WO2017057019A1 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
WO2017057019A1
WO2017057019A1 PCT/JP2016/077245 JP2016077245W WO2017057019A1 WO 2017057019 A1 WO2017057019 A1 WO 2017057019A1 JP 2016077245 W JP2016077245 W JP 2016077245W WO 2017057019 A1 WO2017057019 A1 WO 2017057019A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
group
dabco
Prior art date
Application number
PCT/JP2016/077245
Other languages
French (fr)
Japanese (ja)
Inventor
一希 岩谷
今井 一成
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58423559&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017057019(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to KR1020187008771A priority Critical patent/KR102555587B1/en
Priority to JP2017543121A priority patent/JP6996743B2/en
Priority to CN201680056318.9A priority patent/CN108026252A/en
Publication of WO2017057019A1 publication Critical patent/WO2017057019A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a resin composition suitable for a one-component adhesive for applications requiring low temperature short time curing at 100 ° C. for 20 minutes or less or 80 ° C. for 60 minutes or less.
  • Epoxy resins have excellent electrical insulating properties, mechanical strength, heat resistance, moisture resistance, adhesion, and other material properties. Therefore, epoxy resins are the main components, and curing agents and / or acceleration of the epoxy resins are used.
  • An epoxy resin composition containing an agent is widely used as an adhesive for electronic components.
  • the epoxy resin curing agent used for the above purpose include amine-based curing agents, phenol-based curing agents, and acid anhydride-based curing agents.
  • examples of the epoxy resin curing accelerator used for the above-mentioned purpose include imidazoles.
  • a one-component adhesive that is thermally cured at a relatively low temperature, specifically about 100 ° C. or lower, is used.
  • thermosets it may be desirable to use a one-component adhesive that thermosets at a temperature of about 100 ° C. .
  • Patent Documents 1 and 2 by using a microcapsule-type latent curing agent as a curing agent for an epoxy resin, both low-temperature curability and storage stability are compatible, but further, by using a curing accelerator. , The curing rate can be improved.
  • Patent Documents 1 and 2 cannot cope with such low temperature and short time thermal curing.
  • the present invention can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less, and can be cured at a low temperature for a short time, and has excellent adhesive strength and pot life.
  • the purpose is to provide a composition.
  • the present invention provides: (A) epoxy resin, (B) a thiol-based curing agent, (C) Isocyanate adduct type microencapsulated curing accelerator containing 1,4-diazabicyclo [2.2.2] octane (1,4-diazabicyclo [2.2.2] octane (DABCO)) as an active ingredient Including
  • the epoxy resin of the component (A) the ratio (mass ratio) of the aromatic epoxy resin and the aliphatic epoxy resin is 10: 0 to 2: 8,
  • An epoxy resin composition is provided, wherein the amount of DABCO in the component (C) is 0.01 to 2 parts by mass with respect to 100 parts by mass in total of the components (A) to (C).
  • the thiol-based curing agent as the component (B) is preferably a mercaptoalkylglycoluril represented by the general formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom, a mercaptomethyl group, a 2-mercaptoethyl group
  • a mercaptoalkyl group selected from a 3-mercaptopropyl group and a 4-mercaptobutyl group is shown, and n is 0 to 3.
  • the epoxy resin composition of the present invention may further contain (D) a thickening inhibitor.
  • the thickening inhibitor of the component (D) is preferably at least one selected from the group consisting of boric acid esters, aluminum chelates, and organic acids.
  • the present invention also provides a cured resin obtained by heating the resin composition.
  • the present invention also provides a one-component adhesive containing the resin composition of the present invention.
  • this invention provides the sealing material containing the epoxy resin composition of this invention.
  • the present invention also provides an image sensor module manufactured using the one-component adhesive of the present invention.
  • the present invention also provides an electronic component manufactured using the one-component adhesive of the present invention.
  • the present invention also provides a semiconductor device having a flip chip type semiconductor element sealed using the sealing material of the present invention.
  • the epoxy resin composition of the present invention can be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time.
  • the epoxy resin composition of the present invention is excellent in adhesive strength and pot life. Therefore, it is suitable as a one-component adhesive used when manufacturing image sensor modules and electronic components.
  • the resin composition of the present invention contains the following components (A) to (C) as essential components.
  • Epoxy Resin The epoxy resin of the (A) component may be one having one or more epoxy groups per molecule.
  • the epoxy resin of the above component (A) include unit price such as phenol, bisphenol A, bisphenol F, bisphenol AD, catechol, resorcinol, unit price such as polyphenol, alkyl alcohol, glycerin and polyethylene glycol, or polyhydric alcohol and epichlorohydrin.
  • Glycidyl ether ester phthalic acid, terephthalic acid obtained by reacting monochloroidyl ether or polyglycidyl ether obtained by reacting hydroxycarboxylic acid such as benzoic acid, p-hydroxybenzoic acid, ⁇ -hydroxynaphthoic acid with epichlorohydrin
  • An epoxy resin having a naphthalene skeleton such as epoxidized phenol novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, cycloaliphatic epoxy resin, urethane-modified epoxy resin, silicone-modified epoxy resin, etc. It is not limited to these.
  • the epoxy resin of (A) component contains an aromatic epoxy resin, and the ratio of the aromatic epoxy resin in the epoxy resin of (A) component is high.
  • the ratio (mass ratio) between the aromatic epoxy resin and the aliphatic epoxy resin is 10: 0 to 2: 8.
  • the aromatic epoxy resin in this specification refers to the epoxy resin which has a benzene ring.
  • the aromatic epoxy resin bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable.
  • the aliphatic epoxy resin refers to an epoxy resin having no benzene ring, such as cyclohexanedimethanol diglycidyl ether, dicyclopentadiene dimethanol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, urethane-modified epoxy. Resins, silicone-modified epoxy resins, and the like are applicable.
  • the aliphatic epoxy resin acts as a reactive diluent and can reduce the viscosity of the epoxy resin composition.
  • the ratio (mass ratio) of the aromatic epoxy resin and the aliphatic epoxy resin is preferably 10: 0 to 3: 7.
  • the thiol-based curing agent (B) is a curing agent for the epoxy resin (A).
  • the use of mercaptoalkylglycolurils represented by the following general formula (I) is preferable from the viewpoint of moisture resistance.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom, a mercaptomethyl group, a 2-mercaptoethyl group
  • n is 0-3.
  • the compound of component (B) acts as a curing agent for the epoxy resin of component (A).
  • the lower alkyl group when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 to 5 carbon atoms, preferably 1 to 3, most preferably 1, ie a methyl group.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or a partial general formula in the above general formula (I)
  • n in the partial general formula is 0-3.
  • the general formula (I) when one, two or three of R 3 , R 4 and R 5 are mercaptoalkyl groups, the general formula ( It is preferable that all mercaptoalkyl groups of the mercaptoalkylglycoluril represented by I) are the same.
  • mercaptoalkyl glycolurils include, for example, 1-mercaptomethylglycoluril, 1- (2-mercaptoethyl) glycoluril, 1- (3-mercaptopropyl) glycoluril, 1- (4-mercaptobutyl) glycoluril, 1,3-bis (mercaptomethyl) glycoluril, 1,3-bis (2-mercaptoethyl) glycoluril, 1,3-bis (3-mercaptopropyl) glycoluril, 1,3-bis (4-mercaptobutyl) glycoluril, 1,4-bis (mercaptomethyl) glycoluril, 1,4-bis (2-mercaptoethyl) glycoluril, 1,4-bis (3-mercaptopropyl) glycoluril, 1,4-bis (4-mercaptobutyl) glycoluril, 1,6-bis (mercaptomethyl) glycoluril, 1,6-bis (2-mercaptoethyl) glycol, 1,6-bis (mercaptomethyl
  • the content of the component (B) compound is 0.3 in terms of the thiol equivalent ratio of the compound (B) to the epoxy equivalent of the component (A) (epoxy resin). Equivalent to 2.5 equivalents is preferable because the adhesive strength of the resin composition is increased.
  • the content of the component (B) compound is 0.6 equivalent to 2.3 equivalent in terms of the thiol equivalent ratio of the compound (B) to the epoxy equivalent of the component (A) (epoxy resin). Is more preferable.
  • Component (C) Microencapsulated curing accelerator (C)
  • the microencapsulated curing accelerator of component (C) has 1,4-diazabicyclo [2.2.2] octane (1,4-diazabicyclo [2. 2.2] octane (DABCO)).
  • 1,4-diazabicyclo [2.2.2] octane (DABCO) is also called 1,4-ethylenepiperazine or triethylenediamine.
  • the microencapsulated curing accelerator of component (C) contains DABCO as an active ingredient, and in combination with the compound of component (B), at a low temperature of 20 minutes or less at 100 ° C. or 60 minutes or less at 80 ° C. It can be cured for a short time.
  • an isocyanate adduct type microencapsulated curing accelerator is used as the microencapsulated curing accelerator of the component (B).
  • the isocyanate adduct type microencapsulated curing accelerator is a latent curing accelerator obtained by coating (microencapsulating) an isocyanate resin with an addition reaction with a powder containing an amine-based curing accelerator.
  • an isocyanate adduct type microencapsulated curing accelerator the epoxy resin composition can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less, while the epoxy resin composition can be cured. Improves pot life.
  • the component (B) is not directly in the form of a microencapsulated curing accelerator but directly contains DABCO, the pot life of the epoxy resin composition is significantly reduced.
  • the amount of DABCO in the component (C) is 0.01 to 2 parts by mass with respect to a total of 100 parts by mass of the components (A) to (C).
  • the amount of DABCO in component (C) is less than 0.01 parts by mass relative to 100 parts by mass of components (A) to (C)
  • 20 minutes or less at 100 ° C or 60 minutes or less at 80 ° C Curing at low temperature for a short time becomes impossible.
  • the amount of DABCO in component (C) exceeds 2 parts by mass relative to 100 parts by mass of components (A) to (C)
  • the amount of DABCO in the component (C) is preferably 0.05 to 1 part by weight, and 0.1 to 0.5 part by weight with respect to 100 parts by weight as a total of the components (A) to (C). More preferably.
  • the epoxy resin composition of the present invention may contain the components described below as needed in addition to the components (A) to (C).
  • the resin composition of the present invention comprises a thickening inhibitor as the (D) component in order to improve storage stability at normal temperature (25 ° C) and lengthen the pot life. You may contain.
  • a thickening inhibitor of component (D) at least one selected from the group consisting of boric acid esters, aluminum chelates, and organic acids has a high effect of improving storage stability at room temperature (25 ° C.). Therefore, it is preferable.
  • borate esters include 2,2′-oxybis (5,5′-dimethyl-1,3,2-oxaborinane), trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri- n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris (2- Ethylhexyloxy) borane, bis (1,4,7,10-tetraoxaundecyl) (1,4,7,10,13-pentaoxatetradecyl) (1,4,7-trioxaundecyl) borane , Tribenzyl borate, trifeni Borate,
  • the boric acid ester contained as (D) component is liquid at normal temperature (25 degreeC), since a compound viscosity can be restrained low, it is preferable.
  • the amount is preferably 0.1 to 8.9 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D).
  • the content is more preferably 4.4 parts by mass, and even more preferably 0.1-3.5 parts by mass.
  • aluminum chelate for example, aluminum trisacetylacetonate (for example, ALA: aluminum chelate A manufactured by Kawaken Fine Chemical Co., Ltd.) can be used.
  • an aluminum chelate is contained as component (D), it is preferably 0.1 to 14.0 parts by mass with respect to 100 parts by mass of the total amount of components (A) to (D), The amount is more preferably 13.0 parts by mass, and further preferably 0.1 to 12.0 parts by mass.
  • the organic acid for example, barbituric acid can be used.
  • the amount is preferably 0.1 to 8.9 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D), The amount is more preferably 7.1 parts by mass, and further preferably 0.1 to 4.0 parts by mass.
  • the epoxy resin composition of the present invention may further contain components other than the components (A) to (D) as necessary.
  • components such components, fillers, ion trapping agents, leveling agents, antioxidants, antifoaming agents, flame retardants, coloring agents and the like can be blended.
  • the type and amount of each compounding agent are as usual.
  • the resin composition of the present invention requires the above components (A) to (C) and, if included, the component (D), and other compounding agents to be blended as necessary at the same time or separately.
  • the mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.
  • the epoxy resin composition of the present invention can be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time. Therefore, it is suitable as a one-component adhesive used when manufacturing image sensor modules and electronic components. Moreover, as an application of the epoxy resin composition of the present invention, there is a possibility of a liquid sealing material used at the time of manufacturing a semiconductor device.
  • the epoxy resin composition of the present invention has sufficient adhesive strength.
  • the adhesive strength (shear strength, thermosetting at 70 ° C. for 10 minutes) measured by the procedure described later is preferably 20 N / chip or more, more preferably 50 N / chip, and 80 N / chip. More preferably.
  • (shear strength, thermosetting at 80 ° C. for 10 minutes) is preferably 20 N / chip or more, more preferably 50 N / chip, and further preferably 80 N / chip.
  • the epoxy resin composition of the present invention has good storage stability at room temperature and a long pot life.
  • the time when the thickening ratio measured by the procedure described in the examples described later is 1.2 times is used as an index of pot life.
  • the time when the thickening ratio measured by the procedure described in the examples described later is 1.2 times is 6 hours or more, and more preferably 12 hours or more. Preferably, it is more preferably 24 hours or longer.
  • the epoxy resin composition was prepared by mixing each component with the formulation shown in the following table.
  • the numbers indicating the blending ratios of the components (A) to (D) all indicate parts by mass.
  • Each component in the table is as follows.
  • ZX1658GS cyclohexanedimethanol diglycidyl ether (aliphatic epoxy resin) (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 135)
  • EP4088L Dicyclopentadiene dimethanol diglycidyl ether (aliphatic epoxy resin) (manufactured by ADEKA Corporation, epoxy equivalent 165)
  • EXA835LV Bisphenol F type epoxy resin / bisphenol A type epoxy resin mixture (aromatic epoxy resin) (manufactured by DIC Corporation, epoxy equivalent 165)
  • C Component HXA5945HP: NovaCure HXA5945HP (isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient) (manufactured by Asahi Kasei E-Materials Co., Ltd., 3% by weight of DABCO)
  • HXA5934HP NovaCure HXA5934HP (isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient) (manufactured by Asahi Kasei E-Materials Corporation, DABCO 3 mass%)
  • C ′ Component HXA3922HP: NovaCure HXA3922HP (isocyanate adduct type microencapsulated curing accelerator) (manufactured by Asahi Kasei E-Materials Corporation)
  • the gel time of the prepared epoxy resin composition is that the resin composition: 5 ⁇ 1 mg is supplied on a hot plate heated to 80 ° C. or 100 ° C., and the stirring rod is lifted while stirring as if drawing a circle with the stirring rod. It was obtained by measuring the time until the stringing disappeared when it was pulled apart. The measurement results are shown in the following table.
  • Example 8 the adhesive strength was evaluated by the following procedure. [Evaluation of adhesive strength] (1) A sample is stencil-printed with a size of 2 mm ⁇ on a glass epoxy substrate. (2) Place an alumina chip of 1.5 mm ⁇ 3 mm on the printed sample. This is heat-cured at 70 ° C. for 10 minutes or at 80 ° C. for 10 minutes using a blow dryer. (3) The shear strength was measured with a desktop universal testing machine (1605HTP manufactured by Aiko Engineering Co., Ltd.).
  • Example 1 is an example in which only an aromatic epoxy resin is used as the epoxy resin of the component (A), and Examples 2 and 3 are aromatic epoxy resins and aliphatics as the epoxy resin of the component (A).
  • Example 4 is an example in which a thickening inhibitor is added as a component (D) in combination with an epoxy resin, and Example 4 is an example in which the aromatic epoxy resin used as the epoxy resin of the component (A) is changed.
  • Example 5 is an example in which the isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient, which is used as the component (C), was changed with respect to Example 4, and Examples 6 and 7 were used.
  • Example 8 was an example in which a thickening inhibitor was added as component (D) to Example 4.
  • Examples 9 to 11 are actually To Example 8, an example of changing the thickening inhibitor component (D). All of these examples could be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time.
  • the pot life was 12 hours or longer, and in Examples 2, 3, and 8 to 11 in which a thickening inhibitor was added as the component (D), the pot life was 72 hours.
  • the adhesive strength evaluated for Example 8 was 80 N / chip or more for both 70 ° C. and 10 min thermosetting and 80 ° C. and 10 min thermosetting.
  • Example 7 using PEMP having a relatively low Tg as the component (B) had an adhesive strength of 100 N / chip at 80 ° C. for 10 minutes, but used TS-G and C3 TS-G having high Tg. In Examples 4 and 6, the adhesive strength at 80 ° C. for 10 minutes showed a high value of 250 N / chip.
  • Comparative Examples 5 to 7 using an isocyanate adduct type microencapsulated curing accelerator that does not contain DABCO as the component (C ′) can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less. could not be achieved.
  • each of the isocyanate adduct type microcapsules not containing DABCO as the component (C ′) was used instead of the isocyanate adduct type microencapsulated curing accelerator containing DABCO as the active component of the component (C).

Abstract

The present invention provides an epoxy resin composition which is able to be thermally cured at a low temperature around 100°C or less in a short time around 10 minutes or less, while having excellent bonding strength and excellent pot life. An epoxy resin composition according to the present invention is characterized by containing (A) an epoxy resin, (B) a thiol-based curing agent and (C) an isocyanate adduct-type microencapsulated curing accelerator that contains, as an active ingredient, 1,4-diazabicyclo[2.2.2]octane (DABCO), and is also characterized in that: the ratio (mass ratio) of an aromatic epoxy resin to an aliphatic epoxy resin in the epoxy resin serving as the component (A) is from 10:0 to 2:8; and the amount of DABCO in the component (C) is 0.01-2 parts by mass relative to 100 parts by mass of the total of the components (A)-(C).

Description

エポキシ樹脂組成物Epoxy resin composition
 本発明は、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が求められる用途の一液型接着剤に好適な樹脂組成物に関する。 The present invention relates to a resin composition suitable for a one-component adhesive for applications requiring low temperature short time curing at 100 ° C. for 20 minutes or less or 80 ° C. for 60 minutes or less.
 エポキシ樹脂は、優れた電気絶縁性、機械強度、耐熱性、耐湿性、密着性等の材料特性を有していることから、エポキシ樹脂を主剤とし、該エポキシ樹脂の硬化剤および/または硬化促進剤を含むエポキシ樹脂組成物が電子部品用接着剤として広く使用されている。上記の目的で使用されるエポキシ樹脂の硬化剤としては、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤などがある。一方、上記の目的で使用されるエポキシ樹脂の硬化促進剤としては、イミダゾール類などがある。 Epoxy resins have excellent electrical insulating properties, mechanical strength, heat resistance, moisture resistance, adhesion, and other material properties. Therefore, epoxy resins are the main components, and curing agents and / or acceleration of the epoxy resins are used. An epoxy resin composition containing an agent is widely used as an adhesive for electronic components. Examples of the epoxy resin curing agent used for the above purpose include amine-based curing agents, phenol-based curing agents, and acid anhydride-based curing agents. On the other hand, examples of the epoxy resin curing accelerator used for the above-mentioned purpose include imidazoles.
 携帯電話やスマートフォンのカメラモジュールとして使用されるイメージセンサーモジュールの製造時には、比較的低温、具体的には100℃程度、若しくはそれ以下の低温で熱硬化する一液型接着剤が使用される。半導体素子、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、コンデンサ等の電子部品の製造時においても、100℃程度の温度で熱硬化する一液型接着剤の使用が望まれる場合がある。 When manufacturing image sensor modules used as camera modules for mobile phones and smartphones, a one-component adhesive that is thermally cured at a relatively low temperature, specifically about 100 ° C. or lower, is used. In the manufacture of electronic components such as semiconductor elements, integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, capacitors, etc., it may be desirable to use a one-component adhesive that thermosets at a temperature of about 100 ° C. .
 特許文献1,2では、エポキシ樹脂の硬化剤として、マイクロカプセル型潜在性硬化剤を用いることで、優れた低温硬化性と貯蔵安定性を両立しているが、さらに、硬化促進剤の使用により、硬化速度を向上することができる。 In Patent Documents 1 and 2, by using a microcapsule-type latent curing agent as a curing agent for an epoxy resin, both low-temperature curability and storage stability are compatible, but further, by using a curing accelerator. , The curing rate can be improved.
 生産性向上の観点からは、さらに硬化速度を向上することが求められている。具体的には、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が求められている。
 特許文献1,2は、このような低温、かつ、短時間の熱硬化には対応できない。
From the viewpoint of improving productivity, it is required to further improve the curing rate. Specifically, low-temperature short-time curing at 100 ° C. for 20 minutes or less or 80 ° C. for 60 minutes or less is required.
Patent Documents 1 and 2 cannot cope with such low temperature and short time thermal curing.
特開2009-161751号公報JP 2009-161751 A 特開2009-203453号公報JP 2009-203453 A
 本発明は上記した従来技術の問題点を解決するため、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が可能であり、さらに接着強度やポットライフに優れたエポキシ樹脂組成物の提供を目的とする。 In order to solve the above-mentioned problems of the prior art, the present invention can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less, and can be cured at a low temperature for a short time, and has excellent adhesive strength and pot life. The purpose is to provide a composition.
 上記の目的を達成するため、本発明は、
(A)エポキシ樹脂、
(B)チオール系硬化剤、
(C)有効成分として、1,4-ジアザビシクロ[2.2.2]オクタン(1,4-diazabicyclo[2.2.2]octane(DABCO))を含む、イソシアネートアダクト型マイクロカプセル化硬化促進剤を含み、
 前記(A)成分のエポキシ樹脂における、芳香族系エポキシ樹脂と、脂肪族系エポキシ樹脂と、の割合(質量比)が10:0~2:8であり、
 前記(A)~(C)成分の合計100質量部に対し、前記(C)成分中のDABCOの量が0.01~2質量部であることを特徴とするエポキシ樹脂組成物を提供する。
In order to achieve the above object, the present invention provides:
(A) epoxy resin,
(B) a thiol-based curing agent,
(C) Isocyanate adduct type microencapsulated curing accelerator containing 1,4-diazabicyclo [2.2.2] octane (1,4-diazabicyclo [2.2.2] octane (DABCO)) as an active ingredient Including
In the epoxy resin of the component (A), the ratio (mass ratio) of the aromatic epoxy resin and the aliphatic epoxy resin is 10: 0 to 2: 8,
An epoxy resin composition is provided, wherein the amount of DABCO in the component (C) is 0.01 to 2 parts by mass with respect to 100 parts by mass in total of the components (A) to (C).
 本発明のエポキシ樹脂組成物において、前記(B)成分のチオール系硬化剤は、一般式(I)で表されるメルカプトアルキルグリコールウリル類であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子、メルカプトメチル基、2-メルカプトエチル基、3-メルカプトプロピル基及び4-メルカプトブチル基から選ばれるメルカプトアルキル基を示し、nは0~3である。)
In the epoxy resin composition of the present invention, the thiol-based curing agent as the component (B) is preferably a mercaptoalkylglycoluril represented by the general formula (I).
Figure JPOXMLDOC01-appb-C000002
(Wherein R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom, a mercaptomethyl group, a 2-mercaptoethyl group, A mercaptoalkyl group selected from a 3-mercaptopropyl group and a 4-mercaptobutyl group is shown, and n is 0 to 3.)
 本発明のエポキシ樹脂組成物は、さらに(D)増粘抑制剤を含有してもよい。
 前記(D)成分の増粘抑制剤は、ホウ酸エステル、アルミニウムキレート、および有機酸からなる群より選ばれる少なくとも1種であることが好ましい。
The epoxy resin composition of the present invention may further contain (D) a thickening inhibitor.
The thickening inhibitor of the component (D) is preferably at least one selected from the group consisting of boric acid esters, aluminum chelates, and organic acids.
 また、本発明は、樹脂組成物を加熱することで得られる樹脂硬化物を提供する。 The present invention also provides a cured resin obtained by heating the resin composition.
 また、本発明は、本発明の樹脂組成物を含む一液型接着剤を提供する。 The present invention also provides a one-component adhesive containing the resin composition of the present invention.
 また、本発明は、本発明のエポキシ樹脂組成物を含む封止材を提供する。 Moreover, this invention provides the sealing material containing the epoxy resin composition of this invention.
 また、本発明は、本発明の一液型接着剤を用いて製造されたイメージセンサーモジュールを提供する。 The present invention also provides an image sensor module manufactured using the one-component adhesive of the present invention.
 また、本発明は、本発明の一液型接着剤を用いて製造された電子部品を提供する。 The present invention also provides an electronic component manufactured using the one-component adhesive of the present invention.
 また、本発明は、本発明の封止材を用いて封止されたフリップチップ型半導体素子を有する半導体装置を提供する。 The present invention also provides a semiconductor device having a flip chip type semiconductor element sealed using the sealing material of the present invention.
 本発明のエポキシ樹脂組成物は、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が可能である。本発明のエポキシ樹脂組成物は、接着強度やポットライフも優れている。そのため、イメージセンサーモジュールや電子部品の製造時に使用する一液型接着剤として好適である。 The epoxy resin composition of the present invention can be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time. The epoxy resin composition of the present invention is excellent in adhesive strength and pot life. Therefore, it is suitable as a one-component adhesive used when manufacturing image sensor modules and electronic components.
 以下、本発明のエポキシ樹脂組成物について詳細に説明する。
 本発明の樹脂組成物は、以下に示す(A)~(C)成分を必須成分として含有する。
Hereinafter, the epoxy resin composition of the present invention will be described in detail.
The resin composition of the present invention contains the following components (A) to (C) as essential components.
(A)成分:エポキシ樹脂
 (A)成分のエポキシ樹脂は、1分子当り1個以上のエポキシ基を有するものであればよい。上記(A)成分のエポキシ樹脂の例として、フェノール、ビスフェノールA、ビスフェノールF、ビスフェノールAD、カテコール、レゾルシノール等の単価又は多価フェノール、アルキルアルコールやグリセリンやポリエチレングリコール等の単価又は多価アルコールとエピクロルヒドリンを反応させて得られるモノグリシジルエーテル又はポリグリシジルエーテル、安息香酸、p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンを反応させて得られるグリシジルエーテルエステル、フタル酸、テレフタル酸のようなカルボン酸とエピクロルヒドリンを反応させて得られるモノグリシジルエステル又はポリグリシジルエステル、1,6-ビス(2,3-エポキシプロポキシ)ナフタレンのようなナフタレン骨格を有するエポキシ樹脂、さらにはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィン、環式脂肪族エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂等が挙げられるが、これらに限定されるものではない。
(A) Component: Epoxy Resin The epoxy resin of the (A) component may be one having one or more epoxy groups per molecule. Examples of the epoxy resin of the above component (A) include unit price such as phenol, bisphenol A, bisphenol F, bisphenol AD, catechol, resorcinol, unit price such as polyphenol, alkyl alcohol, glycerin and polyethylene glycol, or polyhydric alcohol and epichlorohydrin. Glycidyl ether ester, phthalic acid, terephthalic acid obtained by reacting monochloroidyl ether or polyglycidyl ether obtained by reacting hydroxycarboxylic acid such as benzoic acid, p-hydroxybenzoic acid, β-hydroxynaphthoic acid with epichlorohydrin Monoglycidyl ester or polyglycidyl ester obtained by reacting carboxylic acid such as acid with epichlorohydrin, 1,6-bis (2,3-epoxypropoxy) naphthalene An epoxy resin having a naphthalene skeleton such as epoxidized phenol novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, cycloaliphatic epoxy resin, urethane-modified epoxy resin, silicone-modified epoxy resin, etc. It is not limited to these.
 上記で例示したエポキシ樹脂のうち、ベンゼン環を有する芳香族系エポキシ樹脂は、硬化速度の向上に寄与する。また、ベンゼン環を有する芳香族系エポキシ樹脂は、後述する(C)のマイクロカプセルを溶解させ難い。このため、本発明のエポキシ樹脂組成物では、(A)成分のエポキシ樹脂が芳香族系エポキシ樹脂を含有し、(A)成分のエポキシ樹脂における芳香族系エポキシ樹脂の割合が高い。具体的には、(A)成分のエポキシ樹脂において、芳香族系エポキシ樹脂と、脂肪族系エポキシ樹脂と、の割合(質量比)が10:0~2:8である。なお、本明細書における芳香族系エポキシ樹脂とは、ベンゼン環を有するエポキシ樹脂を指す。芳香族系エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が好ましい。一方、脂肪族系エポキシ樹脂とは、ベンゼン環を有さないエポキシ樹脂を指し、例えば、シクロヘキサンジメタノールジグリシジルエーテル、ジシクロペンタジエンジメタノールジグリシジルエーテル、水添ビスフェノールA型エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂等が該当する。脂肪族系エポキシ樹脂は、反応性希釈剤として作用し、エポキシ樹脂組成物の粘度を下げることができる。
 (A)成分のエポキシ樹脂において、芳香族系エポキシ樹脂と、脂肪族系エポキシ樹脂と、の割合(質量比)が10:0~3:7であることが好ましい。
Of the epoxy resins exemplified above, an aromatic epoxy resin having a benzene ring contributes to an improvement in the curing rate. In addition, the aromatic epoxy resin having a benzene ring is difficult to dissolve the microcapsule (C) described later. For this reason, in the epoxy resin composition of this invention, the epoxy resin of (A) component contains an aromatic epoxy resin, and the ratio of the aromatic epoxy resin in the epoxy resin of (A) component is high. Specifically, in the epoxy resin of component (A), the ratio (mass ratio) between the aromatic epoxy resin and the aliphatic epoxy resin is 10: 0 to 2: 8. In addition, the aromatic epoxy resin in this specification refers to the epoxy resin which has a benzene ring. As the aromatic epoxy resin, bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable. On the other hand, the aliphatic epoxy resin refers to an epoxy resin having no benzene ring, such as cyclohexanedimethanol diglycidyl ether, dicyclopentadiene dimethanol diglycidyl ether, hydrogenated bisphenol A type epoxy resin, urethane-modified epoxy. Resins, silicone-modified epoxy resins, and the like are applicable. The aliphatic epoxy resin acts as a reactive diluent and can reduce the viscosity of the epoxy resin composition.
In the epoxy resin of component (A), the ratio (mass ratio) of the aromatic epoxy resin and the aliphatic epoxy resin is preferably 10: 0 to 3: 7.
(B)チオール系硬化剤
 (B)成分のチオール系硬化剤は、(A)成分のエポキシ樹脂の硬化剤である。
 (B)成分のチオール系硬化剤としては、脂肪族ポリチオール類、芳香族ポリチオール類、チオール変性反応性シリコーンオイル類等を使用できる。但し、下記一般式(I)で表されるメルカプトアルキルグリコールウリル類の使用が、耐湿性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000003
 式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子、メルカプトメチル基、2-メルカプトエチル基、3-メルカプトプロピル基及び4-メルカプトブチル基から選ばれるメルカプトアルキル基を示し、nは0~3である。
(B) Thiol-based curing agent The thiol-based curing agent (B) is a curing agent for the epoxy resin (A).
As the thiol-based curing agent as component (B), aliphatic polythiols, aromatic polythiols, thiol-modified reactive silicone oils and the like can be used. However, the use of mercaptoalkylglycolurils represented by the following general formula (I) is preferable from the viewpoint of moisture resistance.
Figure JPOXMLDOC01-appb-C000003
In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom, a mercaptomethyl group, a 2-mercaptoethyl group, 3 -Represents a mercaptoalkyl group selected from a mercaptopropyl group and a 4-mercaptobutyl group, and n is 0-3.
 本発明のエポキシ樹脂組成物において、(B)成分の化合物は(A)成分のエポキシ樹脂の硬化剤として作用する。 In the epoxy resin composition of the present invention, the compound of component (B) acts as a curing agent for the epoxy resin of component (A).
 上記一般式(I)で表されるメルカプトアルキルグリコールウリル類において、R1又はR2が低級アルキル基であるとき、その低級アルキル基は、通常、炭素原子数1~5であり、好ましくは、1~3であり、最も好ましくは1、即ち、メチル基である。 In the mercaptoalkylglycolurils represented by the above general formula (I), when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 to 5 carbon atoms, preferably 1 to 3, most preferably 1, ie a methyl group.
 上記一般式(I)で表されるメルカプトアルキルグリコールウリル類(B)成分の化合物は、好ましくは、式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又は上記一般式(I)中の部分一般式 In the compound of the mercaptoalkylglycoluril (B) component represented by the general formula (I), preferably, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, R 3 , R 4 and R 5 are each independently a hydrogen atom or a partial general formula in the above general formula (I)
Figure JPOXMLDOC01-appb-C000004
と同じメルカプトアルキル基を示し、上記部分一般式中のnは0~3である。
Figure JPOXMLDOC01-appb-C000004
The same mercaptoalkyl group, and n in the partial general formula is 0-3.
 即ち、上記一般式(I)で表されるメルカプトアルキルグリコールウリル類において、R3、R4及びR5のうち、1個、2個又は3個がメルカプトアルキル基であるとき、上記一般式(I)で表されるメルカプトアルキルグリコールウリル類の有するメルカプトアルキル基はすべて同じであることが好ましい。 That is, in the mercaptoalkylglycoluril represented by the general formula (I), when one, two or three of R 3 , R 4 and R 5 are mercaptoalkyl groups, the general formula ( It is preferable that all mercaptoalkyl groups of the mercaptoalkylglycoluril represented by I) are the same.
 従って、本発明によるメルカプトアルキルグリコールウリル類の好ましい具体例として、例えば、
1-メルカプトメチルグリコールウリル、
1-(2-メルカプトエチル)グリコールウリル、
1-(3-メルカプトプロピル)グリコールウリル、
1-(4-メルカプトブチル)グリコールウリル、
1,3-ビス(メルカプトメチル)グリコールウリル、
1,3-ビス(2-メルカプトエチル)グリコールウリル、
1,3-ビス(3-メルカプトプロピル)グリコールウリル、
1,3-ビス(4-メルカプトブチル)グリコールウリル、
1,4-ビス(メルカプトメチル)グリコールウリル、
1,4-ビス(2-メルカプトエチル)グリコールウリル、
1,4-ビス(3-メルカプトプロピル)グリコールウリル、
1,4-ビス(4-メルカプトブチル)グリコールウリル、
1,6-ビス(メルカプトメチル)グリコールウリル、
1,6-ビス(2-メルカプトエチル)グリコールウリル、
1,6-ビス(3-メルカプトプロピル)グリコールウリル、
1,6-ビス(4-メルカプトブチル)グリコールウリル、
1,3,4-トリス(メルカプトメチル)グリコールウリル、
1,3,4-トリス(2-メルカプトエチル)グリコールウリル、
1,3,4-トリス(3-メルカプトプロピル)グリコールウリル、
1,3,4-トリス(4-メルカプトブチル)グリコールウリル、
1,3,4,6-テトラキス(メルカプトメチル)グリコールウリル、
1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、
1,3,4,6-テトラキス(3-メルカプトプロピル)グリコールウリル、
1,3,4,6-テトラキス(4-メルカプトブチル)グリコールウリル、
1-メルカプトメチル-3a-メチルグリコールウリル、
1-メルカプトメチル-6a-メチル-グリコールウリル、
1-(2-メルカプトエチル)-3a-メチルグリコールウリル、
1-(2-メルカプトエチル)-6a-メチルグリコールウリル、
1-(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1-(3-メルカプトプロピル)-6a-メチル-グリコールウリル、
1-(4-メルカプトブチル)-3a-メチルグリコールウリル、
1-(4-メルカプトブチル)-6a-メチルグリコールウリル、
1,3-ビス(メルカプトメチル)-3a-メチルグリコールウリル、
1,3-ビス(2-メルカプトエチル)-3a-メチルグリコールウリル、
1,3-ビス(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1,3-ビス(4-メルカプトブチル)-3a-メチルグリコールウリル、
1,4-ビス(メルカプトメチル)-3a-メチルグリコールウリル、
1,4-ビス(2-メルカプトエチル)-3a-メチルグリコールウリル、
1,4-ビス(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1,4-ビス(4-メルカプトブチル)-3a-メチルグリコールウリル、
1,6-ビス(メルカプトメチル)-3a-メチルグリコールウリル、
1,6-ビス(メルカプトメチル)-6a-メチルグリコールウリル、
1,6-ビス(2-メルカプトエチル)-3a-メチルグリコールウリル、
1,6-ビス(2-メルカプトエチル)-6a-メチルグリコールウリル、
1,6-ビス(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1,6-ビス(3-メルカプトプロピル)-6a-メチルグリコールウリル、
1,6-ビス(4-メルカプトブチル)-3a-メチルグリコールウリル、
1,6-ビス(4-メルカプトブチル)-6a-メチルグリコールウリル、
1,3,4-トリス(メルカプトメチル)-3a-メチルグリコールウリル、
1,3,4-トリス(メルカプトメチル)-6a-メチルグリコールウリル、
1,3,4-トリス(2-メルカプトエチル)-3a-メチルグリコールウリル、
1,3,4-トリス(2-メルカプトエチル)-6a-メチルグリコールウリル、
1,3,4-トリス(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1,3,4-トリス(3-メルカプトプロピル)-6a-メチルグリコールウリル、
1,3,4-トリス(4-メルカプトブチル)-3a-メチルグリコールウリル、
1,3,4-トリス(4-メルカプトブチル)-6a-メチルグリコールウリル、
1,3,4,6-テトラキス(メルカプトメチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(2-メルカプトエチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(3-メルカプトプロピル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(4-メルカプトブチル)-3a-メチルグリコールウリル、
1-メルカプトメチル-3a,6a-ジメチルグリコールウリル、
1-(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1-(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、
1-(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1,3-ビス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、
1,3-ビス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1,3-ビス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、
1,3-ビス(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1,4-ビス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、
1,4-ビス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1,4-ビス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、
1,4-ビス(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1,6-ビス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、
1,6-ビス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1,6-ビス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、
1,6-ビス(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1,3,4-トリス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、
1,3,4-トリス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1,3,4-トリス(3-メルカプトプロピル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリス(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(4-メルカプトブチル)-3a,6a-ジメチルグリコールウリル、
1-メルカプトメチル-3a,6a-ジフェニルグリコールウリル、
1-(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1-(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1-(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル、
1,3-ビス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、
1,3-ビス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1,3-ビス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1,3-ビス(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル、
1,4-ビス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、
1,4-ビス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1,4-ビス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1,4-ビス(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル、
1,6-ビス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、
1,6-ビス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1,6-ビス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1,6-ビス(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリス(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラキス(メルカプトメチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラキス(2-メルカプトエチル)-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラキス(3-メルカプトプロピル)-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラキス(4-メルカプトブチル)-3a,6a-ジフェニルグリコールウリル
等を挙げることができる。
Accordingly, preferred specific examples of mercaptoalkyl glycolurils according to the present invention include, for example,
1-mercaptomethylglycoluril,
1- (2-mercaptoethyl) glycoluril,
1- (3-mercaptopropyl) glycoluril,
1- (4-mercaptobutyl) glycoluril,
1,3-bis (mercaptomethyl) glycoluril,
1,3-bis (2-mercaptoethyl) glycoluril,
1,3-bis (3-mercaptopropyl) glycoluril,
1,3-bis (4-mercaptobutyl) glycoluril,
1,4-bis (mercaptomethyl) glycoluril,
1,4-bis (2-mercaptoethyl) glycoluril,
1,4-bis (3-mercaptopropyl) glycoluril,
1,4-bis (4-mercaptobutyl) glycoluril,
1,6-bis (mercaptomethyl) glycoluril,
1,6-bis (2-mercaptoethyl) glycoluril,
1,6-bis (3-mercaptopropyl) glycoluril,
1,6-bis (4-mercaptobutyl) glycoluril,
1,3,4-tris (mercaptomethyl) glycoluril,
1,3,4-tris (2-mercaptoethyl) glycoluril,
1,3,4-tris (3-mercaptopropyl) glycoluril,
1,3,4-tris (4-mercaptobutyl) glycoluril,
1,3,4,6-tetrakis (mercaptomethyl) glycoluril,
1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril,
1,3,4,6-tetrakis (3-mercaptopropyl) glycoluril,
1,3,4,6-tetrakis (4-mercaptobutyl) glycoluril,
1-mercaptomethyl-3a-methylglycoluril,
1-mercaptomethyl-6a-methyl-glycoluril,
1- (2-mercaptoethyl) -3a-methylglycoluril,
1- (2-mercaptoethyl) -6a-methylglycoluril,
1- (3-mercaptopropyl) -3a-methylglycoluril,
1- (3-mercaptopropyl) -6a-methyl-glycoluril,
1- (4-mercaptobutyl) -3a-methylglycoluril,
1- (4-mercaptobutyl) -6a-methylglycoluril,
1,3-bis (mercaptomethyl) -3a-methylglycoluril,
1,3-bis (2-mercaptoethyl) -3a-methylglycoluril,
1,3-bis (3-mercaptopropyl) -3a-methylglycoluril,
1,3-bis (4-mercaptobutyl) -3a-methylglycoluril,
1,4-bis (mercaptomethyl) -3a-methylglycoluril,
1,4-bis (2-mercaptoethyl) -3a-methylglycoluril,
1,4-bis (3-mercaptopropyl) -3a-methylglycoluril,
1,4-bis (4-mercaptobutyl) -3a-methylglycoluril,
1,6-bis (mercaptomethyl) -3a-methylglycoluril,
1,6-bis (mercaptomethyl) -6a-methylglycoluril,
1,6-bis (2-mercaptoethyl) -3a-methylglycoluril,
1,6-bis (2-mercaptoethyl) -6a-methylglycoluril,
1,6-bis (3-mercaptopropyl) -3a-methylglycoluril,
1,6-bis (3-mercaptopropyl) -6a-methylglycoluril,
1,6-bis (4-mercaptobutyl) -3a-methylglycoluril,
1,6-bis (4-mercaptobutyl) -6a-methylglycoluril,
1,3,4-tris (mercaptomethyl) -3a-methylglycoluril,
1,3,4-tris (mercaptomethyl) -6a-methylglycoluril,
1,3,4-tris (2-mercaptoethyl) -3a-methylglycoluril,
1,3,4-tris (2-mercaptoethyl) -6a-methylglycoluril,
1,3,4-tris (3-mercaptopropyl) -3a-methylglycoluril,
1,3,4-tris (3-mercaptopropyl) -6a-methylglycoluril,
1,3,4-tris (4-mercaptobutyl) -3a-methylglycoluril,
1,3,4-tris (4-mercaptobutyl) -6a-methylglycoluril,
1,3,4,6-tetrakis (mercaptomethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (2-mercaptoethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (3-mercaptopropyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (4-mercaptobutyl) -3a-methylglycoluril,
1-mercaptomethyl-3a, 6a-dimethylglycoluril,
1- (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1- (3-mercaptopropyl) -3a, 6a-dimethylglycoluril,
1- (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1,3-bis (mercaptomethyl) -3a, 6a-dimethylglycoluril,
1,3-bis (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1,3-bis (3-mercaptopropyl) -3a, 6a-dimethylglycoluril,
1,3-bis (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1,4-bis (mercaptomethyl) -3a, 6a-dimethylglycoluril,
1,4-bis (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1,4-bis (3-mercaptopropyl) -3a, 6a-dimethylglycoluril,
1,4-bis (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1,6-bis (mercaptomethyl) -3a, 6a-dimethylglycoluril,
1,6-bis (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1,6-bis (3-mercaptopropyl) -3a, 6a-dimethylglycoluril,
1,6-bis (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1,3,4-tris (mercaptomethyl) -3a, 6a-dimethylglycoluril,
1,3,4-tris (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1,3,4-tris (3-mercaptopropyl-3a, 6a-dimethylglycoluril,
1,3,4-tris (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1,3,4,6-tetrakis (mercaptomethyl) -3a, 6a-dimethylglycoluril,
1,3,4,6-tetrakis (2-mercaptoethyl) -3a, 6a-dimethylglycoluril,
1,3,4,6-tetrakis (3-mercaptopropyl) -3a, 6a-dimethylglycoluril,
1,3,4,6-tetrakis (4-mercaptobutyl) -3a, 6a-dimethylglycoluril,
1-mercaptomethyl-3a, 6a-diphenylglycoluril,
1- (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1- (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
1- (4-mercaptobutyl) -3a, 6a-diphenylglycoluril,
1,3-bis (mercaptomethyl) -3a, 6a-diphenylglycoluril,
1,3-bis (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1,3-bis (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
1,3-bis (4-mercaptobutyl) -3a, 6a-diphenylglycoluril,
1,4-bis (mercaptomethyl) -3a, 6a-diphenylglycoluril,
1,4-bis (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1,4-bis (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
1,4-bis (4-mercaptobutyl) -3a, 6a-diphenylglycoluril,
1,6-bis (mercaptomethyl) -3a, 6a-diphenylglycoluril,
1,6-bis (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1,6-bis (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
1,6-bis (4-mercaptobutyl) -3a, 6a-diphenylglycoluril,
1,3,4-tris (mercaptomethyl) -3a, 6a-diphenylglycoluril,
1,3,4-tris (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1,3,4-tris (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
1,3,4-tris (4-mercaptobutyl) -3a, 6a-diphenylglycoluril,
1,3,4,6-tetrakis (mercaptomethyl) -3a, 6a-diphenylglycoluril,
1,3,4,6-tetrakis (2-mercaptoethyl) -3a, 6a-diphenylglycoluril,
1,3,4,6-tetrakis (3-mercaptopropyl) -3a, 6a-diphenylglycoluril,
Examples include 1,3,4,6-tetrakis (4-mercaptobutyl) -3a, 6a-diphenylglycoluril.
 本発明のエポキシ樹脂組成物において、(B)成分の化合物の含有量は、(A)成分(エポキシ樹脂)のエポキシ当量に対して、該(B)成分の化合物のチオール当量比で0.3当量~2.5当量であることが、樹脂組成物の接着強度が高くなるため好ましい。
 (B)成分の化合物の含有量は、(A)成分(エポキシ樹脂)のエポキシ当量に対して、該(B)成分の化合物のチオール当量比で0.6当量~2.3当量であることがより好ましい。
In the epoxy resin composition of the present invention, the content of the component (B) compound is 0.3 in terms of the thiol equivalent ratio of the compound (B) to the epoxy equivalent of the component (A) (epoxy resin). Equivalent to 2.5 equivalents is preferable because the adhesive strength of the resin composition is increased.
The content of the component (B) compound is 0.6 equivalent to 2.3 equivalent in terms of the thiol equivalent ratio of the compound (B) to the epoxy equivalent of the component (A) (epoxy resin). Is more preferable.
(C)成分:マイクロカプセル化硬化促進剤
 (C)成分のマイクロカプセル化硬化促進剤は、有効成分として、1,4-ジアザビシクロ[2.2.2]オクタン(1,4-diazabicyclo[2.2.2]octane(DABCO))を含む。1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)は、1,4-エチレンピペラジン、若しくは、トリエチレンジアミンとも呼ばれる。
 (C)成分のマイクロカプセル化硬化促進剤は、有効成分としてDABCOを含有することにより、(B)成分の化合物との組み合わせにより、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が可能である。
 本発明のエポキシ樹脂組成物では、(B)成分のマイクロカプセル化硬化促進剤として、イソシアネートアダクト型マイクロカプセル化硬化促進剤を用いる。イソシアネートアダクト型マイクロカプセル化硬化促進剤とは、アミン系硬化促進剤を含む粉体に、イソシアネート樹脂を付加反応させてコーティング(マイクロカプセル化)した潜在性硬化促進剤である。
 イソシアネートアダクト型マイクロカプセル化硬化促進剤を用いることで、エポキシ樹脂組成物の、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化を可能にする一方で、エポキシ樹脂組成物のポットライフが向上する。(B)成分として、マイクロカプセル化硬化促進剤の形態ではなく、DABCOを直接含有させた場合、エポキシ樹脂組成物のポットライフが著しく低下する。
Component (C): Microencapsulated curing accelerator (C) The microencapsulated curing accelerator of component (C) has 1,4-diazabicyclo [2.2.2] octane (1,4-diazabicyclo [2. 2.2] octane (DABCO)). 1,4-diazabicyclo [2.2.2] octane (DABCO) is also called 1,4-ethylenepiperazine or triethylenediamine.
The microencapsulated curing accelerator of component (C) contains DABCO as an active ingredient, and in combination with the compound of component (B), at a low temperature of 20 minutes or less at 100 ° C. or 60 minutes or less at 80 ° C. It can be cured for a short time.
In the epoxy resin composition of the present invention, an isocyanate adduct type microencapsulated curing accelerator is used as the microencapsulated curing accelerator of the component (B). The isocyanate adduct type microencapsulated curing accelerator is a latent curing accelerator obtained by coating (microencapsulating) an isocyanate resin with an addition reaction with a powder containing an amine-based curing accelerator.
By using an isocyanate adduct type microencapsulated curing accelerator, the epoxy resin composition can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less, while the epoxy resin composition can be cured. Improves pot life. When the component (B) is not directly in the form of a microencapsulated curing accelerator but directly contains DABCO, the pot life of the epoxy resin composition is significantly reduced.
 本発明のエポキシ樹脂組成物において、(A)~(C)成分の合計100質量部に対し、(C)成分中のDABCOの量が0.01~2質量部である。
 (C)成分中のDABCOの量が、(A)~(C)成分の合計100質量部に対し、0.01質量部未満だと、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が不可となる。
 一方、(C)成分中のDABCOの量が、(A)~(C)成分の合計100質量部に対し、2質量部超だと、樹脂組成物の粘度が高くなり、作業性が悪化する。また、ポットライフも悪化しやすくなる。
 (C)成分中のDABCOの量は、(A)~(C)成分の合計100質量部に対し、0.05~1質量部であることが好ましく、0.1~0.5質量部であることがより好ましい。
In the epoxy resin composition of the present invention, the amount of DABCO in the component (C) is 0.01 to 2 parts by mass with respect to a total of 100 parts by mass of the components (A) to (C).
When the amount of DABCO in component (C) is less than 0.01 parts by mass relative to 100 parts by mass of components (A) to (C), 20 minutes or less at 100 ° C or 60 minutes or less at 80 ° C Curing at low temperature for a short time becomes impossible.
On the other hand, if the amount of DABCO in component (C) exceeds 2 parts by mass relative to 100 parts by mass of components (A) to (C), the viscosity of the resin composition increases and workability deteriorates. . Also, the pot life is likely to deteriorate.
The amount of DABCO in the component (C) is preferably 0.05 to 1 part by weight, and 0.1 to 0.5 part by weight with respect to 100 parts by weight as a total of the components (A) to (C). More preferably.
 本発明のエポキシ樹脂組成物は、上記(A)~(C)成分以外に、以下に述べる成分を必要に応じて含有してもよい。 The epoxy resin composition of the present invention may contain the components described below as needed in addition to the components (A) to (C).
(D)成分:増粘抑制剤
 本発明の樹脂組成物は、常温(25℃)での貯蔵安定性を向上させ、ポットライフを長くするために、(D)成分として、増粘抑制剤を含有してもよい。
 (D)成分の増粘抑制剤としては、ホウ酸エステル、アルミニウムキレート、および、有機酸からなる群から選択される少なくとも1つが、常温(25℃)での貯蔵安定性を向上させる効果が高いため好ましい。
(D) Component: Thickening inhibitor The resin composition of the present invention comprises a thickening inhibitor as the (D) component in order to improve storage stability at normal temperature (25 ° C) and lengthen the pot life. You may contain.
As the thickening inhibitor of component (D), at least one selected from the group consisting of boric acid esters, aluminum chelates, and organic acids has a high effect of improving storage stability at room temperature (25 ° C.). Therefore, it is preferable.
 ホウ酸エステルとしては、例えば、2,2’-オキシビス(5,5’-ジメチル-1,3,2-オキサボリナン)、トリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレートを用いることができる。
 なお、(D)成分として含有させるホウ酸エステルは、常温(25℃)で液状であるため、配合物粘度を低く抑えられるため好ましい。
 (D)成分としてホウ酸エステルを含有させる場合、(A)成分~(D)成分の合計量100質量部に対して、0.1~8.9質量部であることが好ましく、0.1~4.4質量部であることがより好ましく、0.1~3.5質量部であることがさらに好ましい。
Examples of borate esters include 2,2′-oxybis (5,5′-dimethyl-1,3,2-oxaborinane), trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri- n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris (2- Ethylhexyloxy) borane, bis (1,4,7,10-tetraoxaundecyl) (1,4,7,10,13-pentaoxatetradecyl) (1,4,7-trioxaundecyl) borane , Tribenzyl borate, trifeni Borate, tri -o- Toriruboreto, tri -m- Toriruboreto can be used triethanolamine borate.
In addition, since the boric acid ester contained as (D) component is liquid at normal temperature (25 degreeC), since a compound viscosity can be restrained low, it is preferable.
When a boric acid ester is contained as the component (D), the amount is preferably 0.1 to 8.9 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D). The content is more preferably 4.4 parts by mass, and even more preferably 0.1-3.5 parts by mass.
 アルミニウムキレートとしては、例えば、アルミニウムトリスアセチルアセトネート(例えば、川研ファインケミカル株式会社製のALA:アルミキレートA)を用いることができる。
 (D)成分としてアルミニウムキレートを含有させる場合、(A)成分~(D)成分の合計量100質量部に対して、0.1~14.0質量部であることが好ましく、0.1~13.0質量部であることがより好ましく、0.1~12.0質量部であることがさらに好ましい。
As the aluminum chelate, for example, aluminum trisacetylacetonate (for example, ALA: aluminum chelate A manufactured by Kawaken Fine Chemical Co., Ltd.) can be used.
When an aluminum chelate is contained as component (D), it is preferably 0.1 to 14.0 parts by mass with respect to 100 parts by mass of the total amount of components (A) to (D), The amount is more preferably 13.0 parts by mass, and further preferably 0.1 to 12.0 parts by mass.
 有機酸として、例えば、バルビツール酸を用いることができる。
 (D)成分として有機酸を含有させる場合、(A)成分~(D)成分の合計量100質量部に対して、0.1~8.9質量部であることが好ましく、0.1~7.1質量部であることがより好ましく、0.1~4.0質量部であることがさらに好ましい。
As the organic acid, for example, barbituric acid can be used.
When an organic acid is contained as the component (D), the amount is preferably 0.1 to 8.9 parts by mass with respect to 100 parts by mass of the total amount of the components (A) to (D), The amount is more preferably 7.1 parts by mass, and further preferably 0.1 to 4.0 parts by mass.
(その他の配合剤)
 本発明のエポキシ樹脂組成物は、上記(A)~(D)成分以外の成分を必要に応じてさらに含有してもよい。このような成分の具体例としては、充填剤、イオントラップ剤、レベリング剤、酸化防止剤、消泡剤、難燃剤、着色剤などを配合できる。各配合剤の種類、配合量は常法通りである。
(Other ingredients)
The epoxy resin composition of the present invention may further contain components other than the components (A) to (D) as necessary. As specific examples of such components, fillers, ion trapping agents, leveling agents, antioxidants, antifoaming agents, flame retardants, coloring agents and the like can be blended. The type and amount of each compounding agent are as usual.
 本発明の樹脂組成物は、上記(A)~(C)成分、および、含有させる場合はさらに(D)成分、ならびに、さらに必要に応じて配合するその他の配合剤を同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。 The resin composition of the present invention requires the above components (A) to (C) and, if included, the component (D), and other compounding agents to be blended as necessary at the same time or separately. Can be obtained by stirring, melting, mixing, and dispersing while applying heat treatment. The mixing, stirring, dispersing and the like devices are not particularly limited, and a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, a bead mill and the like can be used. . Moreover, you may use combining these apparatuses suitably.
 本発明のエポキシ樹脂組成物は、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が可能である。そのため、イメージセンサーモジュールや電子部品の製造時に使用する一液型接着剤として好適である。
 また、本発明のエポキシ樹脂組成物の用途としては、半導体装置の製造時に使用する液状封止材の可能性もある。
The epoxy resin composition of the present invention can be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time. Therefore, it is suitable as a one-component adhesive used when manufacturing image sensor modules and electronic components.
Moreover, as an application of the epoxy resin composition of the present invention, there is a possibility of a liquid sealing material used at the time of manufacturing a semiconductor device.
 本発明のエポキシ樹脂組成物は十分な接着強度を有している。具体的には、後述する手順で測定される接着強度(シェア強度、70℃10min熱硬化)が20N/chip以上であることが好ましく、50N/chipであることがより好ましく、80N/chipであることがさらに好ましい。また、(シェア強度、80℃10min熱硬化)が20N/chip以上であることが好ましく、50N/chipであることがより好ましく、80N/chipであることがさらに好ましい。 The epoxy resin composition of the present invention has sufficient adhesive strength. Specifically, the adhesive strength (shear strength, thermosetting at 70 ° C. for 10 minutes) measured by the procedure described later is preferably 20 N / chip or more, more preferably 50 N / chip, and 80 N / chip. More preferably. Further, (shear strength, thermosetting at 80 ° C. for 10 minutes) is preferably 20 N / chip or more, more preferably 50 N / chip, and further preferably 80 N / chip.
 本発明のエポキシ樹脂組成物は、常温での保存安定性が良好であり、ポットライフが長い。本明細書では、後述する実施例に記載の手順で測定される増粘率が1.2倍となる時間をポットライフの指標とする。本発明のエポキシ樹脂組成物は、後述する実施例に記載の手順で測定される増粘率が1.2倍となる時間が6時間以上であることが好ましく、12時間以上であることがさらに好ましく、24時間以上であることがさらに好ましい。 The epoxy resin composition of the present invention has good storage stability at room temperature and a long pot life. In this specification, the time when the thickening ratio measured by the procedure described in the examples described later is 1.2 times is used as an index of pot life. In the epoxy resin composition of the present invention, it is preferable that the time when the thickening ratio measured by the procedure described in the examples described later is 1.2 times is 6 hours or more, and more preferably 12 hours or more. Preferably, it is more preferably 24 hours or longer.
 以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
(エポキシ樹脂組成物の調製)
 下記表に示す配合で各成分を混合してエポキシ樹脂組成物を調製した。なお、下記表において、(A)成分~(D)成分の配合割合を示す数字は、すべて質量部を示している。
 表中の各成分は、以下の通りである。
(A)成分
YDF8170:ビスフェノールF型エポキシ樹脂(芳香族系エポキシ樹脂)(新日鐵化学株式会社製、エポキシ当量160)
ZX1658GS:シクロヘキサンジメタノールジグリシジルエーテル(脂肪族系エポキシ樹脂)(新日鐵化学株式会社製、エポキシ当量135)
EP4088L:ジシクロペンタジエンジメタノールジグリシジルエーテル(脂肪族系エポキシ樹脂)(株式会社ADEKA製、エポキシ当量165)
EXA835LV:ビスフェノールF型エポキシ樹脂・ビスフェノールA型エポキシ樹脂混合物(芳香族系エポキシ樹脂)(DIC株式会社製、エポキシ当量165)
(B)成分
TS-G:1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル(四国化成工業株式会社製、チオール基当量94)
1,3,4,6-テトラキス(3-メルカプトプロピル)グリコールウリル(四国化成工業株式会社製、チオール基当量108、表にはC3 TS-Gと記載)
PEMP:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製、チオール基当量122)
(B´)成分
MEH8005:アリル化フェノール樹脂、明和化成株式会社製
(C)成分
HXA5945HP:ノバキュアHXA5945HP(有効成分としてDABCOを含むイソシアネートアダクト型マイクロカプセル化硬化促進剤)(旭化成イーマテリアルズ株式会社製、DABCO3質量%)
HXA5934HP:ノバキュアHXA5934HP(有効成分としてDABCOを含むイソシアネートアダクト型マイクロカプセル化硬化促進剤)(旭化成イーマテリアルズ株式会社製、DABCO3質量%)
(C´)成分
HXA3922HP:ノバキュアHXA3922HP(イソシアネートアダクト型マイクロカプセル化硬化促進剤)(旭化成イーマテリアルズ株式会社製)
(D)成分
トリイソプロピルボレート(東京化成工業株式会社製)
トリプロピルボレート(東京化成工業株式会社製)
アルミニウムキレート:アルミニウムキレートA(川研ファインケミカル株式会社製)
バルビツール酸(東京化成工業株式会社製)
(Preparation of epoxy resin composition)
The epoxy resin composition was prepared by mixing each component with the formulation shown in the following table. In the table below, the numbers indicating the blending ratios of the components (A) to (D) all indicate parts by mass.
Each component in the table is as follows.
(A) Component YDF8170: Bisphenol F type epoxy resin (aromatic epoxy resin) (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 160)
ZX1658GS: cyclohexanedimethanol diglycidyl ether (aliphatic epoxy resin) (manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 135)
EP4088L: Dicyclopentadiene dimethanol diglycidyl ether (aliphatic epoxy resin) (manufactured by ADEKA Corporation, epoxy equivalent 165)
EXA835LV: Bisphenol F type epoxy resin / bisphenol A type epoxy resin mixture (aromatic epoxy resin) (manufactured by DIC Corporation, epoxy equivalent 165)
(B) Component TS-G: 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril (manufactured by Shikoku Chemicals Co., Ltd., thiol group equivalent 94)
1,3,4,6-tetrakis (3-mercaptopropyl) glycoluril (manufactured by Shikoku Kasei Kogyo Co., Ltd., thiol group equivalent 108, indicated in the table as C3 TS-G)
PEMP: pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd., thiol group equivalent 122)
(B ′) Component MEH8005: allylated phenol resin, manufactured by Meiwa Kasei Co., Ltd.
(C) Component HXA5945HP: NovaCure HXA5945HP (isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient) (manufactured by Asahi Kasei E-Materials Co., Ltd., 3% by weight of DABCO)
HXA5934HP: NovaCure HXA5934HP (isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient) (manufactured by Asahi Kasei E-Materials Corporation, DABCO 3 mass%)
(C ′) Component HXA3922HP: NovaCure HXA3922HP (isocyanate adduct type microencapsulated curing accelerator) (manufactured by Asahi Kasei E-Materials Corporation)
Component (D) <br/> Triisopropyl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
Tripropyl borate (manufactured by Tokyo Chemical Industry Co., Ltd.)
Aluminum chelate: Aluminum chelate A (manufactured by Kawaken Fine Chemical Co., Ltd.)
Barbituric acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
〔ゲルタイムの評価〕
 調製したエポキシ樹脂組成物のゲルタイムは、80℃または100℃に熱した熱板上に、樹脂組成物:5±1mgを供給し、攪拌棒によって円を描くようにして攪拌しながら攪拌棒を持ち上げて引き離した場合に、糸引きが無くなるまでの時間を測定することによって得た。下記表に測定結果を示す。
[Evaluation of gel time]
The gel time of the prepared epoxy resin composition is that the resin composition: 5 ± 1 mg is supplied on a hot plate heated to 80 ° C. or 100 ° C., and the stirring rod is lifted while stirring as if drawing a circle with the stirring rod. It was obtained by measuring the time until the stringing disappeared when it was pulled apart. The measurement results are shown in the following table.
〔ポットライフの評価〕
 調製したエポキシ樹脂組成物について、ブルックフィールド社製回転粘度計HBDV-1(スピンドルSC4-14使用)用いて、50rpmで25℃における粘度(Pa・s)を測定した。次に、エポキシ樹脂組成物を密閉容器に入れて25℃で保存して、粘度が初期の1.2倍になるまでの時間をポットライフとした。
 調製したエポキシ樹脂組成物の接着強度(シェア強度)を以下の手順で測定した。結果を下記表に示す。
[Evaluation of pot life]
The viscosity (Pa · s) at 25 ° C. was measured at 50 rpm for the prepared epoxy resin composition using a Brookfield rotational viscometer HBDV-1 (using spindle SC4-14). Next, the epoxy resin composition was put in a sealed container and stored at 25 ° C., and the time until the viscosity became 1.2 times the initial value was defined as the pot life.
The adhesive strength (shear strength) of the prepared epoxy resin composition was measured by the following procedure. The results are shown in the table below.
 実施例8については、以下の手順で接着強度を評価した。
〔接着強度の評価〕
(1)試料をガラスエポキシ基板上に2mmφの大きさで孔版印刷する。
(2)印刷した試料上に1.5mm×3mmのアルミナチップを乗せる。これを送風乾燥機を用いて70℃で10分間、若しくは80℃で10分間熱硬化させる。
(3)卓上万能試験機(アイコーエンジニアリング株式会社製1605HTP)にてシェア強度を測定した。
For Example 8, the adhesive strength was evaluated by the following procedure.
[Evaluation of adhesive strength]
(1) A sample is stencil-printed with a size of 2 mmφ on a glass epoxy substrate.
(2) Place an alumina chip of 1.5 mm × 3 mm on the printed sample. This is heat-cured at 70 ° C. for 10 minutes or at 80 ° C. for 10 minutes using a blow dryer.
(3) The shear strength was measured with a desktop universal testing machine (1605HTP manufactured by Aiko Engineering Co., Ltd.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1は、(A)成分のエポキシ樹脂として、芳香族系エポキシ樹脂のみを使用した例であり、実施例2,3は(A)成分のエポキシ樹脂として、芳香族系エポキシ樹脂と脂肪族系エポキシ樹脂を併用し、かつ、(D)成分として、増粘抑制剤を添加した例であり、実施例4は(A)成分のエポキシ樹脂として使用する芳香族系エポキシ樹脂を変えた実施例であり、実施例5は、実施例4に対し、(C)成分として使用する、有効成分としてDABCOを含むイソシアネートアダクト型マイクロカプセル化硬化促進剤を変えた実施例であり、実施例6、7は、実施例4に対し、(B)成分のチオール系硬化剤を変えた実施例であり、実施例8は、実施例4に対し、(D)成分として、増粘抑制剤を添加した例であり、実施例9~11は、実施例8に対し、(D)成分の増粘抑制剤を変えた例である。
 これらの実施例はいずれも、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化が可能であった。また、ポットライフは12時間以上であり、(D)成分として、増粘抑制剤を添加した実施例2、3、8~11はポットライフが72時間であった。
 実施例8について評価した接着強度は、70℃10min熱硬化、80℃10min熱硬化のいずれも80N/chip以上であった。(B)成分として、比較的Tgが低いPEMPを使用した実施例7は、80℃10minでの接着強度が100N/chipであったが、Tgの高いTS-GとC3 TS-Gを使用した実施例4,6は、80℃10minでの接着強度が250N/chipと高い値を示した。
 (A)成分のエポキシ樹脂として、脂肪族系エポキシ樹脂のみを使用した比較例1、2、(A)成分のエポキシ樹脂における、芳香族系エポキシ樹脂の割合(質量比)が、脂肪族系エポキシ樹脂に対し、2:8より少ない比較例3、4は、エポキシ樹脂組成物の調製中にゲル化した。そのため、ゲルタイムの評価、ポットライフの評価は実施しなかった。
 (C´)成分として、DABCOを含まないイソシアネートアダクト型マイクロカプセル化硬化促進剤を使用した比較例5~7は、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化を達成できなかった。比較例5、6、7は、それぞれ、(C)成分の有効成分としてDABCOを含むイソシアネートアダクト型マイクロカプセル化硬化促進剤の代わりに、(C´)成分として、DABCOを含まないイソシアネートアダクト型マイクロカプセル化硬化促進剤を使用した点以外は、実施例4、6、7と同一である。これらの例について、80℃ゲルタイムと、100℃ゲルタイムの比(80℃ゲルタイム(DABCO非含有/DABCO含有)、100℃ゲルタイム(DABCO非含有/DABCO含有))を比較すると、80℃ゲルタイム比(DABCO非含有(比較例5)/DABCO含有(実施例4))=7.4、100℃ゲルタイム比(DABCO非含有(比較例5)/DABCO含有(実施例4))=4.7、80℃ゲルタイム比(DABCO非含有(比較例6)/DABCO含有(実施例6))=7.3、100℃ゲルタイム比(DABCO非含有(比較例6)/DABCO含有(実施例6))=4.7、80℃ゲルタイム比(DABCO非含有(比較例7)/DABCO含有(実施例7))=5.4、100℃ゲルタイム比(DABCO非含有(比較例6)/DABCO含有(実施例6))=4.7であった。
 (B)成分のチオール系硬化剤の代わりに、(B´)成分としてフェノール系硬化剤を使用した比較例8~11は、100℃で20分以下、若しくは、80℃60分以下の低温短時間硬化を達成できなかった。特に、比較例10は比較例8に比べ、5倍もの(C)成分を添加したものであるが、それでも実施例4ほど、ゲルタイムは短くならなかった。
 さらに、比較例10と比較例11の、80℃ゲルタイム比(DABCO非含有(比較例11)/DABCO含有(比較例10))=2.3、100℃ゲルタイム比(DABCO非含有(比較例11)/DABCO含有(比較例10))=1.6であり、比較例10は、(C)成分を含有しない比較例11よりもゲルタイムが短いため、(C)成分を含有することで、(B’)フェノール系硬化剤を配合した系においてもゲルタイムを短くできることがわかる。
 しかしながら、(B’)フェノール系硬化剤を配合した系では、配合中に(C)成分が含まれたとしても、(B)チオール系硬化剤を含む配合ほど著しい硬化促進効果は得られないことがわかる。
 以上のことから、低温短時間硬化が可能であるという本発明の効果は、(B)チオール系硬化剤を含む配合に特有なものである。
Example 1 is an example in which only an aromatic epoxy resin is used as the epoxy resin of the component (A), and Examples 2 and 3 are aromatic epoxy resins and aliphatics as the epoxy resin of the component (A). Example 4 is an example in which a thickening inhibitor is added as a component (D) in combination with an epoxy resin, and Example 4 is an example in which the aromatic epoxy resin used as the epoxy resin of the component (A) is changed. Example 5 is an example in which the isocyanate adduct type microencapsulated curing accelerator containing DABCO as an active ingredient, which is used as the component (C), was changed with respect to Example 4, and Examples 6 and 7 were used. Is an example in which the thiol-based curing agent of component (B) was changed with respect to Example 4, and Example 8 was an example in which a thickening inhibitor was added as component (D) to Example 4. Examples 9 to 11 are actually To Example 8, an example of changing the thickening inhibitor component (D).
All of these examples could be cured at 100 ° C. for 20 minutes or less or at 80 ° C. for 60 minutes or less at low temperature and short time. The pot life was 12 hours or longer, and in Examples 2, 3, and 8 to 11 in which a thickening inhibitor was added as the component (D), the pot life was 72 hours.
The adhesive strength evaluated for Example 8 was 80 N / chip or more for both 70 ° C. and 10 min thermosetting and 80 ° C. and 10 min thermosetting. Example 7 using PEMP having a relatively low Tg as the component (B) had an adhesive strength of 100 N / chip at 80 ° C. for 10 minutes, but used TS-G and C3 TS-G having high Tg. In Examples 4 and 6, the adhesive strength at 80 ° C. for 10 minutes showed a high value of 250 N / chip.
Comparative Examples 1 and 2 using only aliphatic epoxy resin as the epoxy resin of component (A), the proportion (mass ratio) of aromatic epoxy resin in the epoxy resin of component (A) is aliphatic epoxy For the resin, Comparative Examples 3 and 4, less than 2: 8, gelled during the preparation of the epoxy resin composition. Therefore, gel time evaluation and pot life evaluation were not performed.
Comparative Examples 5 to 7 using an isocyanate adduct type microencapsulated curing accelerator that does not contain DABCO as the component (C ′) can be cured at 100 ° C. for 20 minutes or less, or at 80 ° C. for 60 minutes or less. Could not be achieved. In Comparative Examples 5, 6, and 7, each of the isocyanate adduct type microcapsules not containing DABCO as the component (C ′) was used instead of the isocyanate adduct type microencapsulated curing accelerator containing DABCO as the active component of the component (C). The same as Examples 4, 6, and 7 except that an encapsulated curing accelerator was used. For these examples, when the ratio of 80 ° C. gel time to the ratio of 100 ° C. gel time (80 ° C. gel time (DABCO free / DABCO included), 100 ° C. gel time (DABCO free / DABCO included)) is compared, the 80 ° C. gel time ratio (DABCO Non-containing (Comparative Example 5) / DABCO-containing (Example 4)) = 7.4, 100 ° C. Gel time ratio (DABCO non-containing (Comparative Example 5) / DABCO-containing (Example 4)) = 4.7, 80 ° C. Gel time ratio (DABCO-free (Comparative Example 6) / DABCO-containing (Example 6)) = 7.3, 100 ° C. Gel time ratio (DABCO-free (Comparative Example 6) / DABCO-containing (Example 6)) = 4. 7. 80 ° C. gel time ratio (DABCO non-containing (Comparative Example 7) / DABCO containing (Example 7)) = 5.4, 100 ° C. gel time ratio (DABCO non-containing) Yes (Comparative Example 6) / DABCO-containing (Example 6)) = was 4.7.
In Comparative Examples 8 to 11 in which a phenolic curing agent is used as the component (B ′) instead of the thiol-based curing agent of the component (B), the low temperature short temperature of 100 ° C. for 20 minutes or less, or 80 ° C. for 60 minutes or less. Time hardening could not be achieved. In particular, Comparative Example 10 was obtained by adding 5 times as much component (C) as Comparative Example 8, but the gel time was not as short as Example 4.
Furthermore, the 80 ° C. gel time ratio of Comparative Example 10 and Comparative Example 11 (DABCO non-containing (Comparative Example 11) / DABCO containing (Comparative Example 10)) = 2.3, 100 ° C. gel time ratio (DABCO non-containing (Comparative Example 11) ) / DABCO containing (Comparative Example 10)) = 1.6, and Comparative Example 10 has a shorter gel time than Comparative Example 11 containing no (C) component. B ') It can be seen that the gel time can be shortened even in a system containing a phenolic curing agent.
However, in a system in which (B ′) a phenolic curing agent is blended, even if the component (C) is included in the blending, the remarkable curing acceleration effect cannot be obtained as in the blending including (B) a thiol curing agent. I understand.
From the above, the effect of the present invention that the low-temperature and short-time curing is possible is unique to the blend containing (B) a thiol-based curing agent.

Claims (10)

  1.  (A)エポキシ樹脂、
     (B)チオール系硬化剤、
     (C)有効成分として、1,4-ジアザビシクロ[2.2.2]オクタン(1,4-diazabicyclo[2.2.2]octane(DABCO))を含む、イソシアネートアダクト型マイクロカプセル化硬化促進剤を含み、
     前記(A)成分のエポキシ樹脂における、芳香族系エポキシ樹脂と、脂肪族系エポキシ樹脂と、の割合(質量比)が10:0~2:8であり、
     前記(A)~(C)成分の合計100質量部に対し、前記(C)成分中のDABCOの量が0.01~2質量部であることを特徴とする、エポキシ樹脂組成物。
    (A) epoxy resin,
    (B) a thiol-based curing agent,
    (C) Isocyanate adduct type microencapsulated curing accelerator containing 1,4-diazabicyclo [2.2.2] octane (1,4-diazabicyclo [2.2.2] octane (DABCO)) as an active ingredient Including
    In the epoxy resin of the component (A), the ratio (mass ratio) of the aromatic epoxy resin and the aliphatic epoxy resin is 10: 0 to 2: 8,
    An epoxy resin composition, wherein the amount of DABCO in the component (C) is 0.01 to 2 parts by mass with respect to a total of 100 parts by mass of the components (A) to (C).
  2.  前記(B)成分のチオール系硬化剤が、一般式(I)で表されるメルカプトアルキルグリコールウリル類である、請求項1に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子、メルカプトメチル基、2-メルカプトエチル基、3-メルカプトプロピル基及び4-メルカプトブチル基から選ばれるメルカプトアルキル基を示し、nは0~3である。)
    The epoxy resin composition according to claim 1, wherein the thiol-based curing agent of the component (B) is a mercaptoalkylglycoluril represented by the general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom, a mercaptomethyl group, a 2-mercaptoethyl group, A mercaptoalkyl group selected from a 3-mercaptopropyl group and a 4-mercaptobutyl group is shown, and n is 0 to 3.)
  3.  さらに(D)増粘抑制剤を含有する、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, further comprising (D) a thickening inhibitor.
  4.  前記(D)成分の増粘抑制剤は、ホウ酸エステル、アルミニウムキレート、および有機酸からなる群より選ばれる少なくとも1種である、請求項3に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 3, wherein the thickening inhibitor of the component (D) is at least one selected from the group consisting of boric acid esters, aluminum chelates, and organic acids.
  5.  請求項1~4のいずれかに記載の樹脂組成物を加熱することで得られる樹脂硬化物。 A cured resin obtained by heating the resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の樹脂組成物を含む一液型接着剤。 A one-component adhesive comprising the resin composition according to any one of claims 1 to 4.
  7.  請求項1~4のいずれかに記載のエポキシ樹脂組成物を含む封止材。 A sealing material comprising the epoxy resin composition according to any one of claims 1 to 4.
  8.  請求項6に記載の一液型接着剤を用いて製造されたイメージセンサーモジュール。 An image sensor module manufactured using the one-component adhesive according to claim 6.
  9.  請求項6に記載の一液型接着剤を用いて製造された電子部品。 Electronic parts manufactured using the one-component adhesive according to claim 6.
  10.  請求項7に記載の封止材を用いて封止されたフリップチップ型半導体素子を有する半導体装置。 A semiconductor device having a flip chip type semiconductor element sealed with the sealing material according to claim 7.
PCT/JP2016/077245 2015-09-30 2016-09-15 Epoxy resin composition WO2017057019A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187008771A KR102555587B1 (en) 2015-09-30 2016-09-15 Epoxy Resin Composition
JP2017543121A JP6996743B2 (en) 2015-09-30 2016-09-15 Epoxy resin composition
CN201680056318.9A CN108026252A (en) 2015-09-30 2016-09-15 Composition epoxy resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192446 2015-09-30
JP2015-192446 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057019A1 true WO2017057019A1 (en) 2017-04-06

Family

ID=58423559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077245 WO2017057019A1 (en) 2015-09-30 2016-09-15 Epoxy resin composition

Country Status (5)

Country Link
JP (1) JP6996743B2 (en)
KR (1) KR102555587B1 (en)
CN (1) CN108026252A (en)
TW (1) TWI698456B (en)
WO (1) WO2017057019A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074791A (en) * 2017-12-20 2019-06-28 이아이씨티코리아 주식회사 Low Temperature Curing Epoxy Resin Composition
WO2019163818A1 (en) * 2018-02-21 2019-08-29 ナミックス株式会社 Epoxy resin composition
JP2020152818A (en) * 2019-03-20 2020-09-24 旭化成株式会社 Epoxy resin composition
WO2023090026A1 (en) * 2021-11-17 2023-05-25 株式会社スリーボンド Microcapsule type curable resin composition
TWI811288B (en) * 2018-01-18 2023-08-11 日商味之素股份有限公司 One-component resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823176B (en) * 2018-10-17 2023-08-22 纳美仕有限公司 resin composition
CN116536013B (en) * 2023-05-26 2024-02-09 深圳市明粤科技有限公司 Adhesive and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256013A (en) * 1998-03-12 1999-09-21 Ajinomoto Co Inc Epoxy resin composition
WO2014066041A2 (en) * 2012-10-24 2014-05-01 Prc-Desoto International, Inc. Controlled-release amine-catalyzed, sulfur-containing polymer and epoxy compositions
JP2014152236A (en) * 2013-02-07 2014-08-25 Asahi Kasei E-Materials Corp Epoxy resin composition and processed product
JP2015093887A (en) * 2013-11-08 2015-05-18 アセック株式会社 Epoxy resin composition and cure product
WO2015080241A1 (en) * 2013-11-29 2015-06-04 四国化成工業株式会社 Mercaptoalkyl glycolurils and use of same
WO2015141347A1 (en) * 2014-03-17 2015-09-24 ナミックス株式会社 Resin composition
WO2016143815A1 (en) * 2015-03-12 2016-09-15 ナミックス株式会社 Semiconductor device and image sensor module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833226A (en) * 1987-08-26 1989-05-23 Asahi Kasei Kogyo Kabushiki Kaisha Hardener for curable one-package epoxy resin system
JP4753934B2 (en) * 2005-02-23 2011-08-24 旭化成イーマテリアルズ株式会社 Latent curing agent for epoxy resin and epoxy resin composition
JP5245790B2 (en) 2007-12-12 2013-07-24 日立化成株式会社 One-part epoxy resin composition
JP5266936B2 (en) 2008-01-29 2013-08-21 日立化成株式会社 Microcapsule type latent curing agent for epoxy resin, one-part epoxy resin composition, and epoxy resin cured product
JP5457658B2 (en) 2008-10-22 2014-04-02 協立化学産業株式会社 Main agent-primer type thermosetting epoxy resin and curing method thereof
WO2012093510A1 (en) 2011-01-05 2012-07-12 ナミックス株式会社 Resin composition
BR112015014765A2 (en) * 2012-12-21 2017-07-11 Dow Global Technologies Llc process to form an elastomeric polymer
JP6426340B2 (en) 2013-12-12 2018-11-21 旭化成株式会社 Curing agent for epoxy resin, and epoxy resin composition
US20160280846A1 (en) 2013-12-18 2016-09-29 Dow Global Technologies Llc Curable compositions
EP3088436B1 (en) 2013-12-24 2019-04-24 Bridgestone Corporation Laminate body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256013A (en) * 1998-03-12 1999-09-21 Ajinomoto Co Inc Epoxy resin composition
WO2014066041A2 (en) * 2012-10-24 2014-05-01 Prc-Desoto International, Inc. Controlled-release amine-catalyzed, sulfur-containing polymer and epoxy compositions
JP2014152236A (en) * 2013-02-07 2014-08-25 Asahi Kasei E-Materials Corp Epoxy resin composition and processed product
JP2015093887A (en) * 2013-11-08 2015-05-18 アセック株式会社 Epoxy resin composition and cure product
WO2015080241A1 (en) * 2013-11-29 2015-06-04 四国化成工業株式会社 Mercaptoalkyl glycolurils and use of same
WO2015141347A1 (en) * 2014-03-17 2015-09-24 ナミックス株式会社 Resin composition
WO2016143815A1 (en) * 2015-03-12 2016-09-15 ナミックス株式会社 Semiconductor device and image sensor module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074791A (en) * 2017-12-20 2019-06-28 이아이씨티코리아 주식회사 Low Temperature Curing Epoxy Resin Composition
KR102043160B1 (en) 2017-12-20 2019-11-12 이아이씨티코리아 주식회사 Low Temperature Curing Epoxy Resin Composition
TWI811288B (en) * 2018-01-18 2023-08-11 日商味之素股份有限公司 One-component resin composition
WO2019163818A1 (en) * 2018-02-21 2019-08-29 ナミックス株式会社 Epoxy resin composition
JPWO2019163818A1 (en) * 2018-02-21 2021-02-04 ナミックス株式会社 Epoxy resin composition
JP7426098B2 (en) 2018-02-21 2024-02-01 ナミックス株式会社 epoxy resin composition
JP2020152818A (en) * 2019-03-20 2020-09-24 旭化成株式会社 Epoxy resin composition
WO2023090026A1 (en) * 2021-11-17 2023-05-25 株式会社スリーボンド Microcapsule type curable resin composition

Also Published As

Publication number Publication date
KR102555587B1 (en) 2023-07-13
TW201730233A (en) 2017-09-01
JPWO2017057019A1 (en) 2018-07-19
KR20180063089A (en) 2018-06-11
CN108026252A (en) 2018-05-11
JP6996743B2 (en) 2022-02-03
TWI698456B (en) 2020-07-11

Similar Documents

Publication Publication Date Title
JP6996743B2 (en) Epoxy resin composition
TWI547520B (en) Epoxy resin composition and semiconductor-sealing material using the same
TWI646144B (en) Resin composition
JP6216345B2 (en) Resin composition
TWI586749B (en) One component epoxy resin composition
JP6032593B2 (en) Liquid epoxy resin composition, composite member, and electronic component device
WO2017043405A1 (en) Resin composition
TW202115150A (en) Epoxy resin composition
TWI801488B (en) Resin composition and its cured product, adhesives for electronic parts, semiconductor devices, and electronic parts
TWI542628B (en) One-component type epoxy resin composition
CN112823177B (en) Resin composition
JP2015101633A (en) Epoxy resin composition
TWI817988B (en) Epoxy resin composition
JP2010235704A (en) Thermosetting resin composition
JP6653152B2 (en) Epoxy resin composition
JP2013253195A (en) Epoxy resin composition
WO2018155165A1 (en) Liquid epoxy resin sealing material and semiconductor device
JPS61183317A (en) Low-temperature rapid curing epoxy resin composition
JP6080160B2 (en) Reactive diluent
JP2019065100A (en) Heat-resistant epoxy resin composition, casting material and casting member
JP2013072012A (en) One-pack epoxy resin composition, and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543121

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187008771

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851193

Country of ref document: EP

Kind code of ref document: A1