WO2017056163A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2017056163A1
WO2017056163A1 PCT/JP2015/077370 JP2015077370W WO2017056163A1 WO 2017056163 A1 WO2017056163 A1 WO 2017056163A1 JP 2015077370 W JP2015077370 W JP 2015077370W WO 2017056163 A1 WO2017056163 A1 WO 2017056163A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
stator core
housing
electric motor
peripheral surface
Prior art date
Application number
PCT/JP2015/077370
Other languages
French (fr)
Japanese (ja)
Inventor
聖悟 井口
純基 近藤
晋太朗 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/077370 priority Critical patent/WO2017056163A1/en
Priority to DE112015006790.6T priority patent/DE112015006790T5/en
Priority to JP2016516630A priority patent/JP5972502B1/en
Priority to CN201580083376.6A priority patent/CN108141065A/en
Priority to KR1020187007604A priority patent/KR101905370B1/en
Priority to TW105108071A priority patent/TWI609559B/en
Publication of WO2017056163A1 publication Critical patent/WO2017056163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/42Means for preventing or reducing eddy-current losses in the winding heads, e.g. by shielding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Definitions

  • the present invention relates to an electric motor including a stator and a rotor disposed inside the stator.
  • Patent Document 1 discloses a structure of an electric motor that efficiently discharges heat generated in a coil to the outside.
  • the stator of the electric motor disclosed in Patent Document 1 includes an annular stator core, a plurality of coils spaced apart in the circumferential direction of the stator core, and a cylinder surrounding each coil end of the plurality of coils.
  • the outer diameter of a partial region of the outer peripheral surface is the same as the outer diameter of the stator core.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor that improves the fitting workability of the housing while efficiently discharging the heat generated at the coil end to the outside.
  • an electric motor of the present invention is arranged in a circumferential direction of an annular stator core, a rotor disposed inside the stator core, and the stator core.
  • a plurality of coils The electric motor of the present invention includes a cylindrical cover that is disposed on an axial end surface of the stator core and surrounds coil ends of a plurality of coils protruding from the axial end surface of the stator core.
  • the electric motor of the present invention has a thermally conductive resin portion disposed between each of the coil ends of the plurality of coils and the cover, and is disposed on the radially outer side of the cover and on the radially outer side of the stator core.
  • a cylindrical housing arranged. The outer diameter of the cover is smaller than the outer diameter of the stator core and smaller than the inner diameter of the housing, and the outer peripheral surface of the cover is not in contact with the inner peripheral surface of the housing.
  • the electric motor according to the present invention has an effect of improving the workability of fitting the housing while efficiently discharging the heat generated at the coil end to the outside.
  • the longitudinal cross-sectional view of the electric motor which concerns on Embodiment 1 of this invention 1 is a longitudinal sectional view of a stator of an electric motor according to Embodiment 1 of the present invention.
  • III-III arrow sectional view shown in FIG. IV-IV arrow sectional view shown in FIG. Enlarged view of one end of the stator shown in FIG.
  • Sectional drawing of the stator of the electric motor which concerns on Embodiment 2 of this invention Sectional drawing of the stator of the electric motor which concerns on Embodiment 3 of this invention.
  • Sectional drawing which shows the 1st modification of the stator which concerns on Embodiment 1-3 of this invention Sectional drawing which shows the 2nd modification of the stator which concerns on Embodiment 1-3 of this invention
  • FIG. 1 is a longitudinal sectional view of an electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of the stator of the electric motor according to Embodiment 1 of the present invention.
  • 3 is a cross-sectional view taken along arrow III-III shown in FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. 2 and 3, illustration of the rotor 200 shown in FIG. 1 is omitted.
  • FIG. 5 is an enlarged view of one end side of the stator shown in FIG.
  • the configuration of the electric motor 300 according to Embodiment 1 will be described with reference to FIGS. 1 to 5.
  • the electric motor 300 includes a stator 100, a rotor 200 disposed on the inner side of the stator core 1 constituting the stator 100, and a cylindrical shape disposed on the radially outer side of the stator core 1. Housing 10.
  • the stator core 1 is formed by laminating a plurality of annular thin plates punched from electromagnetic steel sheets.
  • the stator core 1 has a hollow hole 11 therein.
  • the stator core 1 has a plurality of slots 12 in the circumferential direction.
  • a coil 2 is disposed in each of the plurality of slots 12.
  • a mold resin portion 4 that is a heat conductive resin portion is filled.
  • the material of the mold resin portion 4 is an epoxy resin or an unsaturated polyester resin.
  • the coil ends 2 a on one end side of each of the plurality of coils 2 protrude in the axial direction from one end face 1 a of the stator core 1.
  • the axial direction indicates the direction in which the rotation center axis extends.
  • a cylindrical cover 3a surrounding a plurality of coil ends 2a is disposed on one end face 1a of the stator core 1.
  • the cover 3 a is attached to one end surface 1 a of the stator core 1. Specifically, a depression is formed in advance on one end surface 1a of the stator core, and a protrusion is formed on the end surface of the cover 3a. Then, the cover 3 a is attached by fitting the protrusion of the cover 3 a into the recess of the stator core 1. The cover 3a attached to the one end surface 1a of the stator core 1 is processed so that the outer diameter D2 is smaller than the outer diameter D1 of the stator core 1.
  • a mold resin portion 4a which is a heat conductive resin portion covering each of the plurality of coil ends 2a, is formed.
  • the material of the mold resin portion 4a is an unsaturated polyester resin.
  • the mold resin portion 4a is formed between the outer side in the radial direction of the coil end 2a and the cover 3a.
  • the mold resin portion 4a is formed on the inner side in the radial direction of the coil end 2a. Further, the mold resin portion 4a is formed on the tip end side in the axial direction of the coil end 2a.
  • the mold resin portion 4a is in close contact with the entire outer peripheral surface of each of the plurality of coil ends 2a, and in close contact with the entire inner peripheral surface of the cover 3a.
  • the surface on the stator core 1 side of the mold resin portion 4 a is in contact with one end surface 1 a of the stator core 1.
  • each of the plurality of coils 2 protrudes from the other end surface 1b of the stator core 1 in the axial direction.
  • a cylindrical cover 3b surrounding the plurality of coil ends 2b is disposed on the other end surface 1b of the stator core 1.
  • the cover 3 b is attached to the other end surface 1 b of the stator core 1. Specifically, a depression is formed in advance on the other end surface 1b of the stator core, and a protrusion is formed on the end surface of the cover 3b. Then, the cover 3 b is attached by fitting the protrusion of the cover 3 b into the recess of the stator core 1. The cover 3b attached to the other end surface 1b of the stator core 1 is processed so that the outer diameter D2 is smaller than the outer diameter D1 of the stator core 1.
  • a mold resin portion 4b which is a heat conductive resin portion covering each of the plurality of coil ends 2b, is formed.
  • the material of the mold resin portion 4b is an unsaturated polyester resin.
  • the mold resin portion 4b is formed between the outer side in the radial direction of the coil end 2b and the cover 3b.
  • the mold resin portion 4b is formed on the radially inner side of the coil end 2b.
  • the mold resin portion 4b is formed on the tip end side in the axial direction of the coil end 2b.
  • the mold resin portion 4b is in close contact with the entire outer peripheral surface of each of the plurality of coil ends 2b, and in close contact with the entire inner peripheral surface of the cover 3b.
  • the surface on the stator core 1 side of the mold resin portion 4 b is in contact with the other end surface 1 b of the stator core 1.
  • the coil 2 is insulated and connected to the lead wire 20. Electric power is supplied to the coil 2 via the lead wire 20.
  • the rotor 200 includes a rotor core 5 formed by laminating a plurality of thin annular plates punched from electromagnetic steel sheets, and an aluminum conductor 6 disposed in the slot of the rotor core 5 and in the annular shape on the front end side in the axial direction. .
  • the rotor 200 is disposed in the hollow hole 11 of the stator core 1 coaxially with the axis of the stator core 1.
  • the cylindrical housing 10 is arranged on the outer side in the radial direction of each of the two covers 3 a and 3 b, and is arranged on the outer side in the radial direction of the stator core 1.
  • the inner diameter D3 of the housing 10 is equal to the outer diameter D1 of the stator core 1.
  • the outer diameter of each of the covers 3a and 3b is smaller than the inner diameter D3 of the housing 10.
  • each of the covers 3 a and 3 b has an outer diameter D 2 smaller than the outer diameter D 1 of the stator core 1.
  • the stator 100 has a gap G between the outer peripheral surfaces of the covers 3 a and 3 b and the inner peripheral surface of the housing 10.
  • the gap G is reliably formed between each of the covers 3a and 3b and the housing 10. Therefore, the outer peripheral surfaces of the covers 3 a and 3 b are not in contact with the inner peripheral surface of the housing 10.
  • stator core 1 and the cover 3 a are expanded by the heat of the housing 10.
  • the outer diameters D1 and D2 of the stator core 1 and the cover 3a are enlarged. Therefore, even if the outer diameter D2 of the cover 3a is enlarged, the outer diameter D2 of the cover maintains a size smaller than the inner diameter D3 of the housing 10. Therefore, the gap G remains. Moreover, since the cover 3a does not contact the housing 10 due to the gap G, the heat absorption amount of the cover 3a is lower than the heat absorption amount of the stator core 1 with which the cover 3a contacts.
  • FIG. 6 is a diagram showing the relationship between the gap shown in FIG. 5 and the coil end temperature.
  • the horizontal axis represents the size of the gap between the cover and the housing, and the vertical axis represents the temperature of the coil end.
  • the temperature of heat generated at the coil end is assumed to be 100 ° C.
  • the temperature at the coil end when the gap G changes from 0 ⁇ m to 500 ⁇ m is shown.
  • the temperature change amount of the coil end when the gap G is 0 ⁇ m to 100 ⁇ m is 2 ° C. or more, and the temperature change amount of the coil end when the gap G is 100 ⁇ m to 500 ⁇ m is less than 1 ° C. That is, the temperature change amount when the gap G is 0 ⁇ m to 100 ⁇ m is larger than the temperature change amount when the gap G is 100 ⁇ m to 500 ⁇ m.
  • the heat generated at the coil end indicates that when the gap G is less than 100 ⁇ m, it is more effectively transmitted to the housing 10 than when the gap G is 100 ⁇ m or more. Accordingly, the gap G is desirably less than 100 ⁇ m.
  • the case where the housing 10 is fitted into the stator core 1 by shrink fitting has been described.
  • the same effect can be obtained in the case of cold fitting.
  • the cover 3a expands and its outer diameter D2 increases.
  • the outer diameter D2 of the cover 3a is enlarged, the outer diameter D2 of the cover is kept smaller than the inner diameter D3 of the housing 10. Therefore, the gap G remains.
  • the cover 3a does not contact the housing 10 due to the gap G, the heat absorption amount of the cover 3a is lower than the heat absorption amount of the stator core 1 with which the cover 3a contacts.
  • FIG. FIG. 7 is a cross-sectional view of the stator of the electric motor according to Embodiment 2 of the present invention.
  • FIG. 7 shows an enlarged view of one end side of the stator of the electric motor according to the second embodiment.
  • An arrow shown in FIG. 7 represents a path through which heat generated in the coil end 2a is transmitted to the housing 10 when the coil end 2a is at a constant temperature during operation of the electric motor 300-1.
  • a dotted line a1 represents the outline of the cover 3a-1 before the coil end 2a reaches a certain temperature.
  • a solid line a2 represents the outline of the cover 3a-1 when the coil end 2a reaches a certain temperature.
  • the gap G is a gap generated between the cover 3a-1 and the housing 10 before the coil end 2a reaches a certain temperature.
  • the stator according to the second embodiment includes a cover 3a-1 instead of the cover 3a according to the first embodiment.
  • the cover 3a-1 is made of a material having a linear expansion coefficient larger than that of the stator core 1.
  • the material of the cover 3a-1 is an aluminum alloy, an austenitic stainless alloy, a copper alloy, or a high thermal conductive resin.
  • An example is an epoxy resin mixed with (Carboxy-Terminated Butadiene-Nitrile).
  • the outer diameter of the cover 3 a-1 when the electric motor 300-1 is in operation is the same size as the outer diameter of the stator core 1, and the same size as the inner diameter of the housing 10. Further, the outer peripheral surface of the cover 3 a-1 during operation of the electric motor 300-1 is in contact with the inner peripheral surface of the housing 10.
  • the heat generated in the coil end 2a during operation of the electric motor 300-1 is first transmitted to the mold resin portion 4a.
  • the heat transferred to the mold resin portion 4a is transferred to the cover 3a-1.
  • Part of the heat transferred to the cover 3a-1 is transferred to the stator core 1 through the contact surface between the cover 3a-1 and the stator core 1.
  • Both the stator core 1 and the cover 3a-1 expand due to the heat generated at the coil end 2a. Accordingly, the outer diameters D1 and D2 of the stator core 1 and the cover 3a-1 are enlarged.
  • the cover 3a-1 is made of a material having a linear expansion coefficient larger than that of the stator core 1.
  • the outer peripheral surface of the cover 3a-1 before the coil end 2a reaches a certain temperature is not in contact with the inner peripheral surface of the housing 10, as indicated by a dotted line a1.
  • the outer peripheral surface of the cover 3a-1 when the coil end 2a reaches a certain temperature is in contact with the inner peripheral surface of the housing 10, as indicated by a solid line a2.
  • the heat generated in the coil end 2a during operation of the electric motor 300-1 is first transmitted to the mold resin portion 4a.
  • the heat transferred to the mold resin portion 4a is transferred to the cover 3a-1.
  • Part of the heat transferred to the cover 3a-1 is transferred to the stator core 1 via the contact surface between the cover 3a-1 and the stator core 1.
  • the heat transmitted to the stator core 1 is transmitted from the outer peripheral surface of the stator core 1 to the housing 10 and is released from the surface of the housing 10.
  • part of the heat transmitted to the cover 3 a-1 is transmitted to the housing 10 via the contact surface between the cover 3 a-1 and the housing 10.
  • the heat transmitted to the housing 10 is released from the surface of the housing 10.
  • the cover 3a-1 expands and contacts the housing 10. Therefore, the amount of heat transferred from the cover 3a-1 to the housing 10 is relatively increased. As a result, the amount of heat released from the housing 10 to the outside is improved, and the cooling efficiency of the coil end 2a is improved.
  • the cover 3b shown in FIGS. 1 and 2 may be made of the same material as the cover 3a-1 of the second embodiment. Thereby, the amount of heat transmitted from the cover 3b to the housing 10 is relatively increased, and the cooling efficiency of the coil end 2b is improved.
  • FIG. 8 is a sectional view of the stator of the electric motor according to Embodiment 3 of the present invention.
  • FIG. 8 is an enlarged view of one end side of the stator of the electric motor according to the third embodiment.
  • An arrow shown in FIG. 8 represents a path through which heat generated in the coil end 2a is transmitted to the housing 10 when the coil end 2a is at a constant temperature during operation of the electric motor 300-2.
  • a dotted line a3 represents the outline of the cover 3a-2 before the coil end 2a reaches a certain temperature.
  • a solid line a4 represents the outline of the cover 3a-2 when the coil end 2a reaches a certain temperature.
  • the gap G is a gap generated between the cover 3a-2 and the housing 10 before the coil end 2a reaches a certain temperature.
  • the stator of Embodiment 3 uses a cover 3a-2 instead of the cover 3a of Embodiment 1.
  • the cover 3a-2 is made of a material having a linear expansion coefficient equal to or smaller than the linear expansion coefficient of the stator core 1.
  • the material of the cover 3a-2 is cast iron, steel, or iron alloy.
  • cast iron examples include gray cast iron such as FC200, spheroidal graphite cast iron such as FCD400, steel as carbon steel such as SC450, carbon steel pipe material for mechanical structure such as STKM, and iron alloy such as chromium molybdenum steel such as SCM. .
  • the outer diameter of the cover 3 a-2 during operation of the electric motor 300-2 is smaller than the outer diameter of the stator core 1 and smaller than the inner diameter of the housing 10. Further, the outer peripheral surface of the cover 3 a-2 during operation of the electric motor 300-2 is not in contact with the inner peripheral surface of the housing 10.
  • the heat generated in the coil end 2a during operation of the electric motor 300-2 is first transmitted to the mold resin portion 4a.
  • the heat transferred to the mold resin portion 4a is transferred to the cover 3a-2.
  • Part of the heat transferred to the cover 3a-2 is transferred to the stator core 1 through the contact surface between the cover 3a-2 and the stator core 1.
  • both the stator core 1 and the cover 3a-2 expand due to the heat generated at the coil end 2a. Accordingly, the outer diameters D1 and D2 of the stator core 1 and the cover 3a-2 are enlarged.
  • the cover 3a-2 is made of a material having a linear expansion coefficient equal to or smaller than the linear expansion coefficient of the stator core 1. Therefore, even if the outer diameter D2 of the cover 3a-2 is enlarged, the outer diameter D2 of the cover maintains a dimension smaller than the inner diameter D3 of the housing 10.
  • the outer peripheral surface of the cover 3a-2 when the coil end 2a reaches a certain temperature is not in contact with the inner peripheral surface of the housing 10, as indicated by a solid line a4.
  • the cover 3a-2 since the cover 3a-2 does not come into contact with the housing 10, the compressive stress due to the interference between the cover 3a-2 and the housing 10 does not act on the mold resin portion 4a. Therefore, the occurrence of cracks in the mold resin portion 4a due to the action of compressive stress is suppressed. As a result, a part of the mold resin portion 4a is prevented from dropping into the electric motor, and the quality of the electric motor 300-2 is improved.
  • the heat transmitted to the stator core 1 is transmitted from the outer peripheral surface of the stator core 1 to the housing 10 and released from the surface of the housing 10.
  • the electric motor 300-2 of the third embodiment it is not necessary to use a material for preventing the occurrence of cracks in the mold resin portion 4a, that is, an expensive resin that can withstand compressive stress. As a result, the manufacturing cost of the stator can be reduced.
  • the cover 3b shown in FIGS. 1 and 2 may be made of the same material as the cover 3a-2 of the third embodiment. Thereby, the occurrence of cracks in the mold resin portion 4b is suppressed, and the quality of the electric motor 300-2 is improved.
  • FIG. 9 is a cross-sectional view showing a first modification of the stator according to Embodiments 1 to 3 of the present invention.
  • FIG. 9 is an enlarged view of one end side of the stator.
  • the stator shown in FIG. 9 includes a stator core 1-1 instead of the stator core 1 of the first to third embodiments.
  • the outer diameter of the one end 1c on the cover 3a side is formed in advance so as to be equal to the outer diameter D2 of the cover 3a.
  • the gap G is a gap generated between the cover 3a and the housing 10 after adjusting the outer diameter.
  • the tip of the machine tool is one end of the stator core 1-1. It can prevent contacting 1c. As a result, the dimensional accuracy of the outer shape of the cover 3a is improved, and the fitting workability of the housing 10 is further improved.
  • the stator core 1-1 shown in FIG. 9 can be combined with the covers of the second and third embodiments.
  • the cover of the second and third embodiments with the stator core 1-1, in addition to the effects of the second and third embodiments, the effect of further improving the fitting workability of the housing 10 can be obtained.
  • FIG. 10 is a cross-sectional view showing a second modification of the stator according to Embodiments 1 to 3 of the present invention.
  • FIG. 10 is an enlarged view of one end side of the stator.
  • the stator shown in FIG. 10 includes a cover 3a-3 instead of the covers 3a, 3a-1, 3a-2 of the first to third embodiments. Further, the stator shown in FIG. 10 includes a stator core 1-2 instead of the stator core 1 of the first to third embodiments.
  • the gap G is a gap generated between the cover 3a-3 and the housing 10 after adjusting the outer diameter.
  • the outer diameter of the first end portion 31 on the stator core 1-2 side is smaller than the outer diameter of the second end portion 32 on the opposite side to the stator core 1-2 side. It is assumed that the outer diameter of the first end portion 31 is formed in advance smaller than the outer diameter of the second end portion 32.
  • the outer diameter of the one end 41 on the cover 3a-3 side is equal to the outer diameter of the first end 31 of the cover 3a-3. It is assumed that the outer diameter of the one end portion 41 is formed in advance to be equal to the outer diameter of the first end portion 31.
  • a groove 50 is formed at the boundary between the cover 3a-3 and the stator core 1-2.
  • the groove portion 50 can prevent the tip of the machine tool from coming into contact with the one end portion 41 of the stator core 1-2.
  • the dimensional accuracy of the outer shape of the cover 3a-3 is improved, and the workability of fitting the housing 10 is further improved.
  • stator cores of the first to third embodiments are not limited to those obtained by laminating a plurality of electromagnetic steel sheets.
  • the stator core may be an integral core obtained by processing a steel material into a cylindrical shape, a resin core obtained by solidifying a mixture of resin and iron powder, or a dust core obtained by pressing magnetic powder.
  • the type of the stator core is properly used depending on the purpose and application.
  • cover of the first to third embodiments may be a mortar shape whose outer diameter is reduced from the rotor core side to the anti-rotor core side. This shape facilitates the operation of fitting the housing 10 to the stator core 1.
  • the rotor 200 of the first to third embodiments may be a rotor for an induction motor or a rotor for a synchronous motor.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1,1-1,1-2 Stator core 1a one end surface, 1b other end surface, 1c one end, 2 coils, 2a, 2b coil end, 3a, 3a-1, 3a-2, 3a-3, 3b cover 4, 4a, 4b, mold resin part, 5 rotor core, 6 aluminum conductor, 10 housing, 11 hollow hole, 12 slot, 20 lead wire, 31 first end, 32 second end, 41 one end , 50 grooves, 100 stators, 200 rotors, 300, 300-1, 300-2 electric motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

An electric motor 300 is provided with: a stator core 1; a rotor 200 disposed inside of the stator core 1; a cover 3a disposed on a stator core 1 end surface in the axis direction; a molded resin section 4a disposed between a plurality of coil ends 2a and the cover 3a; and a cylindrical housing 10, which is disposed on the radial outer side of the cover 3a, and which is disposed on the radial outer side of the stator core 1. Furthermore, the outer diameter of the cover 3a is smaller than the inner diameter of the housing 10, and the outer circumferential surface of the cover 3a is not in contact with the inner circumferential surface of the housing 10.

Description

電動機Electric motor
 本発明は、固定子と固定子の内側に配置される回転子とを備えた電動機に関する。 The present invention relates to an electric motor including a stator and a rotor disposed inside the stator.
 近年では、機械加工のタクト短縮に対応するため工業用途の電動機に対する高出力化および高トルク化の要求が高くなっている。電動機の高出力化および高トルク化に伴い、固定子に配置されたコイルの発熱量が大きくなる。そのためコイルで発生する熱を効率的に電動機の外部に排出する必要がある。 In recent years, there is an increasing demand for higher output and higher torque for electric motors for industrial use in order to cope with shortening of machining tact time. Along with the increase in output and torque of the electric motor, the amount of heat generated by the coils arranged on the stator increases. Therefore, it is necessary to efficiently exhaust the heat generated in the coil to the outside of the electric motor.
 特許文献1には、コイルで発生する熱を効率よく外部に排出する電動機の構造が開示されている。特許文献1に開示された電動機の固定子は、環状の固定子鉄心と、固定子鉄心の周方向に離間して配置された複数のコイルと、複数のコイルのそれぞれのコイルエンドを包囲する筒状のカバーと、コイルエンドとカバーとの間に充填された熱伝導性樹脂と、固定子鉄心およびカバーの外周側に配置されるハウジングとを備える。特許文献1のカバーは、外周面の一部領域の外径が固定子鉄心の外径と同一寸法である。 Patent Document 1 discloses a structure of an electric motor that efficiently discharges heat generated in a coil to the outside. The stator of the electric motor disclosed in Patent Document 1 includes an annular stator core, a plurality of coils spaced apart in the circumferential direction of the stator core, and a cylinder surrounding each coil end of the plurality of coils. A cover, a thermally conductive resin filled between the coil end and the cover, and a stator core and a housing disposed on the outer peripheral side of the cover. In the cover of Patent Document 1, the outer diameter of a partial region of the outer peripheral surface is the same as the outer diameter of the stator core.
特許第5607708号公報Japanese Patent No. 5607708
 焼き嵌めでハウジングを固定子鉄心に嵌め合わせるとき、ハウジングからカバーに伝わる熱によりカバーが膨張する。しかし特許文献1のカバーは、外周面の一部領域の外径が固定子鉄心の外径と同一寸法である。そのため特許文献1では、ハウジングから伝わった熱で膨張したカバーの外周面がハウジングの内周面に接し、嵌め込み途中のハウジングが意図しない位置で止まる可能性がある。従って、特許文献1の固定子では、固定子鉄心へのハウジングの嵌め込み作業性が低下するという課題があった。 When fitting the housing to the stator core by shrink fitting, the cover expands due to heat transferred from the housing to the cover. However, in the cover of Patent Document 1, the outer diameter of a partial region of the outer peripheral surface is the same as the outer diameter of the stator core. Therefore, in Patent Document 1, there is a possibility that the outer peripheral surface of the cover expanded by the heat transmitted from the housing contacts the inner peripheral surface of the housing, and the housing in the middle of fitting stops at an unintended position. Therefore, the stator of Patent Document 1 has a problem that the workability of fitting the housing into the stator core decreases.
 本発明は、上記に鑑みてなされたものであって、コイルエンドで発生する熱を効率よく外部に排出しながら、ハウジングの嵌め込み作業性の向上を図る電動機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor that improves the fitting workability of the housing while efficiently discharging the heat generated at the coil end to the outside.
 上述した課題を解決し、目的を達成するために、本発明の電動機は、環状の固定子鉄心と、固定子鉄心の内側に配置される回転子と、固定子鉄心の周方向に配列された複数のコイルとを備える。また本発明の電動機は、固定子鉄心の軸方向の端面に配置され、固定子鉄心の軸方向の端面から突出する複数のコイルのコイルエンドを包囲する筒状のカバーを備える。また本発明の電動機は、複数のコイルのコイルエンドのそれぞれとカバーとの間に配置された熱伝導性樹脂部と、カバーの径方向外側に配置されると共に、固定子鉄心の径方向外側に配置された筒状のハウジングとを備える。カバーの外径は、固定子鉄心の外径よりも小さく、かつ、ハウジングの内径よりも小さく、カバーの外周面は、ハウジングの内周面と非接触である。 In order to solve the above-described problems and achieve the object, an electric motor of the present invention is arranged in a circumferential direction of an annular stator core, a rotor disposed inside the stator core, and the stator core. A plurality of coils. The electric motor of the present invention includes a cylindrical cover that is disposed on an axial end surface of the stator core and surrounds coil ends of a plurality of coils protruding from the axial end surface of the stator core. In addition, the electric motor of the present invention has a thermally conductive resin portion disposed between each of the coil ends of the plurality of coils and the cover, and is disposed on the radially outer side of the cover and on the radially outer side of the stator core. And a cylindrical housing arranged. The outer diameter of the cover is smaller than the outer diameter of the stator core and smaller than the inner diameter of the housing, and the outer peripheral surface of the cover is not in contact with the inner peripheral surface of the housing.
 本発明に係る電動機は、コイルエンドで発生する熱を効率よく外部に排出しながら、ハウジングの嵌め込み作業性が向上するという効果を奏する。 The electric motor according to the present invention has an effect of improving the workability of fitting the housing while efficiently discharging the heat generated at the coil end to the outside.
本発明の実施の形態1に係る電動機の縦断面図The longitudinal cross-sectional view of the electric motor which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る電動機の固定子の縦断面図1 is a longitudinal sectional view of a stator of an electric motor according to Embodiment 1 of the present invention. 図2に示すIII-III矢視断面図III-III arrow sectional view shown in FIG. 図2に示すIV-IV矢視断面図IV-IV arrow sectional view shown in FIG. 図2に示す固定子の一端側の拡大図Enlarged view of one end of the stator shown in FIG. 図5に示す隙間とコイルエンドの温度との関係を示す図The figure which shows the relationship between the clearance gap shown in FIG. 5, and the temperature of a coil end 本発明の実施の形態2に係る電動機の固定子の断面図Sectional drawing of the stator of the electric motor which concerns on Embodiment 2 of this invention 本発明の実施の形態3に係る電動機の固定子の断面図Sectional drawing of the stator of the electric motor which concerns on Embodiment 3 of this invention. 本発明の実施の形態1から3に係る固定子の第1の変形例を示す断面図Sectional drawing which shows the 1st modification of the stator which concerns on Embodiment 1-3 of this invention 本発明の実施の形態1から3に係る固定子の第2の変形例を示す断面図Sectional drawing which shows the 2nd modification of the stator which concerns on Embodiment 1-3 of this invention
 以下に、本発明の実施の形態に係る電動機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an electric motor according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は本発明の実施の形態1に係る電動機の縦断面図である。図2は本発明の実施の形態1に係る電動機の固定子の縦断面図である。図3は図2に示すIII-III矢視断面図である。図4は図2に示すIV-IV矢視断面図である。図2,3では図1に示す回転子200の図示が省略されている。図5は図2に示す固定子の一端側の拡大図である。以下、図1から図5を参照して実施の形態1に係る電動機300の構成を説明する。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of an electric motor according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view of the stator of the electric motor according to Embodiment 1 of the present invention. 3 is a cross-sectional view taken along arrow III-III shown in FIG. 4 is a cross-sectional view taken along the line IV-IV shown in FIG. 2 and 3, illustration of the rotor 200 shown in FIG. 1 is omitted. FIG. 5 is an enlarged view of one end side of the stator shown in FIG. Hereinafter, the configuration of the electric motor 300 according to Embodiment 1 will be described with reference to FIGS. 1 to 5.
 実施の形態1に係る電動機300は、固定子100と、固定子100を構成する固定子鉄心1の内側に配置される回転子200と、固定子鉄心1の径方向外側に配置される筒状のハウジング10とを備える。 The electric motor 300 according to the first embodiment includes a stator 100, a rotor 200 disposed on the inner side of the stator core 1 constituting the stator 100, and a cylindrical shape disposed on the radially outer side of the stator core 1. Housing 10.
 固定子鉄心1は、電磁鋼板から打ち抜かれた複数の環状の薄板を積層して成る。固定子鉄心1は、その内部に中空孔11を有する。 The stator core 1 is formed by laminating a plurality of annular thin plates punched from electromagnetic steel sheets. The stator core 1 has a hollow hole 11 therein.
 固定子鉄心1は、周方向に複数のスロット12を有する。複数のスロット12のそれぞれにはコイル2が配置されている。 The stator core 1 has a plurality of slots 12 in the circumferential direction. A coil 2 is disposed in each of the plurality of slots 12.
 複数のスロット12のそれぞれに配置されたコイル2と複数のスロット12のそれぞれの内周面との間には、熱伝導性樹脂部であるモールド樹脂部4が充填される。モールド樹脂部4の材料はエポキシ樹脂または不飽和ポリエステル樹脂である。 Between the coil 2 arranged in each of the plurality of slots 12 and the inner peripheral surface of each of the plurality of slots 12, a mold resin portion 4 that is a heat conductive resin portion is filled. The material of the mold resin portion 4 is an epoxy resin or an unsaturated polyester resin.
 複数のコイル2のそれぞれの一端側のコイルエンド2aは、固定子鉄心1の一端面1aから軸方向に突出している。軸方向は回転中心軸線が伸びる方向を示す。 The coil ends 2 a on one end side of each of the plurality of coils 2 protrude in the axial direction from one end face 1 a of the stator core 1. The axial direction indicates the direction in which the rotation center axis extends.
 固定子鉄心1の一端面1aには、複数のコイルエンド2aを包囲する筒状のカバー3aが配置される。 A cylindrical cover 3a surrounding a plurality of coil ends 2a is disposed on one end face 1a of the stator core 1.
 カバー3aは、固定子鉄心1の一端面1aに取付けられる。具体的には、固定子鉄心の一端面1aに予め窪みを形成し、カバー3aの端面に突起を形成する。そしてカバー3aの突起を固定子鉄心1の窪みに嵌め合わせることでカバー3aが取付けられる。固定子鉄心1の一端面1aに取付けられたカバー3aは、その外径D2が固定子鉄心1の外径D1より小さくなるように加工される。 The cover 3 a is attached to one end surface 1 a of the stator core 1. Specifically, a depression is formed in advance on one end surface 1a of the stator core, and a protrusion is formed on the end surface of the cover 3a. Then, the cover 3 a is attached by fitting the protrusion of the cover 3 a into the recess of the stator core 1. The cover 3a attached to the one end surface 1a of the stator core 1 is processed so that the outer diameter D2 is smaller than the outer diameter D1 of the stator core 1.
 固定子鉄心1の一端側には、複数のコイルエンド2aのそれぞれを覆う熱伝導性樹脂部であるモールド樹脂部4aが形成される。モールド樹脂部4aの材料は不飽和ポリエステル樹脂である。 On one end side of the stator core 1, a mold resin portion 4a, which is a heat conductive resin portion covering each of the plurality of coil ends 2a, is formed. The material of the mold resin portion 4a is an unsaturated polyester resin.
 具体的には、モールド樹脂部4aは、コイルエンド2aの径方向外側とカバー3aとの間に形成される。またモールド樹脂部4aは、コイルエンド2aの径方向内側に形成される。さらにモールド樹脂部4aは、コイルエンド2aの軸方向先端側に形成される。 Specifically, the mold resin portion 4a is formed between the outer side in the radial direction of the coil end 2a and the cover 3a. The mold resin portion 4a is formed on the inner side in the radial direction of the coil end 2a. Further, the mold resin portion 4a is formed on the tip end side in the axial direction of the coil end 2a.
 モールド樹脂部4aは、複数のコイルエンド2aのそれぞれの外周面全体に密着し、またカバー3aの内周面全体に密着する。モールド樹脂部4aの固定子鉄心1側の面は、固定子鉄心1の一端面1aと接している。 The mold resin portion 4a is in close contact with the entire outer peripheral surface of each of the plurality of coil ends 2a, and in close contact with the entire inner peripheral surface of the cover 3a. The surface on the stator core 1 side of the mold resin portion 4 a is in contact with one end surface 1 a of the stator core 1.
 複数のコイル2のそれぞれの他端側のコイルエンド2bは、固定子鉄心1の他端面1bから軸方向に突出している。 The coil end 2b on the other end side of each of the plurality of coils 2 protrudes from the other end surface 1b of the stator core 1 in the axial direction.
 固定子鉄心1の他端面1bには、複数のコイルエンド2bを包囲する筒状のカバー3bが配置される。 A cylindrical cover 3b surrounding the plurality of coil ends 2b is disposed on the other end surface 1b of the stator core 1.
 カバー3bは固定子鉄心1の他端面1bに取付けられる。具体的には、固定子鉄心の他端面1bに予め窪みを形成し、カバー3bの端面に突起を形成する。そしてカバー3bの突起を固定子鉄心1の窪みに嵌め合わせることでカバー3bが取付けられる。固定子鉄心1の他端面1bに取付けられたカバー3bは、その外径D2が固定子鉄心1の外径D1より小さくなるように加工される。 The cover 3 b is attached to the other end surface 1 b of the stator core 1. Specifically, a depression is formed in advance on the other end surface 1b of the stator core, and a protrusion is formed on the end surface of the cover 3b. Then, the cover 3 b is attached by fitting the protrusion of the cover 3 b into the recess of the stator core 1. The cover 3b attached to the other end surface 1b of the stator core 1 is processed so that the outer diameter D2 is smaller than the outer diameter D1 of the stator core 1.
 固定子鉄心1の他端側には、複数のコイルエンド2bのそれぞれを覆う熱伝導性樹脂部であるモールド樹脂部4bが形成される。モールド樹脂部4bの材料は不飽和ポリエステル樹脂である。 On the other end side of the stator core 1, a mold resin portion 4b, which is a heat conductive resin portion covering each of the plurality of coil ends 2b, is formed. The material of the mold resin portion 4b is an unsaturated polyester resin.
 具体的には、モールド樹脂部4bは、コイルエンド2bの径方向外側とカバー3bとの間に形成される。またモールド樹脂部4bは、コイルエンド2bの径方向内側に形成される。またモールド樹脂部4bは、コイルエンド2bの軸方向先端側に形成される。 Specifically, the mold resin portion 4b is formed between the outer side in the radial direction of the coil end 2b and the cover 3b. The mold resin portion 4b is formed on the radially inner side of the coil end 2b. The mold resin portion 4b is formed on the tip end side in the axial direction of the coil end 2b.
 モールド樹脂部4bは、複数のコイルエンド2bのそれぞれの外周面全体に密着し、またカバー3bの内周面全体に密着する。モールド樹脂部4bの固定子鉄心1側の面は、固定子鉄心1の他端面1bと接している。 The mold resin portion 4b is in close contact with the entire outer peripheral surface of each of the plurality of coil ends 2b, and in close contact with the entire inner peripheral surface of the cover 3b. The surface on the stator core 1 side of the mold resin portion 4 b is in contact with the other end surface 1 b of the stator core 1.
 コイル2には絶縁処理が施され、リード線20に接続される。コイル2にはリード線20を介して電力が供給される。 The coil 2 is insulated and connected to the lead wire 20. Electric power is supplied to the coil 2 via the lead wire 20.
 回転子200は、電磁鋼板から打ち抜かれた複数の環状の薄板を積層して成る回転子鉄心5と、回転子鉄心5のスロット内及び軸方向先端側環状に配置されたアルミニウム導体6とを備える。回転子200は、固定子鉄心1の軸心と同軸に、固定子鉄心1の中空孔11内に配置される。 The rotor 200 includes a rotor core 5 formed by laminating a plurality of thin annular plates punched from electromagnetic steel sheets, and an aluminum conductor 6 disposed in the slot of the rotor core 5 and in the annular shape on the front end side in the axial direction. . The rotor 200 is disposed in the hollow hole 11 of the stator core 1 coaxially with the axis of the stator core 1.
 筒状のハウジング10は、2つのカバー3a,3bのそれぞれの径方向外側に配置されると共に、固定子鉄心1の径方向外側に配置される。 The cylindrical housing 10 is arranged on the outer side in the radial direction of each of the two covers 3 a and 3 b, and is arranged on the outer side in the radial direction of the stator core 1.
 ハウジング10の内径D3は、固定子鉄心1の外径D1と等しい。カバー3a,3bのそれぞれ外径は、ハウジング10の内径D3よりも小さい。前述したようにカバー3a,3bは、ぞれぞれの外径D2が固定子鉄心1の外径D1より小さい。 The inner diameter D3 of the housing 10 is equal to the outer diameter D1 of the stator core 1. The outer diameter of each of the covers 3a and 3b is smaller than the inner diameter D3 of the housing 10. As described above, each of the covers 3 a and 3 b has an outer diameter D 2 smaller than the outer diameter D 1 of the stator core 1.
 従って固定子100は、カバー3a,3bのそれぞれ外周面とハウジング10の内周面との間に、隙間Gを有する。固定子100では、カバー3a,3bのそれぞれとハウジング10との間に、隙間Gが確実に形成される。そのためカバー3a,3bのそれぞれの外周面は、ハウジング10の内周面と非接触である。 Therefore, the stator 100 has a gap G between the outer peripheral surfaces of the covers 3 a and 3 b and the inner peripheral surface of the housing 10. In the stator 100, the gap G is reliably formed between each of the covers 3a and 3b and the housing 10. Therefore, the outer peripheral surfaces of the covers 3 a and 3 b are not in contact with the inner peripheral surface of the housing 10.
 焼き嵌めでハウジング10をカバー3a側から嵌め合わせる場合、固定子鉄心1とカバー3aは、ハウジング10の熱で膨張する。 When the housing 10 is fitted from the cover 3 a side by shrink fitting, the stator core 1 and the cover 3 a are expanded by the heat of the housing 10.
 このとき固定子鉄心1とカバー3aのそれぞれの外径D1,D2が拡大する。そのため、カバー3aの外径D2が拡大しても、カバーの外径D2は、ハウジング10の内径D3より小さい寸法を維持する。従って隙間Gが残る。また隙間Gにより、カバー3aがハウジング10に接触しないため、カバー3aの熱吸収量は、カバー3aが接触する固定子鉄心1の熱吸収量より低い。 At this time, the outer diameters D1 and D2 of the stator core 1 and the cover 3a are enlarged. Therefore, even if the outer diameter D2 of the cover 3a is enlarged, the outer diameter D2 of the cover maintains a size smaller than the inner diameter D3 of the housing 10. Therefore, the gap G remains. Moreover, since the cover 3a does not contact the housing 10 due to the gap G, the heat absorption amount of the cover 3a is lower than the heat absorption amount of the stator core 1 with which the cover 3a contacts.
 これにより、ハウジング10の嵌め込み途中で、ハウジング10が意図しない位置で止まることを防止できる。その結果、ハウジング10の嵌め込み作業性が向上し、固定子100の製造に伴う作業時間が短縮し、固定子100の製造コストを低減できる。 This makes it possible to prevent the housing 10 from stopping at an unintended position while the housing 10 is being fitted. As a result, the workability of fitting the housing 10 is improved, the working time for manufacturing the stator 100 is shortened, and the manufacturing cost of the stator 100 can be reduced.
 図6は図5に示す隙間とコイルエンドの温度との関係を示す図である。横軸はカバーとハウジングとの間の隙間の大きさを表し、縦軸はコイルエンドの温度を表す。図6では隙間Gが0μmのときコイルエンドで発生する熱の温度を100℃と仮定し、隙間Gが0μmから500μmまで変化したときのコイルエンドの温度を表す。 FIG. 6 is a diagram showing the relationship between the gap shown in FIG. 5 and the coil end temperature. The horizontal axis represents the size of the gap between the cover and the housing, and the vertical axis represents the temperature of the coil end. In FIG. 6, when the gap G is 0 μm, the temperature of heat generated at the coil end is assumed to be 100 ° C., and the temperature at the coil end when the gap G changes from 0 μm to 500 μm is shown.
 隙間Gが0μmから100μmまでのコイルエンドの温度変化量は2℃以上であり、隙間Gが100μmから500μまでのコイルエンドの温度変化量は1℃未満である。すなわち隙間Gが0μmから100μmの温度変化量は、隙間Gが100μmから500μまでの温度変化量よりも大きい。コイルエンドで発生した熱は、隙間Gが100μm未満のとき、隙間Gが100μm以上の場合に比べて、ハウジング10へ効果的に伝わることを示す。従って隙間Gは100μm未満が望ましい。 The temperature change amount of the coil end when the gap G is 0 μm to 100 μm is 2 ° C. or more, and the temperature change amount of the coil end when the gap G is 100 μm to 500 μm is less than 1 ° C. That is, the temperature change amount when the gap G is 0 μm to 100 μm is larger than the temperature change amount when the gap G is 100 μm to 500 μm. The heat generated at the coil end indicates that when the gap G is less than 100 μm, it is more effectively transmitted to the housing 10 than when the gap G is 100 μm or more. Accordingly, the gap G is desirably less than 100 μm.
 なお実施の形態1では、焼き嵌めで固定子鉄心1にハウジング10を嵌め込む場合の説明をしたが、冷やし嵌めの場合も同様の効果を得ることができる。冷やし嵌めの場合、予め冷却した固定子鉄心1にハウジング10を嵌め込む際、カバー3aが膨張し、その外径D2が拡大する。しかしカバー3aの外径D2が拡大しても、カバーの外径D2がハウジング10の内径D3より小さい寸法を維持する。従って隙間Gが残る。また隙間Gにより、カバー3aがハウジング10に接触しないため、カバー3aの熱吸収量は、カバー3aが接触する固定子鉄心1の熱吸収量より低い。これにより、ハウジング10の嵌め込み途中で、ハウジング10が意図しない位置で止まることを防止できる。その結果、ハウジング10の嵌め込み作業性が向上し、固定子100の製造に伴う作業時間が短縮し、固定子100の製造コストを低減できる。 In the first embodiment, the case where the housing 10 is fitted into the stator core 1 by shrink fitting has been described. However, the same effect can be obtained in the case of cold fitting. In the case of cold fitting, when the housing 10 is fitted into the stator core 1 cooled in advance, the cover 3a expands and its outer diameter D2 increases. However, even if the outer diameter D2 of the cover 3a is enlarged, the outer diameter D2 of the cover is kept smaller than the inner diameter D3 of the housing 10. Therefore, the gap G remains. Moreover, since the cover 3a does not contact the housing 10 due to the gap G, the heat absorption amount of the cover 3a is lower than the heat absorption amount of the stator core 1 with which the cover 3a contacts. Thereby, it is possible to prevent the housing 10 from stopping at an unintended position during the fitting of the housing 10. As a result, the workability of fitting the housing 10 is improved, the working time for manufacturing the stator 100 is shortened, and the manufacturing cost of the stator 100 can be reduced.
実施の形態2.
 図7は本発明の実施の形態2に係る電動機の固定子の断面図である。図7には実施の形態2に係る電動機の固定子の一端側が拡大して示される。図7に示す矢印は、電動機300-1の運転時におけるコイルエンド2aが一定の温度したときに、コイルエンド2aで発生した熱がハウジング10に伝わる経路を表す。点線a1は、コイルエンド2aが一定の温度に達する前のカバー3a-1の外郭を表わす。実線a2は、コイルエンド2aが一定の温度に達したときのカバー3a-1の外郭を表わす。隙間Gは、コイルエンド2aが一定の温度に達する前のカバー3a-1とハウジング10との間に生じる隙間である。
Embodiment 2. FIG.
FIG. 7 is a cross-sectional view of the stator of the electric motor according to Embodiment 2 of the present invention. FIG. 7 shows an enlarged view of one end side of the stator of the electric motor according to the second embodiment. An arrow shown in FIG. 7 represents a path through which heat generated in the coil end 2a is transmitted to the housing 10 when the coil end 2a is at a constant temperature during operation of the electric motor 300-1. A dotted line a1 represents the outline of the cover 3a-1 before the coil end 2a reaches a certain temperature. A solid line a2 represents the outline of the cover 3a-1 when the coil end 2a reaches a certain temperature. The gap G is a gap generated between the cover 3a-1 and the housing 10 before the coil end 2a reaches a certain temperature.
 実施の形態2の固定子は、実施の形態1のカバー3aの代わりに、カバー3a-1を備える。カバー3a-1は、固定子鉄心1の線膨張係数より大きい線膨張係数を有する材料で構成される。カバー3a-1の材料は、アルミニウム合金、オーステナイト系ステンレス合金、銅合金、または高熱伝導樹脂である。 The stator according to the second embodiment includes a cover 3a-1 instead of the cover 3a according to the first embodiment. The cover 3a-1 is made of a material having a linear expansion coefficient larger than that of the stator core 1. The material of the cover 3a-1 is an aluminum alloy, an austenitic stainless alloy, a copper alloy, or a high thermal conductive resin.
 アルミニウム合金としては押出用途に使用されるA6063、棒材等に使用されるA5056、オーステナイト系ステンレスとしてはSUS303、SUS304、銅合金としてはクロム銅、ベリリウム銅、高熱伝導樹脂としては、アルミナフィラーとCTBN(Carboxy-Terminated Butadiene-Nitrile)を混合したエポキシ樹脂が一例である。 A6063 used for extrusion as aluminum alloy, A5056 used for bar material, SUS303, SUS304 as austenitic stainless steel, chromium copper, beryllium copper as copper alloy, alumina filler and CTBN as high thermal conductive resin An example is an epoxy resin mixed with (Carboxy-Terminated Butadiene-Nitrile).
 電動機300-1が運転時のカバー3a-1の外径は、固定子鉄心1の外径と等しい大きさであり、ハウジング10の内径と等しい大きさである。また電動機300-1が運転時のカバー3a-1の外周面は、ハウジング10の内周面と接触する。 The outer diameter of the cover 3 a-1 when the electric motor 300-1 is in operation is the same size as the outer diameter of the stator core 1, and the same size as the inner diameter of the housing 10. Further, the outer peripheral surface of the cover 3 a-1 during operation of the electric motor 300-1 is in contact with the inner peripheral surface of the housing 10.
 以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。 Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted, and different parts are described here.
 電動機300-1の運転時にコイルエンド2aで発生した熱は、まずモールド樹脂部4aに伝わる。モールド樹脂部4aに伝わった熱は、カバー3a-1に伝わる。カバー3a-1に伝わった熱の一部は、カバー3a-1と固定子鉄心1との接触面を経由して固定子鉄心1に伝わる。 The heat generated in the coil end 2a during operation of the electric motor 300-1 is first transmitted to the mold resin portion 4a. The heat transferred to the mold resin portion 4a is transferred to the cover 3a-1. Part of the heat transferred to the cover 3a-1 is transferred to the stator core 1 through the contact surface between the cover 3a-1 and the stator core 1.
 コイルエンド2aで発生した熱により、固定子鉄心1とカバー3a-1の双方が膨張する。従って固定子鉄心1とカバー3a-1のそれぞれの外径D1,D2が拡大する。 Both the stator core 1 and the cover 3a-1 expand due to the heat generated at the coil end 2a. Accordingly, the outer diameters D1 and D2 of the stator core 1 and the cover 3a-1 are enlarged.
 前述したようにカバー3a-1は、固定子鉄心1の線膨張係数より大きい線膨張係数を有する材料で構成されている。コイルエンド2aが一定の温度に達する前のカバー3a-1の外周面は、点線a1で示すように、ハウジング10の内周面と非接触である。ところがコイルエンド2aが一定の温度に達したときのカバー3a-1の外周面は、実線a2で示すように、ハウジング10の内周面と接触する。 As described above, the cover 3a-1 is made of a material having a linear expansion coefficient larger than that of the stator core 1. The outer peripheral surface of the cover 3a-1 before the coil end 2a reaches a certain temperature is not in contact with the inner peripheral surface of the housing 10, as indicated by a dotted line a1. However, the outer peripheral surface of the cover 3a-1 when the coil end 2a reaches a certain temperature is in contact with the inner peripheral surface of the housing 10, as indicated by a solid line a2.
 電動機300-1の運転時にコイルエンド2aで発生した熱は、まずモールド樹脂部4aに伝わる。モールド樹脂部4aに伝わった熱は、カバー3a-1に伝わる。 The heat generated in the coil end 2a during operation of the electric motor 300-1 is first transmitted to the mold resin portion 4a. The heat transferred to the mold resin portion 4a is transferred to the cover 3a-1.
 カバー3a-1に伝わった熱の一部は、カバー3a-1と固定子鉄心1との接触面を経由して固定子鉄心1に伝わる。固定子鉄心1に伝わった熱は、固定子鉄心1の外周面からハウジング10に伝わり、ハウジング10の表面から放出される。 Part of the heat transferred to the cover 3a-1 is transferred to the stator core 1 via the contact surface between the cover 3a-1 and the stator core 1. The heat transmitted to the stator core 1 is transmitted from the outer peripheral surface of the stator core 1 to the housing 10 and is released from the surface of the housing 10.
 またカバー3a-1に伝わった熱の一部は、カバー3a-1とハウジング10の接触面を経由してハウジング10に伝わる。ハウジング10に伝わった熱は、ハウジング10の表面から放出される。 Further, part of the heat transmitted to the cover 3 a-1 is transmitted to the housing 10 via the contact surface between the cover 3 a-1 and the housing 10. The heat transmitted to the housing 10 is released from the surface of the housing 10.
 実施の形態2の電動機300-1では、カバー3a-1が膨張してハウジング10に接触する。そのため、カバー3a-1からハウジング10へ伝わる熱量が相対的に高まる。その結果、ハウジング10から外部への熱の放出量が向上し、コイルエンド2aの冷却効率が向上する。 In the electric motor 300-1 of the second embodiment, the cover 3a-1 expands and contacts the housing 10. Therefore, the amount of heat transferred from the cover 3a-1 to the housing 10 is relatively increased. As a result, the amount of heat released from the housing 10 to the outside is improved, and the cooling efficiency of the coil end 2a is improved.
 図1、2に示すカバー3bは、実施の形態2のカバー3a-1と同様の材料で構成してもよい。これにより、カバー3bからハウジング10へ伝わる熱量が相対的に高まり、コイルエンド2bの冷却効率が向上する。 The cover 3b shown in FIGS. 1 and 2 may be made of the same material as the cover 3a-1 of the second embodiment. Thereby, the amount of heat transmitted from the cover 3b to the housing 10 is relatively increased, and the cooling efficiency of the coil end 2b is improved.
実施の形態3.
 図8は本発明の実施の形態3に係る電動機の固定子の断面図である。図8には実施の形態3に係る電動機の固定子の一端側が拡大して示される。図8に示す矢印は、電動機300-2の運転時におけるコイルエンド2aが一定の温度したときに、コイルエンド2aで発生した熱がハウジング10に伝わる経路を表す。点線a3は、コイルエンド2aが一定の温度に達する前のカバー3a-2の外郭を表す。実線a4は、コイルエンド2aが一定の温度に達したときのカバー3a-2の外郭を表わす。隙間Gは、コイルエンド2aが一定の温度に達する前のカバー3a-2とハウジング10との間に生じる隙間である。
Embodiment 3 FIG.
FIG. 8 is a sectional view of the stator of the electric motor according to Embodiment 3 of the present invention. FIG. 8 is an enlarged view of one end side of the stator of the electric motor according to the third embodiment. An arrow shown in FIG. 8 represents a path through which heat generated in the coil end 2a is transmitted to the housing 10 when the coil end 2a is at a constant temperature during operation of the electric motor 300-2. A dotted line a3 represents the outline of the cover 3a-2 before the coil end 2a reaches a certain temperature. A solid line a4 represents the outline of the cover 3a-2 when the coil end 2a reaches a certain temperature. The gap G is a gap generated between the cover 3a-2 and the housing 10 before the coil end 2a reaches a certain temperature.
 実施の形態3の固定子は、実施の形態1のカバー3aの代わりにカバー3a-2を用いる。カバー3a-2は、固定子鉄心1の線膨張係数以下の線膨張係数を有する材料で構成される。カバー3a-2の材料は、鋳鉄、鋼または鉄合金である。 The stator of Embodiment 3 uses a cover 3a-2 instead of the cover 3a of Embodiment 1. The cover 3a-2 is made of a material having a linear expansion coefficient equal to or smaller than the linear expansion coefficient of the stator core 1. The material of the cover 3a-2 is cast iron, steel, or iron alloy.
 鋳鉄としてはFC200等のねずみ鋳鉄、FCD400等の球状黒鉛鋳鉄、鋼としては、SC450等の炭素鋼、STKM等の機械構造用炭素鋼管材、鉄合金としてはSCM等のクロムモリブデン鋼が一例である。 Examples of cast iron include gray cast iron such as FC200, spheroidal graphite cast iron such as FCD400, steel as carbon steel such as SC450, carbon steel pipe material for mechanical structure such as STKM, and iron alloy such as chromium molybdenum steel such as SCM. .
 電動機300-2の運転時におけるカバー3a-2の外径は、固定子鉄心1の外径より小さい大きさであり、またハウジング10の内径より小さい大きさである。また電動機300-2の運転時のカバー3a-2の外周面は、ハウジング10の内周面と非接触である。 The outer diameter of the cover 3 a-2 during operation of the electric motor 300-2 is smaller than the outer diameter of the stator core 1 and smaller than the inner diameter of the housing 10. Further, the outer peripheral surface of the cover 3 a-2 during operation of the electric motor 300-2 is not in contact with the inner peripheral surface of the housing 10.
 以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。 Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted, and different parts are described here.
 電動機300-2の運転時にコイルエンド2aで発生した熱は、まずモールド樹脂部4aに伝わる。モールド樹脂部4aに伝わった熱は、カバー3a-2に伝わる。カバー3a-2に伝わった熱の一部は、カバー3a-2と固定子鉄心1との接触面を経由して固定子鉄心1に伝わる。 The heat generated in the coil end 2a during operation of the electric motor 300-2 is first transmitted to the mold resin portion 4a. The heat transferred to the mold resin portion 4a is transferred to the cover 3a-2. Part of the heat transferred to the cover 3a-2 is transferred to the stator core 1 through the contact surface between the cover 3a-2 and the stator core 1.
 コイルエンド2aで発生した熱により、固定子鉄心1とカバー3a-2の双方が膨張する。従って固定子鉄心1とカバー3a-2のそれぞれの外径D1,D2が拡大する。ところがカバー3a-2は、固定子鉄心1の線膨張係数以下の線膨張係数を有する材料で構成されている。そのため、カバー3a-2の外径D2が拡大しても、カバーの外径D2は、ハウジング10の内径D3より小さい寸法を維持する。 Both the stator core 1 and the cover 3a-2 expand due to the heat generated at the coil end 2a. Accordingly, the outer diameters D1 and D2 of the stator core 1 and the cover 3a-2 are enlarged. However, the cover 3a-2 is made of a material having a linear expansion coefficient equal to or smaller than the linear expansion coefficient of the stator core 1. Therefore, even if the outer diameter D2 of the cover 3a-2 is enlarged, the outer diameter D2 of the cover maintains a dimension smaller than the inner diameter D3 of the housing 10.
 従って、コイルエンド2aが一定の温度に達する前のカバー3a-2の外周面は、点線a3で示すように、ハウジング10の内周面と非接触である。 Therefore, the outer peripheral surface of the cover 3a-2 before the coil end 2a reaches a certain temperature is not in contact with the inner peripheral surface of the housing 10, as indicated by a dotted line a3.
 またコイルエンド2aが一定の温度に達したときのカバー3a-2の外周面は、実線a4で示すように、ハウジング10の内周面と非接触である。このときカバー3a-2は、ハウジング10と接触しないため、カバー3a-2とハウジング10との締め代による圧縮応力が、モールド樹脂部4aに作用しない。従って圧縮応力が作用することによるモールド樹脂部4aのクラックの発生が抑制される。その結果、モールド樹脂部4aの一部が電動機内部に脱落することが抑制され、電動機300-2の品質が向上する。 Further, the outer peripheral surface of the cover 3a-2 when the coil end 2a reaches a certain temperature is not in contact with the inner peripheral surface of the housing 10, as indicated by a solid line a4. At this time, since the cover 3a-2 does not come into contact with the housing 10, the compressive stress due to the interference between the cover 3a-2 and the housing 10 does not act on the mold resin portion 4a. Therefore, the occurrence of cracks in the mold resin portion 4a due to the action of compressive stress is suppressed. As a result, a part of the mold resin portion 4a is prevented from dropping into the electric motor, and the quality of the electric motor 300-2 is improved.
 固定子鉄心1に伝わった熱は、固定子鉄心1の外周面からハウジング10に伝わり、ハウジング10の表面から放出される。 The heat transmitted to the stator core 1 is transmitted from the outer peripheral surface of the stator core 1 to the housing 10 and released from the surface of the housing 10.
 カバー3a-2に伝わった熱の一部は、カバー3a-2の外周面とハウジング10との隙間Gへ放出される。隙間Gに放出された熱は、ハウジング10の内周面からハウジング10に伝わり、ハウジング10の表面から放出される。 Part of the heat transferred to the cover 3a-2 is released to the gap G between the outer peripheral surface of the cover 3a-2 and the housing 10. The heat released to the gap G is transmitted from the inner peripheral surface of the housing 10 to the housing 10 and is released from the surface of the housing 10.
 また実施の形態3の電動機300-2では、モールド樹脂部4aのクラックの発生を防止するための材料、すなわち圧縮応力に耐えうる高価な樹脂を用いる必要がない。その結果、固定子の製造コストが低減できる。 In the electric motor 300-2 of the third embodiment, it is not necessary to use a material for preventing the occurrence of cracks in the mold resin portion 4a, that is, an expensive resin that can withstand compressive stress. As a result, the manufacturing cost of the stator can be reduced.
 図1,2に示すカバー3bは、実施の形態3のカバー3a-2と同様の材料で構成してもよい。これにより、モールド樹脂部4bのクラックの発生が抑えられ、電動機300-2の品質が向上する。 The cover 3b shown in FIGS. 1 and 2 may be made of the same material as the cover 3a-2 of the third embodiment. Thereby, the occurrence of cracks in the mold resin portion 4b is suppressed, and the quality of the electric motor 300-2 is improved.
 実施の形態1から3では、カバーを加工して、カバーの外径を固定子鉄心1の外径より小さくする例を説明した。ところがカバーの加工時に、カバーを加工するための工作機械の先端部が固定子鉄心1に接触する可能性がある。工作機械の先端部が固定子鉄心1に接触するとカバーの加工性が悪くなり、カバーの寸法精度の確保が難しくなる。このような問題を解消するための固定子の変形例を図9、10に示す。 In the first to third embodiments, the example in which the cover is processed so that the outer diameter of the cover is smaller than the outer diameter of the stator core 1 has been described. However, when processing the cover, the tip of the machine tool for processing the cover may come into contact with the stator core 1. When the tip of the machine tool comes into contact with the stator core 1, the processability of the cover is deteriorated, and it is difficult to ensure the dimensional accuracy of the cover. A modification of the stator for solving such a problem is shown in FIGS.
 図9は本発明の実施の形態1から3に係る固定子の第1の変形例を示す断面図である。図9には固定子の一端側が拡大して示される。 FIG. 9 is a cross-sectional view showing a first modification of the stator according to Embodiments 1 to 3 of the present invention. FIG. 9 is an enlarged view of one end side of the stator.
 図9に示す固定子は、実施の形態1から3の固定子鉄心1の代わりに固定子鉄心1-1を備える。固定子鉄心1-1は、カバー3a側の一端部1cの外径が、予めカバー3aの外径D2と等しい大きさに形成されている。隙間Gは、外径を調整した後のカバー3aとハウジング10との間に生じる隙間である。 The stator shown in FIG. 9 includes a stator core 1-1 instead of the stator core 1 of the first to third embodiments. In the stator core 1-1, the outer diameter of the one end 1c on the cover 3a side is formed in advance so as to be equal to the outer diameter D2 of the cover 3a. The gap G is a gap generated between the cover 3a and the housing 10 after adjusting the outer diameter.
 固定子鉄心1-1の一端部1cを予め加工することで、固定子鉄心1-1に取付けたカバー3aの外径を調整する際、工作機械の先端が固定子鉄心1-1の一端部1cに接触することを防止できる。その結果、カバー3aの外形の寸法精度が向上し、ハウジング10の嵌め込み作業性がより一層向上する。 When the outer diameter of the cover 3a attached to the stator core 1-1 is adjusted by pre-processing the one end 1c of the stator core 1-1, the tip of the machine tool is one end of the stator core 1-1. It can prevent contacting 1c. As a result, the dimensional accuracy of the outer shape of the cover 3a is improved, and the fitting workability of the housing 10 is further improved.
 図9に示す固定子鉄心1-1は、実施の形態2,3のカバーと組み合わせることも可能である。固定子鉄心1-1に実施の形態2,3のカバーを組み合わせることで、実施の形態2、3の効果に加えて、ハウジング10の嵌め込み作業性がより一層向上するという効果が得られる。 The stator core 1-1 shown in FIG. 9 can be combined with the covers of the second and third embodiments. By combining the cover of the second and third embodiments with the stator core 1-1, in addition to the effects of the second and third embodiments, the effect of further improving the fitting workability of the housing 10 can be obtained.
 図10は本発明の実施の形態1から3に係る固定子の第2の変形例を示す断面図である。図10には固定子の一端側が拡大して示される。 FIG. 10 is a cross-sectional view showing a second modification of the stator according to Embodiments 1 to 3 of the present invention. FIG. 10 is an enlarged view of one end side of the stator.
 図10に示す固定子は、実施の形態1から3のカバー3a,3a-1,3a-2の代わりにカバー3a-3を備える。また図10に示す固定子は、実施の形態1から3の固定子鉄心1の代わりに固定子鉄心1-2を備える。隙間Gは、外径を調整した後のカバー3a-3とハウジング10との間に生じる隙間である。 The stator shown in FIG. 10 includes a cover 3a-3 instead of the covers 3a, 3a-1, 3a-2 of the first to third embodiments. Further, the stator shown in FIG. 10 includes a stator core 1-2 instead of the stator core 1 of the first to third embodiments. The gap G is a gap generated between the cover 3a-3 and the housing 10 after adjusting the outer diameter.
 カバー3a-3は、固定子鉄心1-2側の第1の端部31の外径が、固定子鉄心1-2側とは反対側の第2の端部32の外径よりも小さい。第1の端部31の外径は、予め第2の端部32の外径よりも小さく形成されているものとする。 In the cover 3a-3, the outer diameter of the first end portion 31 on the stator core 1-2 side is smaller than the outer diameter of the second end portion 32 on the opposite side to the stator core 1-2 side. It is assumed that the outer diameter of the first end portion 31 is formed in advance smaller than the outer diameter of the second end portion 32.
 固定子鉄心1-2は、カバー3a-3側の一端部41の外径が、カバー3a-3の第1の端部31の外径と等しい。一端部41の外径は、予め第1の端部31の外径と等しい大きさに形成されているものとする。 In the stator core 1-2, the outer diameter of the one end 41 on the cover 3a-3 side is equal to the outer diameter of the first end 31 of the cover 3a-3. It is assumed that the outer diameter of the one end portion 41 is formed in advance to be equal to the outer diameter of the first end portion 31.
 固定子鉄心1-2とカバー3a-3を組み合わせることにより、カバー3a-3と固定子鉄心1-2との境界部に溝部50が形成される。 By combining the stator core 1-2 and the cover 3a-3, a groove 50 is formed at the boundary between the cover 3a-3 and the stator core 1-2.
 固定子鉄心1-2に取付けられたカバー3a-3の外径を調整する際、溝部50により、工作機械の先端が固定子鉄心1-2の一端部41に接触することを防止できる。その結果、カバー3a-3の外形の寸法精度が向上し、ハウジング10の嵌め込み作業性がより一層向上する。 When adjusting the outer diameter of the cover 3a-3 attached to the stator core 1-2, the groove portion 50 can prevent the tip of the machine tool from coming into contact with the one end portion 41 of the stator core 1-2. As a result, the dimensional accuracy of the outer shape of the cover 3a-3 is improved, and the workability of fitting the housing 10 is further improved.
 また実施の形態1から3の固定子鉄心は、電磁鋼板を複数枚積層したものに限定されない。固定子鉄心は、鋼材を円筒状に加工した一体型鉄心、樹脂および鉄粉を混ぜたものを固めた樹脂鉄心、または磁性粉を加圧成形した圧粉鉄心でもよい。固定子鉄心の種類は目的および用途によって使い分けられる。 Further, the stator cores of the first to third embodiments are not limited to those obtained by laminating a plurality of electromagnetic steel sheets. The stator core may be an integral core obtained by processing a steel material into a cylindrical shape, a resin core obtained by solidifying a mixture of resin and iron powder, or a dust core obtained by pressing magnetic powder. The type of the stator core is properly used depending on the purpose and application.
 また実施の形態1から3のカバーは、回転子鉄心側から反回転子鉄心側に外径が縮径するすり鉢状でもよい。この形状により固定子鉄心1にハウジング10を嵌め合わせる作業が容易になる。 Further, the cover of the first to third embodiments may be a mortar shape whose outer diameter is reduced from the rotor core side to the anti-rotor core side. This shape facilitates the operation of fitting the housing 10 to the stator core 1.
 また実施の形態1から3の回転子200は誘導電動機用の回転子でもよいし、同期電動機用の回転子でもよい。 Further, the rotor 200 of the first to third embodiments may be a rotor for an induction motor or a rotor for a synchronous motor.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1-1,1-2 固定子鉄心、1a 一端面、1b 他端面、1c 一端部、2 コイル、2a,2b コイルエンド、3a,3a-1,3a-2,3a-3,3b カバー、4,4a,4b モールド樹脂部、5 回転子鉄心、6 アルミニウム導体、10 ハウジング、11 中空孔、12 スロット、20 リード線、31 第1の端部、32 第2の端部、41 一端部、50 溝部、100 固定子、200 回転子、300,300-1,300-2 電動機。 1,1-1,1-2 Stator core, 1a one end surface, 1b other end surface, 1c one end, 2 coils, 2a, 2b coil end, 3a, 3a-1, 3a-2, 3a-3, 3b cover 4, 4a, 4b, mold resin part, 5 rotor core, 6 aluminum conductor, 10 housing, 11 hollow hole, 12 slot, 20 lead wire, 31 first end, 32 second end, 41 one end , 50 grooves, 100 stators, 200 rotors, 300, 300-1, 300-2 electric motors.

Claims (5)

  1.  環状の固定子鉄心と、
     前記固定子鉄心の内側に配置される回転子と、
     前記固定子鉄心の周方向に配列された複数のコイルと、
     前記固定子鉄心の軸方向の端面に配置され、前記固定子鉄心の軸方向の端面から突出する前記複数のコイルのコイルエンドを包囲する筒状のカバーと、
     前記複数のコイルのコイルエンドのそれぞれと前記カバーとの間に配置された熱伝導性樹脂部と、
     前記カバーの径方向外側に配置されると共に、前記固定子鉄心の径方向外側に配置された筒状のハウジングと、
     を備え、
     前記カバーの外径は、前記ハウジングの内径よりも小さく、
     前記カバーの外周面は、前記ハウジングの内周面と非接触であることを特徴とする電動機。
    An annular stator core,
    A rotor disposed inside the stator core;
    A plurality of coils arranged in a circumferential direction of the stator core;
    A cylindrical cover disposed on the axial end surface of the stator core and surrounding the coil ends of the plurality of coils protruding from the axial end surface of the stator core;
    A thermally conductive resin portion disposed between each of the coil ends of the plurality of coils and the cover;
    A cylindrical housing disposed on the radially outer side of the cover and disposed on the radially outer side of the stator core; and
    With
    The outer diameter of the cover is smaller than the inner diameter of the housing,
    The electric motor according to claim 1, wherein an outer peripheral surface of the cover is not in contact with an inner peripheral surface of the housing.
  2.  前記カバーは、前記固定子鉄心の線膨張係数より大きい線膨張係数を有する材料で構成され、
     電動機が運転時の前記カバーの外径は、前記ハウジングの内径と等しい大きさであり、
     電動機が運転時の前記カバーの外周面は、前記ハウジングの内周面に接することを特徴とする請求項1に記載の電動機。
    The cover is made of a material having a linear expansion coefficient larger than that of the stator core,
    The outer diameter of the cover when the motor is in operation is equal to the inner diameter of the housing,
    The electric motor according to claim 1, wherein an outer peripheral surface of the cover is in contact with an inner peripheral surface of the housing when the electric motor is in operation.
  3.  前記カバーの材料は、アルミニウム合金、オーステナイト系ステンレス合金、銅合金、または高熱伝導樹脂であることを特徴とする請求項2に記載の電動機。 3. The electric motor according to claim 2, wherein the material of the cover is an aluminum alloy, an austenitic stainless alloy, a copper alloy, or a high thermal conductive resin.
  4.  前記カバーは、前記固定子鉄心の線膨張係数以下の線膨張係数を有する材料で構成され、
     電動機が運転時の前記カバーの外径は、前記ハウジングの内径より小さく、
     電動機が運転時の前記カバーの外周面は、前記ハウジングの内周面と非接触であることを特徴とする請求項1に記載の電動機。
    The cover is made of a material having a linear expansion coefficient equal to or lower than the linear expansion coefficient of the stator core,
    The outer diameter of the cover when the electric motor is in operation is smaller than the inner diameter of the housing,
    2. The electric motor according to claim 1, wherein an outer peripheral surface of the cover when the electric motor is in operation is not in contact with an inner peripheral surface of the housing.
  5.  前記カバーの材料は、鋳鉄、鋼または鉄合金であることを特徴とする請求項4に記載の電動機。 5. The electric motor according to claim 4, wherein the material of the cover is cast iron, steel, or iron alloy.
PCT/JP2015/077370 2015-09-28 2015-09-28 Electric motor WO2017056163A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/077370 WO2017056163A1 (en) 2015-09-28 2015-09-28 Electric motor
DE112015006790.6T DE112015006790T5 (en) 2015-09-28 2015-09-28 electric motor
JP2016516630A JP5972502B1 (en) 2015-09-28 2015-09-28 Electric motor
CN201580083376.6A CN108141065A (en) 2015-09-28 2015-09-28 Motor
KR1020187007604A KR101905370B1 (en) 2015-09-28 2015-09-28 Electric motor
TW105108071A TWI609559B (en) 2015-09-28 2016-03-16 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077370 WO2017056163A1 (en) 2015-09-28 2015-09-28 Electric motor

Publications (1)

Publication Number Publication Date
WO2017056163A1 true WO2017056163A1 (en) 2017-04-06

Family

ID=56701710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077370 WO2017056163A1 (en) 2015-09-28 2015-09-28 Electric motor

Country Status (6)

Country Link
JP (1) JP5972502B1 (en)
KR (1) KR101905370B1 (en)
CN (1) CN108141065A (en)
DE (1) DE112015006790T5 (en)
TW (1) TWI609559B (en)
WO (1) WO2017056163A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358872A1 (en) * 2017-06-12 2018-12-13 Fanuc Corporation Motor and method for manufacturing the same
JP2022028037A (en) * 2019-01-25 2022-02-14 ファナック株式会社 Electric motor with improved heat dissipation and productivity and method of manufacturing the same
WO2023188434A1 (en) * 2022-04-01 2023-10-05 三菱電機株式会社 Stator and electric motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085860A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Electric motor
US11190076B2 (en) 2016-11-28 2021-11-30 Panasonic Inteliectual Property Management Co., Ltd. Motor
CN110383643B (en) * 2017-02-28 2021-04-02 松下知识产权经营株式会社 Molded motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54183602U (en) * 1978-06-16 1979-12-26
JPH1051989A (en) * 1996-08-02 1998-02-20 Sanyo Denki Co Ltd Mold type motor
JP2013066314A (en) * 2011-09-19 2013-04-11 Nippon Densan Corp Motor and manufacturing method of the same
JP2014110716A (en) * 2012-12-04 2014-06-12 Fanuc Ltd Stator for electric motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591683B2 (en) 1979-06-29 1984-01-13 株式会社 保谷硝子 artificial teeth
JP2667073B2 (en) * 1991-10-22 1997-10-22 株式会社東芝 Slotless motor
JP2011135627A (en) * 2009-12-22 2011-07-07 Nippon Densan Corp Motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54183602U (en) * 1978-06-16 1979-12-26
JPH1051989A (en) * 1996-08-02 1998-02-20 Sanyo Denki Co Ltd Mold type motor
JP2013066314A (en) * 2011-09-19 2013-04-11 Nippon Densan Corp Motor and manufacturing method of the same
JP2014110716A (en) * 2012-12-04 2014-06-12 Fanuc Ltd Stator for electric motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358872A1 (en) * 2017-06-12 2018-12-13 Fanuc Corporation Motor and method for manufacturing the same
CN109038907A (en) * 2017-06-12 2018-12-18 发那科株式会社 Motor and its manufacturing method
JP2019004540A (en) * 2017-06-12 2019-01-10 ファナック株式会社 Motor and production method thereof
US10727723B2 (en) 2017-06-12 2020-07-28 Fanuc Corporation Motor and method for manufacturing the same
CN109038907B (en) * 2017-06-12 2021-06-08 发那科株式会社 Motor and method for manufacturing the same
JP2022028037A (en) * 2019-01-25 2022-02-14 ファナック株式会社 Electric motor with improved heat dissipation and productivity and method of manufacturing the same
JP7208350B2 (en) 2019-01-25 2023-01-18 ファナック株式会社 Electric motor with improved heat dissipation and productivity, and method for manufacturing the same
WO2023188434A1 (en) * 2022-04-01 2023-10-05 三菱電機株式会社 Stator and electric motor

Also Published As

Publication number Publication date
DE112015006790T5 (en) 2018-04-26
TWI609559B (en) 2017-12-21
CN108141065A (en) 2018-06-08
JP5972502B1 (en) 2016-08-17
KR20180032661A (en) 2018-03-30
KR101905370B1 (en) 2018-10-05
TW201713013A (en) 2017-04-01
JPWO2017056163A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5972502B1 (en) Electric motor
JP6087477B1 (en) Electric motor
US9300179B2 (en) Electric rotating machine
JP4457785B2 (en) Stator structure of disk type rotating electrical machine
JP2014110716A (en) Stator for electric motor
US11205935B2 (en) Axial gap dynamo-electric machine
CN102150350A (en) Apparatus and manufacturing process for an electrical machine
KR101958133B1 (en) Induction motor rotor and induction motor
JP2007244065A (en) Stator structure of concentrated winding motor
JP4701921B2 (en) Stator structure of axial gap type rotating electrical machine
JP2007104877A (en) Stator for dynamo-electric machine
JP5665362B2 (en) Rotating electric machine
US11303168B2 (en) Rotor of rotary electric machine
JP5915096B2 (en) Rotating electric machine
WO2023188434A1 (en) Stator and electric motor
CN101371417B (en) Rotary motor core, and rotary motor
WO2021166976A1 (en) Stator split bodies, stator, and motor
WO2023281898A1 (en) Rotating electric machine
JP7135786B2 (en) Stator, magnetic bearing, rotating machine
JP2010220427A (en) Toroidal winding motor
JP2009268168A (en) Motor and method of manufacturing the same
JP2011087340A (en) Lundell type rotor
JP2009201236A (en) Electric motor and method for fixing stator of the electric motor
JP2008312366A (en) Rotating electric machine and its core
JP2018207729A (en) Motor and method of cooling coil end of motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016516630

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015006790

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20187007604

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15905318

Country of ref document: EP

Kind code of ref document: A1