driving the amplitude of the voltage signal for the target, and then testing the amplitude of the signal so that the sub-pixel can operate at the signal width of the source driving voltage signal of the working gray scale, and then the A and B of the TP signal can be determined according to the signal width. Value.
  • the corresponding values of A and B can be retrieved to generate a suitable TP signal, and the signal generating unit is controlled to make the signal width of the generated source driving voltage signal The transmission paths match.
  • the amplitude of the signal is the amplitude of the target driving voltage signal
  • the source driving voltage signal whose signal width of the source driving voltage signal matches the transmission path can be written to the sub-pixel after being transmitted to the sub-pixel through the transmission path
  • the target driving voltage signal that causes the target sub-pixel to operate at the working gray level.
  • the above method needs to store an A and B for each gray scale of each sub-pixel, which can achieve optimal impedance difference compensation, but the data storage amount is quite large, and the target gray scale is searched for the sub-pixel to find the appropriate A. And B also requires a lot of processing resources and a long time.
  • compensation may be made only for the first portion 104 of the fan-out region 102 (shown in Figure 1) for the data signal transmission line.
  • the compensation processing may be performed for dividing the plurality of output interfaces of each data driving module into M (integers greater than or equal to 2) interface groups.
  • a certain data driving module corresponds to N1+N2+N3+N4+N5 output interfaces, and each output interface is connected to the data signal transmission line of the display area through the data signal transmission line of the fan-out area, according to the data of the fan-out area.
  • the length of the signal transmission line is numbered from small to large, and is numbered and divided into five groups.
  • the corresponding pin combinations are:
  • Each output interface belongs to and belongs to only one group.
  • the maximum value of the length of the portion of the data signal transmission line corresponding to one of the output interface groups is smaller than the data signal corresponding to the other output interface group.
  • any two output interface groups can also be described from the perspective of impedance. As follows, the maximum value of the impedance of the data signal transmission line corresponding to one of the output interface groups is smaller than the minimum value of the impedance of the data signal transmission line corresponding to the other output interface group.
  • the first control unit sets the same signal width for the source driving voltage signals corresponding to all the output interfaces in the same output interface group, and the average impedance of the corresponding data signal transmission line is larger. (or the average length of the data signal transmission line corresponding to the output interface group), the larger the signal width of the source driving voltage signal corresponding to the output interface group, to compensate for the length of the portion of the data signal transmission line corresponding to the output interface combination in the fan-out area The difference in impedance caused by the difference.
  • the sub-pixel After the sub-pixel is determined, it can be determined which group of output interface groups the column in which the sub-pixel belongs corresponds to, and the values of A and B corresponding to the output interface group can be retrieved.
  • the appropriate TP signal is sent to the control signal generating unit such that the signal width of the generated source driving voltage signal matches the transmission path.
  • Drive module including:
  • a signal generating unit configured to generate the source driving voltage signal
  • a second control unit configured to control the signal generating unit, such that a signal amplitude of the source driving voltage signal is a sum of a magnitude and a compensation amount of the target driving voltage signal, and a signal of the source driving voltage signal
  • the width is a preset value to be able to write to the target sub-pixel a target driving voltage signal that causes the target sub-pixel to operate at a working gray level after being transmitted to the target sub-pixel through a transmission path, the work
  • the difference between the grayscale and the target grayscale of the subpixel is less than a predetermined threshold.
  • the signal generating unit can control the amplitude of the output driving voltage signal according to the gray scale and the gamma reference voltage signal, and the embodiment of the present disclosure can control the source by the gray scale and the gamma reference voltage signal.
  • the amplitude of the drive voltage signal can be controlled as follows.
  • the second control unit of the embodiment of the present disclosure specifically includes:
  • a first gray scale control unit configured to adjust the target gray scale, and output the adjusted target gray scale to the signal generating unit
  • a first gamma reference signal generating unit configured to output a preset gamma reference voltage signal to the signal generating unit
  • the signal generating unit is configured to generate, according to the adjusted target gray scale and the preset gamma reference voltage signal, a source driving voltage whose signal amplitude is a sum of a magnitude and a compensation amount of the target driving voltage signal. signal.
  • the X-bit data driving module actually has an output voltage of (X+2) bits, so that the excess 2-bit output voltage can be used.
  • the second control unit When the amplitude of the source driving voltage signal is controlled by the gray level, the second control unit is specifically packaged include:
  • a second gray scale control unit configured to output the target gray scale to the signal generating unit
  • a second gamma reference signal generating unit configured to generate a gamma reference voltage signal corresponding to an impedance of the signal transmission path
  • the signal generating unit is specifically configured to generate, according to the target gray scale and the gamma reference voltage signal, a source driving voltage signal whose signal amplitude is a sum of the amplitude and the compensation amount of the target driving voltage signal.
  • the implementation of controlling the amplitude of the source driving voltage signal by the gamma reference voltage signal is more flexible.
  • the above method needs to save a gray scale change amount for each gray scale of each sub-pixel or save a set of gamma reference voltage signals for each gray scale of each sub-pixel, so that the optimized impedance difference compensation can be realized, but
  • the amount of data storage is quite large, and it takes a lot of processing resources to retrieve the appropriate grayscale variation or gamma reference voltage signal for the target grayscale of the subpixel.
  • compensation may be made only for the first portion 104 of the fan-out region 102 (shown in Figure 1) for the data signal transmission line.
  • the compensation processing may be performed for dividing the plurality of output interfaces of each data driving module into M (integers greater than or equal to 2) interface groups.
  • a certain data driving module corresponds to N1+N2+N3+N4+N5 output interfaces, and each output interface is connected to the data signal transmission line of the display area through the data signal transmission line of the fan-out area, according to the data of the fan-out area.
  • the length of the signal transmission line is numbered from small to large, and is numbered and divided into five groups.
  • the corresponding pin combinations are:
  • each output interface belongs to and belongs to only one group, and the maximum value of the length of the portion of the data signal transmission line corresponding to one of the output interface groups is smaller than the data signal corresponding to the other output interface group.
  • the maximum value of the impedance of the data signal transmission line corresponding to one of the output interface groups is smaller than the minimum value of the impedance of the data signal transmission line corresponding to the other output interface group.
  • the second control unit sets the same signal compensation amount under the same target gray level for all the output interfaces in the same output interface group, and the average impedance of the corresponding data signal transmission line ( Or the larger the average length of the data signal transmission line corresponding to the output interface group, the larger the signal compensation amount corresponding to the output interface group, to compensate for the difference in the length of the portion of the data signal transmission line corresponding to the output interface combination in the fan-out area.
  • the impedance difference is the impedance difference.
  • the sub-pixel After the sub-pixel is determined, it can be determined which group of output interface groups the column in which the sub-pixel belongs corresponds to, and the compensation amount of the corresponding gray level of the output interface group can be retrieved to compensate the original signal, and the original signal is obtained.
  • the source drives a voltage signal.
  • the above compensation amount can be obtained by pre-testing using the prior art test method, and will not be described in detail herein.
  • the cooperation between the second gamma reference signal generating unit and the signal generating unit may be performed in two ways, as described below.
  • a gamma reference signal buffer unit is implemented, and the M signal generating units share a gamma reference signal buffer unit, and all the signal generating units obtain corresponding ones from the gamma reference signal buffer unit.
  • Gamma reference signal is implemented, and the M signal generating units share a gamma reference signal buffer unit, and all the signal generating units obtain corresponding ones from the gamma reference signal buffer unit.
  • the gamma reference signal buffer unit and the signal generating unit are respectively implemented in a one-to-one correspondence, that is, each signal generating unit independently has a gamma reference signal buffer unit, and the signal generating unit is from the respective gamma.
  • the horse reference signal buffer unit acquires its corresponding gamma reference signal.
  • each data driving module can independently follow The above manner is provided to compensate for display failure in the data drive module management area, or the data drive module may be comprehensively considered to compensate for display failure in the liquid crystal panel area.
  • the embodiment of the present disclosure further discloses a display device, including the above data driving module.
  • the embodiment of the present disclosure further discloses a data driving method for driving a display panel, wherein the data driving module has at least one output interface, and the output interface is connected to a sub-pixel in the display panel through a data signal transmission line, as shown in FIG.
  • the data driving method includes:
  • a driving signal generating step 901 generating a source driving voltage signal for driving the target sub-pixel, the source driving voltage signal being capable of writing to the target sub-pixel after the transmission to the target sub-pixel through a transmission path, so that the target is The sub-pixel operates on a target driving voltage signal of the working gray level, and the difference between the working gray level and the target gray level of the sub-pixel is less than a predetermined threshold;
  • Output step 902 outputting the source driving voltage signal through the output interface.
  • a driving source driving voltage signal when generating a driving source driving voltage signal, consider a different transmission interface between each sub-pixel to a transmission path between sub-pixels, so that the generated source driving voltage signal passes through a transmission line having impedance.
  • the target sub-pixel When transmitted to the target sub-pixel, it also has the ability to make the target sub-pixel work in the working gray scale, which improves the display defect caused by the difference in line impedance between sub-pixels.
  • the driving signal generating step specifically includes:
  • the driving signal generating step specifically includes:
  • a signal amplitude of the source driving voltage signal generated by the signal generating unit is a sum of a magnitude and a compensation amount of the target driving voltage signal
  • a signal width of the source driving voltage signal is a preset a value, after being transmitted to the target sub-pixel through a transmission path, capable of writing to the target sub-pixel a target driving power that causes the target sub-pixel to operate at a working gray level a pressure signal, the difference between the working gray level and the target gray level of the sub-pixel is less than a predetermined threshold.
  • modules may be implemented in software for execution by various types of processors.
  • an identified executable code module can comprise one or more physical or logical blocks of computer instructions, which can be constructed, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different bits that, when logically combined, constitute a module and implement the provisions of the module. purpose.
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data may be identified within the modules and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • modules that can be implemented in software, those skilled in the art can construct corresponding hardware circuits to implement corresponding functions, including conventional ultra-large scale integration (VLSI) circuits or gate arrays and such as logic chips, transistors and the like. Existing semiconductors or other discrete components.
  • VLSI ultra-large scale integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种数据驱动模组(101),包括:驱动信号生成模块,用于生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限,输出接口(103)用于接收并输出所述驱动信号生成模块生成的所述源驱动电压信号。

Description

用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置
相关申请的交叉引用
本申请主张在2015年10月9日在中国提交的中国专利申请号No.201510649530.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,特别是一种用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置。
背景技术
现有的显示面板多种多样,如液晶显示面板、LED显示面板、OLED显示面板,但无一例外的是,显示面板都需要由数据驱动模组向显示面板中输出数据驱动信号,以驱动显示面板进行显示。
每一列亚像素对应的数据信号传输线之间都存在或大或小的阻抗差异(可能是由于传输路径的长短差异、制作工艺的区域不均匀性或者其他因素导致),而这种阻抗差会导致显示不良。而显示面板的尺寸越来越大,导致每一个数据模组所负责的显示区域越来越大,从一定程度上加剧了阻抗差异,导致显示不良现象越来越严重。
为了解决这类由于阻抗差异导致的显示不良,现有技术中通常采用减小周边区域的传输路径长度差异的方式,但上述的方法需要工艺流程进行配合,受到工艺流程的影响较大。
发明内容
本公开实施例的目的在于提供一种用于驱动显示面板的数据驱动模组、方法及显示装置,从数据驱动角度出发来改善由于阻抗差异带来的显示不良现象。
为了实现上述目的,本公开实施例提供了一种用于驱动显示面板的数据驱动模组,所述数据驱动模组具有至少一个输出接口,所述至少一个输出接 口通过数据信号传输线连接到显示面板中的亚像素,所述数据驱动模组包括:驱动信号生成模块,用于生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;和所述至少一个输出接口用于接收并输出所述驱动信号生成模块生成的所述源驱动电压信号。
上述的数据驱动模组,其中,所述驱动信号生成模块具体包括:信号生成单元,用于生成所述源驱动电压信号;和第一控制单元,用于控制所述信号生成单元,使得源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
上述的数据驱动模组,其中,所述第一控制单元具体包括:时序控制信号生成单元,用于生成与所述信号传输路径的阻抗相对应的时序控制信号,并输出所述时序控制信号到所述信号生成单元;
所述信号生成单元具体用于利用所述时序控制信号生成所述源驱动电压信号,所述源驱动电压信号的信号宽度与所述传输路径相匹配。
上述的数据驱动模组,其中,所述时序控制信号包括持续第一时间的高电平信号和相邻的持续第二时间的低电平信号,所述第一时间和第二时间的和值为固定值,所述时序控制信号生成单元根据所述信号传输路径的阻抗调整所述第一时间和第二时间的比值,生成与所述传输路径的阻抗相对应的所述时序控制信号。
上述的数据驱动模组,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第一控制单元针对同一个输出接口组中的所有输出接口设置相同的信号宽度,对应的数据信号传输线的平 均长度越大的输出接口组对应的信号宽度越大。
上述的数据驱动模组,其中,所述驱动信号生成模块具体包括:信号生成单元,用于生成所述源驱动电压信号;和第二控制单元,用于控制所述信号生成单元,使得所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
上述的数据驱动模组,其中,所述第二控制单元具体包括:
第一灰阶控制单元,用于调整所述目标灰阶,输出调整后的目标灰阶到所述信号生成单元;
第一伽马基准信号生成单元,用于输出预设的伽马基准电压信号到所述信号生成单元;
所述信号生成单元具体用于根据所述调整后的目标灰阶和预设的伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
上述的数据驱动模组,其中,所述第二控制单元具体包括:
第二灰阶控制单元,用于输出所述目标灰阶到所述信号生成单元;
第二伽马基准信号生成单元,用于生成与所述信号传输路径的阻抗相对应的伽马基准电压信号;
所述信号生成单元具体用于根据所述目标灰阶和所述伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
上述的数据驱动模组,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第二控制单元针对同一个输出接口组中的所有输出接口在同一目标灰阶下设置相同的补偿量,输出接口组 对应的数据信号传输线的平均长度越大的输出接口组对应的补偿量绝对值越大。
为了实现上述目的,本公开实施例还提供了一种显示装置,包括上述的数据驱动模组。
为了实现上述目的,本公开实施例还提供了一种用于数据驱动方法,所述数据驱动模组具有至少一个输出接口,所述输出接口通过数据信号传输线连接到显示面板中的亚像素,所述数据驱动方法包括:
驱动信号生成步骤,生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;
输出步骤,通过所述输出接口输出所述源驱动电压信号。
上述的数据驱动方法,其中,所述驱动信号生成步骤具体包括:
控制信号生成单元,使得信号生成单元生成的源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
上述的数据驱动方法,其中,所述驱动信号生成步骤具体包括:
控制信号生成单元,使得信号生成单元生成的所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
本公开实施例的数据驱动模组、方法及显示装置中,在生成驱动一亚像素的驱动电压信号时,考虑输出接口到亚像素之间的传输路径,使得生成的驱动电压信号能够在通过具有阻抗的传输线路的传输后,还具备使得目标亚像素工作于工作灰阶的能力,改善了亚像素之间由于线路阻抗差异带来的显示不良现象。
附图说明
图1表示根据本公开的至少一个实施例的显示面板的示意图;
图2表示本公开至少一个实施例的数据驱动模组的结构示意图;
图3表示本公开至少一个实施例中数据驱动信号的示意图;
图4表示本公开至少一个实施例的数据驱动模组的结构示意图;
图5表示本公开实施例中通过TP信号控制数据驱动信号的示意图;
图6表示本公开至少一个实施例的数据驱动模组的结构示意图;
图7表示本公开至少一个实施例中的伽马基准信号缓存单元和信号生成单元的一种结构示意图;
图8表示本公开至少一个实施例中的伽马基准信号缓存单元和信号生成单元的另一种结构示意图;
图9表示本公开至少一个实施例的数据驱动方法的流程示意图。
具体实施方式
为驱动显示面板,在面板非显示区一般设置有至少一个数据驱动模组101,每一个数据驱动模组101对应于多条数据信号传输线。如图1所示,数据驱动模组101通过数据信号传输线与显示面板中的亚像素列连接,而数据信号传输线包括两个部分:位于扇出区102的第一部分104和位于显示区的第二部分105。也就是说,位于扇出区102的第一部分104和位于显示区的第二部分105构成了信号从输出接口103传递到TFT的路径。
本公开实施例的用于驱动显示面板的数据驱动模组、方法及显示装置中,在生成驱动一亚像素的驱动电压信号时,考虑输出接口到亚像素之间的传输路径,使得生成的驱动电压信号能够在通过具有阻抗的传输线路的传输后,还具备使得目标亚像素工作于工作灰阶的能力,改善了亚像素之间由于线路阻抗差异带来的显示不良现象。
本公开至少一个实施例的一种用于驱动显示面板的数据驱动模组,所述数据驱动模组具有至少一个输出接口,所述输出接口通过数据信号传输线连接到显示面板中的亚像素,如图2所示,本公开第一实施例的所述数据驱动模组包括:
驱动信号生成模块,用于生成驱动目标亚像素的源驱动电压信号,所述 源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;
所述输出接口用于接收并输出所述驱动信号生成模块生成的所述源驱动电压信号。
源驱动电压信号生成并通过输出接口输出后,依次通过外围区的数据信号传输线、显示区数据信号传输线以及薄膜晶体管写入亚像素的像素电极,对于同一列的亚像素而言,其通过的显示区数据信号传输线的长度不一致,而对于同一行的亚像素而言,其通过的外围区的数据信号传输线不同,这种不同不但体现在长度方面,还体现在工艺方面。
因此,由于传输路径的阻抗差异,不同的亚像素在相同的源驱动电压信号的驱动下会有不同的表现,而这些不同的表现就是各种显示不良的一部分来源。
本公开具体实施例中,驱动信号生成模块在生成源驱动电压信号时,考虑每个亚像素各自不同的输出接口到亚像素之间的传输路径,使得生成的源驱动电压信号在通过具有阻抗的传输线路的传输到目标亚像素时,还具备使得目标亚像素工作于工作灰阶的能力,改善了亚像素之间由于线路阻抗差异带来的显示不良现象。
在本公开具体实施例中,根据显示面板的质量需求等可以灵活设置上述的预定门限。当质量要求较高时,该预定门限可设置小一些,反之则可以设置大一些,在此不作进一步详细描述。
根据之前的分析可知,不同的亚像素在相同的源驱动电压信号的驱动下会有不同的表现,导致这种不同的表现的根源在于:在相同的源驱动电压信号的驱动下,不同亚像素的充电程度不一样。
本公开具体实施例中,生成的源驱动电压信号能够在通过传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号。
对于不同的亚像素而言,当源驱动电压信号相同时,对应的传输路径的阻抗越大,由该源驱动电压信号充电的亚像素的充电程度越低。而从源驱动 电压信号自身而言,经过的传输路径的阻抗越大,其充电能力就越弱。
因此要想该源驱动电压信号在经过传输路径之后依然能够达到预期的驱动能力,则需要进行一定的补偿,即补偿传输路径的阻抗所降低的充电能力。
而充电能力的提升可以从如下两方面着手:充电时间和充电电压,说明如下。
如图3所示,对于一个亚像素而言,生成的源驱动电压信号为一个脉冲信号,其包括如图3所示的两个参数:V(信号幅度)和T(脉冲宽度)。其中,V越大,代表越强的输入激励,因此对应的充电能力越强,而T越大,代表更长的充电时间,因此对应的充电能力也越强。
因此,对于某一个亚像素而言,当对应的传输路径的阻抗较大时,可以通过增加源驱动电压信号的电压幅度和/或脉冲宽度来补偿传输路径的阻抗所导致的充电能力降低,使得源驱动电压信号能够在通过传输路径传输到所述目标亚像素后,依然具备使得目标亚像素工作于目标灰阶的充电能力。
也就是说,在本公开具体实施例中,当前待驱动的目标亚像素到输出接口之间的传输路径的阻抗较大时,则需要增加源驱动电压信号的信号幅度和/或增加源驱动电压信号的脉冲宽度。
在本公开的至少一个实施例中,通过控制信号宽度(脉冲宽度)来保证源驱动电压信号在经过传输路径之后依然能够达到预期的驱动能力,如图4所示,本公开实施例的数据驱动模组,包括:
信号生成单元,用于生成所述源驱动电压信号;
第一控制单元,用于控制所述信号生成单元,使得源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
而控制源驱动电压信号的信号宽度的方式多种多样,在本公开具体实施例中,第一控制单元可以通过一时序控制信号控制所述源驱动电压信号的信号宽度,即:所述第一控制单元具体包括:
时序控制信号生成单元,用于生成与所述信号传输路径的阻抗相对应的 时序控制信号,并输出所述时序控制信号到所述信号生成单元;
所述信号生成单元具体用于利用所述时序控制信号生成所述源驱动电压信号,所述源驱动电压信号的信号宽度与所述传输路径相匹配。
本公开实施例中,该时序控制信号可以是时序控制器TCON输出的TP信号,并通过TP信号来控制源驱动电压信号的信号宽度。如图5所示,TP包括如下几个参数:
T,TP信号的周期,或者说TP信号的信号宽度;
A,高电平信号的持续时间,或者说高电平信号的信号宽度;
B,低电平信号的持续时间,或者说低电平信号的信号宽度。
结合图5所示,可以发现在TP信号的控制下,在高电平信号的下降沿开始输出源驱动电压信号,而在低电平信号的上升沿结束输出源驱动电压信号,即:源驱动电压信号的信号宽度与低电平信号的信号宽度相同。
因此,在本公开的具体实施例中,可以通过调整TP信号的B参数来实现对源驱动电压信号的信号宽度的控制。
因此本公开具体实施例中可以通过调整B参数来控制源驱动电压信号的信号宽度。而调整B参数包括如下几种情况:
1、调整B参数,A参数随之变化,维持T不变;
2、调整B参数,A参数维持不变,T发生改变。
而TP信号的周期需要与栅极驱动信号的时序相配合,为了降低实现复杂度,本公开至少一个实施例的数据驱动模组,所述A和B的和值为固定值,所述时序控制信号生成单元根据所述信号传输路径的阻抗调整所述A和B的比值(即时序控制信号的占空比),进而使得信号生成单元能够通过时序控制信号(与信号传输路径的阻抗相对应的)来生成所述源驱动电压信号(信号宽度与所述传输路径相匹配)。
在此应该说明的是,所谓的A和B的和值为固定值包括两个层次的含义:
1、在一帧信号的处理过程中,针对不同的亚像素,时序控制信号生成单元输出的时序控制信号的信号宽度都相同;
2、在不同帧的信号处理过程中,时序控制信号生成单元输出给同一亚像素的时序控制信号的信号宽度维持不变。
在本公开具体实施例中,时序控制信号生成单元生成的时序控制信号与所述信号传输路径的阻抗相对应,对应于同一目标灰阶,信号传输路径的阻抗越大,则时序控制信号的B越大,使得信号生成单元生成的源驱动电压信号的信号宽度越大。
本公开具体实施例中,可以针对每一个亚像素来执行如上的方案,说明如下。
本公开实施例中,如果针对每一个亚像素执行上述的方案,则首先需要通过实际测试的方式预先获取每一个亚像素在每一个目标灰阶下,预先确定好源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,然后测试在该信号幅度下,使得该亚像素能够工作于工作灰阶的源驱动电压信号的信号宽度,进而可以根据信号宽度确定TP信号的A和B的值。
而测试获取合适的A、B的值的实现方式多种多样,属于现有技术的范畴,在此不作详细描述。
在得到每一个亚像素在每一个目标灰阶的A和B之后,即可保存如下三者的对应关系,目标亚像素、目标灰阶以及对应的A、B值。
在实际显示过程中,在亚像素和目标灰阶确定之后,即可调取对应的A和B的值生成合适的TP信号,去控制信号生成单元,使得生成的源驱动电压信号的信号宽度与所述传输路径相匹配。
信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配的源驱动电压信号在通过传输路径传输到亚像素后,能够向亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号。
上述的方式需要针对每一个亚像素的每一个灰阶保存一个A和B,能够实现最优化的阻抗差异补偿,但其数据存储量相当大,而针对亚像素的目标灰阶去检索合适的A和B也需要耗费较大的处理资源和较长的时间。
为了提高响应速度,在本公开的具体实施例,可以仅仅针对数据信号传输线位于扇出区102的第一部分104(如图1所示)进行补偿。
这种情况下,可以针对将每一数据驱动模组的多个输出接口分为M(大于或等于2的整数)个接口组进行补偿处理。
假定某一个数据驱动模组对应于N1+N2+N3+N4+N5个输出接口,每一个输出接口通过扇出区的数据信号传输线连接到显示区的数据信号传输线,则按照扇出区的数据信号传输线的长度从小到大对管脚排序后进行编号,并分为5组,对应的管脚组合为:
组合1:1、2、...、N1;
组合2:N1+1、N1+2、...、N1+N2;
组合3:N1+N2+1、N1+N2+2、...、N1+N2+N3;
组合4:N1+N2+N3+1、N1+N2+N3+2、...、N1+N2+N3+N4;
组合5:N1+N2+N3+N4+1、N1+N2+N3+N4+2、...、N1+N2+N3+N4+N5;
每一个输出接口属于且仅属于一个组,上述的任意两个组合中,其中一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值。
由于每一个输出接口对应的数据信号传输线位于显示区的部分的长度完全相同,其数据信号传输线位于显示区部分的阻抗也会相同,则任意两个输出接口组中,也可以从阻抗的角度描述如下,其中一个输出接口组对应的数据信号传输线的阻抗的最大值小于另一个输出接口组对应的数据信号传输线的阻抗的最小值。
上述的分组情况下,本公开实施例中,第一控制单元针对同一个输出接口组中的所有输出接口对应的源驱动电压信号设置相同的信号宽度,而对应的数据信号传输线的平均阻抗越大(或者说输出接口组对应的数据信号传输线的平均长度)的输出接口组对应的源驱动电压信号的信号宽度越大,以补偿由于输出接口组合对应的数据信号传输线位于扇出区的部分的长度不同所导致的阻抗差异。
这种方式下,对每一个驱动模组,会设置如下表所示的M组A、B参数:
Figure PCTCN2016098955-appb-000001
在实际显示过程中,在亚像素确定之后,即可确定该亚像素所在的列对应于哪一组输出接口组,则可以调取该输出接口组对应的A和B的值生成合 适的TP信号,去控制信号生成单元,使得生成的源驱动电压信号的信号宽度与所述传输路径相匹配。
在本公开的至少一个实施例中,也可以通过控制信号幅值来保证源驱动电压信号在经过传输路径之后依然能够达到预期的驱动能力,如图6所示,本公开第三实施例的数据驱动模组,包括:
信号生成单元,用于生成所述源驱动电压信号;
第二控制单元,用于控制所述信号生成单元,使得所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
在本公开具体实施例中,对应于同一目标灰阶,信号传输路径的阻抗越大,补偿量越大,则信号生成单元生成的源驱动电压信号的信号幅值越大。
而在本公开实施例中,信号生成单元能够根据所述灰阶和伽马基准电压信号来控制输出的驱动电压信号的幅度,本公开实施例可以通过灰阶和伽马基准电压信号来控制源驱动电压信号的幅度。分别说明如下。
通过伽马基准电压信号来控制源驱动电压信号的幅度时,本公开实施例的所述第二控制单元具体包括:
第一灰阶控制单元,用于调整所述目标灰阶,输出调整后的目标灰阶到所述信号生成单元;
第一伽马基准信号生成单元,用于输出预设的伽马基准电压信号到所述信号生成单元;
所述信号生成单元具体用于根据所述调整后的目标灰阶和预设的伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
现有的数据驱动模组中,为了实现多种多样的输出调节,X bit的数据驱动模组内部实际有(X+2)bit的输出电压可选择,因此,多余的2bit的输出电压可以用于上述的源驱动电压信号的选择。
而通过灰阶来控制源驱动电压信号的幅度时,所述第二控制单元具体包 括:
第二灰阶控制单元,用于输出所述目标灰阶到所述信号生成单元;
第二伽马基准信号生成单元,用于生成与所述信号传输路径的阻抗相对应的伽马基准电压信号;
所述信号生成单元具体用于根据所述目标灰阶和伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
相对而言,由于伽马基准电压信号可以通过电压生成芯片生成,因此,通过伽马基准电压信号来控制源驱动电压信号的幅度的实现方式灵活度更高。
上述的方式需要针对每一个亚像素的每一个灰阶保存一个灰阶变化量或者针对每一个亚像素的每一个灰阶保存一组伽马基准电压信号,可以实现最优化的阻抗差异补偿,但其数据存储量相当大,而针对亚像素的目标灰阶去检索合适的灰阶变化量或伽马基准电压信号需要耗费较大的处理资源。
为了提高响应速度,在本公开的具体实施例,可以仅仅针对数据信号传输线位于扇出区102的第一部分104(如图1所示)进行补偿。
这种情况下,可以针对将每一数据驱动模组的多个输出接口分为M(大于或等于2的整数)个接口组进行补偿处理。
假定某一个数据驱动模组对应于N1+N2+N3+N4+N5个输出接口,每一个输出接口通过扇出区的数据信号传输线连接到显示区的数据信号传输线,则按照扇出区的数据信号传输线的长度从小到大对管脚排序后进行编号,并分为5组,对应的管脚组合为:
组合1:1、2、...、N1;
组合2:N1+1、N1+2、...、N1+N2;
组合3:N1+N2+1、N1+N2+2、...、N1+N2+N3;
组合4:N1+N2+N3+1、N1+N2+N3+2、...、N1+N2+N3+N4;
组合5:N1+N2+N3+N4+1、N1+N2+N3+N4+2、...、N1+N2+N3+N4+N5;
上述的任意两个组合中,每一个输出接口属于且仅属于一个组,其中一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值。
由于每一个输出接口对应的数据信号传输线位于显示区的部分完全相同, 则任意两个输出接口组中,其中一个输出接口组对应的数据信号传输线的阻抗的最大值小于另一个输出接口组对应的数据信号传输线的阻抗的最小值。
上述的分组情况下,本公开实施例中,第二控制单元针对同一个输出接口组中的所有输出接口在同一目标灰阶下设置相同的信号补偿量,而对应的数据信号传输线的平均阻抗(或者说输出接口组对应的数据信号传输线的平均长度)越大的输出接口组对应的信号补偿量越大,以补偿由于输出接口组合对应的数据信号传输线位于扇出区的部分的长度不同所导致的阻抗差异。
这种方式下,对每一个驱动模组,会设置如下表所示的M组补偿量参数:
  第一组 第二组 ...... 第M组
灰度0 Δ10 Δ20 ...... ΔM0
灰度1 Δ11 Δ21 ...... ΔM1
...... ...... ...... ...... ......
灰度L Δ1M Δ2M ...... ΔMM
...... ...... ...... ...... ......
在实际显示过程中,在亚像素确定之后,即可确定该亚像素所在的列对应于哪一组输出接口组,则可以调取该输出接口组对应灰度的补偿量来补偿原始信号,得到所述源驱动电压信号。
上述的补偿量都可以利用现有技术的测试方法进行预先测试得到,在此不作详细描述。
在本公开具体实施例中,输出接口分为M组时,第二伽马基准信号生成单元和所述信号生成单元之间的配合可以采用两种方式,如下所述。
方式一
方式一中,如图7所示,采用一个伽马基准信号缓存单元来实现,M个信号生成单元共享一个伽马基准信号缓存单元,所有信号生成单元从伽马基准信号缓存单元获取其对应的伽马基准信号。
方式二
方式二中,如图8所示,采用伽马基准信号缓存单元和信号生成单元一一对应来实现,即每个信号生成单元独立拥有一个伽马基准信号缓存单元,信号生成单元从各自的伽马基准信号缓存单元获取其对应的伽马基准信号。
而在本公开具体实施例中,不管是采用控制源驱动电压信号的V(信号幅度)还是T(脉冲宽度),当数据驱动模组包括多个时,每一个数据驱动模组都可以独立按照上述的方式设置,补偿数据驱动模组管理区域内的显示不良,也可以是数据驱动模组综合考虑,来补偿液晶面板区域的显示不良。
本公开实施例还公开了一种显示装置,包括上述的数据驱动模组。
本公开实施例还公开了一种用于驱动显示面板的数据驱动方法,所述数据驱动模组具有至少一个输出接口,所述输出接口通过数据信号传输线连接到显示面板中的亚像素,如图9所示,所述数据驱动方法包括:
驱动信号生成步骤901,生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;
输出步骤902,通过所述输出接口输出所述源驱动电压信号。
本公开具体实施例中,在生成驱动源驱动电压信号时,考虑每个亚像素各自不同的输出接口到亚像素之间的传输路径,使得生成的源驱动电压信号在通过具有阻抗的传输线路的传输到目标亚像素时,还具备使得目标亚像素工作于工作灰阶的能力,改善了亚像素之间由于线路阻抗差异带来的显示不良现象。
上述的数据驱动方法,所述驱动信号生成步骤具体包括:
控制信号生成单元,使得信号生成单元生成的源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
上述的数据驱动方法,所述驱动信号生成步骤具体包括:
控制信号生成单元,使得信号生成单元生成的所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电 压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限。
本公开实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
所有可以以软件实现的模块,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种用于驱动显示面板的数据驱动模组,所述数据驱动模组具有至少一个输出接口,所述至少一个输出接口通过数据信号传输线连接到显示面板中的亚像素,其中,所述数据驱动模组还包括:
    驱动信号生成模块,用于生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;
    所述至少一个输出接口用于接收并输出所述驱动信号生成模块生成的所述源驱动电压信号。
  2. 根据权利要求1所述的数据驱动模组,其中,所述驱动信号生成模块具体包括:
    信号生成单元,用于生成所述源驱动电压信号;和
    第一控制单元,用于控制所述信号生成单元,使得源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述传输路径相匹配,以在所述源驱动电压信号通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
  3. 根据权利要求2所述的数据驱动模组,其中,所述第一控制单元具体包括:
    时序控制信号生成单元,用于生成与所述传输路径的阻抗相对应的时序控制信号,并输出所述时序控制信号到所述信号生成单元;
    所述信号生成单元利用所述时序控制信号生成,信号宽度与所述传输路径相匹配的所述源驱动电压信号。
  4. 根据权利要求3所述的数据驱动模组,其中,所述时序控制信号包括持续第一时间的高电平信号和相邻的持续第二时间的低电平信号,所述第一时间和第二时间的和值为固定值,所述时序控制信号生成单元根据所述信号 传输路径的阻抗调整所述第一时间和第二时间的比值,生成与所述传输路径的阻抗相对应的所述时序控制信号。
  5. 根据权利要求2-4中任意一项所述的数据驱动模组,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第一控制单元针对同一个输出接口组中的所有输出接口设置相同的信号宽度,对应的数据信号传输线的平均长度越大的输出接口组对应的信号宽度越大。
  6. 根据权利要求1所述的数据驱动模组,其中,所述驱动信号生成模块具体包括:
    信号生成单元,用于生成所述源驱动电压信号;
    第二控制单元,用于控制所述信号生成单元,使得所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
  7. 根据权利要求6所述的数据驱动模组,其中,所述第二控制单元具体包括:
    第一灰阶控制单元,用于调整所述目标灰阶,输出调整后的目标灰阶到所述信号生成单元;
    第一伽马基准信号生成单元,用于输出预设的伽马基准电压信号到所述信号生成单元;
    所述信号生成单元具体用于根据所述调整后的目标灰阶和预设的伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
  8. 根据权利要求6所述的数据驱动模组,其中,所述第二控制单元具体包括:
    第二灰阶控制单元,用于输出所述目标灰阶到所述信号生成单元;
    第二伽马基准信号生成单元,用于生成与所述信号传输路径的阻抗相对应的伽马基准电压信号;
    所述信号生成单元具体用于根据所述目标灰阶和所述伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
  9. 根据权利要求6-8中任意一项所述的数据驱动模组,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第二控制单元针对同一个输出接口组中的所有输出接口在同一目标灰阶下设置相同的补偿量,输出接口组对应的数据信号传输线的平均长度越大的输出接口组对应的补偿量绝对值越大。
  10. 根据权利要求8或9所述的数据驱动模组,其中,所述伽马基准电压信号通过电压生成芯片生成。
  11. 一种显示装置,包括权利要求1-10中任意一项所述的数据驱动模组。
  12. 一种用于驱动显示面板的数据驱动方法,所述数据驱动模组具有至少一个输出接口,所述至少一个输出接口通过数据信号传输线连接到显示面板中的亚像素,其中,所述数据驱动方法包括:
    驱动信号生成步骤,生成驱动目标亚像素的源驱动电压信号,所述源驱动电压信号能够在通过一传输路径传输到所述目标亚像素后,向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述亚像素的目标灰阶的差异小于预定门限;
    输出步骤,通过所述至少一个输出接口输出所述源驱动电压信号。
  13. 根据权利要求12所述的数据驱动方法,其中,所述驱动信号生成步骤具体包括:
    控制信号生成单元,使得信号生成单元生成的源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值,所述源驱动电压信号的信号宽度与所述 传输路径相匹配,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
  14. 根据权利要求13所述的数据驱动方法,其中,
    时序控制信号生成单元生成与所述传输路径的阻抗相对应的时序控制信号,并输出所述时序控制信号到所述信号生成单元;
    所述信号生成单元利用所述时序控制信号生成,信号宽度与所述传输路径相匹配的所述源驱动电压信号。
  15. 根据权利要求14所述的数据驱动方法,其中,所述时序控制信号包括持续第一时间的高电平信号和相邻的持续第二时间的低电平信号,所述第一时间和第二时间的和值为固定值,所述时序控制信号生成单元根据所述信号传输路径的阻抗调整所述第一时间和第二时间的比值,生成与所述传输路径的阻抗相对应的所述时序控制信号。
  16. 根据权利要求13-15中任意一项所述的数据驱动方法,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第一控制单元针对同一个输出接口组中的所有输出接口设置相同的信号宽度,对应的数据信号传输线的平均长度越大的输出接口组对应的信号宽度越大。
  17. 根据权利要求12所述的数据驱动方法,其中,所述驱动信号生成步骤具体包括:
    控制信号生成单元,使得信号生成单元生成的所述源驱动电压信号的信号幅值为所述目标驱动电压信号的幅值和补偿量的和值,所述源驱动电压信号的信号宽度为预设值,以在通过一传输路径传输到所述目标亚像素后,能够向所述目标亚像素写入使得所述目标亚像素工作于工作灰阶的目标驱动电压信号,所述工作灰阶与所述目标亚像素的目标灰阶的差异小于预定门限。
  18. 根据权利要求17所述的数据驱动方法,其中,
    调整所述目标灰阶,输出调整后的目标灰阶到所述信号生成单元;
    输出预设的伽马基准电压信号到所述信号生成单元;
    所述信号生成单元根据所述调整后的目标灰阶和预设的伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
  19. 根据权利要求17所述的数据驱动方法,其中,
    输出所述目标灰阶到所述信号生成单元;
    生成与所述信号传输路径的阻抗相对应的伽马基准电压信号;
    所述信号生成单元具体用于根据所述目标灰阶和所述伽马基准电压信号生成信号幅值为所述目标驱动电压信号的幅值和补偿量的和值的源驱动电压信号。
  20. 根据权利要求17-19中任意一项所述的数据驱动方法,其中,当所述输出接口为多个时,将多个输出接口分为M个接口组,M为大于或等于2的整数,每一个输出接口属于且仅属于一个组,任意两个输出接口组中,一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最大值小于另一个输出接口组对应的数据信号传输线位于扇出区的部分的长度的最小值,所述第二控制单元针对同一个输出接口组中的所有输出接口在同一目标灰阶下设置相同的补偿量,输出接口组对应的数据信号传输线的平均长度越大的输出接口组对应的补偿量绝对值越大。
PCT/CN2016/098955 2015-10-09 2016-09-14 用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置 WO2017059761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/514,629 US10580371B2 (en) 2015-10-09 2016-09-14 Data driving module for driving display panel, data driving method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510649530.3A CN105118423A (zh) 2015-10-09 2015-10-09 用于驱动显示面板的数据驱动模组、方法及显示装置
CN201510649530.3 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017059761A1 true WO2017059761A1 (zh) 2017-04-13

Family

ID=54666387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098955 WO2017059761A1 (zh) 2015-10-09 2016-09-14 用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置

Country Status (3)

Country Link
US (1) US10580371B2 (zh)
CN (1) CN105118423A (zh)
WO (1) WO2017059761A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118423A (zh) * 2015-10-09 2015-12-02 京东方科技集团股份有限公司 用于驱动显示面板的数据驱动模组、方法及显示装置
TWI579822B (zh) * 2015-11-17 2017-04-21 瑞鼎科技股份有限公司 顯示面板驅動電路及其補償方法
EP3242286A1 (en) * 2016-05-02 2017-11-08 Samsung Display Co., Ltd. Display device and driving method thereof
CN106782372A (zh) * 2016-12-26 2017-05-31 深圳市华星光电技术有限公司 一种液晶显示器及其驱动方法
CN106486077A (zh) * 2016-12-29 2017-03-08 深圳市华星光电技术有限公司 一种改善大视角色偏的驱动方法、显示面板及显示装置
CN107591142B (zh) * 2017-09-29 2020-03-31 康佳集团股份有限公司 一种画面显示质量的调控方法、装置及存储介质
CN109448645B (zh) * 2018-10-30 2020-12-18 惠科股份有限公司 信号调整电路及方法、显示装置
CN109830210B (zh) * 2019-01-25 2021-03-12 合肥鑫晟光电科技有限公司 置位电压生成单元、置位电压生成方法和显示装置
CN110224078B (zh) * 2019-06-05 2021-12-14 京东方科技集团股份有限公司 一种显示面板、覆晶薄膜及显示装置
CN112825240B (zh) * 2019-11-20 2022-04-08 京东方科技集团股份有限公司 显示驱动装置及其显示驱动方法、显示模组及显示装置
CN110827782A (zh) * 2019-11-27 2020-02-21 Tcl华星光电技术有限公司 一种驱动电路及液晶显示装置
CN111816120A (zh) * 2020-07-01 2020-10-23 深圳市华星光电半导体显示技术有限公司 显示面板亮度补偿方法及显示面板
CN112951172A (zh) * 2021-02-04 2021-06-11 重庆先进光电显示技术研究院 一种液晶显示装置以及充电控制方法
CN114038388B (zh) * 2021-12-14 2024-04-05 集创北方(珠海)科技有限公司 源极驱动芯片的输出控制电路以及显示面板
CN114765013B (zh) * 2022-05-23 2024-02-23 合肥京东方显示技术有限公司 一种显示驱动电路、显示驱动方法及相关设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010022570A1 (en) * 1999-12-27 2001-09-20 Chung-Ok Chang Liquid crystal display device
CN102402963A (zh) * 2011-12-02 2012-04-04 深圳市华星光电技术有限公司 液晶显示器的驱动电路及驱动方法
CN102402957A (zh) * 2011-11-15 2012-04-04 深圳市华星光电技术有限公司 Lcd数据驱动ic输出补偿电路及补偿方法
CN102456331A (zh) * 2010-10-25 2012-05-16 乐金显示有限公司 液晶显示器
CN103165095A (zh) * 2013-03-29 2013-06-19 深圳市华星光电技术有限公司 一种液晶面板的驱动电路、液晶面板和一种驱动方法
CN103325349A (zh) * 2012-03-23 2013-09-25 乐金显示有限公司 液晶显示设备
CN103426409A (zh) * 2012-05-15 2013-12-04 联咏科技股份有限公司 显示驱动装置及显示面板的驱动方法
CN105118423A (zh) * 2015-10-09 2015-12-02 京东方科技集团股份有限公司 用于驱动显示面板的数据驱动模组、方法及显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146371A (ja) 1994-11-18 1996-06-07 Sony Corp 液晶表示装置およびその製造方法
JP2000182914A (ja) 1998-12-10 2000-06-30 Toshiba Corp アライメントマーク
JP3968241B2 (ja) 1999-06-24 2007-08-29 セイコーエプソン株式会社 液晶装置用基板、その製造方法、液晶装置、その製造方法および電子機器
JP2001075108A (ja) 1999-09-06 2001-03-23 Seiko Epson Corp 液晶装置及びその製造方法
US7705924B2 (en) * 2005-02-22 2010-04-27 Samsung Electronics Co., Ltd. Liquid crystal display and test method thereof
CN101059941B (zh) * 2006-04-17 2010-08-18 乐金显示有限公司 显示装置及其驱动方法
KR101250787B1 (ko) * 2006-06-30 2013-04-08 엘지디스플레이 주식회사 데이터 구동 ic 내에 레지스터 방식의 감마전압발생기를구비한 액정표시장치
KR20100112861A (ko) * 2009-04-10 2010-10-20 삼성전자주식회사 영상표시장치
US8791893B2 (en) * 2011-11-15 2014-07-29 Shenzhen China Star Optoelectronics Technology Co., Ltd. Output compensation circuit and output compensation method for LCD data drive IC, and LCD
US20130141401A1 (en) * 2011-12-02 2013-06-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Driving circuit of lcd and driving method thereof
JP2013120981A (ja) * 2011-12-06 2013-06-17 Renesas Electronics Corp データドライバ、表示パネル駆動装置及び表示装置
KR20140017767A (ko) 2012-07-31 2014-02-12 삼성디스플레이 주식회사 증착용 마스크 및 이의 정렬 방법
US9275594B2 (en) 2013-03-29 2016-03-01 Shenzhen China Star Optoelectronics Technology Co., Ltd. Driving circuit of liquid crystal panel, liquid crystal panel, and a driving method
US9245851B2 (en) 2013-07-18 2016-01-26 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
KR102319164B1 (ko) * 2015-02-25 2021-11-01 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN105572938B (zh) 2016-01-29 2018-06-08 京东方科技集团股份有限公司 一种显示基板、显示装置及定位标识的识别方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010022570A1 (en) * 1999-12-27 2001-09-20 Chung-Ok Chang Liquid crystal display device
CN102456331A (zh) * 2010-10-25 2012-05-16 乐金显示有限公司 液晶显示器
CN102402957A (zh) * 2011-11-15 2012-04-04 深圳市华星光电技术有限公司 Lcd数据驱动ic输出补偿电路及补偿方法
CN102402963A (zh) * 2011-12-02 2012-04-04 深圳市华星光电技术有限公司 液晶显示器的驱动电路及驱动方法
CN103325349A (zh) * 2012-03-23 2013-09-25 乐金显示有限公司 液晶显示设备
CN103426409A (zh) * 2012-05-15 2013-12-04 联咏科技股份有限公司 显示驱动装置及显示面板的驱动方法
CN103165095A (zh) * 2013-03-29 2013-06-19 深圳市华星光电技术有限公司 一种液晶面板的驱动电路、液晶面板和一种驱动方法
CN105118423A (zh) * 2015-10-09 2015-12-02 京东方科技集团股份有限公司 用于驱动显示面板的数据驱动模组、方法及显示装置

Also Published As

Publication number Publication date
CN105118423A (zh) 2015-12-02
US10580371B2 (en) 2020-03-03
US20170330521A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2017059761A1 (zh) 用于驱动显示面板的数据驱动模组、数据驱动方法及显示装置
US10984720B2 (en) Driving method and driving apparatus of display panel
US9640128B2 (en) Gamma voltage tuning method and gamma voltage tuning system
US10872555B2 (en) Display drive circuit
US8223097B2 (en) Pixel array structure, flat display panel and method for driving flat display panel thereof
US10032426B2 (en) Display apparatus and method of driving the same
US11151944B2 (en) Driving circuit, display apparatus and driving method thereof
US20060238486A1 (en) Liquid crystal display device suitable for display of moving pictures
US10748501B2 (en) Gate driver, display panel and display using same
WO2016070459A1 (zh) 液晶显示装置
US9514699B2 (en) Device and method for adjusting gamma voltage
KR101676608B1 (ko) 액정 표시장치 및 그의 구동방법
KR20080004986A (ko) 구동 장치, 이를 포함하는 액정 표시 장치 및 이의 구동방법
JP4785704B2 (ja) 表示装置
US10192509B2 (en) Display apparatus and a method of operating the same
CN106257578A (zh) 用于显示装置的驱动模块及相关的驱动方法
KR20120078628A (ko) 액정 디스플레이 장치의 게이트 라인 구동방법 및 게이트 라인 구동장치
CN205230562U (zh) 栅极驱动电路及应用该电路的显示装置
US11238815B2 (en) Techniques for updating light-emitting diodes in synchrony with liquid-crystal display pixel refresh
US20130293528A1 (en) Display driving apparatus and method for driving display panel
KR100962502B1 (ko) 액정표시장치의 구동장치
KR20080043508A (ko) 액정표시장치 및 그의 구동 방법
TW201810232A (zh) 閘極驅動電路
KR102435005B1 (ko) 표시 장치 및 이의 구동 방법
TWI813531B (zh) 影像資料識別電路及面板系統控制器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15514629

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853066

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16853066

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16853066

Country of ref document: EP

Kind code of ref document: A1