WO2017056502A1 - 電源装置、分散電源システム及びその制御方法 - Google Patents

電源装置、分散電源システム及びその制御方法 Download PDF

Info

Publication number
WO2017056502A1
WO2017056502A1 PCT/JP2016/004403 JP2016004403W WO2017056502A1 WO 2017056502 A1 WO2017056502 A1 WO 2017056502A1 JP 2016004403 W JP2016004403 W JP 2016004403W WO 2017056502 A1 WO2017056502 A1 WO 2017056502A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
output
distributed
distributed power
Prior art date
Application number
PCT/JP2016/004403
Other languages
English (en)
French (fr)
Inventor
一尊 中村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017542757A priority Critical patent/JP6582051B2/ja
Priority to EP16850680.6A priority patent/EP3358695B1/en
Priority to US15/764,823 priority patent/US10847847B2/en
Publication of WO2017056502A1 publication Critical patent/WO2017056502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device, a distributed power supply system, and a control method thereof.
  • a power supply device is a power supply device having a load following function.
  • the power supply apparatus includes a distributed power source that outputs power and a control unit that controls output power of the distributed power source.
  • the control unit acquires an evaluation function including an operation history of the distributed power source, and sets an output condition of the distributed power source based on the response characteristic of the load following and the evaluation function. Further, when the forward flow or the reverse flow is detected by a detector that detects a forward flow and a reverse flow from the system to which the distributed power source is connected, the control unit controls load following based on the output condition. Power is supplied from the distributed power source.
  • a distributed power supply system includes a plurality of power supply devices having a load following function, and a detector that detects a forward power flow from the system and a reverse power flow to the system. It is.
  • the plurality of power supply devices include a plurality of distributed power supplies that output power and a plurality of control units that respectively control output power of the plurality of distributed power supplies.
  • the plurality of control units acquire an evaluation function including operation histories of the plurality of distributed power sources, and set output conditions of the respective distributed power sources based on the response characteristics of the load following and the evaluation function.
  • the plurality of control units controls load following based on the output condition and supplies power from the plurality of distributed power sources.
  • control method of the distributed power supply system includes step A of acquiring an evaluation function including operation histories of a plurality of distributed power supplies having a load following function. Furthermore, the control method of the distributed system includes a step B of setting an output condition of each distributed power source based on the response characteristic of the load following and the evaluation function. Furthermore, the control method of the distributed power supply system includes a step C of detecting the value of the forward power flow and the reverse power flow by the detector that detects the forward power flow from the system and the reverse power flow to the system. Furthermore, the control method of the distributed power supply system includes a step D of performing load follow-up control based on the output condition when a forward flow or a reverse flow is detected in the step C. Furthermore, the control method of the distributed power system includes a step E of supplying power from the plurality of distributed power sources based on the control in the step D.
  • FIG. 4 is a flowchart illustrating an example of an operation of the power storage system according to the first embodiment of the present disclosure. It is a figure which shows an example of the waveform of the power consumption of load, and the output of an electrical storage apparatus.
  • 14 is a flowchart illustrating an example of an operation of the power storage system according to the second embodiment of the present disclosure. It is a figure which shows an example in case the increase / decrease width of the electric power value discharged is more than predetermined value, and the increase / decrease in discharge electric power value is repeated. It is a figure which shows an example of the discharge power control of the electrical storage apparatus performed again. It is a figure showing an example of a fuel cell system concerning other examples of this indication.
  • the load power consumption is prevented in order to prevent a reverse power flow from each power supply device to the system when the plurality of power supply devices are operated in parallel.
  • a load following operation is performed to control the amount of electric power according to the above. By this load following operation, control is always performed so that a forward current flows from the grid to the customer facility.
  • the degree of deterioration of each power supply device may be averaged.
  • a power supply device with high load following performance tends to output power preferentially due to, for example, manufacturing variations.
  • the power supply device with the earlier timing of starting control may output power preferentially. In such a case, the power supply device that outputs power preferentially may deteriorate quickly.
  • the power supply device will be described as a power storage device.
  • the present disclosure can be applied to other power supply devices that perform load following operation.
  • the power supply device may be a fuel cell device.
  • a power storage system (distributed power supply system) 1 includes current sensors (detectors) 10 and 11 and power storage devices (power supply devices) 20 and 21. .
  • the power storage system 1 is connected to the grid 60 and supplies power to the load 70.
  • the load 70 is, for example, an electric device or the like, and consumes power supplied from the grid 60 and the power storage system 1.
  • the electrical storage system 1 provided with the two electrical storage apparatuses 20 and 21 is shown in FIG. 1, the number of electrical storage apparatuses with which the electrical storage system 1 is provided may be three or more.
  • the solid line which connects each functional block shows a power line.
  • broken lines indicate control lines and signal lines. The connection indicated by the control line and the signal line may be a wired connection or a wireless connection.
  • the current sensors 10 and 11 are connected to a position where current values of the same forward flow and reverse flow in the current from the system 60 are detected.
  • the current sensors 10 and 11 are connected between the grid 60 and the power storage device 20, respectively.
  • Current sensors 10 and 11 detect the value of the forward flow from system 60 or the reverse power flow to system 60, respectively, and transmit the detected values to power storage devices 20 and 21.
  • FIG 1 shows an example in which two current sensors 10 and 11 are provided between the grid 60 and the power storage device 20, but the number of current sensors provided between the grid 60 and the power storage device 20 is as follows. There may be one. When there is one current sensor provided between the system 60 and the power storage device 20, the one current sensor transmits the detected value to the power storage devices 20 and 21.
  • the power storage devices 20 and 21 are connected to the system 60 and supply power to the load 70.
  • the power storage device 20 includes a power conversion unit 30, a storage battery (distributed power source) 40, and a storage unit 50.
  • the power storage device 21 includes a power conversion unit 31, a storage battery (distributed power source) 41, and a storage unit 51.
  • the power conversion units 30 and 31 control charging and discharging of the storage batteries 40 and 41, respectively.
  • the power conversion units 30 and 31 discharge the storage batteries 40 and 41
  • the power conversion units 30 and 31 convert the DC power discharged by the storage batteries 40 and 41 into AC power and supply the AC power to the load 70.
  • the power conversion units 30 and 31 convert the AC power supplied from the system 60 into DC power, and supply the storage batteries 40 and 41, respectively. Charge.
  • the power conversion units 30 and 31 control the discharge power of the storage batteries 40 and 41 based on the values detected by the current sensors 10 and 11, respectively. For example, the power conversion units 30 and 31 cause the storage batteries 40 and 41 to discharge when the forward flow is detected by the current sensors 10 and 11, respectively. Further, for example, when the reverse flow is detected by the current sensors 10 and 11, the power conversion units 30 and 31 stop discharging the storage batteries 40 and 41, respectively.
  • This process is performed by the control units 30A and 31A including the processors included in the power conversion units 30 and 31. Details of this processing will be described later.
  • the storage batteries 40 and 41 supply power to the load 70 by discharging the charged power to the power conversion units 30 and 31, respectively.
  • each of the storage batteries 40 and 41 can be charged with electric power supplied from the system 60.
  • the storage units 50 and 51 describe information necessary for control of the power conversion units 30 and 31 (such as the number of discharges of the storage batteries 40 and 41) and processing contents for realizing the functions of the power conversion units 30 and 31, respectively.
  • Storage units 50 and 51 store evaluation functions of power storage devices 20 and 21, respectively.
  • the evaluation function includes, for example, the operation history of the power storage devices 20 and 21.
  • control part 30A, 31A with which the power converters 30 and 31 are each provided as mentioned above.
  • power conversion units 30 and 31 obtain evaluation functions of power storage devices 20 and 21 from storage units 50 and 51, respectively. Then, power conversion units 30 and 31 set the output conditions of power storage devices 20 and 21 based on the response characteristics of load following and the acquired evaluation function, respectively.
  • the response characteristic of load following according to the first embodiment will be described. Note that the load tracking response characteristic is the discharge power of the power storage devices 20 and 21 that is changed so as to follow the power consumption of the load 70.
  • the power of W B is represented by the following formula (1) is discharged from the storage battery of the device itself Is set as follows.
  • W B W S / n
  • W S is the power value calculated based on the value the current sensor detects
  • n is the total number of power storage device power storage system is provided according to the first embodiment.
  • a value obtained by dividing by the total number n of the power storage device power storage system comprises according to W S to the first embodiment and W B.
  • W B represents the power value discharged from the storage battery 40 by the power conversion unit 30
  • W S is a value calculated based on the value detected by the current sensor 10.
  • W B represents a power value discharged from the storage battery 41 by the power conversion unit 31
  • W S is a value calculated based on the power value detected by the current sensor 11.
  • n 2
  • the load follow-up response characteristics of the power storage devices 20 and 21 that is, the discharge power of the power storage devices 20 and 21 changed so as to follow the power consumption of the load 70
  • n indicating the total number of power storage devices 20 and 21 included in the power storage system 1 in the above formula (1) may be set when the power storage system 1 is installed.
  • the power conversion units 30 and 31 output instantaneous pulses at regular intervals, respectively, and the power conversion units 30 and 31 respectively measure the number of instantaneous pulses, whereby the power storage device 20 included in the power storage system 1 is provided.
  • the rated output of the power storage devices 20 and 21 included in the power storage system 1 are different, instead of dividing by n, which is the total number of the power storage devices 20 and 21, in the formula (1), the rated output of the power storage devices 20 and 21 is calculated. You may multiply by a ratio. For example, when the rated output of the power storage device 20 is W 20 and the rated output of the power storage device 21 is W 21 , the power storage device 20 uses (W 20 / (W 20 + W 21 ) instead of dividing by n in Equation (1). )). Furthermore, in the power storage device 21, instead of dividing by n in the formula (1), (W 21 / (W 20 + W 21 )) is multiplied.
  • the power conversion units 30 and 31 output the power storage devices 20 and 21 based on the response characteristics of the power storage devices 20 and 21 set by the above formula (1) and the evaluation function acquired from the storage units 50 and 51, respectively. Set conditions.
  • the power conversion units 30 and 31 calculate the operation time from the operation history included in the evaluation functions of the power storage devices 20 and 21, respectively. Then, power conversion units 30 and 31 output power storage devices 20 and 21 based on the ratio of the operating time of power storage devices 20 and 21 and the response characteristics of power storage devices 20 and 21 set by the above equation (1). Set conditions. For example, when the operation time of the power storage device 20 is longer than the operation time of the power storage device 21, the power conversion unit 30 reduces the output power of the power storage device 20 from the value based on the above (1) by the ratio of the length. Set the output conditions. In addition, power conversion unit 31 sets the output condition such that the output power of power storage device 21 is increased from the value based on (1) by the ratio of the length.
  • the evaluation function (x) is expressed as, for example, the following expression (2).
  • is a constant value, for example, a value of several percent to tens of percent of the rated output of the power storage device.
  • X is a value obtained by dividing the operating time of the power storage device 20 by the operating time of the power storage device 21.
  • the power conversion units 30 and 31 operate based on the control of the control units 30A and 31A included in the power conversion units 30 and 31, respectively.
  • each of current sensors 10 and 11 detects the value of forward current flowing through the own device (step S101), and transmits the detected value to power storage devices 20 and 21.
  • the power conversion unit 30 and 31, the power value of W B represented by the above formula (1) is controlled so as to discharge from the storage battery 40, 41 (step S102).
  • the storage batteries 40 and 41 are discharged based on the control of the power conversion units 30 and 31 (step S103). Thereby, from the storage batteries 40 and 41, 1/2 of the power consumption of the load 70 is discharged equally.
  • FIG. 3 shows an example of the power consumption of the load 70 and the output waveforms of the power storage devices 20 and 21.
  • the horizontal axis indicates time.
  • the vertical axis indicates the power value.
  • the power consumption of the load 70 increases. Then, at timing t2, the power storage device 20 outputs 1 ⁇ 2 of the power consumption of the load 70 based on the above formula (1). Thereafter, at timing t3, the power storage device 21 outputs 1 ⁇ 2 of the power consumption of the load 70 based on the above formula (1).
  • the power storage device 20 preferentially outputs larger power. There is nothing to do. Furthermore, the power storage devices 20 and 21 output 1 ⁇ 2 of the power consumption of the load 70 equally.
  • control based on the above equation (1) may be performed only when the power consumption of the load 70 is increased and the outputs of the power storage devices 20 and 21 are increased (timing t1 and t2 in the example of FIG. 3).
  • the power storage device 20 is controlled by the control based on the above formula (1) and the evaluation function of the power storage devices 20 and 21 without using other devices. , 21 can output 1 ⁇ 2 of the power consumption of the load 70 in the same manner.
  • the degree of deterioration due to charging / discharging in the storage batteries 40 and 41 can be averaged, the reliability of the power storage system 1 as a whole is improved, and stable power supply is achieved. It becomes possible.
  • the control timings of the power storage devices 20 and 21 are shifted (see FIG. 3), the control based on the above formula (1) of the power storage devices 20 and 21 themselves.
  • the outputs of the power storage devices 20 and 21 can be made equal.
  • the power converter 30 determines that the increase / decrease width of the power value discharged from the storage battery 40 is equal to or greater than a predetermined value and the increase / decrease in the discharge power value is repeated a predetermined number of times or more, the current sensor 10 detects It is determined that the increase / decrease value of the discharge power of the storage battery 40 based on the value is reduced. Then, the power conversion unit 30 repeatedly controls the discharge power of the storage battery 40 described above.
  • the power conversion unit 30 determines that the increase / decrease width of the power value discharged from the storage battery 40 is equal to or greater than a predetermined value and the increase / decrease in the discharge power value is not repeated a predetermined number of times or more, It is determined whether the output continuously increases or decreases. When it is determined that the output from the storage battery 40 continuously increases or decreases, the power conversion unit 30 determines to increase the increase / decrease value of the discharge power of the storage battery 40 based on the value detected by the current sensor 10. Then, the power conversion unit 30 repeatedly controls the discharge power of the storage battery 40 described above.
  • the power conversion units 30 and 31 operate based on the control of the control units 30A and 31A included in the power conversion units 30 and 31, respectively.
  • each of current sensors 10 and 11 detects the value of forward current flowing through the own device (step S201), and transmits the detected value to power storage devices 20 and 21.
  • the power conversion units 30 and 31 control the discharge power of the storage batteries 40 and 41 based on the values detected by the current sensors 10 and 11, respectively (step S202).
  • the storage batteries 40 and 41 are discharged based on the control of the power conversion units 30 and 31, respectively (step S203).
  • the power conversion units 30 and 31 respectively output power values (described above) discharged from the storage batteries 40 and 41 according to the power values calculated based on the values detected by the current sensors 10 and 11, respectively.
  • the power converters 30 and 31 control the discharge power of the storage batteries 40 and 41, respectively.
  • Step S204 determines whether or not the increase / decrease width of the power value discharged from the storage batteries 40 and 41 is equal to or greater than a predetermined value and whether the increase / decrease in the discharge power value is repeated a predetermined number of times.
  • Step S204 determines that the range of increase or decrease in the power value discharged from the storage batteries 40 and 41 is greater than or equal to a predetermined value and that the increase or decrease in the discharge power value is repeated a predetermined number of times, respectively.
  • step S204 the process proceeds to step S206.
  • FIG. 5 shows an example in which the increase / decrease width of the discharged power value is greater than or equal to a predetermined value and the increase / decrease of the discharge power value is repeated.
  • the power consumption of the load 70 is 800W.
  • the control cycle of the power storage devices 20 and 21 is 40 ms. Further, the control cycle of power storage device 20 is 10 ms ahead of the control cycle of power storage device 21.
  • the maximum discharge power value for one cycle of the power storage devices 20 and 21 is 500 W.
  • the current sensor 10 transmits the detected value to the power storage device 20. Then, based on the value detected by the current sensor 10, the power conversion unit 30 determines that the output is 800 W less than the power consumption of the load 70, and discharges the maximum discharge power value of 500 W from the storage battery 40. Decide what to do. Then, the power conversion unit 30 causes the storage battery 40 to discharge 500 W, which is the maximum discharge power value, at time 20 ms. Thereby, the total output of power storage devices 20 and 21 is 500W.
  • the current sensor 11 transmits the detected value to the power storage device 21. Then, based on the value detected by the current sensor 11, the power conversion unit 31 determines that the output is 800 W less than the power consumption of the load 70, and discharges the maximum discharge power value of 500 W from the storage battery 40. Decide what to do. Then, the power conversion unit 31 causes the storage battery 41 to discharge 500 W, which is the maximum discharge power value, at time 30 ms. Thereby, the total output of power storage devices 20 and 21 is 1000 W.
  • the current sensor 10 transmits the detected value to the power storage device 20.
  • the power conversion unit 30 determines that the output is 200 W larger than the power consumption of the load 70 based on the value detected by the current sensor 10, and decides to lower the discharge power value from the storage battery 40 by 200 W. To do.
  • the power conversion unit 30 reduces the discharge power value of the storage battery 40 by 200 W at time 60 ms and causes the storage battery 40 to discharge 300 W. Thereby, the total output of power storage devices 20 and 21 is 800W.
  • the current sensor 11 transmits the detected value to the power storage device 21.
  • the power conversion unit 31 determines that the output is 200 W larger than the power consumption of the load 70 based on the value detected by the current sensor 11, and decides to lower the discharge power value from the storage battery 41 by 200 W. To do.
  • the power conversion unit 31 reduces the discharge power value of the storage battery 41 by 200 W at a time of 70 ms, and causes the storage battery 41 to discharge 300 W. Thereby, the total output of power storage devices 20 and 21 is 600W.
  • the current sensor 10 transmits the detected value to the power storage device 20.
  • the power conversion unit 30 determines that the output is 200 W less than the power consumption of the load 70 based on the value detected by the current sensor 10, and determines to increase the discharge power value of the storage battery 40 by 200 W. .
  • the power conversion unit 30 increases the discharge power value of the storage battery 40 by 200 W at time 100 ms, and causes the storage battery 40 to discharge 500 W. Thereby, the total output of power storage devices 20 and 21 is 800W.
  • the current sensor 11 transmits the detected value to the power storage device 21.
  • the power conversion unit 31 determines that the output is 200 W less than the power consumption of the load 70 based on the value detected by the current sensor 11 and determines to increase the discharge power value of the storage battery 41 by 200 W. .
  • the power conversion unit 31 increases the discharge power value of the storage battery 41 by 200 W at time 110 ms, and causes the storage battery 41 to discharge 500 W. Thereby, the total output of power storage devices 20 and 21 is 800W.
  • the power value discharged from the storage batteries 40 and 41 after time 20 ms repeatedly increases and decreases the discharge power value with an increase / decrease width of 200 W or more.
  • the power conversion unit 30 increases or decreases the power value discharged from the storage battery 40 at the time 100 ms at a predetermined value or more. And it determines with the increase / decrease in discharge electric power value having been repeated.
  • the power conversion unit 31 determines that the increase / decrease width of the power value discharged from the storage battery 41 is greater than or equal to a predetermined value and the increase / decrease in the discharge power value is repeated at time 110 ms.
  • FIG. 5 shows an example of output up, but the same applies to the case of output down.
  • step S205 the power conversion units 30 and 31 determine to reduce the increase / decrease value of the discharge power of the storage batteries 40 and 41 based on the values detected by the current sensors 10 and 11, respectively. Then, each of the power conversion units 30 and 31 repeats the processing from step S201.
  • FIG. 6 shows an example of the discharge power control of the power storage devices 20 and 21 performed again.
  • the increase / decrease value of the discharge power from the storage batteries 40 and 41 is reduced to 1 ⁇ 2 by the process of step S206.
  • the first time in FIG. 6 is described as 0 ms.
  • the current sensor 10 transmits the detected value to the power storage device 20.
  • the total output of power storage devices 20 and 21 is 700 ms.
  • the current sensor 11 transmits the detected value to the power storage device 21.
  • the power conversion unit 31 increases the discharge power value of the storage battery 41 by 100 W at time 30 ms and causes the storage battery 41 to discharge 400 W.
  • the total output of the power storage devices 20 and 21 is 800 W, which is the same as the power consumption 800 W of the load.
  • the storage batteries 40 and 41 are processed by the processing of steps S201 to S206.
  • the discharge power value per time can be reduced.
  • the output (total output of the electrical storage apparatuses 20 and 21) of the electrical storage system 1 can be stabilized.
  • step S206 the power conversion units 30 and 31 determine whether the outputs from the storage batteries 40 and 41 are continuously increasing or decreasing, respectively. If the power conversion units 30 and 31 determine that the outputs from the storage batteries 40 and 41 are continuously increasing or decreasing, respectively (step S206: Yes), the process proceeds to the process of step S207. Moreover, when it determines with the electric power converters 30 and 31 not respectively increasing or decreasing the output from the storage batteries 40 and 41 continuously (step S206: No), a process is complete
  • step S207 the power conversion units 30 and 31 determine to increase the increase / decrease value of the discharge power of the storage batteries 40 and 41 based on the values detected by the current sensors 10 and 11, respectively. Then, each of the power conversion units 30 and 31 repeats the processing from step S201.
  • the increase / decrease value of the discharge power from the storage batteries 40, 41 is increased by the processing in steps S206 and S207. be able to.
  • the output (total output of the electrical storage apparatuses 20 and 21) of the electrical storage system 1 can be stabilized.
  • the power conversion units 30 and 31 may output instantaneous pulses at regular intervals. Furthermore, the power conversion units 30 and 31 each obtain the total number 2 of the power storage devices 20 and 21 of the power storage system 1 by measuring the number of instantaneous pulses, and reduce the increase / decrease value based on the obtained total number 2 May be. For example, when the power conversion units 30 and 31 obtain the total number 2 of the power storage devices 20 and 21 of the power storage system 1 by this instantaneous pulse processing, the increase / decrease values are reduced to 1 ⁇ 2, respectively.
  • step S205 when the rated outputs of the power storage devices 20 and 21 included in the power storage system 1 are different, the increase / decrease value may be reduced according to the ratio of the rated outputs of the power storage devices 20 and 21.
  • the power storage devices 20 and 21 themselves increase or decrease the output increase / decrease value without using other devices or the like, so that the power storage device 20 , 21 can average the degree of deterioration.
  • the degree of deterioration due to charging / discharging in the storage batteries 40 and 41 can be averaged by increasing or decreasing the output increase / decrease value of the power storage devices 20 and 21 themselves. .
  • the reliability as the whole electrical storage system 1 improves, and the stable supply of electric power is attained.
  • the control timing of the power storage devices 20 and 21 is shifted due to, for example, the control cycle (see FIGS. 5 and 6) of the power storage devices 20 and 21 being shifted.
  • the outputs of the power storage devices 20 and 21 can be made equal.
  • the power supply system according to an embodiment of the present disclosure is not limited to the power storage system 1 described above.
  • the power supply system according to an embodiment of the present disclosure may be a fuel cell system.
  • an example in which the power supply system according to an embodiment of the present disclosure is a fuel cell system will be described as another example.
  • the fuel cell system 1 a includes current sensors 10 and 11 and fuel cell devices (power supply devices) 20 a and 21 a.
  • the fuel cell system 1a including the two fuel cell devices 20a and 21a is shown, but the number of fuel cell devices included in the fuel cell system 1a may be three or more. 7 that are the same as those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • the fuel cell devices 20 a and 21 a are connected to the system 60 and supply power to the load 70.
  • the fuel cell device 20a includes a power conversion unit 30, a fuel cell 40a, and a storage unit 50.
  • the fuel cell device 21a includes a power conversion unit 31, a fuel cell 41a, and a storage unit 51.
  • the fuel cells 40a and 41a generate electricity by an electrochemical reaction.
  • a polymer electrolyte fuel cell PEFC (Polymer Electrolyte Fuel Cell)
  • SOFC Solid Oxide Fuel Cell
  • the present disclosure can also be applied to a generator that performs load following operation.
  • the power of the power storage device and the fuel cell device that do not use renewable energy cannot be reversely flowed to the grid (electric power company).
  • the present embodiment can also be applied to a case where the power of the power storage device, the fuel cell device, and the like can be reversely flowed to the grid (electric power company).
  • the control of the present disclosure is shown as a series of operations executed by a computer system or other hardware capable of executing program instructions.
  • the computer system and other hardware include, for example, a general-purpose computer, a PC (Personal Computer), a dedicated computer, a workstation, or other programmable data processing device.
  • the various operations are performed by dedicated circuitry (eg, individual logic gates interconnected to perform specific functions) implemented with program instructions (software).
  • program instructions software
  • various operations may be performed by logical blocks, program modules, and the like that are executed by one or more processors.
  • the one or more processors that execute logic blocks, program modules, and the like include, for example, one or more microprocessors, a CPU (Central Processing Unit), and a DSP (Digital Signal Processor).
  • the one or more processors include, for example, ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • the one or more processors may also include, for example, a controller, microcontroller, electronic device, other device designed to perform the functions described herein, and / or any combination thereof.
  • the illustrated embodiments are implemented, for example, by hardware, software, firmware, middleware, microcode, or any combination thereof.
  • the network used here includes the Internet, an ad hoc network, a LAN (Local Area Network), a cellular network, another network, or any combination thereof.
  • Power storage system 10 11 Current sensor (detector) 20, 21 Power storage device (power supply device) 30, 31 Power conversion unit 30A, 31A Control unit 40, 41 Storage battery (distributed power supply) 50 Storage Unit 1a Fuel Cell System 20a, 21a Fuel Cell Device (Power Supply Device) 40a, 41a Fuel cell (distributed power supply) 60 systems 70 loads

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

負荷追従の機能を有する電源装置である。電源装置は、電力を出力する分散電源と、分散電源の出力電力を制御する制御部とを備える。制御部は、電源装置の稼働履歴を含む評価関数を取得し、負荷追従の応答特性及び評価関数に基づいて、電源装置の出力条件を設定する。制御部は、電源装置が接続される系統からの順潮流及び逆潮流を検出する検出器によって順潮流又は逆潮流が検出されると、出力条件に基づき、負荷追従を制御して分散電源から電力を供給する。

Description

電源装置、分散電源システム及びその制御方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2015-192266号(2015年9月29日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、電源装置、分散電源システム及びその制御方法に関する。
 近年、燃料電池装置及び蓄電装置等の電源装置の出力をより安定化させるために、複数の電源装置を需要家等に設置させる要求が高まってきている。特許文献1に記載の蓄電システムでは、制御装置によって、各蓄電装置の蓄電池の充電状態(SOC(State Of Charge))及び放電回数の監視を行う。さらに、特許文献1に記載の蓄電システムでは、制御装置が、各蓄電池の状態に応じて、使用可能な蓄電池の優先順位を決定することで、優先順位の高い蓄電池から順番に放電するように制御する。
特開2013-192327号公報
 本開示の一実施形態に係る電源装置は、負荷追従の機能を有する電源装置である。該電源装置は、電力を出力する分散電源と、前記分散電源の出力電力を制御する制御部とを備える。前記制御部は、分散電源の稼働履歴を含む評価関数を取得し、前記負荷追従の応答特性及び該評価関数に基づいて、前記分散電源の出力条件を設定する。さらに、前記制御部は、前記分散電源が接続される系統からの順潮流及び逆潮流を検出する検出器によって順潮流又は逆潮流が検出されると、該出力条件に基づき、負荷追従を制御して前記分散電源から電力を供給する。
 また、本開示の一実施形態に係る分散電源システムは、負荷追従の機能を有する複数の電源装置と、系統からの順潮流及び該系統への逆潮流を検出する検出器とを備える分散電源システムである。前記複数の電源装置は、電力を出力する複数の分散電源と、前記複数の分散電源の出力電力をそれぞれ制御する複数の制御部とを備える。前記複数の制御部は、前記複数の分散電源の稼働履歴を含む評価関数を取得し、前記負荷追従の応答特性及び該評価関数に基づいて、前記各分散電源の出力条件を設定する。さらに、前記複数の制御部は、前記検出器によって順潮流又は逆潮流が検出されると、該出力条件に基づき、負荷追従を制御して前記複数の分散電源から電力を供給する。
 また、本開示の一実施形態に係る分散電源システムの制御方法は、負荷追従の機能を有する複数の分散電源の稼働履歴を含む評価関数を取得するステップAを含む。さらに、前記分散システムの制御方法は、前記負荷追従の応答特性及び前記評価関数に基づいて、各分散電源の出力条件を設定するステップBを含む。さらに、前記分散電源システムの制御方法は、系統からの順潮流及び該系統への逆潮流を検出する検出器によって、順潮流及び逆潮流の値を検出するステップCを含む。さらに、前記分散電源システムの制御方法は、前記ステップCにより順潮流又は逆潮流が検出されると、前記出力条件に基づき、負荷追従の制御を行うステップDを含む。さらに、前記分散電源システムの制御方法は、前記ステップDにおける制御に基づき、前記複数の分散電源から電力を供給するステップEを含む。
本開示の第1の実施形態に係る蓄電システムの構成の一例を示す図である。 本開示の第1の実施形態に係る蓄電システムの動作の一例を示すフローチャートである。 負荷の消費電力及び蓄電装置の出力の波形の一例を示す図である。 本開示の第2の実施形態に係る蓄電システムの動作の一例を示すフローチャートである。 放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が繰り返される場合の一例を示す図である。 再度行われる蓄電装置の放電電力制御の一例を示す図である。 本開示の他の実施例に係る燃料電池システムの一例を示す図である。
 需要家施設と電力事業者の間の契約内容によっては、再生可能エネルギーを利用していない蓄電装置及び燃料電池装置等の電力を、系統(電力事業者)へ逆潮流させられない場合がある。この場合、蓄電装置及び燃料電池装置等の複数の電源装置を備える電源システムでは、複数の電源装置を並列運転させる際に、各電源装置から系統への逆潮流を防止するため、負荷の消費電力に応じて電力量を制御する負荷追従運転が行われる。この負荷追従運転によって、常に、系統から需要家施設へ順潮流が流れるように制御される。
 ここで、複数の電源装置を備える電源システムでは、各電源装置の劣化の度合いが平均化されるとよい。しかしながら、負荷追従運転を採用する電源システムでは、複数の電源装置を並列運転させる場合、例えば製造ばらつき等によって、負荷追従性能の高い電源装置が優先的に電力を出力する傾向がある。また、複数の電源装置において、例えば制御タイミングが異なる場合に、制御を開始するタイミングが早い電源装置が優先的に電力を出力してしまうことがある。このようなケースでは、優先的に電力を出力する電源装置が早く劣化してしまうおそれがある。
 本実施形態では、電源装置は蓄電装置であるものとして説明する。しかしながら、本開示は負荷追従運転を行う他の電源装置にも適用できる。例えば、電源装置は燃料電池装置であってもよい。
 (第1の実施形態)
 [システム構成]
 本開示の第1の実施形態に係る蓄電システム(分散電源システム)1は、図1に示すように、電流センサ(検出器)10,11と、蓄電装置(電源装置)20,21とを備える。蓄電システム1は、系統60に接続して用いられ、負荷70に電力を供給する。負荷70は、例えば電気機器等であり、系統60及び蓄電システム1が供給する電力を消費する。なお、図1では、2つの蓄電装置20,21を備える蓄電システム1が示されているが、蓄電システム1の備える蓄電装置の数は、3つ以上であってもよい。また、図1において、各機能ブロックを結ぶ実線は電力線を示す。また、図1において、破線は制御線及び信号線を示す。制御線及び信号線が示す接続は、有線接続であってもよいし、無線接続であってもよい。
 電流センサ10,11は、系統60からの電流において、互いに同じ順潮流及び逆潮流の電流値を検出する位置に接続される。図1の例では、電流センサ10,11は、それぞれ、系統60と蓄電装置20との間に接続されている。電流センサ10,11は、それぞれ、系統60からの順潮流又は系統60への逆潮流の値を検出し、その検出した値を蓄電装置20,21に送信する。
 なお、図1では、系統60と蓄電装置20との間に2つの電流センサ10,11を設ける例が示されているが、系統60と蓄電装置20との間に設けられる電流センサの数は1つであってもよい。系統60と蓄電装置20との間に設けられる電流センサが1つである場合は、その1つの電流センサが、検出した値を蓄電装置20,21に送信する。
 蓄電装置20,21は、系統60に接続され負荷70に電力を供給する。蓄電装置20は、電力変換部30、蓄電池(分散電源)40、記憶部50を有する。蓄電装置21は、電力変換部31、蓄電池(分散電源)41、記憶部51を有する。
 電力変換部30,31は、それぞれ、蓄電池40,41の充放電を制御する。電力変換部30,31は、蓄電池40,41に放電させる際、それぞれ、蓄電池40,41が放電した直流電力を交流電力に変換し、負荷70に供給する。また、電力変換部30,31は、蓄電池40,41を充電する際、系統60から供給される交流電力を直流電力に変換して、それぞれ、蓄電池40,41に供給し、蓄電池40,41を充電する。
 なお、電力変換部30,31は、それぞれ、電流センサ10,11が検出した値に基づき、蓄電池40,41の放電電力を制御している。例えば、電力変換部30,31は、それぞれ、電流センサ10,11によって順潮流が検出されると、蓄電池40,41に放電させる。また、例えば、電力変換部30,31は、それぞれ、電流センサ10,11によって逆潮流が検出されると、蓄電池40,41の放電を停止させる等する。なお、この処理は、電力変換部30,31が備えるプロセッサを含む制御部30A,31Aによって行われる。この処理の詳細については後述する。
 蓄電池40,41は、それぞれ、充電された電力を電力変換部30,31に放電することで、電力を負荷70に供給する。また、蓄電池40,41は、それぞれ、系統60から供給される電力によって充電することができる。
 記憶部50,51は、それぞれ、電力変換部30,31の制御に必要な情報(蓄電池40,41の放電回数等)、及び、電力変換部30,31の各機能を実現する処理内容を記述したプログラムを記憶している。また、記憶部50,51は、それぞれ、蓄電装置20,21の評価関数を記憶している。評価関数とは、例えば、蓄電装置20,21の稼働履歴等を含むものである。
 以下、電力変換部30,31の機能の詳細について説明する。なお、以下の処理は、上述のように、電力変換部30,31がそれぞれ備える制御部30A,31Aの制御に基づき実行される。
 まず、電力変換部30,31は、それぞれ、記憶部50,51から、蓄電装置20,21の評価関数を取得する。そして、電力変換部30,31は、それぞれ、負荷追従の応答特性及び取得した評価関数に基づいて、蓄電装置20,21の出力条件を設定する。以下、第1の実施形態に係る負荷追従の応答特性について説明する。なお、負荷追従の応答特性とは、負荷70の消費電力に追従するように変化させる蓄電装置20,21の放電電力である。
 第1の実施形態に係る負荷追従の応答特性は、第1の実施形態に係る電力変換部によって、以下の式(1)で表されるWの電力が、自装置の蓄電池から放電されるように設定される。
 W=W/n              式(1)
 式(1)において、Wは、電流センサが検出した値に基づき算出される電力値、nは、第1の実施形態に係る蓄電システムが備える蓄電装置の総数である。ここで、第1の実施形態に係る蓄電システムでは、電流センサが検出した値に基づく電力値であるWに応じて、蓄電池から放電される電力値であるWを定める(つまり、W=Wを満たすようにWを定める)のではない。第1の実施形態に係る蓄電システムでは、式(1)に示すように、Wを第1の実施形態に係る蓄電システムが備える蓄電装置の総数nで除算した値をWとする。
 以下、上記式(1)を図1の例で説明する。Wが電力変換部30によって蓄電池40から放電される電力値を表す場合、Wは電流センサ10が検出した値に基づいて算出される値となる。また、Wが電力変換部31によって蓄電池41から放電される電力値を表す場合、Wは電流センサ11が検出した電力値に基づいて算出される値となる。さらに、図1の例では、蓄電システム1が備える蓄電装置20,21の数は2つであるため、n=2となる。これにより、蓄電装置20,21の負荷追従の応答特性(つまり、負荷70の消費電力に追従するように変化させる蓄電装置20,21の放電電力)は、それぞれ同等に、負荷70の消費電力の1/2となる。
 なお、上記式(1)おける蓄電システム1が備える蓄電装置20,21の総数を示すnは、蓄電システム1の設置時に設定してもよい。また、電力変換部30,31が、それぞれ互いに一定の間隔で瞬間パルスを出力し、電力変換部30,31各自で、その瞬間パルスの数を計測することにより、蓄電システム1が備える蓄電装置20,21の総数2を得て、n=2を設定してもよい。
 また、蓄電システム1が備える蓄電装置20,21の定格出力が異なる場合、式(1)において、蓄電装置20,21の総数であるnで除算する代わりに、蓄電装置20,21の定格出力の比率を乗算してもよい。例えば、蓄電装置20の定格出力がW20、蓄電装置21の定格出力がW21である場合、蓄電装置20では、式(1)においてnで除算する代わりに(W20/(W20+W21))を乗算する。さらに、蓄電装置21では、式(1)においてnで除算する代わりに(W21/(W20+W21))を乗算する。
 電力変換部30,31は、それぞれ、上記式(1)により設定された蓄電装置20,21の応答特性と、記憶部50,51から取得した評価関数とに基づき、蓄電装置20,21の出力条件を設定する。
 例えば、電力変換部30,31は、それぞれ、蓄電装置20,21の評価関数に含まれる稼働履歴から稼働時間を算出する。そして、電力変換部30,31は、蓄電装置20,21の稼働時間の比率と、上記式(1)により設定された蓄電装置20,21の応答特性とに基づき、蓄電装置20,21の出力条件を設定する。例えば、蓄電装置20の稼働時間が蓄電装置21の稼働時間より長い場合、電力変換部30は、その長さの割合だけ蓄電装置20の出力電力を上記(1)に基づく値から小さくなるように出力条件を設定する。また、電力変換部31は、その長さの割合だけ蓄電装置21の出力電力を上記(1)に基づく値から大きくなるように出力条件を設定する。
 また、例えば、電力変換部30は、蓄電装置20の出力電力が「出力電力=WB+評価関数(x)」となるように、蓄電装置20の出力電力を設定する。評価関数(x)は、例えば、以下の式(2)のように表される。
 評価関数(x)=-Δ   (x>1)
        =+Δ   (x<1)    式(2)
 式(2)において、Δは、一定値であり、例えば蓄電装置の定格出力の数%~十数%の値である。また、xは蓄電装置20の稼働時間を蓄電装置21の稼働時間で除算した値である。
 以下、第1の実施形態に係る蓄電システム1の動作について図2を用いて説明する。
 [システム動作]
 以下では、蓄電装置20,21の評価関数は、同等であるものとする。また、電力変換部30,31は、電力変換部30,31がそれぞれ備える制御部30A,31Aの制御に基づき動作する。
 負荷70の消費電力が増加する。すると、電流センサ10,11は、それぞれ、自機器に流れる順潮流の値を検出し(ステップS101)、その検出した値を、蓄電装置20,21に送信する。
 次に、電力変換部30,31は、上記式(1)で表されるWの電力値が蓄電池40,41から放電させるように制御する(ステップS102)。蓄電池40,41は、電力変換部30,31の制御に基づき放電する(ステップS103)。これにより、蓄電池40,41からは、それぞれ同等に、負荷70の消費電力の1/2が放電される。
 図3は、負荷70の消費電力及び蓄電装置20,21の出力の波形の一例を示す。図3において、横軸は時刻を示す。また、図3において、縦軸は電力値を示す。なお、図3では、蓄電装置20の方が蓄電装置21よりも制御を開始する時刻が早いものとする。
 タイミングt1で、負荷70の消費電力が増加する。すると、タイミングt2で、蓄電装置20は、上記式(1)に基づき、負荷70の消費電力の1/2を出力する。その後、タイミングt3で、蓄電装置21は、上記式(1)に基づき、負荷70の消費電力の1/2を出力する。
 このように、蓄電装置20,21の制御タイミングが異なり、蓄電装置20の方が蓄電装置21よりも制御を開始する時刻が早い場合であっても、蓄電装置20が優先的に大きい電力を出力することがない。さらに、蓄電装置20,21は、それぞれ同等に、負荷70の消費電力の1/2を出力する。
 なお、上記式(1)に基づく制御は、負荷70の消費電力が増加し蓄電装置20,21の出力を増加させる場合(図3の例ではタイミングt1,t2)のみ行ってもよい。この場合、負荷70の消費電力が減り蓄電装置20,21の出力を減らす際は(図3の例ではタイミングt4)、電流センサ10,11が検出した値に基づく電力値に応じて定まる電力値(上述の例ではW=Wを満たすようなW)を出力させるようにする。これにより、負荷70の消費電力が減った場合に、蓄電装置20,21の負荷追従性能を上げることができるため、負荷70の消費電力が急激に減ることにより生じる蓄電装置20,21から系統60への逆潮流を防ぐことができる。
 以上のように、第1の実施形態に係る蓄電システム1では、他の装置等を使用せずに、蓄電装置20,21自身の上記式(1)及び評価関数に基づく制御により、蓄電装置20,21は、それぞれ同等に、負荷70の消費電力の1/2を出力することができる。
 さらに、第1の実施形態に係る蓄電システム1では、蓄電池40,41において充放電による劣化の度合いを平均化することができ、蓄電システム1全体としての信頼性が向上し、電力の安定供給が可能になる。
 また、第1の実施形態に係る蓄電システム1では、例えば蓄電装置20,21の制御タイミングがずれている場合でも(図3参照)、蓄電装置20,21自身の上記式(1)に基づく制御により、蓄電装置20,21の出力を同等にすることができる。
 (第2の実施形態)
 [システム構成]
 第2の実施形態に係る蓄電システムは、第1の実施形態に係る蓄電システム1と同様の構成を採用できるため、以下では、図1を参照し、第1の実施形態との相違点について主に説明する。
 まず、第2の実施形態に係る負荷追従の応答特性ついて説明する。以下では、電力変換部30により負荷追従特性を設定する例を説明する。なお、以下の処理は、電力変換部30が備える制御部30Aの制御に基づき実行される。
 電力変換部30は、電流センサ10が検出した値に基づき、蓄電池40の放電電力を制御する。この制御において、最初、電力変換部30は、電流センサ10が検出した値に基づき算出される電力値に応じて、蓄電池40から放電する電力値(上述の例ではW=Wを満たすようなW)を定めることにより、蓄電池40の放電電力を制御する。
 その後、蓄電池40から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されているか否か判定する。電力変換部30は、蓄電池40から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されていると判定した場合、電流センサ10が検出した値に基づく蓄電池40の放電電力の増減値を低減すると決定する。そして、電力変換部30は、上記の蓄電池40の放電電力の制御を繰り返し行う。
 また、電力変換部30は、蓄電池40から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されていないと判定した場合、蓄電池40からの出力が連続して増加又は減少しているか否か判定する。電力変換部30は、蓄電池40からの出力が連続して増加又は減少していると判定した場合、電流センサ10が検出した値に基づく蓄電池40の放電電力の増減値を増加すると決定する。そして、電力変換部30は、上記の蓄電池40の放電電力の制御を繰り返し行う。
 以下、第2の実施形態に係る蓄電システム1の動作について図4を用いて説明する。
 [システム動作]
 以下では、蓄電装置20,21の評価関数は、同等であるものとする。また、電力変換部30,31は、電力変換部30,31がそれぞれ備える制御部30A,31Aの制御に基づき動作する。
 負荷70の消費電力が増加する。すると、電流センサ10,11は、それぞれ、自機器に流れる順潮流の値を検出し(ステップS201)、その検出した値を、蓄電装置20,21に送信する。
 次に、電力変換部30,31は、それぞれ、電流センサ10,11が検出した値に基づき、蓄電池40,41の放電電力を制御する(ステップS202)。蓄電池40,41は、それぞれ、電力変換部30,31の制御に基づき放電する(ステップS203)。最初に行うステップS202の処理では、電力変換部30,31は、それぞれ、電流センサ10,11が検出した値に基づき算出される電力値に応じて、蓄電池40,41から放電する電力値(上述の例ではW=Wを満たすようなW)を定める。これにより、電力変換部30,31は、それぞれ、蓄電池40,41の放電電力を制御する。
 その後、電力変換部30,31は、蓄電池40,41から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されているか否か判定する(ステップS204)。電力変換部30,31は、それぞれ、蓄電池40,41から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されていると判定した場合(ステップS204:Yes)、ステップS205の処理に進む。また、電力変換部30,31は、それぞれ、蓄電池40,41から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が所定の回数以上繰り返されていないと判定した場合(ステップS204:No)、ステップS206の処理に進む。
 図5に、放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が繰り返される場合の一例を示す。図5の例では、負荷70の消費電力は800Wである。また、図5の例では、蓄電装置20,21の制御サイクルは40msである。また、蓄電装置20の制御サイクルは、蓄電装置21の制御サイクルよりも10ms進んでいる。また、図5の例では、蓄電装置20,21の1サイクルにおける1回の最大放電電力値は500Wとする。なお、これらの条件は、後述の図6においても同様である。
 時刻0msで、電流センサ10は検出した値を蓄電装置20に送信する。すると、電力変換部30は、電流センサ10が検出した値に基づき、負荷70の消費電力に対して、出力が800W少ない状態であると判定し、蓄電池40から最大放電電力値である500Wを放電させることを決定する。そして、電力変換部30は、時刻20msで、蓄電池40に最大放電電力値である500Wを放電させる。これにより、蓄電装置20,21の合計出力は500Wとなる。
 時刻10msで、電流センサ11は検出した値を蓄電装置21に送信する。すると、電力変換部31は、電流センサ11が検出した値に基づき、負荷70の消費電力に対して、出力が800W少ない状態であると判定し、蓄電池40から最大放電電力値である500Wを放電させることを決定する。そして、電力変換部31は、時刻30msで、蓄電池41に最大放電電力値である500Wを放電させる。これにより、蓄電装置20,21の合計出力は1000Wとなる。
 時刻40msで、電流センサ10は検出した値を蓄電装置20に送信する。すると、電力変換部30は、電流センサ10が検出した値に基づき、負荷70の消費電力に対して、出力が200W大きい状態と判定し、蓄電池40からの放電電力値を200Wダウンさせることを決定する。そして、電力変換部30は、時刻60msで、蓄電池40の放電電力値を200Wダウンさせ、蓄電池40に300Wを放電させる。これにより、蓄電装置20,21の合計出力は800Wとなる。
 時刻50msで、電流センサ11は検出した値を蓄電装置21に送信する。すると、電力変換部31は、電流センサ11が検出した値に基づき、負荷70の消費電力に対して、出力が200W大きい状態と判定し、蓄電池41からの放電電力値を200Wダウンさせることを決定する。そして、電力変換部31は、時刻70msで、蓄電池41の放電電力値を200Wダウンさせ、蓄電池41に300Wを放電させる。これにより、蓄電装置20,21の合計出力は600Wとなる。
 時刻80msで、電流センサ10は検出した値を蓄電装置20に送信する。すると、電力変換部30は、電流センサ10が検出した値に基づき、負荷70の消費電力に対して、出力が200W少ない状態と判定し、蓄電池40の放電電力値を200Wアップさせることを決定する。そして、電力変換部30は、時刻100msで、蓄電池40の放電電力値を200Wアップさせ、蓄電池40に500Wを放電させる。これにより、蓄電装置20,21の合計出力は800Wとなる。
 時刻90msで、電流センサ11は検出した値を蓄電装置21に送信する。すると、電力変換部31は、電流センサ11が検出した値に基づき、負荷70の消費電力に対して、出力が200W少ない状態と判定し、蓄電池41の放電電力値を200Wアップさせることを決定する。そして、電力変換部31は、時刻110msで、蓄電池41の放電電力値を200Wアップさせ、蓄電池41に500Wを放電させる。これにより、蓄電装置20,21の合計出力は800Wとなる。
 このように図5の例では、時刻20ms以降、蓄電池40,41から放電される電力値は、200W以上の増減幅で、放電電力値の増減を繰り返し行っている。このような場合、例えば所定の値を150W、所定の回数を1回とした場合、電力変換部30は、時刻100msで、蓄電池40から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が繰り返されていると判定する。また、電力変換部31は、時刻110msで、蓄電池41から放電される電力値の増減幅が所定の値以上で、かつ放電電力値の増減が繰り返されていると判定する。図5は、出力アップの例であるが、出力ダウンについての場合も同様である。
 以下、図4の蓄電システム1の動作の説明に戻る。
 ステップS205の処理では、電力変換部30,31は、それぞれ、電流センサ10,11が検出した値に基づく蓄電池40,41の放電電力の増減値を低減すると決定する。そして、電力変換部30,31は、それぞれ、ステップS201からの処理を繰り返し行う。
 図6は、再度行われる蓄電装置20,21の放電電力制御の一例を示す。なお、図6の例では、ステップS206の処理により、蓄電池40,41からの放電電力の増減値は1/2に低減されているものとする。また、便宜上、図6における最初の時刻を0msと記載して説明する。
 時刻0msで、電流センサ10は検出した値を蓄電装置20に送信する。すると、電力変換部30は、電流センサ10が検出した値に基づき、負荷70の消費電力に対して、出力が200W少ない状態と判定し、蓄電池40からの放電電力値を100W(=200W×(1/2))アップさせることを決定する。そして、電力変換部30は、時刻20msで、蓄電池40からの放電電力値を100W(=200W×(1/2))アップさせ、蓄電池40に400Wを放電させる。これにより、蓄電装置20,21の合計出力は700msとなる。
 時刻10msで、電流センサ11は検出した値を蓄電装置21に送信する。すると、電力変換部31は、電流センサ11が検出した値に基づき、負荷70の消費電力に対して、出力が200W少ない状態と判定し、蓄電池41からの放電電力値を100W(=200W×(1/2))アップさせることを決定する。そして、電力変換部31は、時刻30msで、蓄電池41の放電電力値を100Wアップさせ、蓄電池41に400Wを放電させる。これにより、蓄電装置20,21の合計出力は800Wとなり、負荷の消費電力800Wと同じになる。
 このように、負荷70の消費電力に対して蓄電池40,41の1回当たりの放電電力値が大きく蓄電システム1の出力が増減を繰り返す場合でも、ステップS201~S206の処理によって、蓄電池40,41の1回当たりの放電電力値を減らすことができる。これにより、本実施形態では、蓄電システム1の出力(蓄電装置20,21の合計出力)を安定させることができる。
 以下、図4の蓄電システム1の動作の説明に戻る。
 ステップS206の処理では、電力変換部30,31は、それぞれ、蓄電池40,41からの出力が連続して増加又は減少しているか否か判定する。電力変換部30,31は、それぞれ、蓄電池40,41からの出力が連続して増加又は減少していると判定した場合(ステップS206:Yes)、ステップS207の処理に進む。また、電力変換部30,31は、それぞれ、蓄電池40,41からの出力が連続して増加又は減少していないと判定した場合(ステップS206:No)、処理を終了する。
 ステップS207の処理では、電力変換部30,31は、それぞれ、電流センサ10,11が検出した値に基づく蓄電池40,41の放電電力の増減値を増加すると決定する。そして、電力変換部30,31は、それぞれ、ステップS201からの処理を繰り返し行う。
 このように、例えば蓄電装置が故障して蓄電システム1内の運転可能な蓄電装置の数が減った場合でも、ステップS206,S207の処理によって蓄電池40,41からの放電電力の増減値を増加させることができる。これにより、本実施形態では、蓄電システム1の出力(蓄電装置20,21の合計出力)を安定させることができる。
 なお、ステップS205の処理において、電力変換部30,31が、それぞれ互いに一定の間隔で瞬間パルスを出力してもよい。さらに、電力変換部30,31が各自で、その瞬間パルスの数を計測することにより蓄電システム1の蓄電装置20,21の総数2を得て、その得た総数2に基づき、増減値を低減してもよい。例えば、電力変換部30,31がこの瞬間パルスの処理により、蓄電システム1の蓄電装置20,21の総数2を得た場合は、それぞれ、増減値を1/2に低減する。
 また、ステップS205の処理において、蓄電システム1が備える蓄電装置20,21の定格出力が異なる場合は、蓄電装置20,21の定格出力の比率に応じて、増減値を低減してもよい。
 以上のように、第2の実施形態に係る蓄電システム1では、他の装置等を使用せずに、蓄電装置20,21自身で出力の増減値の増加又は低減を行うことで、蓄電装置20,21は、劣化の度合いを平均化することができる。
 さらに、第2の実施形態に係る蓄電システム1では、蓄電装置20,21自身での出力の増減値の増加又は低減によって、蓄電池40,41において充放電による劣化の度合いを平均化することができる。これにより、本実施形態では、蓄電システム1全体としての信頼性が向上し、電力の安定供給が可能になる。
 また、第2の実施形態に係る蓄電システム1では、例えば蓄電装置20,21の制御サイクル(図5及び図6参照)がずれることで、蓄電装置20,21の制御タイミングがずれている場合でも、蓄電装置20,21の出力を同等にすることができる。
 なお、本開示の一実施形態に係る電源システムは、上記の蓄電システム1に限定されない。本開示の一実施形態に係る電源システムは、燃料電池システムであってもよい。以下、本開示の一実施形態に係る電源システムを燃料電池システムとする例を、他の実施例として説明する。
 (他の実施例)
 燃料電池システム1aは、図7に示すように、電流センサ10,11と、燃料電池装置(電源装置)20a,21aとを備える。図7では、2つの燃料電池装置20a,21aを備える燃料電池システム1aが示されているが、燃料電池システム1aが備える燃料電池装置の数は、3つ以上であってもよい。なお、図7に示す構成要素で図1に示す構成要素と同一のものは同一符号を付し、その説明を省略する。
 燃料電池装置20a,21aは、系統60に接続され負荷70に電力を供給する。燃料電池装置20aは、電力変換部30、燃料電池40a、記憶部50を有する。燃料電池装置21aは、電力変換部31、燃料電池41a、記憶部51を有する。
 燃料電池40a,41aは、電気化学反応により電気を発生させるものである。燃料電池40a,41aには、例えば、固体高分子形燃料電池(PEFC(Polymer Electrolyte Fuel Cell))又は固体酸化物形燃料電池(SOFC(Solid Oxide Fuel Cell))等を用いることができる。
 図7に示すような燃料電池システム1aであっても、第1の実施形態及び第2の実施形態に係る蓄電システム1と同様の制御及び効果を実現することができる。また、負荷追従運転を行う発電機にも、本開示を適用することができる。
 なお、上記では、需要家施設と電力事業者の間の契約内容によって、再生可能エネルギーを利用していない蓄電装置及び燃料電池装置等の電力を、系統(電力事業者)へ逆潮流させられない場合について説明した。しかしながら、本実施形態は、蓄電装置及び燃料電池装置等の電力を、系統(電力事業者)へ逆潮流させ得る場合についても適用可能である。
 本開示の一実施形態を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部及びステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 本開示内容の制御は、プログラム命令を実行可能なコンピュータシステムその他のハードウェアによって実行される、一連の動作として示される。コンピュータシステムその他のハードウェアには、例えば、汎用コンピュータ、PC(Personal Computer)、専用コンピュータ、ワークステーション、又はその他のプログラム可能なデータ処理装置が含まれる。各実施形態では、種々の動作は、プログラム命令(ソフトウェア)で実装された専用回路(例えば、特定機能を実行するために相互接続された個別の論理ゲート)によって実行されることに留意されたい。また、種々の動作は、1つ以上のプロセッサによって実行される論理ブロック及びプログラムモジュール等によっても実行されることに留意されたい。論理ブロック及びプログラムモジュール等を実行する一以上のプロセッサには、例えば、1つ以上のマイクロプロセッサ、CPU(Central Processing Unit)、DSP(Digital Signal Processor)が含まれる。また、一以上のプロセッサには、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)、が含まれる。また、一以上のプロセッサには、例えば、コントローラ、マイクロコントローラ、電子機器、ここに記載する機能を実行可能に設計されたその他の装置、及び/又は、これらいずれかの組合せが含まれる。ここに示す実施形態は、例えば、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード又はこれらいずれかの組合せによって実装される。
 ここで用いられるネットワークには、他に特段の断りがない限りは、インターネット、アドホックネットワーク、LAN(Local Area Network)、セルラーネットワーク、もしくは他のネットワーク又はこれらいずれかの組合せが含まれる。
 1 蓄電システム
 10,11 電流センサ(検出器)
 20,21 蓄電装置(電源装置)
 30,31 電力変換部
 30A,31A 制御部
 40,41 蓄電池(分散電源)
 50 記憶部
 1a 燃料電池システム
 20a,21a 燃料電池装置(電源装置)
 40a,41a 燃料電池(分散電源)
 60 系統
 70 負荷

Claims (9)

  1.  負荷追従の機能を有する電源装置であって、
     電力を出力する分散電源と、
     前記分散電源の出力電力を制御する制御部と、を備え、
     前記制御部は、前記分散電源の稼働履歴を含む評価関数を取得し、前記負荷追従の応答特性及び該評価関数に基づいて、前記分散電源の出力条件を設定し、前記分散電源が接続される系統からの順潮流及び逆潮流を検出する検出器によって順潮流又は逆潮流が検出されると、前記出力条件に基づき、負荷追従を制御して前記分散電源から電力を供給する、電源装置。
  2.  前記制御部は、前記検出器が検出した値に基づき算出される電力値及び前記系統に接続される複数の電源装置の総数に基づき、前記負荷追従の応答特性をさらに設定する、請求項1に記載の電源装置。
  3.  前記制御部は、
     前記分散電源の出力電力の増減が所定の回数以上繰り返されているか否か判定し、
     前記分散電源の出力電力の増減が前記所定の回数以上繰り返されている場合、前記検出器が検出した値に基づく前記分散電源の出力電力を低減することをさらに決定する、
     前記負荷追従の応答特性は、前記分散電源の低減された出力電力に基づく、請求項1に記載の電源装置。
  4.  前記制御部は、
     前記分散電源の出力電力が連続して増加又は減少しているか否か判定し、
     前記分散電源の出力電力が連続して増加又は減少していると判定した場合に、さらに前記検出器が検出した値に基づく前記分散電源の出力電力の増減値を増加すると決定し、
     前記負荷追従の応答特性は、前記分散電源の増加された出力電力に基づく、請求項3に記載の電源装置。
  5.  負荷追従の機能を有する複数の電源装置と、
     系統からの順潮流及び該系統への逆潮流を検出する検出器と、を備え、
      前記複数の電源装置は、
      電力を出力する複数の分散電源と、
      前記複数の分散電源の出力電力をそれぞれ制御する複数の制御部と、を備え、
     前記複数の制御部は、前記複数の電源装置の稼働履歴を含む評価関数を取得し、前記負荷追従の応答特性及び該評価関数に基づいて、前記各電源装置の出力条件を設定し、前記検出器によって順潮流又は逆潮流が検出されると、該出力条件に基づき、負荷追従を制御して前記複数の分散電源から電力を供給する、分散電源システム。
  6.  負荷追従の機能を有する複数の電源装置と、系統からの順潮流及び該系統への逆潮流を検出する検出器とを備える分散電源システムの制御方法であって、
     前記複数の電源装置の稼働履歴を含む評価関数を取得するステップAと、
     前記負荷追従の応答特性及び前記評価関数に基づいて、各電源装置の出力条件を設定するステップBと、
     前記検出器によって、順潮流及び逆潮流の値を検出するステップCと、
     前記ステップCにより順潮流又は逆潮流が検出されると、前記出力条件に基づき、負荷追従の制御を行うステップDと、
     前記ステップDにおける制御に基づき、前記複数の分散電源から電力を供給するステップEと、
    を含む分散電源システムの制御方法。
  7.  前記ステップAは、前記検出器が検出した値に基づき算出される電力値及び前記複数の電源装置の総数に基づき、前記負荷追従の応答特性を設定するステップをさらに含む、請求項6に記載の分散電源システムの制御方法。
  8.  前記ステップAは、
     前記各電源装置の出力電力の増減が所定の回数以上繰り返されているか否か判定するステップと、
     前記各電源装置の出力電力の増減が前記所定の回数以上繰り返されている場合、前記検出器が検出した値に基づく前記各電源装置の出力電力を低減することを決定するステップと、をさらに含み、
     前記負荷追従の応答特性は、前記各電源装置の低減された出力電力に基づく、請求項6に記載の分散電源システムの制御方法。
  9.  前記ステップAは、
     前記各電源装置の出力電力が連続して増加又は減少しているか否か判定するステップと、
     前記各分散電源の出力電力が連続して増加又は減少していると判定した場合に、前記検出器が検出した値に基づく前記各分散電源の出力電力の増減値を増加すると決定するステップと、をさらに含み、
     前記負荷追従の応答特性は、前記前記各分散電源の増加された出力電力に基づく、請求項8に記載の分散電源システムの制御方法。
PCT/JP2016/004403 2015-09-29 2016-09-29 電源装置、分散電源システム及びその制御方法 WO2017056502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017542757A JP6582051B2 (ja) 2015-09-29 2016-09-29 電源装置、分散電源システム及びその制御方法
EP16850680.6A EP3358695B1 (en) 2015-09-29 2016-09-29 Power source device, distributed power source system, and control method thereof
US15/764,823 US10847847B2 (en) 2015-09-29 2016-09-29 Power source apparatus, distributed power source system, and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192266 2015-09-29
JP2015192266 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056502A1 true WO2017056502A1 (ja) 2017-04-06

Family

ID=58423046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004403 WO2017056502A1 (ja) 2015-09-29 2016-09-29 電源装置、分散電源システム及びその制御方法

Country Status (4)

Country Link
US (1) US10847847B2 (ja)
EP (1) EP3358695B1 (ja)
JP (1) JP6582051B2 (ja)
WO (1) WO2017056502A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835063B2 (ja) * 2016-03-04 2021-02-24 日本電気株式会社 端末装置、制御装置、サーバ、評価方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム
JP2013102572A (ja) * 2011-11-07 2013-05-23 Sony Corp 制御装置、制御方法および制御システム
JP2015050897A (ja) * 2013-09-04 2015-03-16 シャープ株式会社 パワーコンディショナ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549308B2 (ja) * 2006-03-31 2010-09-22 大阪瓦斯株式会社 コージェネレーションシステム
JP5435633B2 (ja) 2009-09-03 2014-03-05 清水建設株式会社 分散型電源の制御方法
JP5927542B2 (ja) * 2011-06-06 2016-06-01 パナソニックIpマネジメント株式会社 ヒートポンプの運転方法及びヒートポンプシステム
JPWO2013015225A1 (ja) * 2011-07-22 2015-02-23 京セラ株式会社 制御装置及び電力制御方法
JP6047490B2 (ja) * 2011-07-26 2016-12-21 京セラ株式会社 電力供給システム、分電装置、及び電力制御方法
JP5924524B2 (ja) 2012-03-13 2016-05-25 オムロン株式会社 蓄電池制御装置、蓄電池制御方法、プログラム、蓄電システム、および電源システム
JP5902593B2 (ja) * 2012-09-27 2016-04-13 京セラ株式会社 エネルギー管理システム、制御装置、及び制御方法
US9564756B2 (en) * 2013-03-15 2017-02-07 Technology Research, Llc Interface for renewable energy system
JP6480096B2 (ja) 2013-04-19 2019-03-06 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法
EP3098928B1 (en) 2014-01-22 2018-07-18 Kyocera Corporation Power control system and method for controlling power control system
JP6464480B2 (ja) * 2014-04-11 2019-02-06 清水建設株式会社 電力制御装置および電力制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム
JP2013102572A (ja) * 2011-11-07 2013-05-23 Sony Corp 制御装置、制御方法および制御システム
JP2015050897A (ja) * 2013-09-04 2015-03-16 シャープ株式会社 パワーコンディショナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358695A4 *

Also Published As

Publication number Publication date
US20180323630A1 (en) 2018-11-08
EP3358695A1 (en) 2018-08-08
EP3358695B1 (en) 2023-01-11
EP3358695A4 (en) 2019-03-20
US10847847B2 (en) 2020-11-24
JPWO2017056502A1 (ja) 2018-03-01
JP6582051B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
US20170279279A1 (en) Power converter
JP6559247B2 (ja) 蓄電システム、蓄電装置及び蓄電システムの制御方法
EP2527948B1 (en) Maximum power point tracking method
US10056847B2 (en) Hybrid power conversion system and method of determining efficiency using the same
JP2009148160A (ja) ハイブリッド電源ならびに該ハイブリッド電源に適用されるパワーマネージメントシステムおよび方法
JP2013042627A (ja) 直流電源制御装置および直流電源制御方法
JP6701922B2 (ja) 蓄電制御装置
JP5546507B2 (ja) 故障診断装置、電力変換装置および故障診断方法
JP2012161215A (ja) コンバータ制御装置、およびこのコンバータ制御装置を用いた系統連系インバータシステム
JP2014067259A (ja) パワーコンディショナ
JP2014106935A (ja) 発電システム
JP5984700B2 (ja) 直流電源装置、蓄電池の充電方法及び直流電源装置の監視制御装置
JP2016123238A (ja) 蓄電装置及び蓄電装置の制御方法
JP6582051B2 (ja) 電源装置、分散電源システム及びその制御方法
US10411476B2 (en) Power conversion apparatus, power conversion method, and power conversion system
JP2017028883A (ja) 蓄電システム及び蓄電池制御方法
JP7352130B2 (ja) 多相コンバータ
JP6234049B2 (ja) バランス補正装置および蓄電システム
JP2015186390A (ja) マルチソースpcs群の制御装置およびその方法
JP2015008561A (ja) 低損失電力変換装置及びその制御方法
JP6453581B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
JP5842160B2 (ja) 太陽光発電用パワーコンディショナ
WO2015162887A1 (ja) 電力変換装置および電力変換システム
US20190097446A1 (en) Apparatus and method for controlling charge and discharge, and program
JP6544247B2 (ja) 充電装置、充電装置制御プログラム及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542757

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016850680

Country of ref document: EP