WO2017057618A1 - Solar cell element, method for manufacturing same and solar cell module - Google Patents

Solar cell element, method for manufacturing same and solar cell module Download PDF

Info

Publication number
WO2017057618A1
WO2017057618A1 PCT/JP2016/078894 JP2016078894W WO2017057618A1 WO 2017057618 A1 WO2017057618 A1 WO 2017057618A1 JP 2016078894 W JP2016078894 W JP 2016078894W WO 2017057618 A1 WO2017057618 A1 WO 2017057618A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
oxide layer
silicon oxide
cell element
silicon
Prior art date
Application number
PCT/JP2016/078894
Other languages
French (fr)
Japanese (ja)
Inventor
学 古茂田
健次 福地
祐太 入江
剛 寺村
健二 大場
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017543585A priority Critical patent/JPWO2017057618A1/en
Publication of WO2017057618A1 publication Critical patent/WO2017057618A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings

Definitions

  • the present disclosure relates to a solar cell element, a manufacturing method thereof, and a solar cell module.
  • a PID (Potential Induced Degradation) phenomenon is known in which sodium ions diffused into a semiconductor substrate of a solar cell element hinder the movement of light-generating carriers and the output of a solar cell module composed of the solar cell element decreases. .
  • it has been proposed to provide an ion diffusion blocking layer on a silicon substrate constituting a solar cell element see, for example, Patent Document 1 below.
  • a first silicon oxide layer disposed on a silicon substrate and a silicon oxide layer disposed on the first silicon oxide layer, the silicon with respect to oxygen rather than the first silicon oxide layer.
  • a second silicon oxide layer having a high content.
  • the surface of a silicon substrate is oxidized to form the first silicon oxide layer, and the first silicon oxide is formed by a CVD method using monosilane gas and nitrous oxide gas.
  • the second silicon oxide layer is formed on the layer.
  • one aspect of the solar cell module of the present disclosure includes the solar cell element.
  • FIG. 1 is a diagram for explaining an example of a solar cell element according to the embodiment.
  • FIG. 1A is a plan view of the solar cell element as viewed from the surface side, and FIG. It is the top view seen from the back side.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is an enlarged cross-sectional view enlarging a part A of FIG.
  • FIG. 4 is a diagram for explaining an example of a method for manufacturing a solar cell element according to the embodiment, and FIGS. 4A to 4G are cross-sectional views of the solar cell element.
  • FIG. 5 is a partial cross-sectional view illustrating a method for forming a first silicon oxide layer constituting an example of the solar cell element according to the embodiment.
  • FIG. 6 is a diagram for explaining an example of the solar cell element according to the embodiment, and is an enlarged cross-sectional view of a portion corresponding to part A in FIG. 2.
  • FIG. 7 is a diagram illustrating an example of the solar cell module according to the embodiment.
  • FIG. 7A is a plan view showing the first surface side of the solar cell module, and
  • FIG. It is a top view which shows the 2nd surface side.
  • FIG. 8 is a view for explaining an example of the solar cell element constituting the solar cell module shown in FIG. 7, and
  • FIG. 8 (a) is a plan view showing a state in which a connecting member is connected to the solar cell element.
  • b) is a cross-sectional view showing a connection state between two solar cell elements.
  • FIG. 9 is an exploded cross-sectional view showing an example of a solar cell panel constituting the solar cell module shown in FIG.
  • the solar cell element 1 includes a silicon substrate 2.
  • the solar cell element 1 has a surface 1a that is a first surface that mainly receives light and a back surface 1b that is a second surface facing the surface 1a.
  • the silicon substrate 2 also has a surface 2a that is a first surface corresponding to the surface 1a of the solar cell element 1 and a back surface 2b that is a second surface corresponding to the back surface 1b of the solar cell element 1.
  • a single crystal silicon substrate or a polycrystalline silicon substrate is used as the silicon substrate 2.
  • the silicon substrate 2 contains a dopant element such as boron or gallium and has one conductivity type (for example, p-type) region.
  • the planar shape of the silicon substrate 2 is, for example, a square shape or a rectangular shape having a side of about 100 mm to 180 mm, but is not particularly limited.
  • the thickness of the silicon substrate 2 is, for example, about 150 ⁇ m to 250 ⁇ m. Further, minute irregularities for reducing the reflectance of light may be provided on the surface 2 a side of the silicon substrate 2. In the following, an example in which a p-type polycrystalline silicon substrate is used as the silicon substrate 2 will be described.
  • the silicon substrate 2 has a reverse conductivity type layer 8 on the surface 2a side.
  • the reverse conductivity type layer 8 is a reverse conductivity type (n-type) region with respect to the one conductivity type region 7 of the silicon substrate 2 and forms a pn junction with the one conductivity type region 7.
  • the reverse conductivity type layer 8 can be formed by diffusing a dopant element such as phosphorus on the surface 2 a side of the silicon substrate 2.
  • a silicon oxide layer 9 first silicon oxide layer 9a, second silicon oxide layer 9b
  • an antireflection layer 11 are arranged in this order.
  • a bus bar electrode 3 and finger electrodes 4 are arranged as surface electrodes.
  • the collector electrode 5 and the connection electrode 6 are arrange
  • the bus bar electrode 3 provided on the surface 1a (surface 2a of the silicon substrate 2) side of the solar cell element 1 has a role of further collecting photogenerated carriers (hereinafter referred to as carriers) collected by the finger electrodes 4.
  • the bus bar electrodes 3 have an elongated shape with a width of about 1 mm to 3 mm along the Y-axis direction shown in FIG.
  • the finger electrode 4 has a role of collecting carriers from the silicon substrate 2 and extends, for example, in the X-axis direction illustrated in FIG. 1A and is connected so as to be substantially orthogonal to the bus bar electrode 3.
  • the finger electrodes 4 have a width of about 50 ⁇ m to 200 ⁇ m, and a plurality of finger electrodes 4 are formed with an interval of about 1 mm to 8 mm.
  • the bus bar electrode 3 and the finger electrode 4 are formed by, for example, applying a conductive paste mainly composed of silver in a desired shape and then baking it.
  • the thickness of the bus bar electrode 3 and finger electrode 4 after firing is, for example, about 10 ⁇ m to 30 ⁇ m.
  • connection electrode 6 is provided on the back surface 1 b side of the solar cell element 1.
  • the connection electrode 6 has a width of about 1 mm to 5 mm, and is arranged in the Y-axis direction illustrated in FIG. 1B at about 2 to 5 at positions almost opposite to the bus bar electrode 3 provided on the surface 1a.
  • the connection electrode 6 is formed, for example, by applying a conductive paste containing silver as a main component in a desired shape and baking it.
  • the thickness of the connection electrode 6 after firing is about 10 ⁇ m to 30 ⁇ m.
  • the collecting electrode 5 collects carriers on the back surface 1 b of the solar cell element 1 and transmits them to the connection electrode 6.
  • the collecting electrode 5 is formed on the substantially entire surface of the back surface 2 b excluding the 0.5 mm to 3 mm width portion in the outer peripheral portion of the back surface 2 b of the silicon substrate 2 and the arrangement portion of the connection electrode 6.
  • the current collecting electrode 5 can be formed by, for example, applying a conductive paste mainly composed of aluminum in a desired shape and then baking it.
  • the thickness of the current collecting electrode 5 is, for example, about 15 ⁇ m to 50 ⁇ m.
  • a BSF (Back-Surface-Field) region 10 shown in FIG. 2 forms an internal electric field on the back surface 2b side of the silicon substrate 2, and hardly reduces the photoelectric conversion efficiency due to recombination of minority carriers in the vicinity of the back surface 2b.
  • the BSF region 10 has the same conductivity type as the one conductivity type region 7 of the silicon substrate 2, and the dopant element is present at a concentration higher than the concentration of the dopant element doped in the one conductivity type region 7. To do. Further, when the silicon substrate 2 has a p-type, the BSF region 10 diffuses a dopant element such as boron or aluminum to the back surface 2b side, for example.
  • the BSF region 10 is preferably formed so that the concentration of the dopant element is about 1 ⁇ 10 18 atoms / cm 3 to about 5 ⁇ 10 21 atoms / cm 3 .
  • a silicon oxide layer 9 is disposed on the reverse conductivity type layer 8 of the silicon substrate 2.
  • the silicon oxide layer 9 is composed of a first silicon oxide layer 9a made of SiOx, and SiOy that is disposed on the first silicon oxide layer 9a and has a higher silicon content with respect to oxygen than silicon oxide in the first silicon oxide layer 9a.
  • a second silicon oxide layer 9b if x> y is about 1.8 to 3 in SiOx and y is about 1 to 1.7 in SiOy, as described later, in the second silicon oxide layer 9b, It becomes silicon rich and the conductivity increases.
  • the film thickness of the first silicon oxide layer 9a can be about 0.3 nm to 6 nm, or about 0.5 nm to 3 nm. Further, the film thickness of the second silicon oxide layer 9b can be about 8 nm to 50 nm and about 10 nm to 20 nm.
  • the amount of sodium ions trapped in the second silicon oxide layer 9b can be increased.
  • the second silicon oxide layer 9b has a stronger positive charge, the effect of blocking sodium ions can be further enhanced.
  • the refractive index of the first silicon oxide layer 9a is about 1.4 to 1.5
  • the refractive index of the second silicon oxide layer 9b is about 1.6 to 1.7. I also understood that.
  • the PID phenomenon is said to occur due to the movement of sodium ions released from the glass substrate of the solar cell module to the surface and inside of the silicon substrate 2.
  • the movement of sodium ions into the material is affected by the density and crystal structure of the material in which it is present.
  • sodium ions easily move into the silicon nitride and hardly move into the silicon oxide. Accordingly, sodium ions are less likely to move inside the silicon oxide layer 9 including the first silicon oxide layer 9a and the second silicon oxide layer 9b as compared to the antireflection layer 11 containing silicon nitride. For this reason, since it becomes difficult for sodium ions to enter the first silicon oxide layer 9, it becomes difficult for sodium ions to enter the silicon substrate 2, and the occurrence of the PID phenomenon is reduced.
  • the silicon oxide layer 9 includes two layers of the first silicon oxide layer 9a and the second silicon oxide layer 9b, the following effects can be expected.
  • Sodium ions move through fine defects or pinholes or thin portions of the second silicon oxide layer 9b.
  • sodium ions can be blocked by the first silicon oxide layer 9a.
  • the second silicon oxide layer 9b contains silicon oxide (SiOy) having a higher silicon content ratio relative to oxygen than the silicon oxide (SiOx) of the first silicon oxide layer 9a. That is, the second silicon oxide layer 9b is in a richer silicon state than the first silicon oxide layer 9a.
  • the conductivity of the second silicon oxide layer 9b is increased, and sodium is added at the interface between the first silicon oxide layer 9a and the second silicon oxide layer 9b and at the interface between the second silicon oxide layer 9b and the antireflection layer 11. Ions move easily. Then, accumulation of sodium ions at these interfaces is eliminated, and the amount of sodium ions reaching the surface of the silicon substrate 2 can be further reduced. Thereby, it can be set as the solar cell element which a PID phenomenon does not produce easily.
  • the second silicon oxide layer 9b is preferably thicker than the first silicon oxide layer 9a.
  • the second silicon oxide layer 9b By making the film thickness of the second silicon oxide layer 9b larger than the film thickness of the first silicon oxide layer 9a, the amount of sodium ions trapped in the second silicon oxide layer 9b can be increased. Further, since the second silicon oxide layer 9b has a stronger positive charge, it repels the positive charge of sodium ions, and the action of blocking the movement of sodium ions to the silicon substrate 2 can be further enhanced. it can.
  • the silicon content with respect to oxygen in the first silicon oxide layer 9a and the second silicon oxide layer 9b is, for example, secondary ion mass spectrometry (SIMS) or X-ray photoelectron spectroscopy (XPS). ray Photoelectron Spectroscopy).
  • SIMS secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • ray Photoelectron Spectroscopy ray Photoelectron Spectroscopy
  • the solar cell element 1 is preferably provided with an antireflection layer 11 disposed on the second silicon oxide layer 9b and having a refractive index higher than that of the second silicon oxide layer 9b.
  • the antireflection layer 11 reduces the reflectance of light on the surface 1a of the solar cell element 1 and increases the number of electron-hole pairs generated by light absorption, thereby increasing carriers and increasing the photoelectric of the solar cell element 1. Contributes to improved conversion efficiency.
  • the antireflection layer 11 may be a single layer film such as silicon nitride, titanium oxide, or aluminum oxide, or a laminated film thereof.
  • the refractive index of the antireflection layer 11 By making the refractive index of the antireflection layer 11 larger than that of the second silicon oxide layer 9b, the total refractive index and film thickness of the first silicon oxide layer 9a, the second silicon oxide layer 9b, and the antireflection layer 11 can be reduced. Can be more optimal. Thereby, the effect of preventing reflection of light incident on the solar cell element 1 can be improved. In order to reduce the occurrence of the PID phenomenon, if the refractive index and thickness of the antireflection layer 11 are set within a certain range, a sufficient antireflection effect may not be obtained.
  • the refractive index of the antireflection layer 11 is higher than that of the second silicon oxide layer 9b. Can be set larger, and the thickness can be set freely. For this reason, the antireflection layer can function effectively.
  • each refractive index and thickness of the 1st silicon oxide layer 9a, the 2nd silicon oxide layer 9b, and the reflection preventing layer 11 can be measured with an ellipsometer.
  • a silicon oxide layer having a positive fixed charge and an antireflection layer 11 having silicon nitride are arranged on the surface of the n-type reverse conductivity type layer 8.
  • Minority carriers are moved away from the interface (the surface of the silicon substrate 2) with the reverse conductivity type layer 8 by the electric field effect of the antireflection layer 11 having a silicon oxide layer and silicon nitride.
  • recombination of minority carriers on the surface of the silicon substrate 2 is reduced, and a passivation effect for improving the photoelectric conversion efficiency can be obtained.
  • the antireflection layer 11 contains silicon nitride, since the positive fixed charge of silicon nitride is stronger than that of silicon oxide, the photoelectric conversion efficiency of the solar cell element 1 can be further improved.
  • the antireflection layer 11 can be a silicon nitride film (SiNz film (the composition ratio z of N has a width with a center on the stoichiometry of Si 3 N 4 )). This silicon nitride film can be manufactured using a monosilane gas, ammonia gas, or the like by a CVD method.
  • the antireflection layer 11 is preferably thicker than the second silicon oxide layer 9b. Thereby, since it becomes a stronger positive electric charge, the above-mentioned passivation effect can be enlarged more.
  • the thickness of the second silicon oxide layer 9b is about 10 to 30 nm
  • the thickness of the antireflection layer 11 made of silicon nitride is about 40 to 100 nm (refractive index is about 1.7 to 2.3). ).
  • the silicon substrate 2 is, for example, a monocrystalline or polycrystalline silicon substrate having a one conductivity type region 7 having a specific resistance of about 0.2 ⁇ ⁇ cm to 2 ⁇ ⁇ cm.
  • the silicon substrate 2 is a single crystal silicon substrate, it is manufactured by, for example, the FZ (floating zone) method or the CZ (Czochralski) method.
  • the silicon substrate 2 is a polycrystalline silicon substrate, it is produced by, for example, a casting method.
  • a p-type polycrystalline silicon substrate is used as the silicon substrate 2 will be described.
  • a method for manufacturing the silicon substrate 2 will be described. First, an ingot of polycrystalline silicon is produced by a casting method. Next, the p-type silicon substrate 2 is manufactured by slicing the ingot into a thickness of, for example, about 150 ⁇ m to 250 ⁇ m using a multi-wire saw or the like. Thereafter, in order to remove the mechanical damage layer and the contamination layer on the cut surface of the silicon substrate 2, the surface is made of an alkaline solution containing sodium hydroxide (NaOH) or potassium hydroxide (KOH), or hydrofluoric acid (HF). Etching with a mixed solution with nitric acid (HNO 3 ) about several ⁇ m, washing and drying.
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • HF hydrofluoric acid
  • a texture structure having fine irregularities may be formed on substantially the entire surface 2a of the silicon substrate 2 by using a reactive ion etching (RIE) apparatus.
  • RIE reactive ion etching
  • CHF 3 trifluoride methane
  • Cl 2 chlorine
  • O 2 oxygen
  • SF 6 sulfur hexafluoride
  • dry etching is performed for about 3 minutes under conditions of a reaction pressure of 7 Pa and an RF power for generating plasma of 500 W. Thereafter, the silicon residue on the surface 2a of the silicon substrate 2 is washed and removed.
  • an n-type reverse conductivity type layer 8 is formed in the surface layer of the silicon substrate 2 on the surface 2a side.
  • the reverse conductivity type layer 8 is formed by applying a thermal diffusion method in which a paste of diphosphorus pentoxide (P 2 O 5 ) is applied to the surface 2a of the silicon substrate 2 and thermally diffused, or phosphorus oxychloride in a gas state. It is formed by a vapor phase thermal diffusion method using (POCl 3 ) as a diffusion source.
  • the reverse conductivity type layer 8 has a thickness of about 0.1 ⁇ m to 1 ⁇ m, and is formed to have a sheet resistance of about 40 ⁇ / ⁇ to 150 ⁇ / ⁇ .
  • the silicon substrate 2 is immersed in a hydrofluoric acid aqueous solution and then washed with pure water. At the end of the cleaning with pure water, the surface of the silicon substrate 2 is oxidized using ozone to form a first silicon oxide layer 9a on the surface of the silicon substrate 2 as shown in FIG.
  • a pipe 21 for introducing an ozone-containing gas is arranged inside a tank 20 made of a fluorine-based resin or polypropylene.
  • the first end of the pipe 21 is connected to an ozone generator that generates an ozone-containing gas containing ozone in the oxygen gas, and the discharge port 22 that is the second end of the pipe 21 is disposed at the bottom of the tank 20. Is done.
  • ozone-containing gas is discharged from the discharge port 22, and bubbling is performed in pure water. Thereby, the ozone containing water 23 containing ozone is produced.
  • the silicon substrate 2 is immersed in the ozone-containing water 23 during the cleaning. Then, ozone-containing gas bubbles are generated in the ozone-containing water 23 so that the ozone-containing gas 24 hits the surface of the silicon substrate 2 from the discharge port 22 of the pipe 21.
  • the film thickness of the first silicon oxide layer 9a thus formed is about 0.3 nm to 6 nm. At this time, the first silicon oxide layer 9a is formed substantially uniformly without being substantially affected by the texture structure of the silicon substrate 2. For this reason, even if a minute defect, a pinhole, a thin part, etc. have arisen in the 2nd silicon oxide layer 9b formed on the 1st silicon oxide layer 9a, it can block sodium ion more certainly.
  • the formed first silicon oxide layer 9a is a silicon oxide layer with little impurity contamination. For this reason, it is possible to terminate the dangling bonds of silicon atoms of the reverse conductivity type layer 8 by oxygen atoms of the first silicon oxide layer 9a, and to further improve the photoelectric conversion efficiency of the solar cell element 1. .
  • the formation of the first silicon oxide layer 9a is not limited to the method of immersing the silicon substrate 2 in the ozone-containing water 23 described above.
  • the first silicon oxide layer 9a may be formed by disposing the silicon substrate 2 directly below the ultraviolet lamp and irradiating the silicon substrate 2 with ultraviolet rays. In this case, oxygen in the air changes to ozone by the action of ultraviolet rays. The ozone oxidizes the surface of the silicon substrate 2 to form the first silicon oxide layer 9a.
  • this formation method by ultraviolet irradiation there may be a case where impurities in the air are included in the formed first silicon oxide layer 9a.
  • the reverse conductivity type layer 8 is formed on the back surface 2b side when the reverse conductivity type layer 8 is formed by vapor phase thermal diffusion or the like, the first silicon oxide layer 9a is further formed on the back surface 2b side.
  • the reverse conductivity type layer 8 and the first silicon oxide layer 9a on the back surface 2b side are removed by etching, and the p-type one conductivity type region 7 is exposed on the back surface 2b side.
  • a pn junction is formed in the silicon substrate 2 by the p-type one conductivity type region 7 and the n-type reverse conductivity type layer 8, and the first silicon oxide layer 9 a is formed on the reverse conductivity type layer 8. Can be formed.
  • a second silicon oxide layer 9 b is formed on the first silicon oxide layer 9 a on the surface 2 a side of the silicon substrate 2.
  • An ALD (Atomic Layer Deposition) method can be used to form the second silicon oxide layer 9b.
  • N, N, N ′, N ′, tetraethylsilanediamine (H 2 Si [N (C 2 H 5 ) 2 ] 2 ) gas and ozone gas as the oxidizing agent are used as the source gas. be able to.
  • the second silicon oxide layer 9b thus formed is substantially formed from silicon and oxygen. Thereby, movement of sodium ions to the silicon substrate 2 can be blocked by the second silicon oxide layer 9b.
  • the second silicon oxide layer 9b can also be formed using, for example, a CVD (Chemical Vapor Deposition) method using monosilane gas (SiH 4 ) and nitrous oxide (N 2 O) gas.
  • the second silicon oxide layer 9b having a desired refractive index and thickness can be obtained by controlling the flow rate of monosilane gas and nitrous oxide gas and the film formation time.
  • the formed second silicon oxide layer 9b contains nitrogen, but the content of this contained nitrogen is less than the content of oxygen.
  • the ratio of the number of atoms of nitrogen and oxygen in the second silicon oxide layer 9b is about 0.3 to 0.5 times that of oxygen.
  • the ratio of the number of atoms of nitrogen and oxygen can be measured by SIMS or XPS.
  • the refractive index of the first silicon oxide layer 9a is about 1.4 to 1.6, and the refractive index of the antireflection layer 11 is about 1.9 to 2.1.
  • the refractive index of the second silicon oxide layer 9b can be about 1.7 to 1.8, which is an almost intermediate value.
  • an antireflection layer 11 is formed on the second silicon oxide layer 9b.
  • the antireflection layer 11 made of silicon nitride is formed by a PECVD (Plasma Enhanced Chemical Vapor Deposition) apparatus
  • the reaction chamber is set to about 400 ° C. to 500 ° C., and silane (SiH 4 ) and ammonia (NH 3 ).
  • a high frequency voltage is applied between the electrodes in the reaction chamber while diluting the mixed gas with nitrogen (N 2 ).
  • the antireflection layer 11 is formed on the second silicon oxide layer 9b by depositing these gases into plasma by glow discharge decomposition.
  • the flow rate of each gas of monosilane gas, ammonia gas, and nitrogen gas, the film formation time, and the like may be adjusted so that the antireflection layer 11 has a predetermined refractive index and thickness.
  • the second silicon oxide layer 9b and the antireflection layer 11 can both be formed by the CVD method as described above.
  • two film formation chambers first film formation chamber and second film formation chamber
  • the second silicon oxide layer 9b is formed in the first film formation chamber.
  • the antireflection layer 11 may be deposited in the deposition chamber. This makes it difficult to form an oxide film at the interface between the second silicon oxide layer 9b and the antireflection layer 11, and reduces man-hours such as movement between apparatuses and transfer time to an apparatus-specific transport tray during mass production. it can.
  • the surface-side conductive paste 13 to be the bus bar electrode 3 and the finger electrode 4 is applied and disposed on the surface 2 a of the silicon substrate 2.
  • a paste containing silver as a main component and containing about 70% by mass to 85% by mass in a conductive paste and further kneaded with glass frit, an organic vehicle, or the like is used as the surface-side conductive paste 13.
  • the organic vehicle is obtained, for example, by adding a resin component used as a binder to an organic solvent.
  • a resin component used as a binder an acrylic resin or an alkyd resin can be used in addition to a cellulose resin such as ethyl cellulose.
  • the organic solvent for example, diethylene glycol monobutyl ether acetate, terpineol or diethylene glycol monobutyl ether is used.
  • the organic vehicle may be contained in an amount of about 5% by mass to 20% by mass in the conductive paste.
  • the glass frit component lead glass such as SiO 2 —Bi 2 O 3 —PbO or Al 2 O 3 —SiO 2 —PbO can be used as a glass material.
  • non-lead glass such as B 2 O 3 —SiO 2 —Bi 2 O 3 or B 2 O 3 —SiO 2 —ZnO can also be used.
  • the glass frit may be about 2% by mass to 15% by mass in the conductive paste.
  • the surface-side conductive paste 13 to be the finger electrode 4 is arranged on the first texture structure region 11 by using a printing method using screen plate making. Apply. After this application, the solvent is dried by drying at a predetermined temperature.
  • the back surface side first conductive paste 14 for the connection electrode 6 is disposed on the back surface 2 b of the silicon substrate 2.
  • the back side first conductive paste 14 the same conductive paste as the above-described front side conductive paste 13 can be used. After arrange
  • the back side second conductive paste 15 for the back side collecting electrode 5 is disposed.
  • the second conductive paste 15 for example, an aluminum paste containing a metal powder containing aluminum as a main component, glass frit, and an organic vehicle is used.
  • the coating method a printing method or the like can be used. After applying the conductive paste in this manner, the solvent is evaporated by drying at a predetermined temperature.
  • the silicon substrate 2 on which the front-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 are placed is put into a firing furnace, and these are simultaneously heated to the maximum temperature in the firing furnace. Is about 750 ° C. to 900 ° C., and the maximum temperature is maintained for about 0.1 seconds to several tens of seconds.
  • the glass frit melted during firing reacts with the outermost surface of the silicon substrate 2 and adheres to form an electrical contact between each electrode and the silicon substrate 2 and increase the mechanical adhesive strength. it can.
  • the surface-side conductive paste 13 fires through the antireflection layer 11 to form bus bar electrodes 3 and finger electrodes 4 that are in direct contact with the silicon substrate 2.
  • the back side first conductive paste 14 becomes the connection electrode 6, and the back side second conductive paste 15 becomes the current collecting electrode 5.
  • the BSF region 10 is formed by diffusing aluminum into the silicon substrate 2 simultaneously with the formation of the collecting electrode 5.
  • the solar cell element 1 shown in FIGS. 1 and 2 is completed through the above steps.
  • the manufacturing method of the solar cell element 1 which concerns on this embodiment is not limited to said thing.
  • the firing step may be sequentially performed after the surface-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 are arranged.
  • the front-side conductive paste 13 and the back-side first conductive paste 14 may be performed simultaneously, and further baked after the back-side second conductive paste 15 is disposed.
  • the bus bar electrode 3 and the connection electrode 6 may be formed of a conductive paste mainly composed of silver and copper in addition to the above-described conductive paste mainly composed of silver.
  • the solar cell element 1 further includes an aluminum oxide layer 12 disposed between the first silicon oxide layer 9a and the second silicon oxide layer 9b as shown in FIG.
  • an aluminum oxide layer 12 disposed between the first silicon oxide layer 9a and the second silicon oxide layer 9b as shown in FIG.
  • sodium ions can be more reliably blocked even when fine defects, pinholes, thin portions, or the like are generated in the second silicon oxide layer 9b.
  • an ALD method excellent in coverage of fine irregularities on the surface of the silicon substrate 2 may be used.
  • the silicon substrate 2 on which the first silicon oxide layer 9a shown in FIG. 4C is formed is placed in the chamber of the film forming apparatus. And the process from the process A shown below to the process D is repeated in multiple times in the state which heated the silicon substrate 1 at the temperature range of 100 to 250 degreeC. Thereby, the aluminum oxide layer 12 having a desired thickness is formed.
  • the content of each process from the process A to the process D is as follows.
  • Step A An aluminum material such as trimethylaluminum (TMA) for forming aluminum oxide is supplied onto the silicon substrate 1 in the chamber of the film forming apparatus together with a carrier gas such as Ar gas or nitrogen gas. As a result, the aluminum material is adsorbed around the entire periphery of the silicon substrate 1.
  • the time for which TMA is supplied may be about 15 to 3000 milliseconds, for example.
  • the surface of the silicon substrate 1 is preferably terminated with an OH group.
  • the surface of the silicon substrate 1 has a Si—O—H structure, a covalent bond is easily formed at the interface between the surface of the silicon substrate 1 and the formed aluminum oxide film. Thereby, the bonding strength between the surface of the silicon substrate 1 and the aluminum oxide film can be improved, and the reliability of the solar cell element 10 can be further improved.
  • the Si—O—H structure can be formed, for example, by treating the silicon substrate 1 with dilute hydrofluoric acid and then washing with pure water.
  • Step B The inside of the chamber of the film forming apparatus is cleaned with nitrogen gas, and the aluminum material in the chamber is removed. Furthermore, aluminum materials other than components chemically adsorbed at the atomic layer level are removed from the aluminum materials physically and chemically adsorbed on the silicon substrate 1.
  • the time for purifying the inside of the chamber with nitrogen gas may be, for example, about 1 second to several tens of seconds.
  • Step C By supplying an oxidizing agent such as water or ozone gas into the chamber of the film forming apparatus, the alkyl group contained in the TMA is removed and replaced with an OH group. Thereby, an atomic layer of aluminum oxide is formed on the silicon substrate 1. Note that the time during which the oxidizing agent is supplied into the chamber may be about 500 milliseconds to 1500 milliseconds. Further, hydrogen is supplied into the chamber together with the oxidizing agent, so that hydrogen atoms are more easily contained in the formed aluminum oxide film.
  • an oxidizing agent such as water or ozone gas
  • Step D The inside of the chamber of the film forming apparatus is cleaned with nitrogen gas, and the oxidizing agent in the chamber is removed. At this time, for example, the oxidizing agent that did not contribute to the reaction during the formation of atomic layer level aluminum oxide on the silicon substrate 1 is removed. Note that the time required for purifying the chamber with nitrogen gas may be, for example, about 1 second to several tens of seconds.
  • an aluminum oxide film having a desired film thickness (for example, about 10 nm to 200 nm) is formed by repeating a series of steps from step A to step D a plurality of times.
  • any material that has an appropriate vapor pressure (for example, 100 Pa or more) as a gas supply reduction at the raw material supply temperature (in the range from ⁇ 20 ° C. to 120 ° C.) and can be supplied in a gaseous state in the chamber may be used.
  • the aluminum raw material for example, triethylaluminum (TEA) can be used.
  • TMA triethylaluminum
  • the material that can be supplied in a gaseous state may be supplied after being diluted with nitrogen gas, carbon dioxide gas or the like as a carrier gas.
  • the aluminum oxide layer may also be formed on the back surface 2b of the silicon substrate 2. Since the aluminum oxide layer has a negative fixed charge, the aluminum oxide layer becomes a passivation film having a negative fixed charge with respect to the back surface 2b. Then, electrons which are minority carriers move away from the interface between the back surface 2b and the passivation film 4 due to the electric field effect. As a result, in the solar cell element 1, minority carrier recombination is reduced, and the photoelectric conversion efficiency can be improved.
  • the solar cell module 30 As shown in FIGS. 7A and 7B, the solar cell module 30 according to this embodiment is disposed on the solar cell panel 33 having the plurality of solar cell elements 1 and the outer peripheral portion of the solar cell panel 33. It has a frame 34.
  • the solar cell module 30 has a first surface 30a (see FIG. 7A) that is a surface that mainly receives light, and a second surface 30b that corresponds to the back surface of the first surface 30a (FIG. 7B). See).
  • the solar cell module 30 has the terminal box 35 in the 2nd surface 30b, as shown in FIG.7 (b).
  • the terminal box 35 is wired with an output cable 36 for supplying power generated by the solar cell module 30 to an external circuit.
  • connection conductor 32 may be a copper or aluminum metal foil having a thickness of about 0.1 mm to 0.3 mm. This metal foil has a surface coated with solder. This solder is provided by plating or dipping so as to have an average thickness of, for example, about 5 ⁇ m to 30 ⁇ m.
  • the width of the connection conductor 32 may be equal to or smaller than the width of the bus bar electrode 3 of the solar cell element. As a result, the connection conductor 32 can make it difficult to prevent the solar cell element 1 from receiving light.
  • connection conductor 32 may be connected to substantially the entire surface of the bus bar electrode 3 and the connection electrode 6. Thereby, the resistance component of the solar cell element 1 can be reduced.
  • the connection conductor 32 may have a width of about 1 mm to 3 mm and a length of about 260 mm to 310 mm.
  • connection conductor 32 in the connection conductor 32 connected to one solar cell element 1, one connection conductor 32a is soldered to the bus bar electrode 3 on the surface 1a of the solar cell element 1.
  • connection conductor 32 b is soldered to the connection electrode 6 on the back surface of the solar cell element 1.
  • the adjacent solar cell element 1 (solar cell element 1S, 1T) connects the other end part of the connection conductor 32 connected to the bus-bar electrode 3 of the surface 1a of the solar cell element 1S. It connects by soldering to the connection electrode 6 of the back surface 1b of the solar cell element 1T.
  • a solar cell string in which the plurality of solar cell elements 1 are linearly connected in series is formed.
  • a plurality of solar cell strings (for example, about 2 to 10) are prepared and aligned approximately parallel with a predetermined interval of about 1 mm to 10 mm. Then, the solar cell elements 1 at each end of the solar cell string are connected to each other by soldering or the like with the lateral wiring 37.
  • the external lead-out wiring 42 is connected to the solar cell element 1 to which the lateral wiring 37 of the solar cell strings on both ends is not connected.
  • a translucent substrate 38 a front surface side filler 39, a back surface side filler 40, and a back surface material 41 are prepared.
  • glass is used as the translucent substrate 38.
  • the glass for example, white plate glass, tempered glass, double tempered glass, or heat ray reflective glass having a thickness of about 3 mm to 5 mm is used.
  • the front-side filler 39 and the back-side filler 40 are each made of an ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) or polyvinyl butyral (PVB), and have a thickness of about 0.4 mm to 1 mm by an extruder or the like. What was shape
  • molded in the sheet form is used. These are heated and pressed under reduced pressure by a laminating apparatus, and are softened and fused to be integrated with other members.
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the back material 41 has a role of reducing moisture intrusion from the outside.
  • a weather-resistant fluorine-based resin sheet sandwiching an aluminum foil, a polyethylene terephthalate (PET) sheet on which alumina or silica is deposited, and the like are used.
  • the back material 41 may use glass or polycarbonate resin when incident on light from the second surface 30b side of the solar cell module 30 is used for photovoltaic power generation.
  • this laminate is set in a laminator.
  • the solar cell panel 33 is producible by heating at 100 to 200 degreeC, for example for about 15 minutes to 1 hour, pressurizing under reduced pressure.
  • the solar cell module 30 is attached to the outer periphery of the solar cell panel 33 as necessary by attaching the terminal box 35 to the frame 34 or the second surface 30b side. Complete.
  • the solar cell module 30 in which the occurrence of the PID phenomenon is reduced.
  • a p-type polycrystalline silicon substrate 2 doped with is prepared.
  • the silicon substrate 2 was etched to a depth of about 8 ⁇ m to 13 ⁇ m from the surface using a sodium hydroxide (NaOH) aqueous solution, and then a fine texture was formed on the surface 2a side using an RIE apparatus.
  • a sodium hydroxide (NaOH) aqueous solution NaOH
  • an n-type region was formed on the entire surface of the silicon substrate 2 by vapor phase thermal diffusion using phosphorus oxychloride (POCl 3 ) as a diffusion source.
  • This n-type region was formed to have a sheet resistance of about 50 ⁇ / ⁇ to 100 ⁇ / ⁇ .
  • the entire silicon substrate 2 was immersed in a hydrofluoric acid solution to remove the phosphorus glass and the oxide layer on the surface, and washed with pure water.
  • the first silicon oxide layer 9a was formed on the surface of the silicon substrate 2 as follows. First, a polypropylene pipe 21 for introducing an ozone-containing gas was disposed inside a tank 20 made of polypropylene and having a width of 30 cm, a height of 35 cm, and a depth of about 40 cm. The first end of the pipe 21 was connected to an ozone generator, and the discharge port 22 as the second end was disposed at the bottom of the tank 20.
  • the ozone generator one that generates an ozone-containing gas containing about 170 g / m 3 to 230 g / m 3 of ozone in oxygen gas was used.
  • ozone-containing gas is discharged from the discharge port 22 about 1 liter to 3 liters per minute and bubbled in pure water for about 7 to 10 minutes, thereby containing ozone.
  • Water 23 was produced. Thereafter, the entire silicon substrate 2 was immersed in the ozone-containing water 23 in succession to the cleaning operation with pure water after removing the phosphorous glass and the oxide layer on the surface. During this immersion, the ozone-containing gas was discharged from about 1 liter to 3 liters per minute so that the ozone-containing gas 24 hits the surface of the silicon substrate 2 from the discharge port 22 of the pipe 21.
  • the silicon substrate 2 was held for about 1 minute in a state where the ozone-containing gas was bubbled in the ozone-containing water 23, and then pulled out from the ozone-containing water 23 and dried. Thereby, the first silicon oxide layer 9 a was formed on the surface of the silicon substrate 2.
  • a first silicon oxide layer 9a was formed on the reverse conductivity type layer 8 on the surface 2a side of the silicon substrate 2 as shown in FIG.
  • the composition of the formed first silicon oxide layer 9a is SiOx (the value of x is about 2.2 to 2.5), the film thickness is about 1 nm to 2 nm, and the refractive index is 1.4 to 1. It was about 6.
  • the film thickness and refractive index were measured with an ellipsometer. The film thickness and refractive index described below were also measured in the same manner.
  • a second silicon oxide layer 9 b was formed on the first silicon oxide layer 9 a on the surface 2 a side of the silicon substrate 2.
  • the second silicon oxide layer 9b was formed using a PECVD apparatus using monosilane gas (SiH 4 ) and nitrous oxide (N 2 O) gas.
  • the composition of the formed second silicon oxide layer 9b is SiOy (the value of y is about 1.0 to 1.2), the film thickness is about 10 nm to 18 nm, and the refractive index is 1.7 to 1. It was about 8.
  • the formed second silicon oxide layer 9b contains nitrogen, and the ratio of the number of atoms of nitrogen and oxygen in the second silicon oxide layer 9b is 0.4 to 0. It was about 45 times.
  • the ratio of the number of atoms of nitrogen and oxygen was measured by SIMS.
  • an antireflection layer 11 made of silicon nitride is formed by monosilane gas (SiH 4 ) and ammonia gas (NH 3 ) Using a PECVD apparatus.
  • the formed antireflection layer 11 had a refractive index of about 2.1 to 2.2 and a thickness of about 50 nm to 80 nm.
  • the surface-side conductive paste 13 for forming the bus bar electrode 3 and the finger electrode 4, which are electrodes on the surface 2 a side was applied and arranged.
  • a paste containing silver as a main component and containing glass frit, an organic vehicle, and the like was used as the surface-side conductive paste 13 .
  • the surface side conductive paste 13 was apply
  • the back side first conductive paste 14 for forming the connection electrode 6 was disposed on the back side 2b of the silicon substrate 2 as follows.
  • the back side first conductive paste 14 was the same conductive paste as the above-mentioned front side conductive paste 13. 1B is applied to the back surface 2b of the silicon substrate 2 to a shape as shown in FIG. 1B on the back surface 2b of the silicon substrate 2 to a thickness of about 20 ⁇ m to 30 ⁇ m. Drying was performed.
  • the back side second conductive paste 15 for forming the back side collecting electrode 5 was arranged as follows.
  • the second conductive paste 15 for example, an aluminum paste containing a metal powder mainly composed of aluminum, glass frit, and an organic vehicle was used. Then, using a screen printing method, the second conductive paste 15 was applied to a thickness of about 40 ⁇ m to 50 ⁇ m, and then dried.
  • the silicon substrate 2 on which the surface-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 were placed was put into a firing furnace. These conductive pastes were simultaneously fired at a maximum temperature of about 730 ° C. to 760 ° C. for several seconds at the maximum temperature in a firing furnace. Through the above steps, the solar cell element 1 of the example was completed.
  • the deposition time is extended and the thickness of the antireflection layer 11 is set to about 70 nm to 90 nm.
  • the other steps were produced using the same materials and process conditions as those for producing the solar cell element of the above example.
  • the solar cell string which comprises a solar cell module was produced as follows. Seven solar cell elements of Examples and Comparative Examples were prepared. And as shown in FIG.8 (b), two types of solar cell strings using the solar cell element of an Example and a comparative example which connected the solar cell elements in series by soldering using the connection conductor 32, and were connected. Was made.
  • six solar cell strings prepared in this way were prepared for manufacturing solar cell modules for Examples and Comparative Examples.
  • the six solar cell strings are aligned substantially parallel to each other, and the lateral wiring 37 and the external lead-out wiring 42 as shown in FIG. 8 are soldered to the solar cell elements at the end of each solar cell string. Connected by attaching.
  • this solar cell panel 33 was produced by setting this laminated body to a laminating apparatus, and heating and pressing at about 100 to 160 degreeC for about 20 minutes, pressurizing under reduced pressure.
  • a frame 34 made of aluminum is attached to the outer peripheral portion of the solar cell panel 33, a terminal box 35 is disposed on the second surface 30b side, and the solar cell module 21 using the solar cell element of the example and the comparative example.
  • a solar cell module using a solar cell element was completed.
  • the output value of the solar cell module using the solar cell element of the example is about 0.2% lower than the initial output value even after 300 hours have passed (the maintenance ratio from the initial output value is 99. Only 8%).
  • the maintenance ratio from the initial output value is 99. Only 8%.
  • an output decrease of about 2% (maintenance rate from the initial output value was about 98%) was observed after 300 hours.

Abstract

A solar cell element 1 is provided with a first silicon oxide layer 9a disposed on a silicon substrate 2, and a second silicon oxide layer 9b disposed on the first silicon oxide layer 9a with more silicon content relative to oxygen than the first silicon oxide layer 9a. Furthermore, in the solar cell element 1, the surface of the silicon substrate 2 is oxidized to form the first silicon oxide layer 9a, and through a CVD method using monosilane gas and nitrous oxide gas, the second silicon oxide layer 9b is formed on the first silicon oxide layer 9a. Further, a solar cell module 30 is provided with the solar cell element 1.

Description

太陽電池素子およびその製造方法並びに太陽電池モジュールSOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE 関連出願の相互参照Cross-reference of related applications
 本国際出願は、日本国特許出願2015-190958号(2015年9月29日出願)の優先権を主張するものである。本国際出願に上記日本国特許出願の開示内容を取り込む。 This international application claims the priority of Japanese Patent Application No. 2015-190958 (filed on September 29, 2015). The disclosure content of the above Japanese patent application is incorporated into this international application.
 本開示は、太陽電池素子およびその製造方法並びに太陽電池モジュールに関する。 The present disclosure relates to a solar cell element, a manufacturing method thereof, and a solar cell module.
 太陽電池素子の半導体基板中に拡散したナトリウムイオンが光発生キャリアの動きを妨げて、太陽電池素子で構成された太陽電池モジュールの出力が低下するというPID(Potential Induced Degradation)現象が知られている。このPID現象の発生を減少させるために、太陽電池素子を構成するシリコン基板の上にイオン拡散阻止層を設けることが提案されている(例えば下記の特許文献1を参照)。 A PID (Potential Induced Degradation) phenomenon is known in which sodium ions diffused into a semiconductor substrate of a solar cell element hinder the movement of light-generating carriers and the output of a solar cell module composed of the solar cell element decreases. . In order to reduce the occurrence of this PID phenomenon, it has been proposed to provide an ion diffusion blocking layer on a silicon substrate constituting a solar cell element (see, for example, Patent Document 1 below).
 現在、さらにPID現象の発生を減少し得る太陽電池素子が望まれている。 Currently, a solar cell element that can further reduce the occurrence of the PID phenomenon is desired.
特開2014-110432号公報JP 2014-110432 A
 本開示の太陽電池素子の一態様は、シリコン基板の上に配置された第1酸化シリコン層と、該第1酸化シリコン層の上に配置され、該第1酸化シリコン層よりも酸素に対するシリコンの含有量が多い第2酸化シリコン層とを備えている。 According to one aspect of the solar cell element of the present disclosure, a first silicon oxide layer disposed on a silicon substrate and a silicon oxide layer disposed on the first silicon oxide layer, the silicon with respect to oxygen rather than the first silicon oxide layer. A second silicon oxide layer having a high content.
 また、太陽電池素子の製造方法の一態様は、シリコン基板の表面を酸化して前記第1酸化シリコン層を形成して、モノシランガスおよび亜酸化窒素ガスを用いたCVD法によって、前記第1酸化シリコン層の上に前記第2酸化シリコン層を形成する。 In one aspect of the method for manufacturing a solar cell element, the surface of a silicon substrate is oxidized to form the first silicon oxide layer, and the first silicon oxide is formed by a CVD method using monosilane gas and nitrous oxide gas. The second silicon oxide layer is formed on the layer.
 さらに、本開示の太陽電池モジュールの一態様は、上記太陽電池素子を備えている。 Furthermore, one aspect of the solar cell module of the present disclosure includes the solar cell element.
図1は、実施形態に係る太陽電池素子の一例を説明するための図であり、図1(a)は太陽電池素子を表面側から見た平面図、図1(b)は太陽電池素子を裏面側から見た平面図である。FIG. 1 is a diagram for explaining an example of a solar cell element according to the embodiment. FIG. 1A is a plan view of the solar cell element as viewed from the surface side, and FIG. It is the top view seen from the back side. 図2は、図1(a)のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図3は、図2のA部を拡大した拡大断面図である。FIG. 3 is an enlarged cross-sectional view enlarging a part A of FIG. 図4は、実施形態に係る太陽電池素子の製造方法の一例を説明する図であり、図4(a)から図4(g)は、それぞれ太陽電池素子の断面図である。FIG. 4 is a diagram for explaining an example of a method for manufacturing a solar cell element according to the embodiment, and FIGS. 4A to 4G are cross-sectional views of the solar cell element. 図5は、実施形態に係る太陽電池素子の一例を構成する第1酸化シリコン層の形成方法を示す一部断面図である。FIG. 5 is a partial cross-sectional view illustrating a method for forming a first silicon oxide layer constituting an example of the solar cell element according to the embodiment. 図6は、実施形態に係る太陽電池素子の一例を説明する図であり、図2のA部に相当する部位の拡大断面図である。FIG. 6 is a diagram for explaining an example of the solar cell element according to the embodiment, and is an enlarged cross-sectional view of a portion corresponding to part A in FIG. 2. 図7は、実施形態に係る太陽電池モジュールの一例を説明する図であり、図7(a)は太陽電池モジュールの第1面側を示す平面図、図7(b)は太陽電池モジュールの第2面側を示す平面図である。FIG. 7 is a diagram illustrating an example of the solar cell module according to the embodiment. FIG. 7A is a plan view showing the first surface side of the solar cell module, and FIG. It is a top view which shows the 2nd surface side. 図8は、図7に示す太陽電池モジュールを構成する太陽電池素子の一例を説明する図であり、図8(a)は太陽電池素子に接続部材を接続した状態を示す平面図、図8(b)は2つの太陽電池素子同士の接続状態を示す断面図である。FIG. 8 is a view for explaining an example of the solar cell element constituting the solar cell module shown in FIG. 7, and FIG. 8 (a) is a plan view showing a state in which a connecting member is connected to the solar cell element. b) is a cross-sectional view showing a connection state between two solar cell elements. 図9は、図7に示す太陽電池モジュールを構成する太陽電池パネルの一例を示す分解断面図である。FIG. 9 is an exploded cross-sectional view showing an example of a solar cell panel constituting the solar cell module shown in FIG.
 太陽電池素子および太陽電池モジュールの実施形態について、図面を参照しながら説明する。なお、図面は模式的に示したものである。 Embodiments of a solar cell element and a solar cell module will be described with reference to the drawings. The drawings are schematically shown.
 <太陽電池素子>
 図1および図2に示すように、太陽電池素子1はシリコン基板2を備えている。太陽電池素子1は、主として光を受ける第1面である表面1aと、表面1aと対向する第2面である裏面1bとを有している。
<Solar cell element>
As shown in FIGS. 1 and 2, the solar cell element 1 includes a silicon substrate 2. The solar cell element 1 has a surface 1a that is a first surface that mainly receives light and a back surface 1b that is a second surface facing the surface 1a.
 また、シリコン基板2も、太陽電池素子1の表面1aに相当する第1面である表面2aと、太陽電池素子1の裏面1bに相当する第2面である裏面2bとを有している。シリコン基板2は、例えば単結晶シリコン基板または多結晶シリコン基板が用いられる。シリコン基板2は、ボロンまたはガリウムなどのドーパント元素を含有させて一導電型(例えばp型)領域を有する。シリコン基板2の平面形状は、例えば、一辺が100mmから180mm程度の正方形状または矩形状であるが、特に限定されない。シリコン基板2の厚みは例えば150μmから250μm程度である。また、シリコン基板2の表面2a側には、光の反射率を低減させる微小な凹凸を設けてもよい。なお、以下では、シリコン基板2としてp型多結晶シリコン基板を用いる例について説明する。 The silicon substrate 2 also has a surface 2a that is a first surface corresponding to the surface 1a of the solar cell element 1 and a back surface 2b that is a second surface corresponding to the back surface 1b of the solar cell element 1. As the silicon substrate 2, for example, a single crystal silicon substrate or a polycrystalline silicon substrate is used. The silicon substrate 2 contains a dopant element such as boron or gallium and has one conductivity type (for example, p-type) region. The planar shape of the silicon substrate 2 is, for example, a square shape or a rectangular shape having a side of about 100 mm to 180 mm, but is not particularly limited. The thickness of the silicon substrate 2 is, for example, about 150 μm to 250 μm. Further, minute irregularities for reducing the reflectance of light may be provided on the surface 2 a side of the silicon substrate 2. In the following, an example in which a p-type polycrystalline silicon substrate is used as the silicon substrate 2 will be described.
 図2に示すように、シリコン基板2は、その表面2a側に逆導電型層8を有している。逆導電型層8は、シリコン基板2の一導電型領域7に対する逆導電型(n型)領域であり、一導電型領域7とpn接合部を形成する。この逆導電型層8は、シリコン基板2の表面2a側にリン等のドーパント元素を拡散させることによって形成できる。また、逆導電型層8の上には、酸化シリコン層9(第1酸化シリコン層9a,第2酸化シリコン層9b)および反射防止層11がこの順で配置されている。 As shown in FIG. 2, the silicon substrate 2 has a reverse conductivity type layer 8 on the surface 2a side. The reverse conductivity type layer 8 is a reverse conductivity type (n-type) region with respect to the one conductivity type region 7 of the silicon substrate 2 and forms a pn junction with the one conductivity type region 7. The reverse conductivity type layer 8 can be formed by diffusing a dopant element such as phosphorus on the surface 2 a side of the silicon substrate 2. On the reverse conductivity type layer 8, a silicon oxide layer 9 (first silicon oxide layer 9a, second silicon oxide layer 9b) and an antireflection layer 11 are arranged in this order.
 図1(a)に示すように、太陽電池素子1の表面1a側には、表面電極としてバスバー電極3およびフィンガー電極4が配置されている。また、図1(b)に示すように、裏面1b側には、裏面電極として集電電極5および接続電極6が配置されている。 As shown in FIG. 1 (a), on the surface 1a side of the solar cell element 1, a bus bar electrode 3 and finger electrodes 4 are arranged as surface electrodes. Moreover, as shown in FIG.1 (b), the collector electrode 5 and the connection electrode 6 are arrange | positioned as a back surface electrode at the back surface 1b side.
 太陽電池素子1の表面1a(シリコン基板2の表面2a)側に設けられるバスバー電極3は、フィンガー電極4によって集められた光生成キャリア(以下、キャリアという)をさらに集める役割を有する。バスバー電極3は、図1(a)に図示したY軸方向に沿って、幅が1mmから3mm程度の細長い形状で、一定間隔をあけて平行に2本から5本程度配置される。 The bus bar electrode 3 provided on the surface 1a (surface 2a of the silicon substrate 2) side of the solar cell element 1 has a role of further collecting photogenerated carriers (hereinafter referred to as carriers) collected by the finger electrodes 4. The bus bar electrodes 3 have an elongated shape with a width of about 1 mm to 3 mm along the Y-axis direction shown in FIG.
 フィンガー電極4は、シリコン基板2からキャリアを集める役割を有し、例えば図1(a)に図示したX軸方向に延びてバスバー電極3に対してほぼ直交するように接続される。また、フィンガー電極4の幅は50μmから200μm程度であり、1mmから8mm程度の間隔を空けて複数本形成される。なお、バスバー電極3およびフィンガー電極4は、例えば銀を主成分とした導電性ペーストを、所望の形状に塗布した後、焼成することによって形成される。この焼成後のバスバー電極3およびフィンガー電極4の厚みは、例えば10μmから30μm程度である。 The finger electrode 4 has a role of collecting carriers from the silicon substrate 2 and extends, for example, in the X-axis direction illustrated in FIG. 1A and is connected so as to be substantially orthogonal to the bus bar electrode 3. The finger electrodes 4 have a width of about 50 μm to 200 μm, and a plurality of finger electrodes 4 are formed with an interval of about 1 mm to 8 mm. The bus bar electrode 3 and the finger electrode 4 are formed by, for example, applying a conductive paste mainly composed of silver in a desired shape and then baking it. The thickness of the bus bar electrode 3 and finger electrode 4 after firing is, for example, about 10 μm to 30 μm.
 図1(b)に示すように、太陽電池素子1の裏面1b側には接続電極6が設けられている。接続電極6は幅が1mmから5mm程度であり、図1(b)に図示したY軸方向に、表面1aに設けられたバスバー電極3とほぼ対向する位置に2本から5本程度配置される。また、接続電極6は、例えば銀を主成分とした導電性ペーストを、所望の形状に塗布した後、焼成することによって形成される。この焼成後の接続電極6の厚みは10μmから30μm程度である。 As shown in FIG. 1 (b), a connection electrode 6 is provided on the back surface 1 b side of the solar cell element 1. The connection electrode 6 has a width of about 1 mm to 5 mm, and is arranged in the Y-axis direction illustrated in FIG. 1B at about 2 to 5 at positions almost opposite to the bus bar electrode 3 provided on the surface 1a. . The connection electrode 6 is formed, for example, by applying a conductive paste containing silver as a main component in a desired shape and baking it. The thickness of the connection electrode 6 after firing is about 10 μm to 30 μm.
 集電電極5は、太陽電池素子1の裏面1bにおいてキャリアを集めて接続電極6に伝えるものである。集電電極5は、シリコン基板2の裏面2bの外周部における0.5mmから3mm幅の部分、および接続電極6の配置部分を除いた裏面2bの略全面に形成される。この集電電極5は、例えばアルミニウムを主成分とする導電性ペーストを所望の形状に塗布した後に焼成して形成できる。集電電極5の厚みは例えば15μmから50μm程度である。 The collecting electrode 5 collects carriers on the back surface 1 b of the solar cell element 1 and transmits them to the connection electrode 6. The collecting electrode 5 is formed on the substantially entire surface of the back surface 2 b excluding the 0.5 mm to 3 mm width portion in the outer peripheral portion of the back surface 2 b of the silicon substrate 2 and the arrangement portion of the connection electrode 6. The current collecting electrode 5 can be formed by, for example, applying a conductive paste mainly composed of aluminum in a desired shape and then baking it. The thickness of the current collecting electrode 5 is, for example, about 15 μm to 50 μm.
 図2に示すBSF(Back-Surface-Field)領域10は、シリコン基板2の裏面2b側に内部電界を形成し、裏面2bの近傍での少数キャリアの再結合による光電変換効率の低下をしにくくさせる役割を有している。また、BSF領域10は、シリコン基板2の一導電型領域7と同一の導電型を有していて、一導電型領域7にドープされているドーパント元素の濃度よりも高い濃度でドーパント元素が存在する。また、BSF領域10は、シリコン基板2がp型を有する場合は、例えば、裏面2b側にボロンまたはアルミニウムなどのドーパント元素を拡散させる。BSF領域10は、ドーパント元素の濃度が1×1018atoms/cmから5×1021atoms/cm程度となるように形成されるとよい。 A BSF (Back-Surface-Field) region 10 shown in FIG. 2 forms an internal electric field on the back surface 2b side of the silicon substrate 2, and hardly reduces the photoelectric conversion efficiency due to recombination of minority carriers in the vicinity of the back surface 2b. Have the role of The BSF region 10 has the same conductivity type as the one conductivity type region 7 of the silicon substrate 2, and the dopant element is present at a concentration higher than the concentration of the dopant element doped in the one conductivity type region 7. To do. Further, when the silicon substrate 2 has a p-type, the BSF region 10 diffuses a dopant element such as boron or aluminum to the back surface 2b side, for example. The BSF region 10 is preferably formed so that the concentration of the dopant element is about 1 × 10 18 atoms / cm 3 to about 5 × 10 21 atoms / cm 3 .
 図3に図2のA部を拡大して示すように、シリコン基板2の逆導電型層8上には酸化シリコン層9が配置されている。酸化シリコン層9は、SiOxから成る第1酸化シリコン層9aと、第1酸化シリコン層9aの上に配置され、第1酸化シリコン層9aの酸化シリコンよりも酸素に対するシリコンの含有量が多いSiOyから成る第2酸化シリコン層9bとを備えている。ここで、x>yである
 SiOxにおけるxの値は1.8から3程度として、SiOyにおけるyの値は1から1.7程度とすると、後述するように、第2酸化シリコン層9bでは、シリコンリッチな状態となり、導電率が上がる。これにより、第1酸化シリコン層9aと第2酸化シリコン層9b及び第2酸化シリコン層9bと反射防止層11の界面では、ナトリウムイオンが移動しやすくなる。その結果、上記界面でのナトリウムイオンの蓄積が低減される。このため、本実施形態では、シリコン表面に達するナトリウムイオンの量をさらに低減できる。これにより、本実施形態では、PID現象の発生を低減できる。また、第1酸化シリコン層9aの膜厚は0.3nmから6nm程度とし、0.5nmから3nm程度とすることもできる。さらに、第2酸化シリコン層9bの膜厚は8nmから50nm程度とし、10nmから20nm程度とすることができる。この場合には、第2酸化シリコン層9b中にトラップされるナトリウムイオンの量を多くすることができる。これにより、第2酸化シリコン層9bがより強い正電荷を帯びるようになるため、ナトリウムイオンをブロックする効果をより高めることができる。さらに、第1酸化シリコン層9aの屈折率は1.4から1.5程度、第2酸化シリコン層9bの屈折率は1.6から1.7程度とすることによって、所望の導電率になることも分かった。
As shown in FIG. 3 in which the portion A of FIG. 2 is enlarged, a silicon oxide layer 9 is disposed on the reverse conductivity type layer 8 of the silicon substrate 2. The silicon oxide layer 9 is composed of a first silicon oxide layer 9a made of SiOx, and SiOy that is disposed on the first silicon oxide layer 9a and has a higher silicon content with respect to oxygen than silicon oxide in the first silicon oxide layer 9a. And a second silicon oxide layer 9b. Here, if x> y is about 1.8 to 3 in SiOx and y is about 1 to 1.7 in SiOy, as described later, in the second silicon oxide layer 9b, It becomes silicon rich and the conductivity increases. As a result, sodium ions easily move at the interface between the first silicon oxide layer 9a and the second silicon oxide layer 9b and between the second silicon oxide layer 9b and the antireflection layer 11. As a result, the accumulation of sodium ions at the interface is reduced. For this reason, in this embodiment, the amount of sodium ions reaching the silicon surface can be further reduced. Thereby, in this embodiment, generation | occurrence | production of a PID phenomenon can be reduced. The film thickness of the first silicon oxide layer 9a can be about 0.3 nm to 6 nm, or about 0.5 nm to 3 nm. Further, the film thickness of the second silicon oxide layer 9b can be about 8 nm to 50 nm and about 10 nm to 20 nm. In this case, the amount of sodium ions trapped in the second silicon oxide layer 9b can be increased. Thereby, since the second silicon oxide layer 9b has a stronger positive charge, the effect of blocking sodium ions can be further enhanced. Furthermore, the refractive index of the first silicon oxide layer 9a is about 1.4 to 1.5, and the refractive index of the second silicon oxide layer 9b is about 1.6 to 1.7. I also understood that.
 PID現象は、太陽電池モジュールのガラス基板から遊離したナトリウムイオンが、シリコン基板2の表面および内部へ移動することに起因して発生するものといわれている。ナトリウムイオンの物質の内部への移動は、それが存在している物質の密度および結晶構造の影響を受ける。例えば、ナトリウムイオンは、窒化シリコンの内部へは移動しやすく、酸化シリコンの内部へは移動しにくい。したがって、窒化シリコンを含む反射防止層11に比べて、第1酸化シリコン層9aおよび第2酸化シリコン層9bを備えている酸化シリコン層9の内部は、ナトリウムイオンが移動しにくい。このため、第1酸化シリコン層9中にはナトリウムイオンが入りにくくなるので、ナトリウムイオンがシリコン基板2に入りにくくなって、PID現象の発生が低減する。 The PID phenomenon is said to occur due to the movement of sodium ions released from the glass substrate of the solar cell module to the surface and inside of the silicon substrate 2. The movement of sodium ions into the material is affected by the density and crystal structure of the material in which it is present. For example, sodium ions easily move into the silicon nitride and hardly move into the silicon oxide. Accordingly, sodium ions are less likely to move inside the silicon oxide layer 9 including the first silicon oxide layer 9a and the second silicon oxide layer 9b as compared to the antireflection layer 11 containing silicon nitride. For this reason, since it becomes difficult for sodium ions to enter the first silicon oxide layer 9, it becomes difficult for sodium ions to enter the silicon substrate 2, and the occurrence of the PID phenomenon is reduced.
 さらに、酸化シリコン層9が第1酸化シリコン層9aおよび第2酸化シリコン層9bの2層を含むことによって、以下の作用効果が期待できる。ナトリウムイオンは、第2酸化シリコン層9bに発生する微細な欠陥もしくはピンホールまたは膜厚の薄い部分などを通して移動する。しかし、第1酸化シリコン層9aでナトリウムイオンをブロックできる。さらに、第1酸化シリコン層9aの酸化シリコン(SiOx)よりも、第2酸化シリコン層9bでは酸素に対するシリコンの含有率が多い酸化シリコン(SiOy)を含有している。つまり、第2酸化シリコン層9bでは、第1酸化シリコン層9aよりもシリコンリッチな状態にある。このため、第2酸化シリコン層9bでは導電率が上がり、第1酸化シリコン層9aと第2酸化シリコン層9bとの界面、および第2酸化シリコン層9bと反射防止層11との界面で、ナトリウムイオンが移動しやすくなる。そして、これらの界面でのナトリウムイオンの蓄積が無くなり、シリコン基板2の表面に達するナトリウムイオンの量をさらに低減できる。これにより、PID現象が生じにくい太陽電池素子にすることができる。 Further, since the silicon oxide layer 9 includes two layers of the first silicon oxide layer 9a and the second silicon oxide layer 9b, the following effects can be expected. Sodium ions move through fine defects or pinholes or thin portions of the second silicon oxide layer 9b. However, sodium ions can be blocked by the first silicon oxide layer 9a. Further, the second silicon oxide layer 9b contains silicon oxide (SiOy) having a higher silicon content ratio relative to oxygen than the silicon oxide (SiOx) of the first silicon oxide layer 9a. That is, the second silicon oxide layer 9b is in a richer silicon state than the first silicon oxide layer 9a. For this reason, the conductivity of the second silicon oxide layer 9b is increased, and sodium is added at the interface between the first silicon oxide layer 9a and the second silicon oxide layer 9b and at the interface between the second silicon oxide layer 9b and the antireflection layer 11. Ions move easily. Then, accumulation of sodium ions at these interfaces is eliminated, and the amount of sodium ions reaching the surface of the silicon substrate 2 can be further reduced. Thereby, it can be set as the solar cell element which a PID phenomenon does not produce easily.
 また、第2酸化シリコン層9bは、第1酸化シリコン層9aよりも厚いとよい。第2酸化シリコン層9bの膜厚を第1酸化シリコン層9aの膜厚よりも厚くすることによって、第2酸化シリコン層9b中にトラップされるナトリウムイオンの量を多くすることができる。さらに、第2酸化シリコン層9bがより強い正電荷を帯びるようになるため、ナトリウムイオンの正電荷と反発することになり、ナトリウムイオンのシリコン基板2への移動をブロックする作用をより高めることができる。 The second silicon oxide layer 9b is preferably thicker than the first silicon oxide layer 9a. By making the film thickness of the second silicon oxide layer 9b larger than the film thickness of the first silicon oxide layer 9a, the amount of sodium ions trapped in the second silicon oxide layer 9b can be increased. Further, since the second silicon oxide layer 9b has a stronger positive charge, it repels the positive charge of sodium ions, and the action of blocking the movement of sodium ions to the silicon substrate 2 can be further enhanced. it can.
 なお、第1酸化シリコン層9aおよび第2酸化シリコン層9bの酸素に対するシリコンの含有率は、例えば二次イオン質量分析法(SIMS;Secondary Ion Mass Spectrometry)やX線光電子分光法(XPS;X-ray Photoelectron Spectroscopy)などで測定できる。 The silicon content with respect to oxygen in the first silicon oxide layer 9a and the second silicon oxide layer 9b is, for example, secondary ion mass spectrometry (SIMS) or X-ray photoelectron spectroscopy (XPS). ray Photoelectron Spectroscopy).
 また、太陽電池素子1は、図3に示すように、第2酸化シリコン層9bの上に配置され、第2酸化シリコン層9bよりも屈折率が高い反射防止層11を備えるとよい。反射防止層11は、太陽電池素子1の表面1aにおける光の反射率を低減し、光吸収によって生成する電子正孔対を増大させる役割を果たすことで、キャリアを増加させ太陽電池素子1の光電変換効率の向上に寄与する。反射防止層11は、窒化シリコン、酸化チタン、酸化アルミニウムなどの単層膜、またはこれらの積層膜を用いることができる。 Further, as shown in FIG. 3, the solar cell element 1 is preferably provided with an antireflection layer 11 disposed on the second silicon oxide layer 9b and having a refractive index higher than that of the second silicon oxide layer 9b. The antireflection layer 11 reduces the reflectance of light on the surface 1a of the solar cell element 1 and increases the number of electron-hole pairs generated by light absorption, thereby increasing carriers and increasing the photoelectric of the solar cell element 1. Contributes to improved conversion efficiency. The antireflection layer 11 may be a single layer film such as silicon nitride, titanium oxide, or aluminum oxide, or a laminated film thereof.
 第2酸化シリコン層9bよりも反射防止層11の屈折率を大きくしたことで、第1酸化シリコン層9a、第2酸化シリコン層9bおよび反射防止層11を合わせた全体の屈折率および膜厚をより最適にすることができる。これにより、太陽電池素子1に入射する光の反射防止の効果を向上させ得る。PID現象の発生を低減するために、反射防止層11の屈折率および厚みを一定の範囲に収まるようにした場合、充分な反射防止効果が得られない場合がある。本実施形態の反射防止層11では、第1酸化シリコン層9aと第2酸化シリコン層9bによってPID現象の発生の低減が期待できるため、反射防止層11の屈折率を第2酸化シリコン層9bよりも大きく設定でき、厚みも自由に設定できる。このため、反射防止層の効果的に機能させ得る。なお、第1酸化シリコン層9a、第2酸化シリコン層9bおよび反射防止層11の、それぞれの屈折率と厚みとは、いずれもエリプソメーターで測定可能である。 By making the refractive index of the antireflection layer 11 larger than that of the second silicon oxide layer 9b, the total refractive index and film thickness of the first silicon oxide layer 9a, the second silicon oxide layer 9b, and the antireflection layer 11 can be reduced. Can be more optimal. Thereby, the effect of preventing reflection of light incident on the solar cell element 1 can be improved. In order to reduce the occurrence of the PID phenomenon, if the refractive index and thickness of the antireflection layer 11 are set within a certain range, a sufficient antireflection effect may not be obtained. In the antireflection layer 11 of the present embodiment, since the first silicon oxide layer 9a and the second silicon oxide layer 9b can be expected to reduce the occurrence of the PID phenomenon, the refractive index of the antireflection layer 11 is higher than that of the second silicon oxide layer 9b. Can be set larger, and the thickness can be set freely. For this reason, the antireflection layer can function effectively. In addition, each refractive index and thickness of the 1st silicon oxide layer 9a, the 2nd silicon oxide layer 9b, and the reflection preventing layer 11 can be measured with an ellipsometer.
 太陽電池素子1では、n型の逆導電型層8の表面に正の固定電荷を有する酸化シリコン層および窒化シリコンを有する反射防止層11を配置している。これにより、以下に述べる効果を期待できる。酸化シリコン層および窒化シリコンを有する反射防止層11の電界効果によって、逆導電型層8との界面(シリコン基板2の表面)から少数キャリアが遠ざけられる。これにより、シリコン基板2の表面での少数キャリアの再結合が低減され、光電変換効率の向上を図るパッシベーション効果を得ることができる。特に、反射防止層11が窒化シリコンを含有していることで、窒化シリコンの正の固定電荷が酸化シリコンよりも強いため、太陽電池素子1の光電変換効率をさらに向上させ得る。反射防止層11には、窒化シリコン膜(SiNz膜(Siのストイキオメトリを中心にして、Nの組成比zには幅がある))を用いることができる。この窒化シリコン膜は、CVD法でモノシランガスやアンモニアガスなどを使用して作製することができる。 In the solar cell element 1, a silicon oxide layer having a positive fixed charge and an antireflection layer 11 having silicon nitride are arranged on the surface of the n-type reverse conductivity type layer 8. Thereby, the effects described below can be expected. Minority carriers are moved away from the interface (the surface of the silicon substrate 2) with the reverse conductivity type layer 8 by the electric field effect of the antireflection layer 11 having a silicon oxide layer and silicon nitride. Thereby, recombination of minority carriers on the surface of the silicon substrate 2 is reduced, and a passivation effect for improving the photoelectric conversion efficiency can be obtained. In particular, since the antireflection layer 11 contains silicon nitride, since the positive fixed charge of silicon nitride is stronger than that of silicon oxide, the photoelectric conversion efficiency of the solar cell element 1 can be further improved. The antireflection layer 11 can be a silicon nitride film (SiNz film (the composition ratio z of N has a width with a center on the stoichiometry of Si 3 N 4 )). This silicon nitride film can be manufactured using a monosilane gas, ammonia gas, or the like by a CVD method.
 反射防止層11は、第2酸化シリコン層9bよりも膜厚が厚いとよい。これにより、より強い正の電荷となるので、上述のパッシベーション効果をより大きくすることができる。例えば、第2酸化シリコン層9bの膜厚を10nmから30nm程度とした場合、窒化シリコンから成る反射防止層11の膜厚は、40nmから100nm程度(屈折率は、1.7から2.3程度)とすることができる。 The antireflection layer 11 is preferably thicker than the second silicon oxide layer 9b. Thereby, since it becomes a stronger positive electric charge, the above-mentioned passivation effect can be enlarged more. For example, when the thickness of the second silicon oxide layer 9b is about 10 to 30 nm, the thickness of the antireflection layer 11 made of silicon nitride is about 40 to 100 nm (refractive index is about 1.7 to 2.3). ).
 <太陽電池素子の製造方法>
 次に、太陽電池素子1の製造方法について説明する。
<Method for producing solar cell element>
Next, the manufacturing method of the solar cell element 1 is demonstrated.
 まず、図4(a)に示すようにシリコン基板2を準備する。シリコン基板2としては、例えば比抵抗は0.2Ω・cmから2Ω・cm程度の一導電型領域7を有する単結晶または多結晶のシリコン基板である。シリコン基板2が単結晶シリコン基板の場合は、例えばFZ(フローティングゾーン)法またはCZ(チョクラルスキー)法などによって作製する。シリコン基板2が多結晶シリコン基板の場合は、例えば鋳造法などによって作製する。以下では、p型の多結晶シリコン基板をシリコン基板2として用いる例について説明する。 First, a silicon substrate 2 is prepared as shown in FIG. The silicon substrate 2 is, for example, a monocrystalline or polycrystalline silicon substrate having a one conductivity type region 7 having a specific resistance of about 0.2 Ω · cm to 2 Ω · cm. When the silicon substrate 2 is a single crystal silicon substrate, it is manufactured by, for example, the FZ (floating zone) method or the CZ (Czochralski) method. When the silicon substrate 2 is a polycrystalline silicon substrate, it is produced by, for example, a casting method. Hereinafter, an example in which a p-type polycrystalline silicon substrate is used as the silicon substrate 2 will be described.
 シリコン基板2の製法について説明する。まず、鋳造法によって多結晶シリコンのインゴットを作製する。次いで、そのインゴットをマルチワイヤーソー等を用いて、例えば150μmから250μm程度の厚みにスライスして、p型のシリコン基板2を作製する。その後、シリコン基板2の切断面の機械的ダメージ層および汚染層を除去するために、表面を水酸化ナトリウム(NaOH)または水酸化カリウム(KOH)などを含むアルカリ溶液、またはフッ酸(HF)と硝酸(HNO)との混合溶液で数μm程度エッチングして、洗浄し乾燥する。 A method for manufacturing the silicon substrate 2 will be described. First, an ingot of polycrystalline silicon is produced by a casting method. Next, the p-type silicon substrate 2 is manufactured by slicing the ingot into a thickness of, for example, about 150 μm to 250 μm using a multi-wire saw or the like. Thereafter, in order to remove the mechanical damage layer and the contamination layer on the cut surface of the silicon substrate 2, the surface is made of an alkaline solution containing sodium hydroxide (NaOH) or potassium hydroxide (KOH), or hydrofluoric acid (HF). Etching with a mixed solution with nitric acid (HNO 3 ) about several μm, washing and drying.
 その後、反応性イオンエッチング(RIE)装置を用いて、シリコン基板2の表面2aの略全面に、微細な凹凸を持つテクスチャ構造を形成してもよい。本実施形態では、例えば、三フッ化メタン(CHF)を20sccm、塩素(Cl)を50sccm、酸素(O)を10sccm、および六フッ化イオウ(SF)を80sccmの流量で流しながら、反応圧力7Pa、プラズマを発生させるRFパワーを500Wの条件で、3分間程度ドライエッチングする。その後、シリコン基板2の表面2a上のシリコン残渣を洗浄し除去する。 Thereafter, a texture structure having fine irregularities may be formed on substantially the entire surface 2a of the silicon substrate 2 by using a reactive ion etching (RIE) apparatus. In the present embodiment, for example, while flowing trifluoride methane (CHF 3 ) at a flow rate of 20 sccm, chlorine (Cl 2 ) at 50 sccm, oxygen (O 2 ) at 10 sccm, and sulfur hexafluoride (SF 6 ) at a flow rate of 80 sccm. Then, dry etching is performed for about 3 minutes under conditions of a reaction pressure of 7 Pa and an RF power for generating plasma of 500 W. Thereafter, the silicon residue on the surface 2a of the silicon substrate 2 is washed and removed.
 次に、図4(b)に示すように、シリコン基板2の表面2a側の表層内にn型の逆導電型層8を形成する。この逆導電型層8は、ペースト状態にした五酸化二リン(P)をシリコン基板2の表面2aに塗布して熱拡散させる塗布熱拡散法、または、ガス状態にしたオキシ塩化リン(POCl)を拡散源とした気相熱拡散法などによって形成する。この逆導電型層8は、0.1μmから1μm程度の厚みがあり、40Ω/□から150Ω/□程度のシート抵抗を有するように形成される。 Next, as shown in FIG. 4B, an n-type reverse conductivity type layer 8 is formed in the surface layer of the silicon substrate 2 on the surface 2a side. The reverse conductivity type layer 8 is formed by applying a thermal diffusion method in which a paste of diphosphorus pentoxide (P 2 O 5 ) is applied to the surface 2a of the silicon substrate 2 and thermally diffused, or phosphorus oxychloride in a gas state. It is formed by a vapor phase thermal diffusion method using (POCl 3 ) as a diffusion source. The reverse conductivity type layer 8 has a thickness of about 0.1 μm to 1 μm, and is formed to have a sheet resistance of about 40Ω / □ to 150Ω / □.
 その後、シリコン基板2の表面に形成されたリンガラス層および不要な酸化膜を除去するために、シリコン基板2をフッ酸水溶液に浸漬し、その後純水にて洗浄する。この純水による洗浄の最後に、オゾンを用いてシリコン基板2の表面を酸化して、図4(c)に示すように、シリコン基板2の表面に第1酸化シリコン層9aを形成する。 Thereafter, in order to remove the phosphorus glass layer and unnecessary oxide film formed on the surface of the silicon substrate 2, the silicon substrate 2 is immersed in a hydrofluoric acid aqueous solution and then washed with pure water. At the end of the cleaning with pure water, the surface of the silicon substrate 2 is oxidized using ozone to form a first silicon oxide layer 9a on the surface of the silicon substrate 2 as shown in FIG.
 詳細には、まず、フッ素系樹脂またはポリプロピレンなどで作製された槽20の内側に、オゾン含有ガスを導入するための配管21を配置する。配管21の第1端部は、酸素ガス中にオゾンを含有するオゾン含有ガスを生成するオゾン発生機に繋がれて、配管21の第2端部である排出口22は槽20の底部に配置される。この槽20に純水を入れた後、排出口22からオゾン含有ガスを吐出させ、純水中でバブリングする。これにより、オゾンを含有させたオゾン含有水23を作製する。 Specifically, first, a pipe 21 for introducing an ozone-containing gas is arranged inside a tank 20 made of a fluorine-based resin or polypropylene. The first end of the pipe 21 is connected to an ozone generator that generates an ozone-containing gas containing ozone in the oxygen gas, and the discharge port 22 that is the second end of the pipe 21 is disposed at the bottom of the tank 20. Is done. After putting pure water into this tank 20, ozone-containing gas is discharged from the discharge port 22, and bubbling is performed in pure water. Thereby, the ozone containing water 23 containing ozone is produced.
 次に、図5に示すように、上記洗浄の際に、オゾン含有水23にシリコン基板2を浸漬する。そして、配管21の排出口22からオゾン含有ガス24がシリコン基板2表面に当たるようにして、オゾン含有水23中でオゾン含有ガスの泡を発生させる。これにより形成される第1酸化シリコン層9aの膜厚は、0.3nmから6nm程度である。このとき、第1酸化シリコン層9aは、シリコン基板2のテクスチャ構造にほとんど影響されることなくほぼ均一に形成される。このため、第1酸化シリコン層9a上に形成される第2酸化シリコン層9bに、微細な欠陥、ピンホールまたは薄い箇所などが生じていても、ナトリウムイオンをより確実にブロックし得る。さらに、形成された第1酸化シリコン層9aでは、不純物のコンタミネーションが少ない酸化シリコンの層である。このため、第1酸化シリコン層9aの酸素原子による逆導電型層8のシリコン原子の未結合手の終端を行うことができて、太陽電池素子1のさらなる光電変換効率の向上を図ることができる。 Next, as shown in FIG. 5, the silicon substrate 2 is immersed in the ozone-containing water 23 during the cleaning. Then, ozone-containing gas bubbles are generated in the ozone-containing water 23 so that the ozone-containing gas 24 hits the surface of the silicon substrate 2 from the discharge port 22 of the pipe 21. The film thickness of the first silicon oxide layer 9a thus formed is about 0.3 nm to 6 nm. At this time, the first silicon oxide layer 9a is formed substantially uniformly without being substantially affected by the texture structure of the silicon substrate 2. For this reason, even if a minute defect, a pinhole, a thin part, etc. have arisen in the 2nd silicon oxide layer 9b formed on the 1st silicon oxide layer 9a, it can block sodium ion more certainly. Further, the formed first silicon oxide layer 9a is a silicon oxide layer with little impurity contamination. For this reason, it is possible to terminate the dangling bonds of silicon atoms of the reverse conductivity type layer 8 by oxygen atoms of the first silicon oxide layer 9a, and to further improve the photoelectric conversion efficiency of the solar cell element 1. .
 なお、第1酸化シリコン層9aの形成は、上述のオゾン含有水23にシリコン基板2を浸漬する方法に限定されない。例えば、紫外線ランプの直下にシリコン基板2を配置して、シリコン基板2に紫外線を照射して第1酸化シリコン層9aを形成してもよい。この場合、紫外線の働きで空気中の酸素がオゾンに変化する。このオゾンによって、シリコン基板2の表面を酸化させて、第1酸化シリコン層9aが形成される。ただし、この紫外線照射による形成方法では、形成された第1酸化シリコン層9aに空気中の不純物が含まれる場合が考えられる。 The formation of the first silicon oxide layer 9a is not limited to the method of immersing the silicon substrate 2 in the ozone-containing water 23 described above. For example, the first silicon oxide layer 9a may be formed by disposing the silicon substrate 2 directly below the ultraviolet lamp and irradiating the silicon substrate 2 with ultraviolet rays. In this case, oxygen in the air changes to ozone by the action of ultraviolet rays. The ozone oxidizes the surface of the silicon substrate 2 to form the first silicon oxide layer 9a. However, in this formation method by ultraviolet irradiation, there may be a case where impurities in the air are included in the formed first silicon oxide layer 9a.
 また、気相熱拡散法などで逆導電型層8を形成時に、裏面2b側にも逆導電型層8が形成された場合、さらには裏面2b側にも第1酸化シリコン層9aが形成された場合には、フッ酸と硝酸との混合液に、シリコン基板2の裏面2b側のみを浸す。これにより、裏面2b側の逆導電型層8や第1酸化シリコン層9aをエッチング除去して、裏面2b側にp型の一導電型領域7を露出させる。以上によって、シリコン基板2の内部に、p型の一導電型領域7とn型の逆導電型層8とによるpn接合を形成されると共に逆導電型層8上には第1酸化シリコン層9aを形成することができる。 Further, when the reverse conductivity type layer 8 is formed on the back surface 2b side when the reverse conductivity type layer 8 is formed by vapor phase thermal diffusion or the like, the first silicon oxide layer 9a is further formed on the back surface 2b side. In such a case, only the back surface 2b side of the silicon substrate 2 is immersed in a mixed solution of hydrofluoric acid and nitric acid. Thus, the reverse conductivity type layer 8 and the first silicon oxide layer 9a on the back surface 2b side are removed by etching, and the p-type one conductivity type region 7 is exposed on the back surface 2b side. As described above, a pn junction is formed in the silicon substrate 2 by the p-type one conductivity type region 7 and the n-type reverse conductivity type layer 8, and the first silicon oxide layer 9 a is formed on the reverse conductivity type layer 8. Can be formed.
 次に、図4(d)に示すように、シリコン基板2の表面2a側の第1酸化シリコン層9a上に、第2酸化シリコン層9bを形成する。第2酸化シリコン層9bの形成には、ALD(Atomic Layer Deposition)法を用いることができる。この場合には、原料ガスとして、例えば、N,N,N’,N’,テトラエチルシランジアミン(HSi[N(C])ガスと、酸化剤としてオゾンガスとを用いることができる。これにより形成された第2酸化シリコン層9bは、実質的にシリコンおよび酸素から形成されたものとなる。これにより、ナトリウムイオンのシリコン基板2への移動を第2酸化シリコン層9bでブロックすることができる。 Next, as shown in FIG. 4D, a second silicon oxide layer 9 b is formed on the first silicon oxide layer 9 a on the surface 2 a side of the silicon substrate 2. An ALD (Atomic Layer Deposition) method can be used to form the second silicon oxide layer 9b. In this case, for example, N, N, N ′, N ′, tetraethylsilanediamine (H 2 Si [N (C 2 H 5 ) 2 ] 2 ) gas and ozone gas as the oxidizing agent are used as the source gas. be able to. The second silicon oxide layer 9b thus formed is substantially formed from silicon and oxygen. Thereby, movement of sodium ions to the silicon substrate 2 can be blocked by the second silicon oxide layer 9b.
 また、第2酸化シリコン層9bは、例えば、モノシランガス(SiH)および亜酸化窒素(NO)ガスを用いたCVD(Chemical Vapor Deposition)法など用いて形成することもできる。モノシランガスおよび亜酸化窒素ガスの流量、成膜時間を各々制御することによって、所望の屈折率および厚さの第2酸化シリコン層9bを得ることができる。 The second silicon oxide layer 9b can also be formed using, for example, a CVD (Chemical Vapor Deposition) method using monosilane gas (SiH 4 ) and nitrous oxide (N 2 O) gas. The second silicon oxide layer 9b having a desired refractive index and thickness can be obtained by controlling the flow rate of monosilane gas and nitrous oxide gas and the film formation time.
 この場合、形成された第2酸化シリコン層9bは、窒素を含有することになるが、この含有された窒素の含有量は酸素の含有量より少ない。例えば、第2酸化シリコン層9b中の窒素と酸素との原子数の比は、窒素は酸素の0.3倍から0.5倍程度である。ここで、窒素と酸素との原子数の比は、SIMSまたはXPSによって測定可能である。 In this case, the formed second silicon oxide layer 9b contains nitrogen, but the content of this contained nitrogen is less than the content of oxygen. For example, the ratio of the number of atoms of nitrogen and oxygen in the second silicon oxide layer 9b is about 0.3 to 0.5 times that of oxygen. Here, the ratio of the number of atoms of nitrogen and oxygen can be measured by SIMS or XPS.
 第1酸化シリコン層9aの屈折率は1.4から1.6程度になり、反射防止層11の屈折率が1.9から2.1程度になる。この場合、第2酸化シリコン層9bの屈折率をそのほぼ中間の値である1.7から1.8程度にすることができる。これにより、太陽電池素子1最外面にある反射防止層11からシリコン基板2に当接する第1酸化シリコン層9aまでの屈折率をほぼ等間隔で徐々に下げることができるため、光反射をより低減することができる。 The refractive index of the first silicon oxide layer 9a is about 1.4 to 1.6, and the refractive index of the antireflection layer 11 is about 1.9 to 2.1. In this case, the refractive index of the second silicon oxide layer 9b can be about 1.7 to 1.8, which is an almost intermediate value. Thereby, the refractive index from the antireflection layer 11 on the outermost surface of the solar cell element 1 to the first silicon oxide layer 9a in contact with the silicon substrate 2 can be gradually lowered at substantially equal intervals, so that the light reflection is further reduced. can do.
 次に、図4(e)に示すように、第2酸化シリコン層9b上に反射防止層11を形成する。例えば、窒化シリコンからなる反射防止層11をPECVD(Plasma Enhanced Chemical Vapor Deposition)装置で形成する場合であれば、反応室内を400℃から500℃程度として、シラン(SiH)とアンモニア(NH)との混合ガスを窒素(N)で希釈しながら、反応室内の電極間に高周波電圧を印加する。そして、これらのガスをグロー放電分解でプラズマ化させて堆積させることで、第2酸化シリコン層9b上に反射防止層11が形成される。このときに、モノシランガス、アンモニアガス、窒素ガスの各ガスの流量、成膜時間などを調整して、反射防止層11が所定の屈折率および厚さになるようにすればよい。 Next, as shown in FIG. 4E, an antireflection layer 11 is formed on the second silicon oxide layer 9b. For example, when the antireflection layer 11 made of silicon nitride is formed by a PECVD (Plasma Enhanced Chemical Vapor Deposition) apparatus, the reaction chamber is set to about 400 ° C. to 500 ° C., and silane (SiH 4 ) and ammonia (NH 3 ). A high frequency voltage is applied between the electrodes in the reaction chamber while diluting the mixed gas with nitrogen (N 2 ). Then, the antireflection layer 11 is formed on the second silicon oxide layer 9b by depositing these gases into plasma by glow discharge decomposition. At this time, the flow rate of each gas of monosilane gas, ammonia gas, and nitrogen gas, the film formation time, and the like may be adjusted so that the antireflection layer 11 has a predetermined refractive index and thickness.
 また、本実施形態では、第2酸化シリコン層9bおよび反射防止層11は、両者とも上述のようにCVD法で形成できる。このため、インライン型PECVD装置で2つの成膜室(第1成膜室および第2成膜室)を準備して、第1成膜室で第2酸化シリコン層9bを成膜し、第2成膜室で反射防止層11を成膜するようにしてもよい。これにより、第2酸化シリコン層9bと反射防止層11との界面において酸化膜が形成しにくくなると共に、量産時には装置間の移動、装置特有の搬送トレイへの移し替えの時間等の工数が削減できる。 In the present embodiment, the second silicon oxide layer 9b and the antireflection layer 11 can both be formed by the CVD method as described above. For this reason, two film formation chambers (first film formation chamber and second film formation chamber) are prepared with an inline-type PECVD apparatus, and the second silicon oxide layer 9b is formed in the first film formation chamber. The antireflection layer 11 may be deposited in the deposition chamber. This makes it difficult to form an oxide film at the interface between the second silicon oxide layer 9b and the antireflection layer 11, and reduces man-hours such as movement between apparatuses and transfer time to an apparatus-specific transport tray during mass production. it can.
 次に、図4(f)に示すように、シリコン基板2の表面2aに、バスバー電極3およびフィンガー電極4となる表面側導電性ペースト13を塗布し配置する。表面側導電性ペースト13としては、銀を主成分として導電性ペースト中に70質量%から85質量%程度含有し、さらにガラスフリットおよび有機ビヒクル等を混練したものを用いる。有機ビヒクルは、例えばバインダーとして使用される樹脂成分を有機溶媒に添加して得られる。バインダーとしては、エチルセルロース等のセルロース系樹脂の他、アクリル樹脂またはアルキッド樹脂等が使用可能である。また、有機溶媒としては、例えば、ジエチレングリコールモノブチルエーテルアセテート、ターピネオールまたはジエチレングリコールモノブチルエーテル等が使用される。有機ビヒクルの含有質量は、導電性ペースト中に5質量%から20質量%程度含有していればよい。また、ガラスフリットの成分は、ガラス材料として例えばSiO-Bi-PbO系またはAl-SiO-PbO系などの鉛系ガラスを用いることができる。また、他のガラス材料としては、B-SiO-Bi系またはB-SiO-ZnO系などの非鉛系ガラスも用いることができる。ガラスフリットは、導電性ペースト中に2質量%から15質量%程度であればよい。表面側導電性ペースト13を配置する方法としては、スクリーン製版を用いたプリント印刷法を用いて、第1テクスチャ構造領域11上にフィンガー電極4となる表面側導電性ペースト13が配置されるように塗布する。この塗布後、所定の温度で乾燥し、溶剤を蒸発させる。 Next, as shown in FIG. 4 (f), the surface-side conductive paste 13 to be the bus bar electrode 3 and the finger electrode 4 is applied and disposed on the surface 2 a of the silicon substrate 2. As the surface-side conductive paste 13, a paste containing silver as a main component and containing about 70% by mass to 85% by mass in a conductive paste and further kneaded with glass frit, an organic vehicle, or the like is used. The organic vehicle is obtained, for example, by adding a resin component used as a binder to an organic solvent. As the binder, an acrylic resin or an alkyd resin can be used in addition to a cellulose resin such as ethyl cellulose. As the organic solvent, for example, diethylene glycol monobutyl ether acetate, terpineol or diethylene glycol monobutyl ether is used. The organic vehicle may be contained in an amount of about 5% by mass to 20% by mass in the conductive paste. As the glass frit component, lead glass such as SiO 2 —Bi 2 O 3 —PbO or Al 2 O 3 —SiO 2 —PbO can be used as a glass material. As other glass materials, non-lead glass such as B 2 O 3 —SiO 2 —Bi 2 O 3 or B 2 O 3 —SiO 2 —ZnO can also be used. The glass frit may be about 2% by mass to 15% by mass in the conductive paste. As a method of arranging the surface-side conductive paste 13, the surface-side conductive paste 13 to be the finger electrode 4 is arranged on the first texture structure region 11 by using a printing method using screen plate making. Apply. After this application, the solvent is dried by drying at a predetermined temperature.
 同様に、シリコン基板2の裏面2bに、接続電極6用の裏面側第1導電性ペースト14を配置する。裏面側第1導電性ペースト14は、上述の表面側導電性ペースト13と同様の導電性ペーストが使用可能である。裏面側第1導電性ペースト14を配置後、所定の温度で乾燥させて溶剤を蒸散させる。 Similarly, the back surface side first conductive paste 14 for the connection electrode 6 is disposed on the back surface 2 b of the silicon substrate 2. As the back side first conductive paste 14, the same conductive paste as the above-described front side conductive paste 13 can be used. After arrange | positioning the back surface side 1st electrically conductive paste 14, it is made to dry at predetermined temperature and a solvent is evaporated.
 次いで、図4(g)に示すように、裏面集電電極5用の裏面側第2導電性ペースト15を配置する。第2導電性ペースト15としては、例えばアルミニウムを主成分とする金属粉末と、ガラスフリットと、有機ビヒクルとを含有するアルミニウムペーストを用いる。塗布法としては、プリント印刷法などを用いることができる。このように導電性ペーストを塗布した後、所定の温度で乾燥させて溶剤を蒸散させる。 Next, as shown in FIG. 4G, the back side second conductive paste 15 for the back side collecting electrode 5 is disposed. As the second conductive paste 15, for example, an aluminum paste containing a metal powder containing aluminum as a main component, glass frit, and an organic vehicle is used. As the coating method, a printing method or the like can be used. After applying the conductive paste in this manner, the solvent is evaporated by drying at a predetermined temperature.
 次に、表面側導電性ペースト13、裏面側第1導電性ペースト14および裏面側第2導電性ペースト15を配置したシリコン基板2を焼成炉に投入し、これらを同時に焼成炉内にて最高温度が約750℃から900℃、最高温度で0.1秒間から数十秒間程度維持して焼成を行う。これによって、焼成中に溶融したガラスフリットがシリコン基板2の最表面と反応した後に固着して、各電極とシリコン基板2との電気的コンタクトを形成するとともに、機械的な接着強度を高めることができる。このとき、表面側導電性ペースト13は、反射防止層11をファイアースルーして、シリコン基板2と直に接するバスバー電極3およびフィンガー電極4が形成される。また、この焼成によって、裏面側第1導電性ペースト14は接続電極6となり、裏面側第2導電性ペースト15は集電電極5となる。このとき、集電電極5の形成と同時に、アルミニウムがシリコン基板2に拡散することによって、BSF領域10が形成される。以上の工程によって、図1および図2に示した太陽電池素子1が完成する。 Next, the silicon substrate 2 on which the front-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 are placed is put into a firing furnace, and these are simultaneously heated to the maximum temperature in the firing furnace. Is about 750 ° C. to 900 ° C., and the maximum temperature is maintained for about 0.1 seconds to several tens of seconds. As a result, the glass frit melted during firing reacts with the outermost surface of the silicon substrate 2 and adheres to form an electrical contact between each electrode and the silicon substrate 2 and increase the mechanical adhesive strength. it can. At this time, the surface-side conductive paste 13 fires through the antireflection layer 11 to form bus bar electrodes 3 and finger electrodes 4 that are in direct contact with the silicon substrate 2. Further, by this firing, the back side first conductive paste 14 becomes the connection electrode 6, and the back side second conductive paste 15 becomes the current collecting electrode 5. At this time, the BSF region 10 is formed by diffusing aluminum into the silicon substrate 2 simultaneously with the formation of the collecting electrode 5. The solar cell element 1 shown in FIGS. 1 and 2 is completed through the above steps.
 なお、本実施形態に係る太陽電池素子1の製造方法は、上記のものに限定されるものではない。例えば、焼成工程は、表面側導電性ペースト13、裏面側第1導電性ペースト14および裏面側第2導電性ペースト15をそれぞれ配置した後に順次行なってもよい。また、表面側導電性ペースト13および裏面側第1導電性ペースト14を同時に行ない、裏面側第2導電性ペースト15配置後にさらに焼成してもよい。また、他の方法としては、表面側導電性ペースト13を焼成した後、裏面側第1導電性ペースト14および裏面側第2導電性ペースト15を同時に焼成してもよい。また、バスバー電極3および接続電極6は、上述の銀を主成分とした導電性ペーストの他に、銀および銅を主成分とした導電性ペーストで形成してもよい In addition, the manufacturing method of the solar cell element 1 which concerns on this embodiment is not limited to said thing. For example, the firing step may be sequentially performed after the surface-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 are arranged. Alternatively, the front-side conductive paste 13 and the back-side first conductive paste 14 may be performed simultaneously, and further baked after the back-side second conductive paste 15 is disposed. As another method, after the front surface side conductive paste 13 is fired, the back side first conductive paste 14 and the back side second conductive paste 15 may be fired simultaneously. Further, the bus bar electrode 3 and the connection electrode 6 may be formed of a conductive paste mainly composed of silver and copper in addition to the above-described conductive paste mainly composed of silver.
 <太陽電池素子の他の実施形態>
 本実施形態に係る太陽電池素子1では、図6に示すように第1酸化シリコン層9aと第2酸化シリコン層9bとの間に配置された酸化アルミニウム層12をさらに備えている。酸化アルミニウム層12をさらに備えることによって、第2酸化シリコン層9bに微細な欠陥、ピンホールまたは薄い部分などが発生した場合でも、ナトリウムイオンをさらに確実にブロックできる。この酸化アルミニウム層12の形成方法としては、例えば、シリコン基板2表面の微細な凹凸のカバーレッジに優れたALD法を用いるとよい。
<Other Embodiment of Solar Cell Element>
The solar cell element 1 according to this embodiment further includes an aluminum oxide layer 12 disposed between the first silicon oxide layer 9a and the second silicon oxide layer 9b as shown in FIG. By further providing the aluminum oxide layer 12, sodium ions can be more reliably blocked even when fine defects, pinholes, thin portions, or the like are generated in the second silicon oxide layer 9b. As a method of forming the aluminum oxide layer 12, for example, an ALD method excellent in coverage of fine irregularities on the surface of the silicon substrate 2 may be used.
 ALD法による酸化アルミニウム層12の形成では、まず、成膜装置のチャンバー内に図4(c)で示された第1酸化シリコン層9aを形成したシリコン基板2を載置する。そして、シリコン基板1を100℃から250℃の温度域で加熱した状態で、以下に示す工程Aから工程Dまでを複数回繰り返す。これにより、所望の厚さの酸化アルミニウム層12を形成する。工程Aから工程Dまでの各工程の内容は次の通りである。 In the formation of the aluminum oxide layer 12 by the ALD method, first, the silicon substrate 2 on which the first silicon oxide layer 9a shown in FIG. 4C is formed is placed in the chamber of the film forming apparatus. And the process from the process A shown below to the process D is repeated in multiple times in the state which heated the silicon substrate 1 at the temperature range of 100 to 250 degreeC. Thereby, the aluminum oxide layer 12 having a desired thickness is formed. The content of each process from the process A to the process D is as follows.
 [工程A]酸化アルミニウムを形成するためのトリメチルアルミニウム(TMA)等のアルミニウム原料が、Arガスまたは窒素ガス等のキャリアガスとともに、成膜装置のチャンバー内のシリコン基板1上に供給される。これにより、シリコン基板1の全周囲にアルミニウム原料が吸着される。TMAが供給される時間は、例えば15m秒から3000m秒程度であればよい。 [Step A] An aluminum material such as trimethylaluminum (TMA) for forming aluminum oxide is supplied onto the silicon substrate 1 in the chamber of the film forming apparatus together with a carrier gas such as Ar gas or nitrogen gas. As a result, the aluminum material is adsorbed around the entire periphery of the silicon substrate 1. The time for which TMA is supplied may be about 15 to 3000 milliseconds, for example.
 なお、工程Aの開始時には、シリコン基板1の表面はOH基で終端されているとよい。シリコン基板1の表面をSi-O-Hの構造にすることによって、シリコン基板1の表面と、形成された酸化アルミニウム膜との界面に共有結合が形成されやすくなる。これにより、シリコン基板1の表面と、酸化アルミニウム膜との接合強度を向上させて、太陽電池素子10の信頼性をより向上させ得る。Si-O-Hの構造は、例えば、シリコン基板1を希フッ酸で処理した後に、純水で洗浄することによって形成できる。 Note that at the start of the process A, the surface of the silicon substrate 1 is preferably terminated with an OH group. By making the surface of the silicon substrate 1 have a Si—O—H structure, a covalent bond is easily formed at the interface between the surface of the silicon substrate 1 and the formed aluminum oxide film. Thereby, the bonding strength between the surface of the silicon substrate 1 and the aluminum oxide film can be improved, and the reliability of the solar cell element 10 can be further improved. The Si—O—H structure can be formed, for example, by treating the silicon substrate 1 with dilute hydrofluoric acid and then washing with pure water.
 [工程B]窒素ガスによって成膜装置のチャンバー内の浄化が行われ、チャンバー内のアルミニウム原料が除去される。さらに、シリコン基板1に物理吸着および化学吸着したアルミニウム原料のうち、原子層レベルで化学吸着した成分以外のアルミニウム原料が除去される。窒素ガスによってチャンバー内が浄化される時間は、例えば1秒から数十秒程度であればよい。 [Step B] The inside of the chamber of the film forming apparatus is cleaned with nitrogen gas, and the aluminum material in the chamber is removed. Furthermore, aluminum materials other than components chemically adsorbed at the atomic layer level are removed from the aluminum materials physically and chemically adsorbed on the silicon substrate 1. The time for purifying the inside of the chamber with nitrogen gas may be, for example, about 1 second to several tens of seconds.
 [工程C]水またはオゾンガス等の酸化剤が、成膜装置のチャンバー内に供給されることで、TMAに含まれるアルキル基が除去されてOH基で置換される。これにより、シリコン基板1の上に酸化アルミニウムの原子層が形成される。なお、酸化剤がチャンバー内に供給される時間は、500m秒から1500m秒程度であればよい。また、チャンバー内に酸化剤ととともに水素が供給されることで、形成された酸化アルミニウム膜中に水素原子がより含有され易くなる。 [Step C] By supplying an oxidizing agent such as water or ozone gas into the chamber of the film forming apparatus, the alkyl group contained in the TMA is removed and replaced with an OH group. Thereby, an atomic layer of aluminum oxide is formed on the silicon substrate 1. Note that the time during which the oxidizing agent is supplied into the chamber may be about 500 milliseconds to 1500 milliseconds. Further, hydrogen is supplied into the chamber together with the oxidizing agent, so that hydrogen atoms are more easily contained in the formed aluminum oxide film.
 [工程D]窒素ガスによって成膜装置のチャンバー内の浄化が行われ、チャンバー内の酸化剤が除去される。このとき、例えば、シリコン基板1上における原子層レベルの酸化アルミニウムの形成時において反応に寄与しなかった酸化剤等が除去される。なお、窒素ガスによってチャンバー内が浄化される時間は、例えば1秒から数十秒程度であればよい。 [Step D] The inside of the chamber of the film forming apparatus is cleaned with nitrogen gas, and the oxidizing agent in the chamber is removed. At this time, for example, the oxidizing agent that did not contribute to the reaction during the formation of atomic layer level aluminum oxide on the silicon substrate 1 is removed. Note that the time required for purifying the chamber with nitrogen gas may be, for example, about 1 second to several tens of seconds.
 以後、工程Aから工程Dまでの一連の工程を複数回繰り返すことで、所望の膜厚(例えば10nmから200nm程度)の酸化アルミニウム膜が形成される。 Thereafter, an aluminum oxide film having a desired film thickness (for example, about 10 nm to 200 nm) is formed by repeating a series of steps from step A to step D a plurality of times.
 ここでは、アルミニウム原料としてTMAを用いて酸化アルミニウムを形成する場合を示したが、アルミニウム原料として他の原料を用いても構わないことはいうまでもない。例えば、原料供給温度(-20℃から120℃までの範囲内)において、ガス供給減として適当な蒸気圧(例えば100Pa以上)を有し、チャンバー内に気体状態で供給できる材料であればよい。アルミニウム原料としては、例えばトリエチルアルミニウム(TEA)等を用いることができる。また、気体状態で供給できる材料は、窒素ガス、炭酸ガス等をキャリアガスとして希釈して供給してもよい。原料ガスおよびキャリアガスのガス種並びにそれらの混合比を調整することによって、形成される膜中の構成元素の含有量を最適に調整することもできる。 Here, although the case where aluminum oxide is formed using TMA as the aluminum material is shown, it goes without saying that other materials may be used as the aluminum material. For example, any material that has an appropriate vapor pressure (for example, 100 Pa or more) as a gas supply reduction at the raw material supply temperature (in the range from −20 ° C. to 120 ° C.) and can be supplied in a gaseous state in the chamber may be used. As the aluminum raw material, for example, triethylaluminum (TEA) can be used. The material that can be supplied in a gaseous state may be supplied after being diluted with nitrogen gas, carbon dioxide gas or the like as a carrier gas. By adjusting the gas species of the source gas and the carrier gas and the mixing ratio thereof, the content of the constituent elements in the formed film can be adjusted optimally.
 なお、酸化アルミニウム層は、シリコン基板2の裏面2b上にも形成されてもよい。酸化アルミニウム層は負の固定電荷を持つため、これにより、酸化アルミニウム層は裏面2bに対し負の固定電荷を有するパッシベーション膜となる。そして、電界効果によって、少数キャリアである電子が裏面2bとパッシベーション膜4との界面から遠ざかる。その結果、太陽電池素子1では、少数キャリアの再結合が低減することになり、光電変換効率を向上させることができる。 The aluminum oxide layer may also be formed on the back surface 2b of the silicon substrate 2. Since the aluminum oxide layer has a negative fixed charge, the aluminum oxide layer becomes a passivation film having a negative fixed charge with respect to the back surface 2b. Then, electrons which are minority carriers move away from the interface between the back surface 2b and the passivation film 4 due to the electric field effect. As a result, in the solar cell element 1, minority carrier recombination is reduced, and the photoelectric conversion efficiency can be improved.
 <太陽電池モジュール>
 図7(a)、(b)に示すように、本実施形態に係る太陽電池モジュール30は、複数の太陽電池素子1を有する太陽電池パネル33と、太陽電池パネル33の外周部に配置されたフレーム34を有する。太陽電池モジュール30は、主として光を受ける面である第1面30a(図7(a)を参照)、および、第1面30aの裏面に相当する第2面30bを有する(図7(b)を参照)。そして、太陽電池モジュール30は、図7(b)に示すように、第2面30bに端子箱35を有している。また、端子箱35には、太陽電池モジュール30の発生した電力を外部回路に供給するための出力ケーブル36が配線されている。
<Solar cell module>
As shown in FIGS. 7A and 7B, the solar cell module 30 according to this embodiment is disposed on the solar cell panel 33 having the plurality of solar cell elements 1 and the outer peripheral portion of the solar cell panel 33. It has a frame 34. The solar cell module 30 has a first surface 30a (see FIG. 7A) that is a surface that mainly receives light, and a second surface 30b that corresponds to the back surface of the first surface 30a (FIG. 7B). See). And the solar cell module 30 has the terminal box 35 in the 2nd surface 30b, as shown in FIG.7 (b). The terminal box 35 is wired with an output cable 36 for supplying power generated by the solar cell module 30 to an external circuit.
 太陽電池モジュール30を構成する太陽電池素子1は、上述の実施形態のものであればよい。また、隣り合う太陽電池素子1同士は、図8(a),(b)に示すように、接続導体32で電気的に接続される。この接続導体32は、例えば、厚さが0.1mmから0.3mm程度の銅またはアルミニウムの金属箔であればよい。この金属箔には、表面にハンダがコーティングされている。このハンダは、メッキまたはディピング等によって、例えば、5μmから30μm程度の平均厚さになるように設けられる。この接続導体32の幅は、太陽電池素子のバスバー電極3の幅と同等もしくはバスバー電極3の幅よりも小さくすればよい。これにより、接続導体32によって太陽電池素子1の受光を妨げにくくできる。また接続導体32は、バスバー電極3および接続電極6の略全表面に接続してもよい。これによって、太陽電池素子1の抵抗成分を小さくできる。ここで、接続導体32を156mm角程度のシリコン基板2を使用する場合、接続導体32の幅は1mmから3mm程度、その長さは260mmから310mm程度であればよい。 The solar cell element 1 constituting the solar cell module 30 only needs to be that of the above-described embodiment. Adjacent solar cell elements 1 are electrically connected by a connection conductor 32 as shown in FIGS. For example, the connection conductor 32 may be a copper or aluminum metal foil having a thickness of about 0.1 mm to 0.3 mm. This metal foil has a surface coated with solder. This solder is provided by plating or dipping so as to have an average thickness of, for example, about 5 μm to 30 μm. The width of the connection conductor 32 may be equal to or smaller than the width of the bus bar electrode 3 of the solar cell element. As a result, the connection conductor 32 can make it difficult to prevent the solar cell element 1 from receiving light. Further, the connection conductor 32 may be connected to substantially the entire surface of the bus bar electrode 3 and the connection electrode 6. Thereby, the resistance component of the solar cell element 1 can be reduced. Here, when the silicon substrate 2 having a connection conductor 32 of about 156 mm square is used, the connection conductor 32 may have a width of about 1 mm to 3 mm and a length of about 260 mm to 310 mm.
 図8(a)に示すように、1つの太陽電池素子1に接続される接続導体32において、一方の接続導体32aは、太陽電池素子1の表面1aのバスバー電極3にハンダ付けされている。また、他方の接続導体32bは、太陽電池素子1の裏面の接続電極6にハンダ付けされている。 As shown in FIG. 8A, in the connection conductor 32 connected to one solar cell element 1, one connection conductor 32a is soldered to the bus bar electrode 3 on the surface 1a of the solar cell element 1. The other connection conductor 32 b is soldered to the connection electrode 6 on the back surface of the solar cell element 1.
 また、図8(b)に示すように、隣り合う太陽電池素子1(太陽電池素子1S、1T)は、太陽電池素子1Sの表面1aのバスバー電極3に接続した接続導体32の他端部を太陽電池素子1Tの裏面1bの接続電極6にハンダ付けされることによって接続される。このような接続を複数(例えば5個から10個程度)の太陽電池素子1に繰り返すことによって、複数の太陽電池素子1が直線状に直列接続されてなる太陽電池ストリングが形成される。 Moreover, as shown in FIG.8 (b), the adjacent solar cell element 1 (solar cell element 1S, 1T) connects the other end part of the connection conductor 32 connected to the bus-bar electrode 3 of the surface 1a of the solar cell element 1S. It connects by soldering to the connection electrode 6 of the back surface 1b of the solar cell element 1T. By repeating such a connection to a plurality (for example, about 5 to 10) of solar cell elements 1, a solar cell string in which the plurality of solar cell elements 1 are linearly connected in series is formed.
 次に、この太陽電池ストリングを複数(例えば2本から10本程度)用意して、1mmから10mm程度の所定間隔をあけて略平行に整列させる。そして、太陽電池ストリングの各端部の太陽電池素子1同士を横方向配線37にてハンダ付けなどで接続する。また、両端側の太陽電池ストリングの横方向配線37を接続していない太陽電池素子1には、外部導出配線42を接続する。 Next, a plurality of solar cell strings (for example, about 2 to 10) are prepared and aligned approximately parallel with a predetermined interval of about 1 mm to 10 mm. Then, the solar cell elements 1 at each end of the solar cell string are connected to each other by soldering or the like with the lateral wiring 37. The external lead-out wiring 42 is connected to the solar cell element 1 to which the lateral wiring 37 of the solar cell strings on both ends is not connected.
 次に、透光性基板38、表面側充填材39、裏面側充填材40および裏面材41を準備する。透光性基板38としては、ガラスが用いられる。ここでガラスは、例えば、厚さ3mmから5mm程度の白板ガラス、強化ガラス、倍強化ガラスまたは熱線反射ガラスなどが用いられる。 Next, a translucent substrate 38, a front surface side filler 39, a back surface side filler 40, and a back surface material 41 are prepared. As the translucent substrate 38, glass is used. Here, as the glass, for example, white plate glass, tempered glass, double tempered glass, or heat ray reflective glass having a thickness of about 3 mm to 5 mm is used.
 表面側充填材39および裏面側充填材40は、それぞれエチレン-酢酸ビニル共重合体(以下EVAと略す)またはポリビニルブチラール(PVB)から成り、押し出し機などによって、厚さ0.4mmから1mm程度のシート状に成形されたものが用いられる。これらはラミネート装置によって減圧下にて加熱加圧を行うことで、軟化、融着して他の部材と一体化させる。 The front-side filler 39 and the back-side filler 40 are each made of an ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVA) or polyvinyl butyral (PVB), and have a thickness of about 0.4 mm to 1 mm by an extruder or the like. What was shape | molded in the sheet form is used. These are heated and pressed under reduced pressure by a laminating apparatus, and are softened and fused to be integrated with other members.
 裏面材41は、外部からの水分の浸入を低減する役割を有する。裏面材41は、例えば、アルミ箔を挟持した耐候性を有するフッ素系樹脂シート、アルミナまたはシリカを蒸着したポリエチレンテレフタレ-ト(PET)シート等が用いられる。裏面材41は、太陽電池モジュール30の第2面30b側からの光に入射を光発電に用いる場合は、ガラスまたはポリカーボネート樹脂を用いてもよい。 The back material 41 has a role of reducing moisture intrusion from the outside. As the back material 41, for example, a weather-resistant fluorine-based resin sheet sandwiching an aluminum foil, a polyethylene terephthalate (PET) sheet on which alumina or silica is deposited, and the like are used. The back material 41 may use glass or polycarbonate resin when incident on light from the second surface 30b side of the solar cell module 30 is used for photovoltaic power generation.
 次いで、図9に示すように、透光性基板38上に表面側充填材39を配置した後、上記のように接続した太陽電池素子1、裏面側充填材40および裏面材41を順次積層して積層体を作製する。 Next, as shown in FIG. 9, after the surface-side filler 39 is disposed on the translucent substrate 38, the solar cell element 1, the back-side filler 40, and the back-surface material 41 connected as described above are sequentially stacked. To produce a laminate.
 次いで、この積層体をラミネート装置にセットする。そして、減圧下にて加圧しながら100℃から200℃で例えば15分から1時間程度加熱することによって、太陽電池パネル33を作製できる。 Next, this laminate is set in a laminator. And the solar cell panel 33 is producible by heating at 100 to 200 degreeC, for example for about 15 minutes to 1 hour, pressurizing under reduced pressure.
 最後に、図7(a)(b)に示すように、太陽電池パネル33の外周部にフレーム34や第2面30b側に端子箱35を必要に応じて取り付けることで、太陽電池モジュール30が完成する。このように、上述の太陽電池素子1を備えることによって、PID現象の発生が低減された太陽電池モジュール30を提供できる。 Finally, as shown in FIGS. 7 (a) and 7 (b), the solar cell module 30 is attached to the outer periphery of the solar cell panel 33 as necessary by attaching the terminal box 35 to the frame 34 or the second surface 30b side. Complete. Thus, by providing the above-described solar cell element 1, it is possible to provide the solar cell module 30 in which the occurrence of the PID phenomenon is reduced.
 以下に、実施例および比較例について説明する。 Hereinafter, examples and comparative examples will be described.
 <実施例の太陽電池素子の作製>
 図4(a)に示すように、半導体基板2として、鋳造法により作製された、比抵抗値が約1Ω・cm、一辺約156mmの正方形状の平面形状を有し、厚みが200μm程度のボロンがドープされたp型の多結晶のシリコン基板2を用意した。
<Production of Solar Cell Element of Example>
As shown in FIG. 4A, boron having a specific resistance value of about 1 Ω · cm, a side of about 156 mm, and a thickness of about 200 μm, produced by a casting method, as the semiconductor substrate 2. A p-type polycrystalline silicon substrate 2 doped with is prepared.
 シリコン基板2は、水酸化ナトリウム(NaOH)水溶液を用いて表面から8μmから13μm程度の深さをエッチングした後に、RIE装置を用いて表面2a側に微細なテクスチャを形成した。 The silicon substrate 2 was etched to a depth of about 8 μm to 13 μm from the surface using a sodium hydroxide (NaOH) aqueous solution, and then a fine texture was formed on the surface 2a side using an RIE apparatus.
 その後、オキシ塩化リン(POCl)を拡散源とした気相熱拡散法によって、シリコン基板2の表面全面にn型領域を形成した。このn型領域は、50Ω/□から100Ω/□程度のシート抵抗になるように形成した。その後、フッ酸溶液にシリコン基板2全体を浸漬することによって、リンガラスおよび表面の酸化層を除去し、純水にて洗浄した。 Thereafter, an n-type region was formed on the entire surface of the silicon substrate 2 by vapor phase thermal diffusion using phosphorus oxychloride (POCl 3 ) as a diffusion source. This n-type region was formed to have a sheet resistance of about 50Ω / □ to 100Ω / □. Thereafter, the entire silicon substrate 2 was immersed in a hydrofluoric acid solution to remove the phosphorus glass and the oxide layer on the surface, and washed with pure water.
 次に、シリコン基板2の表面に第1酸化シリコン層9aを以下のようにして形成した。まず、ポリプロピレン製で幅30cm、高さ35cm、奥行き40cm程度の槽20の内側に、オゾン含有ガスを導入するためのポリプロピレン製の配管21を配置した。配管21の第1端部は、オゾン発生機に繋ぎ、第2端部である排出口22は槽20の底部に配置した。オゾン発生機は、酸素ガス中に170g/mから230g/m程度のオゾンを含むオゾン含有ガスを発生させるものを用いた。この槽20に約25リットルの純水を入れた後、排出口22からオゾン含有ガスを毎分1リットルから3リットル程度吐出させ、純水中で7分から10分程度バブリングすることで、オゾン含有水23を作製した。その後、上述のリンガラスおよび表面の酸化層を除去した後の純水での洗浄作業に連続して、オゾン含有水23にシリコン基板2全体を浸漬した。この浸漬中、配管21の排出口22からオゾン含有ガス24がシリコン基板2の表面に当たるように、オゾン含有ガスを毎分1リットルから3リットル程度吐出させた。オゾン含有水23中でオゾン含有ガスをバブリングさせた状態で、シリコン基板2を1分程度保持した後、オゾン含有水23中から引き上げ、乾燥させた。これにより、シリコン基板2の表面に第1酸化シリコン層9aが形成された。 Next, the first silicon oxide layer 9a was formed on the surface of the silicon substrate 2 as follows. First, a polypropylene pipe 21 for introducing an ozone-containing gas was disposed inside a tank 20 made of polypropylene and having a width of 30 cm, a height of 35 cm, and a depth of about 40 cm. The first end of the pipe 21 was connected to an ozone generator, and the discharge port 22 as the second end was disposed at the bottom of the tank 20. As the ozone generator, one that generates an ozone-containing gas containing about 170 g / m 3 to 230 g / m 3 of ozone in oxygen gas was used. After putting about 25 liters of pure water into this tank 20, ozone-containing gas is discharged from the discharge port 22 about 1 liter to 3 liters per minute and bubbled in pure water for about 7 to 10 minutes, thereby containing ozone. Water 23 was produced. Thereafter, the entire silicon substrate 2 was immersed in the ozone-containing water 23 in succession to the cleaning operation with pure water after removing the phosphorous glass and the oxide layer on the surface. During this immersion, the ozone-containing gas was discharged from about 1 liter to 3 liters per minute so that the ozone-containing gas 24 hits the surface of the silicon substrate 2 from the discharge port 22 of the pipe 21. The silicon substrate 2 was held for about 1 minute in a state where the ozone-containing gas was bubbled in the ozone-containing water 23, and then pulled out from the ozone-containing water 23 and dried. Thereby, the first silicon oxide layer 9 a was formed on the surface of the silicon substrate 2.
 その後、シリコン基板2の裏面2b側のみをフッ酸と硝酸との混合液に浸して、裏面2b側の第1酸化シリコン層9aとn型領域とを除去した後、シリコン基板2を洗浄して、乾燥した。これにより、図4(c)に示すように、シリコン基板2の表面2a側の逆導電型層8上に第1酸化シリコン層9aを形成した。形成された第1酸化シリコン層9aの組成は、SiOx(xの値は2.2から2.5程度)であり、その膜厚は、1nmから2nm程度、屈折率は1.4から1.6程度であった。膜厚および屈折率の測定は、エリプソメーターによって行なった。以下に述べる、膜厚および屈折率も同様に測定した。 Thereafter, only the back surface 2b side of the silicon substrate 2 is immersed in a mixed solution of hydrofluoric acid and nitric acid to remove the first silicon oxide layer 9a and the n-type region on the back surface 2b side, and then the silicon substrate 2 is washed. , Dried. As a result, a first silicon oxide layer 9a was formed on the reverse conductivity type layer 8 on the surface 2a side of the silicon substrate 2 as shown in FIG. The composition of the formed first silicon oxide layer 9a is SiOx (the value of x is about 2.2 to 2.5), the film thickness is about 1 nm to 2 nm, and the refractive index is 1.4 to 1. It was about 6. The film thickness and refractive index were measured with an ellipsometer. The film thickness and refractive index described below were also measured in the same manner.
 次に、図4(d)に示すように、シリコン基板2の表面2a側の第1酸化シリコン層9a上に第2酸化シリコン層9bを形成した。第2酸化シリコン層9bは、モノシランガス(SiH)および亜酸化窒素(NO)ガスを用いたPECVD装置を用いて形成した。形成された第2酸化シリコン層9bの組成は、SiOy(yの値は1.0から1.2程度)であり、その膜厚は、10nmから18nm程度、屈折率は1.7から1.8程度であった。また、形成された第2酸化シリコン層9bは、窒素を含有しており、第2酸化シリコン層9b中の窒素と酸素との原子数の比は、窒素は酸素の0.4倍から0.45倍程度であった。ここで、窒素と酸素との原子数の比はSIMSで測定した。 Next, as shown in FIG. 4D, a second silicon oxide layer 9 b was formed on the first silicon oxide layer 9 a on the surface 2 a side of the silicon substrate 2. The second silicon oxide layer 9b was formed using a PECVD apparatus using monosilane gas (SiH 4 ) and nitrous oxide (N 2 O) gas. The composition of the formed second silicon oxide layer 9b is SiOy (the value of y is about 1.0 to 1.2), the film thickness is about 10 nm to 18 nm, and the refractive index is 1.7 to 1. It was about 8. Further, the formed second silicon oxide layer 9b contains nitrogen, and the ratio of the number of atoms of nitrogen and oxygen in the second silicon oxide layer 9b is 0.4 to 0. It was about 45 times. Here, the ratio of the number of atoms of nitrogen and oxygen was measured by SIMS.
 次に図4(e)に示すように、シリコン基板2の表面2a側の第2酸化シリコン層9b上に、窒化シリコンから成る反射防止層11を、モノシランガス(SiH)とアンモニアガス(NH)を用いたPECVD装置を用いて形成した。形成された反射防止層11は、屈折率が2.1から2.2程度であり、厚みを50nmから80nm程度であった。 Next, as shown in FIG. 4E, on the second silicon oxide layer 9b on the surface 2a side of the silicon substrate 2, an antireflection layer 11 made of silicon nitride is formed by monosilane gas (SiH 4 ) and ammonia gas (NH 3 ) Using a PECVD apparatus. The formed antireflection layer 11 had a refractive index of about 2.1 to 2.2 and a thickness of about 50 nm to 80 nm.
 次に、図4(f)に示すように、表面2a側の電極であるバスバー電極3およびフィンガー電極4を形成するための表面側導電性ペースト13を塗布し配置した。表面側導電性ペースト13としては、銀を主成分として、ガラスフリットおよび有機ビヒクル等を含有するものを用いた。そして、図1(a)に示すような形状にスクリーン印刷法を用いて表面側導電性ペースト13を、約20μmから30μmの厚さに塗布し、その後乾燥を行った。 Next, as shown in FIG. 4 (f), the surface-side conductive paste 13 for forming the bus bar electrode 3 and the finger electrode 4, which are electrodes on the surface 2 a side, was applied and arranged. As the surface-side conductive paste 13, a paste containing silver as a main component and containing glass frit, an organic vehicle, and the like was used. And the surface side conductive paste 13 was apply | coated to the thickness of about 20 micrometers-30 micrometers using the screen printing method in the shape as shown to Fig.1 (a), and it dried after that.
 さらに、シリコン基板2の裏面2bに、接続電極6形成のための裏面側第1導電性ペースト14を以下のようにして配置した。裏面側第1導電性ペースト14は、上述の表面側導電性ペースト13と同様の導電性ペーストを使用した。そして、図1(b)に示すような形状に、スクリーン印刷法を用いて、シリコン基板2の裏面2bに、約20μmから30μmの厚さに裏面側第1導電性ペースト14を塗布し、その後乾燥を行った。 Furthermore, the back side first conductive paste 14 for forming the connection electrode 6 was disposed on the back side 2b of the silicon substrate 2 as follows. The back side first conductive paste 14 was the same conductive paste as the above-mentioned front side conductive paste 13. 1B is applied to the back surface 2b of the silicon substrate 2 to a shape as shown in FIG. 1B on the back surface 2b of the silicon substrate 2 to a thickness of about 20 μm to 30 μm. Drying was performed.
 次いで、図4(g)に示すように、裏面集電電極5形成のための裏面側第2導電性ペースト15を以下のようにして配置した。第2導電性ペースト15としては、例えばアルミニウムを主成分とする金属粉末と、ガラスフリットと、有機ビヒクルとを含有するアルミニウムペーストを用いた。そして、スクリーン印刷法を用いて、第2導電性ペースト15を、約40μmから50μmの厚さに塗布し、その後乾燥を行った。 Next, as shown in FIG. 4G, the back side second conductive paste 15 for forming the back side collecting electrode 5 was arranged as follows. As the second conductive paste 15, for example, an aluminum paste containing a metal powder mainly composed of aluminum, glass frit, and an organic vehicle was used. Then, using a screen printing method, the second conductive paste 15 was applied to a thickness of about 40 μm to 50 μm, and then dried.
 次に、表面側導電性ペースト13、裏面側第1導電性ペースト14および裏面側第2導電性ペースト15を配置したシリコン基板2を焼成炉に投入した。これらの導電性ペーストに対して、焼成炉内にて最高温度が約730℃から760℃、最高温度で数秒間程度維持して同時に焼成を行なった。以上の工程によって、実施例の太陽電池素子1が完成した。 Next, the silicon substrate 2 on which the surface-side conductive paste 13, the back-side first conductive paste 14, and the back-side second conductive paste 15 were placed was put into a firing furnace. These conductive pastes were simultaneously fired at a maximum temperature of about 730 ° C. to 760 ° C. for several seconds at the maximum temperature in a firing furnace. Through the above steps, the solar cell element 1 of the example was completed.
 <比較用太陽電池素子の作製>
 比較用太陽電池素子の作製においては、上記実施例の太陽電池素子の作製において、図4(c)に示す第1酸化シリコン層9aの形成、および図4(d)に示す第2酸化シリコン層9bの形成を無くして(とばして)、シリコン基板2の表面2a側の逆導電型層8上に直接窒化シリコンから成る反射防止層11を形成した。なお、反射防止層11の形成方法は実施例と同じである。形成された反射防止層11の屈折率も2.1から2.2程度で実施例と同等であった。ただし、比較例では第1酸化シリコン層9aおよび第2酸化シリコン層9bが無いので、成膜時間を延ばして、反射防止層11の厚みを70nmから90nm程度とした。その他の工程は、上記実施例の太陽電池素子の作製と同じ材料および工程条件にて作製した。
<Production of comparative solar cell element>
In the production of the comparative solar cell element, in the production of the solar cell element of the above example, the formation of the first silicon oxide layer 9a shown in FIG. 4C and the second silicon oxide layer shown in FIG. The antireflection layer 11 made of silicon nitride was formed directly on the reverse conductivity type layer 8 on the surface 2a side of the silicon substrate 2 without forming the 9b. The method for forming the antireflection layer 11 is the same as in the example. The refractive index of the formed antireflection layer 11 was about 2.1 to 2.2, which was the same as that of the example. However, since the first silicon oxide layer 9a and the second silicon oxide layer 9b are not provided in the comparative example, the deposition time is extended and the thickness of the antireflection layer 11 is set to about 70 nm to 90 nm. The other steps were produced using the same materials and process conditions as those for producing the solar cell element of the above example.
 <太陽電池モジュールの作製>
 次に、実施例および比較例の太陽電池素子を用いた2種類の太陽電池モジュールを作製した。まず、太陽電池モジュールを構成する太陽電池ストリングを次のように作製した。実施例および比較例の太陽電池素子を各7枚用意した。そして、図8(b)に示すように、接続導体32を用いて太陽電池素子同士をハンダ付けにより直列に接続して、実施例および比較例の太陽電池素子を用いた2種類の太陽電池ストリングを作製した。
<Production of solar cell module>
Next, two types of solar cell modules using the solar cell elements of Examples and Comparative Examples were produced. First, the solar cell string which comprises a solar cell module was produced as follows. Seven solar cell elements of Examples and Comparative Examples were prepared. And as shown in FIG.8 (b), two types of solar cell strings using the solar cell element of an Example and a comparative example which connected the solar cell elements in series by soldering using the connection conductor 32, and were connected. Was made.
 さらに、このようにして作製した太陽電池ストリングを、実施例用および比較例用の太陽電池モジュールを作製するために各6本用意した。6本の太陽電池ストリングは、互いに略平行に整列させて、各々の太陽電池ストリングの端部にある太陽電池素子に対して、図8に示すような横方向配線37および外部導出配線42をハンダ付けにより接続した。 Furthermore, six solar cell strings prepared in this way were prepared for manufacturing solar cell modules for Examples and Comparative Examples. The six solar cell strings are aligned substantially parallel to each other, and the lateral wiring 37 and the external lead-out wiring 42 as shown in FIG. 8 are soldered to the solar cell elements at the end of each solar cell string. Connected by attaching.
 その後、図9に示すように、透光性基板38上に表面側充填材39を配置した後、互いに接続された6本の太陽電池ストリング、裏面側充填材40および裏面材41を順次積層して積層体を作製した。そして、この積層体をラミネート装置にセットし、減圧下にて加圧しながら100℃から160℃程度で約20分加熱、押圧することによって、太陽電池パネル33を作製した。 Thereafter, as shown in FIG. 9, after the surface-side filler 39 is disposed on the translucent substrate 38, the six solar cell strings, the back-side filler 40, and the back-surface material 41 connected to each other are sequentially stacked. Thus, a laminate was produced. And this solar cell panel 33 was produced by setting this laminated body to a laminating apparatus, and heating and pressing at about 100 to 160 degreeC for about 20 minutes, pressurizing under reduced pressure.
 次に、太陽電池パネル33の外周部にアルミニウムから成るフレーム34を取り付け、第2面30b側に端子箱35を配置して、実施例の太陽電池素子を用いた太陽電池モジュール21と比較例の太陽電池素子を用いた太陽電池モジュールとを完成させた。 Next, a frame 34 made of aluminum is attached to the outer peripheral portion of the solar cell panel 33, a terminal box 35 is disposed on the second surface 30b side, and the solar cell module 21 using the solar cell element of the example and the comparative example. A solar cell module using a solar cell element was completed.
 <PID耐性の試験>
 次に、これらの太陽電池モジュールに対して、PID耐性の試験を行った。各太陽電池モジュールにおいて、端子箱24内のプラス側の電極端子とマイナス側の電極端子とを短絡させた状態で、電極端子と太陽電池パネル22の外周部に取り付けたフレーム23との間に約1000Vの電圧を印加した。そして、各太陽電池モジュールの出力特性を測定して、時間経過による出力(Pmax)での劣化率の変化(初期の特性を100%とした場合に、時間の経過とともに何%劣化したか(何%維持しているか)について)測定した。この出力特性の測定は、日本工業規格JIS C 8914に準拠して行なった。
<PID resistance test>
Next, a PID resistance test was performed on these solar cell modules. In each solar cell module, in a state where the positive electrode terminal and the negative electrode terminal in the terminal box 24 are short-circuited, the space between the electrode terminal and the frame 23 attached to the outer peripheral portion of the solar cell panel 22 is approximately. A voltage of 1000 V was applied. Then, the output characteristics of each solar cell module are measured, and the change in the deterioration rate with the output (Pmax) over time (how many percentages have deteriorated over time when the initial characteristics are taken as 100%) %) Is measured). This output characteristic was measured in accordance with Japanese Industrial Standard JIS C 8914.
 その結果、実施例の太陽電池素子を用いた太陽電池モジュールの出力値は300時間経過後も、初期の出力値に対し0.2%程度の低下(初期の出力値からの維持率が99.8%)にすぎなかった。一方、比較例の太陽電池素子を用いた太陽電池モジュールでは、300時間の経過後では約2%の出力低下(初期の出力値からの維持率が約98%)が認められた。 As a result, the output value of the solar cell module using the solar cell element of the example is about 0.2% lower than the initial output value even after 300 hours have passed (the maintenance ratio from the initial output value is 99. Only 8%). On the other hand, in the solar cell module using the solar cell element of the comparative example, an output decrease of about 2% (maintenance rate from the initial output value was about 98%) was observed after 300 hours.
 以上により、実施例の太陽電池素子を用いた太陽電池モジュールでは、比較例の太陽電池素子を用いた太陽電池モジュールに対して、対PID耐性が向上したことを確認できた。 From the above, in the solar cell module using the solar cell element of the example, it was confirmed that the resistance to PID was improved with respect to the solar cell module using the solar cell element of the comparative example.
1  :太陽電池素子
 1a:表面
 1b:裏面
2  :シリコン基板
 2a:表面
 2b:裏面
3  :バスバー電極
4  :フィンガー電極
5  :集電電極
6  :接続電極
7  :一導電型領域
8  :逆導電型領域(逆導電型層)
9  :酸化シリコン層
 9a :第1酸化シリコン層
 9b :第2酸化シリコン層
10 :BSF領域
11 :反射防止層
12 :酸化アルミニウム層
13:表面側導電性ペースト
14:裏面側第1導電性ペースト
15:裏面側第2導電性ペースト
20:槽
21:配管
22:排出口
23:オゾン含有水
24:オゾン含有ガス
30 :太陽電池モジュール
30a:第1面
30b:第2面
32 :接続導体
33 :太陽電池パネル
34 :フレーム
35 :端子箱
36 :出力ケーブル
37  :横方向配線
38 :透光性基板
39 :表面側充填材
40 :裏面側充填材
41 :裏面材
42 :外部導出配線
1: Solar cell element 1a: Front surface 1b: Back surface 2: Silicon substrate 2a: Front surface 2b: Back surface 3: Busbar electrode 4: Finger electrode 5: Current collecting electrode 6: Connection electrode 7: One conductivity type region 8: Reverse conductivity type region (Reverse conductivity type layer)
9: Silicon oxide layer 9a: First silicon oxide layer 9b: Second silicon oxide layer 10: BSF region 11: Antireflection layer 12: Aluminum oxide layer 13: Front side conductive paste 14: Back side first conductive paste 15 : Back side second conductive paste 20: Tank 21: Pipe 22: Discharge port 23: Ozone-containing water 24: Ozone-containing gas 30: Solar cell module 30a: First surface 30b: Second surface 32: Connection conductor 33: Sun Battery panel 34: Frame 35: Terminal box 36: Output cable 37: Lateral wiring 38: Translucent substrate 39: Front side filler 40: Back side filler 41: Back side material 42: External lead-out wiring

Claims (11)

  1.  シリコン基板の上に配置された第1酸化シリコン層と、
    該第1酸化シリコン層の上に配置され、該第1酸化シリコン層よりも酸素に対するシリコンの含有量が多い第2酸化シリコン層と、を備えている太陽電池素子。
    A first silicon oxide layer disposed on a silicon substrate;
    A solar cell element comprising: a second silicon oxide layer disposed on the first silicon oxide layer and having a higher silicon content relative to oxygen than the first silicon oxide layer.
  2.  前記第2酸化シリコン層は窒素を含有している、請求項1に記載の太陽電池素子。 The solar cell element according to claim 1, wherein the second silicon oxide layer contains nitrogen.
  3.  前記第2酸化シリコン層の厚みは前記第1酸化シリコン層の厚みよりも厚い、請求項1または2に記載の太陽電池素子。 The solar cell element according to claim 1 or 2, wherein a thickness of the second silicon oxide layer is larger than a thickness of the first silicon oxide layer.
  4.  前記第2酸化シリコン層の上に配置され、該第2酸化シリコン層よりも高い屈折率を有する反射防止層をさらに備えている、請求項1乃至3のいずれかに記載の太陽電池素子。 The solar cell element according to any one of claims 1 to 3, further comprising an antireflection layer disposed on the second silicon oxide layer and having a higher refractive index than the second silicon oxide layer.
  5.  前記反射防止層は窒化シリコンを含有している、請求項4に記載の太陽電池素子。 The solar cell element according to claim 4, wherein the antireflection layer contains silicon nitride.
  6.  前記反射防止層の厚みは前記第2酸化シリコン層の厚みよりも厚い、請求項4または5に記載の太陽電池素子。 The solar cell element according to claim 4 or 5, wherein the thickness of the antireflection layer is thicker than the thickness of the second silicon oxide layer.
  7.  前記第2酸化シリコン層は、窒素を含有しており、この窒素の含有量は酸素の含有量よりも少ない、請求項1乃至6のいずれかに記載の太陽電池素子。 The solar cell element according to any one of claims 1 to 6, wherein the second silicon oxide layer contains nitrogen, and the content of nitrogen is less than the content of oxygen.
  8.  前記第1酸化シリコン層と前記第2酸化シリコン層との間に位置する酸化アルミニウム層をさらに備えている、請求項1乃至7のいずれかに記載の太陽電池素子。 The solar cell element according to any one of claims 1 to 7, further comprising an aluminum oxide layer positioned between the first silicon oxide layer and the second silicon oxide layer.
  9.  請求項1乃至8のいずれかに記載の太陽電池素子の製造方法であって、
    前記シリコン基板の表面を酸化して前記第1酸化シリコン層を形成して、
    モノシランガスおよび亜酸化窒素ガスを用いたCVD法によって前記第1酸化シリコン層の上に前記第2酸化シリコン層を形成する、太陽電池素子の製造方法。
    A method for manufacturing a solar cell element according to any one of claims 1 to 8,
    Oxidizing the surface of the silicon substrate to form the first silicon oxide layer;
    A method for manufacturing a solar cell element, wherein the second silicon oxide layer is formed on the first silicon oxide layer by a CVD method using monosilane gas and nitrous oxide gas.
  10.  前記第1酸化シリコン層は、前記シリコン基板の表面をオゾンが入った水中に浸漬して形成する、請求項9に記載の太陽電池素子の製造方法。 The method for manufacturing a solar cell element according to claim 9, wherein the first silicon oxide layer is formed by immersing the surface of the silicon substrate in water containing ozone.
  11.  請求項1乃至8のいずれかに記載の太陽電池素子を備えている太陽電池モジュール。 A solar cell module comprising the solar cell element according to any one of claims 1 to 8.
PCT/JP2016/078894 2015-09-29 2016-09-29 Solar cell element, method for manufacturing same and solar cell module WO2017057618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543585A JPWO2017057618A1 (en) 2015-09-29 2016-09-29 SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190958 2015-09-29
JP2015-190958 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057618A1 true WO2017057618A1 (en) 2017-04-06

Family

ID=58423921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078894 WO2017057618A1 (en) 2015-09-29 2016-09-29 Solar cell element, method for manufacturing same and solar cell module

Country Status (2)

Country Link
JP (1) JPWO2017057618A1 (en)
WO (1) WO2017057618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7073566B1 (en) 2021-08-20 2022-05-23 上海晶科緑能企業管理有限公司 Solar cells and photovoltaic modules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161847A (en) * 2012-02-02 2013-08-19 Shin Etsu Chem Co Ltd Solar cell
WO2015133539A1 (en) * 2014-03-05 2015-09-11 三菱電機株式会社 Solar cell and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153723B2 (en) * 2008-12-12 2015-10-06 Koninklijke Philips N.V. Luminescent photovoltaic generator and a waveguide for use in a photovoltaic generator
JP2015073058A (en) * 2013-10-04 2015-04-16 長州産業株式会社 Photovoltaic element
JP6495649B2 (en) * 2014-01-24 2019-04-03 京セラ株式会社 Solar cell element and solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161847A (en) * 2012-02-02 2013-08-19 Shin Etsu Chem Co Ltd Solar cell
WO2015133539A1 (en) * 2014-03-05 2015-09-11 三菱電機株式会社 Solar cell and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIFFE JOHANNES ET AL.: "Surface passivation of crystalline silicon by plasma-enhanced chemical vapor deposition double layers of silicon-rich silicon oxynitride and silicon nitride", JOURNAL OF APPLIED PHYSICS, vol. 109, 2011, pages 034105 - 1 - 034105-12, XP012147486 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7073566B1 (en) 2021-08-20 2022-05-23 上海晶科緑能企業管理有限公司 Solar cells and photovoltaic modules
AU2021232800B1 (en) * 2021-08-20 2022-05-26 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell and photovoltaic module
JP7194302B1 (en) 2021-08-20 2022-12-21 上海晶科緑能企業管理有限公司 Solar cells and photovoltaic modules
JP2023029145A (en) * 2021-08-20 2023-03-03 上海晶科緑能企業管理有限公司 Solar cell and photovoltaic module
JP2023029209A (en) * 2021-08-20 2023-03-03 上海晶科緑能企業管理有限公司 Solar cell and photovoltaic module
US11664467B2 (en) 2021-08-20 2023-05-30 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell and photovoltaic module

Also Published As

Publication number Publication date
JPWO2017057618A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6648986B2 (en) Solar cell element and solar cell module
CN101567408B (en) Method for manufacturing photoelectric conversion device
US9608140B2 (en) Solar cell and solar cell module
WO2012133692A1 (en) Solar cell element and solar cell module
JP6285545B2 (en) Solar cell element and solar cell module
WO2011145731A1 (en) Solar cell element and method for producing the same, and solar cell module
EP2833418A1 (en) Solar cell element
JP2014011246A (en) Solar cell element and solar cell module
WO2013100085A1 (en) Solar cell element, method for manufacturing solar cell element, and solar cell module
JP6555984B2 (en) Solar cell element and manufacturing method thereof
CN109041583B (en) Solar cell element and solar cell module
JP2014239104A (en) Solar cell, solar cell module, and method for manufacturing the same
JP6330108B1 (en) High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell
WO2017057618A1 (en) Solar cell element, method for manufacturing same and solar cell module
JP5744202B2 (en) Method for forming alumina film
JP2015106585A (en) Method for manufacturing solar cell element and solar cell module
JP6430842B2 (en) Method for manufacturing solar cell element and method for manufacturing solar cell module
KR100995654B1 (en) Solar cell and method for manufacturing the same
JP2013179370A (en) Method of manufacturing photovoltaic device
JP6317155B2 (en) Solar cell element
TWI753179B (en) High-efficiency inner surface electrode type solar cell and its manufacturing method
JP2015162488A (en) Solar cell element and solar cell module
JP2015106586A (en) Method for manufacturing solar cell element and solar cell module
JP2016178280A (en) Solar cell element and solar cell module using the same
JP2015029014A (en) Solar cell element and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851789

Country of ref document: EP

Kind code of ref document: A1