WO2017054596A1 - 空压机驱动智能节能一体机及其方法 - Google Patents

空压机驱动智能节能一体机及其方法 Download PDF

Info

Publication number
WO2017054596A1
WO2017054596A1 PCT/CN2016/096815 CN2016096815W WO2017054596A1 WO 2017054596 A1 WO2017054596 A1 WO 2017054596A1 CN 2016096815 W CN2016096815 W CN 2016096815W WO 2017054596 A1 WO2017054596 A1 WO 2017054596A1
Authority
WO
WIPO (PCT)
Prior art keywords
air compressor
module
temperature
energy
pressure
Prior art date
Application number
PCT/CN2016/096815
Other languages
English (en)
French (fr)
Inventor
卞光辉
Original Assignee
苏州艾克威尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾克威尔科技有限公司 filed Critical 苏州艾克威尔科技有限公司
Publication of WO2017054596A1 publication Critical patent/WO2017054596A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation

Definitions

  • the invention belongs to the technical field of air compressors, and particularly relates to an air compressor driving intelligent energy-saving integrated machine and a method thereof.
  • Intelligent soft starters are widely used.
  • the intelligent soft starter is a novel motor control device that combines soft start, soft stop, light load energy saving and multi-function protection, also known as SoftStarter. It not only realizes the starter motor without impact and smoothness during the whole starting process, but also adjusts the parameters during the starting process according to the characteristics of the motor load, such as the current limit value and the starting time. In addition, it also has a variety of motor protection functions, which fundamentally solves many of the drawbacks of traditional step-down starting devices.
  • the existing soft starter does not have a control function for the fan.
  • the utility model uses a power frequency driven air compressor main engine and an oil cooling fan to store compressed gas in the gas storage tank, and controls the loading and unloading by detecting the gas pressure of the pipeline; using a larger gas storage tank, thereby causing the entire air compressor Large area;
  • the loading and unloading control mode When the air pressure of the pipeline reaches the target value, the loading and unloading control mode must continue to increase the pressure to the unloading pressure. During this period, the main engine needs to be continuously pressurized, even after the unloading, the host is still in the no-load operation state. Waste energy
  • the main motor is started by Y- ⁇ (star-delta), the starting current is large, and the impact on the power grid is large, which is easy to cause the grid to be unstable, and threaten the operation safety of other electrical equipment;
  • Air compressor is the basic product of industrial modernization. It is said that electrical and automation have the meaning of full aerodynamics; air compressor is the main source of electromechanical air source device for pneumatic equipment. It is a device that converts the mechanical energy of a motive (usually an electric motor) into gas pressure energy, and is a pneumatic generating device for compressed air.
  • the object of the present invention is to provide an air compressor driving intelligent energy-saving integrated machine and a method thereof, a soft start integrated machine including multiple soft start functions and a starting method thereof, an adaptive energy saving method based on load characteristics of an air compressor, and remote monitoring
  • the air compressor intelligent control device, the air compressor energy consumption monitoring management system and its monitoring method is avoided, but the control function of the fan is not provided, the starting current is large, the impact on the power grid is large, and the grid is unstable, and the operation safety of other electrical equipment is threatened, and the waste of electric energy is caused by long-term work.
  • the present invention provides a solution for an air compressor driving intelligent energy-saving integrated machine and a method thereof, as follows:
  • An air compressor driving intelligent energy-saving integrated machine comprising a power module
  • the power module is the same as the MCU micro control module, the communication module, the host drive module, the No. 1 logic control module, the No. 2 logic control module, the No. 1 fan drive module And the No. 2 fan drive module is connected, the MCU micro control module is connected with the communication module, the host drive module, the No. 1 logic control module, the No. 2 logic control module, the No. 1 fan drive module, and the No. 2 fan drive module;
  • the utility model also comprises an air compressor intelligent control device which can be remotely monitored, which comprises a user terminal, wherein the user terminal is connected with a cloud platform, and the cloud platform is connected to an Ethernet network through a remote communication network, and the Ethernet is the same An I/O interface, a driver module, and a terminal with a human-machine interface;
  • the remote communication network includes an optical fiber, a wired, a wireless 3G or 4G communication network;
  • the utility model also comprises an air compressor energy consumption monitoring management system, which comprises a current transformer and a voltage collecting module connected in series in the circuit main circuit of the air compressor, and further comprises a pressure collecting analog terminal arranged on the air compressor.
  • an air compressor energy consumption monitoring management system which comprises a current transformer and a voltage collecting module connected in series in the circuit main circuit of the air compressor, and further comprises a pressure collecting analog terminal arranged on the air compressor.
  • the host driving module adopts a thyristor anti-parallel structure to realize driving, and is controlled by an MCU micro control module.
  • the fan drive module adopts a thyristor reverse parallel structure, and the MCU micro control module is shared to realize logic independent control; thereby, the fans are independently driven and logically controlled.
  • the method for driving the intelligent energy-saving integrated machine by the air compressor is to first perform power-on loading on the air compressor driven intelligent energy-saving integrated machine. If the temperature is greater than the lower limit of the set value 1, the motor temperature, the head temperature and the exhaust temperature are automatically detected. Then, start the No. 1 fan, and if the temperature is greater than the lower limit of the set value 2, start the No. 2 fan;
  • No-load delay time of energy-saving mode T K1 internal coefficient [(power component temperature-ambient temperature) K2+ (head temperature-ambient temperature) K3+ (motor temperature-ambient temperature) K4], where K1 is the first Internal coefficient, K2 is the second internal coefficient, K3 is the third internal coefficient, and K4 is the fourth internal coefficient;
  • the system enters the no-load stop within the no-load delay time T, that is, the energy-saving shutdown, such as the customer re-using the gas.
  • the air compressor is turned into a loading operation;
  • the current, voltage and pressure values are collected in real time and passed.
  • T is the period of the alternating current signal
  • u(t) is the instantaneous voltage at time t
  • i(t) is the instantaneous current at time t
  • W ⁇ P ⁇ t*cos ⁇
  • the loading pressure is a loading pressure set by the function code; the method can be manually controlled or automatically controlled.
  • the soft starter of the invention realizes the control function for the wind turbine; the special method of the air compressor, according to the pressure use interval, intelligent identification, stop energy saving, maximally save electric energy; more soft and integrated, the main machine and the fan adopt soft start, And independent control, energy saving, protection of the motor; monitoring of changes in gas consumption, and power consumption, compared with the calculation of electricity in non-energy-saving mode, you can see the power saving effect at a glance; compact structure design, integration more.
  • the present invention also implements a monitoring system and method for energy consumption of an air compressor.
  • Figure 1 is a structural view of an all-in-one machine of the present invention.
  • FIG. 3 is a flow chart of an adaptive energy saving method based on air compressor load characteristics of the present invention.
  • Figure 5 is a graph of the method of the frequency converter of the present invention.
  • FIG. 6 is a graph of an embodiment of an adaptive energy saving method based on air compressor load characteristics of the present invention.
  • FIG. 7 is a schematic structural view of an air compressor intelligent control device capable of remote monitoring according to the present invention.
  • FIG. 8 is a schematic structural diagram of a monitoring system for energy consumption of an air compressor according to the present invention.
  • the air compressor drives an intelligent energy-saving integrated machine, including a power module
  • the power module is the same as the MCU micro control module, the communication module, the host drive module, the No. 1 logic control module, and the No. 2 logic control.
  • the module, the No. 1 fan drive module and the No. 2 fan drive module are connected, and the MCU micro control module is the same as the communication module, the host drive module, the No. 1 logic control module, the No. 2 logic control module, the No. 1 fan drive module, and 2
  • the fan drive module is connected; further comprising an air compressor intelligent control device capable of remote monitoring, wherein the user terminal is connected, the user terminal is connected to the cloud platform, and the cloud platform is connected to the Ethernet through a remote communication network.
  • the Ethernet is connected to an I/O interface, a driver module, and a terminal with a human-machine interface;
  • the remote communication network includes an optical fiber, a wired, a wireless 3G or a 4G communication network, and can be remotely transmitted through a remote communication network.
  • On the user terminal send various control commands to send commands to the I/O interface or the driver module, thereby only requiring access on the I/O interface or the driver module. Press the corresponding monitoring can be achieved.
  • the host driving module adopts a thyristor anti-parallel structure to realize driving, and is controlled by an MCU micro control module.
  • the fan drive module adopts a thyristor reverse parallel structure, and the MCU micro control module is shared to realize logic independent control; thereby, the fans are independently driven and logically controlled.
  • the method for driving the intelligent energy-saving integrated machine by the air compressor is to first perform power-on loading on the air compressor driven intelligent energy-saving integrated machine. If the temperature is greater than the lower limit of the set value 1, the motor temperature, the head temperature and the exhaust temperature are automatically detected. Then, start the No. 1 fan, and if the temperature is greater than the lower limit of the set value 2, start the No. 2 fan;
  • the energy-saving mode is entered;
  • No-load delay time of energy-saving mode T K1 internal coefficient [(power component temperature-ambient temperature) K2+ (head temperature-ambient temperature) K3+ (motor temperature-ambient temperature) K4], where K1 is the first Internal coefficient, K2 is the second internal coefficient, K3 is the third internal coefficient, and K4 is the fourth internal coefficient;
  • the system enters the no-load stop within the no-load delay time T, that is, the energy-saving shutdown, such as the customer re-using the gas.
  • the air compressor is turned into a loading operation. Take the 45KW power air compressor as an example; suppose the customer's air consumption is 0.8MPa. After detecting N minutes, the air compressor enters the stable air supply state, and detects the temperature of the power component, the head, the motor, the environment, and records the motor, power components, and machine. The first temperature rise and the first gas use time T are calculated.
  • the loading pressure is a loading pressure set by the function code; the method can be manually controlled or automatically controlled.
  • the utility model also comprises an air compressor energy consumption monitoring management system, which comprises a current transformer and a voltage collecting module connected in series in a circuit main circuit of the air compressor, and further comprises a pressure collecting analog terminal arranged on the air compressor.
  • an air compressor energy consumption monitoring management system which comprises a current transformer and a voltage collecting module connected in series in a circuit main circuit of the air compressor, and further comprises a pressure collecting analog terminal arranged on the air compressor.
  • the monitoring method of the air compressor energy consumption monitoring management system is based on a current transformer connected in a circuit main circuit of the air compressor, a voltage collecting module, and a pressure collecting analog terminal disposed on the air compressor, real-time collecting Current, voltage and pressure values and pass
  • T is the period of the alternating current signal
  • u(t) is the instantaneous voltage at time t
  • i(t) is the instantaneous current at time t
  • W ⁇ P ⁇ t*cos ⁇
  • the value of the electric quantity W where ⁇ is the efficiency value, cos ⁇ is the motor power factor, and the amount of used air is obtained by the pressure value.
  • the present invention has the following features:
  • Fan control load valve control, oil valve control, detection of internal pressure, external exhaust pressure, detection of ambient temperature, motor temperature, head temperature, exhaust temperature;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种空压机驱动智能节能一体机及其方法,包括多软起动功能的软起动一体机及其起动方法、基于空压机负载特性的自适应的节能方法、可远程监控的空压机智能控制装置、空压机能耗监测管理系统及其监测方法。避免了现有的软起动机没有针对风机的控制功能、启动电流大、对电网冲击大易造成电网不稳、同时威胁其它用电设备的运行安全以及长期工作造成电能的浪费、现有空压机没有远程监控的功能从而影响了监控效率、现有空压机不存在能耗监测管理系统的缺陷。

Description

空压机驱动智能节能一体机及其方法 技术领域
本发明属于空压机技术领域,具体涉及一种空压机驱动智能节能一体机及其方法。
背景技术
智能型软起动机得到广泛应用。智能型软起动器是一种集软起动、软停车、轻载节能和多功能保护于一体的新颖电机控制装置,又称为SoftStarter。它不仅实现在整个起动过程中无冲击而平滑的起动电机,而且可根据电动机负载的特性来调节起动过程中的参数,如限流值、起动时间等。此外,它还具有多种对电机保护功能,这就从根本上解决了传统的降压起动设备的诸多弊端。
但是现有的软起动机却没有针对风机的控制功能。
使用工频驱动空压机主机及油冷风机,将压缩气体储存于储气罐中,通过检测管路的气体压力来控制加载和卸载;使用较大的储气罐,从而导致整个空压机占地面积较大;
在管路的气压达到目标值时,加载和卸载的控制方式还要使其压力继续上升至卸载压力,这段时间需要主机持续运行加压,即使卸载后,主机也仍然处于空载运行状态,浪费电能;
主电机采用Y-△(星-三角)启动,启动电流大,对电网冲击大,易造成电网不稳,同时威胁其它用电设备的运行安全;
以工频驱动空压机油冷风机,长期工作,也是电能的浪费。
空气压缩机是工业现代化的基础产品,常说的电气与自动化里就有全气动的含义;而空气压缩机就是提供气源动力,是气动系统的核心设备机电引气源装置中的主体,它是将原动(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。
现在还没有远程监控的空压机的装置,从而影响了监控效率,还有就是并不存在针对空压机的能耗的监测系统和方法。
发明内容
本发明的目的提供一种空压机驱动智能节能一体机及其方法,包括多软起动功能的软起动一体机及其启动方法、基于空压机负载特性的自适应的节能方法、可远程监控的空压机智能控制装置、空压机能耗监测管理系统及其监测方法。避免了现有技术的现有的软起动机却没有针对风机的控制功能、启动电流大、对电网冲击大易造成电网不稳、同时威胁其它用电设备的运行安全以及长期工作造成电能的浪费、还没有远程监控的空压机的装置从而影响了监控效率、不存在针对空压机的能耗的监测系统和方法的缺陷。
为了克服现有技术中的不足,本发明提供了一种空压机驱动智能节能一体机及其方法的解决方案,具体如下:
一种空压机驱动智能节能一体机,包括电源模块,所述的电源模块同MCU微控制模块、通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接,所述的MCU微控制模块同通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接;
还包括可远程监控的空压机智能控制装置,其中含有用户终端,所述的用户终端同云平台相连接,所述的云平台通过远程通信网络同以太网相连接,所述的以太网同I/O接口、驱动模块以及带有人机界面的终端相连接;所述的远程通信网络包括光纤、有线、无线3G或4G通信网络;
还包括空压机能耗监测管理系统,其中含有串联在空压机的电路主回路中的电流互感器与电压采集模块,还包括设置在空压机上的压力采集模拟量端子。
所述的主机驱动模块采用可控硅反向并联结构来实现驱动,由MCU微控制模块控制。
所述的风机驱动模块采用可控硅反向并联结构,共用MCU微控制模块来实现逻辑独立控制;由此来让风机各自独立驱动和逻辑控制。
所述的空压机驱动智能节能一体机的方法为首先对空压机驱动智能节能一体机进行上电加载,如果温度大于设定值下限1,自动检测电机温度、机头温度以及排气温度,接着启动1号风机,如果温度大于设定值下限2就启动2号风机;
而空压机上电后加载运行,运行时间T1,检测用户压力p,使用模糊算法计算用气变化量△P=K·△p/△T,其中△p为压力变化量,△T为时间变化量,当用气量稳定后,进入节能模式;
节能模式的空载延时时间T=K1内部系数[(功率组件温度-环境温度)K2+(机头温度-环境温度)K3+(电机温度-环境温度)K4],其中所述的K1为第一内部系数,K2为第二内部系数,K3为第三内部系数,K4为第四内部系数;
这样通过综合比较功率温度、机头温度、电机温度与环境温度的差异,各自乘以不同的系数K2~K4,求和,并综合乘以系数K1,给出节能模式的空载延时时间T;
如空压机当前处于卸载运行,并满足在空载延时时间T内不进入加载运行状态时,则系统进入空载延时时间T内的空载停机,即节能停机,如客户再次用气,气压并满足加载压力时,空压机转为加载运行;
根据串联在空压机的电路主回路中的电流互感器、电压采集模块以及设置在空压机上的压力采集模拟量端子,实时采集电流、电压和压力值,并通过
Figure PCTCN2016096815-appb-000001
来得到空压机能耗功率P,T为交流电信号的周期,u(t)为时 刻t的瞬时电压,i(t)为时刻t的瞬时电流,接着通过W=ηP·t*cosΦ得到电量W的值,其中η为效率值,cosΦ为电机功率因数,另外通过压力值来得到用气量。
所述的加载压力为功能码设定的加载压力;所述的方法能手动控制或者自动控制。
本发明软起动机实现了针对风机的控制功能;空压机专用的方法,根据压力使用间隔,智能识别,停机节能,最大限度节约电能;多软起集一体,主机、风机均采用软起,且独立控制,节能降耗,保护电机;监测用气量的变化,以及电能的消耗情况,与非节能模式下计算电量相比,可以一目了然节电效果;紧凑的结构设计,集成度更度。
本发明的可远程监控的空压机智能控制装置的优点如下:
1、基于以太网和光纤/有线/无线3G/4G;
2、可远程监视空压机运行和能耗使用情况;
3、可实现手机远程控制。
本发明还实现了针对空压机的能耗的监测系统和方法。
附图说明
图l为本发明的一体机的结构图。
图2为本发明的方法的部分流程图。
图3为本发明的基于空压机负载特性的自适应的节能方法的流程图。
图4为现有技术的星-三角方法的坐标图。
图5为本发明的变频器方法的坐标图。
图6为本发明的基于空压机负载特性的自适应的节能方法的实施例的坐标图。
图7为本发明的可远程监控的空压机智能控制装置的结构示意图。
图8为本发明的针对空压机的能耗的监测系统的结构示意图
具体实施方式
下面结合附图对发明内容作进一步说明:
参照图1-图8所示,空压机驱动智能节能一体机,包括电源模块,所述的电源模块同MCU微控制模块、通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接,所述的MCU微控制模块同通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接;还包括可远程监控的空压机智能控制装置,其中含有用户终端,所述的用户终端同云平台相连接,所述的云平台通过远程通信网络同以太网相连接,所述的以太网同I/O接口、驱动模块以及带有人机界面的终端相连接;所述的远程通信网络包括光纤、有线、无线3G或4G通信网络通过远程通信网络,就能够在远程的用户终端上,发送各种控制指令来对I/O接口或驱动模块发送指令,由此只需要I/O接口或驱动模块上接入空压机就能实现对应的监控。
所述的主机驱动模块采用可控硅反向并联结构来实现驱动,由MCU微控制模块控制。
所述的风机驱动模块采用可控硅反向并联结构,共用MCU微控制模块来实现逻辑独立控制;由此来让风机各自独立驱动和逻辑控制。
所述的空压机驱动智能节能一体机的方法为首先对空压机驱动智能节能一体机进行上电加载,如果温度大于设定值下限1,自动检测电机温度、机头温度以及排气温度,接着启动1号风机,如果温度大于设定值下限2就启动2号风机;
而空压机上电后加载运行,运行时间T1,检测用户压力p,使用模糊算法 计算用气变化量△P=K·△p/△T,其中△p为压力变化量,△T为时间变化量,当用气量稳定后,进入节能模式;
节能模式的空载延时时间T=K1内部系数[(功率组件温度-环境温度)K2+(机头温度-环境温度)K3+(电机温度-环境温度)K4],其中所述的K1为第一内部系数,K2为第二内部系数,K3为第三内部系数,K4为第四内部系数;
这样通过综合比较功率温度、机头温度、电机温度与环境温度的差异,各自乘以不同的系数K2~K4,求和,并综合乘以系数K1,给出节能模式的空载延时时间T;
如空压机当前处于卸载运行,并满足在空载延时时间T内不进入加载运行状态时,则系统进入空载延时时间T内的空载停机,即节能停机,如客户再次用气,气压并满足加载压力时,空压机转为加载运行。以45KW功率空压机为例;假设客户用气量为0.8MPa,检测N分钟后空压机进入稳定供气状态,检测功率组件、机头、电机、环境等温度,记录电机、功率组件、机头等温度起动一次温升以及加载一次气使用时间T,计算出,在30℃环境温度下,电机停机状态温度降为起动前温度需40s,功率组件停机状态温度降为起动前温度需25s,当T<40+10s时,则不允许空压机停止,当T>40+10s时,则允许空压机10s后节能停机。如气压低于<功能码设定就“加载压力时”,空压机转为起动。由图6可知该实施例对图4和图5的技术效果明显更好。
所述的加载压力为功能码设定的加载压力;所述的方法能手动控制或者自动控制。
还包括,空压机能耗监测管理系统,其中含有串联在空压机的电路主回路中的电流互感器与电压采集模块,还包括设置在空压机上的压力采集模拟量端子。
所述的空压机能耗监测管理系统的监测方法为根据串联在空压机的电路主回路中的电流互感器、电压采集模块以及设置在空压机上的压力采集模拟量端子,实时采集电流、电压和压力值,并通过
Figure PCTCN2016096815-appb-000002
来得到空压机能耗功率P,T为交流电信号的周期,u(t)为时刻t的瞬时电压,i(t)为时刻t的瞬时电流,接着通过W=ηP·t*cosΦ得到电量W的值,其中η为效率值,cosΦ为电机功率因数,另外通过压力值来得到用气量。
总之,本发明具有如下特点:
1.结合专用算法;
2.集成以下功能于一体;
3.风机控制、加载阀控制、油阀控制、检测内部压力、外部排气压力、检测环境温度、电机温度、机头温度、排气温度;
4.集成多路风机软起动驱动,并且多路风机各自独立驱动和控制.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (5)

  1. 一种空压机驱动智能节能一体机,其特征在于包括电源模块,所述的电源模块同MCU微控制模块、通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接,所述的MCU微控制模块同通讯模块、主机驱动模块、1号逻辑控制模块、2号逻辑控制模块、1号风机驱动模块以及2号风机驱动模块相连接;
    还包括可远程监控的空压机智能控制装置,其中含有用户终端,所述的用户终端同云平台相连接,所述的云平台通过远程通信网络同以太网相连接,所述的以太网同I/O接口、驱动模块以及带有人机界面的终端相连接;所述的远程通信网络包括光纤、有线、无线3G或4G通信网络;
    还包括空压机能耗监测管理系统,其中含有串联在空压机的电路主回路中的电流互感器与电压采集模块,还包括设置在空压机上的压力采集模拟量端子。
  2. 根据权利要求1所述的空压机驱动智能节能一体机,其特征在于所述的主机驱动模块采用可控硅反向并联结构来实现驱动,由MCU微控制模块控制。
  3. 根据权利要求1所述的空压机驱动智能节能一体机,其特征在于所述的风机驱动模块采用可控硅反向并联结构,共用MCU微控制模块来实现逻辑独立控制;由此来让风机各自独立驱动和逻辑控制。
  4. 根据权利要求1所述的空压机驱动智能节能一体机的方法,其特征在于所述的空压机驱动智能节能一体机的方法为首先对空压机驱动智能节能一体机进行上电加载,如果温度大于设定值下限1,自动检测电机温度、机头温度以及排气温度,接着启动1号风机,如果温度大于设定值下限2就启动2号风机;
    而空压机上电后加载运行,运行时间T1,检测用户压力p,使用模糊算法计算用气变化量△P=K·△p/△T,其中△p为压力变化量,△T为时间变化量,当用气量稳定后,进入节能模式;
    节能模式的空载延时时间T=K1内部系数[(功率组件温度-环境温度)K2+(机头温度-环境温度)K3+(电机温度-环境温度)K4],其中所述的K1为第一内部系数,K2为第二内部系数,K3为第三内部系数,K4为第四内部系数;
    这样通过综合比较功率温度、机头温度、电机温度与环境温度的差异,各自乘以不同的系数K2~K4,求和,并综合乘以系数K1,给出节能模式的空载延时时间T;
    如空压机当前处于卸载运行,并满足在空载延时时间T内不进入加载运行状态时,则系统进入空载延时时间T内的空载停机,即节能停机,如客户再次用气,气压并满足加载压力时,空压机转为加载运行;
    根据串联在空压机的电路主回路中的电流互感器、电压采集模块以及设置在空压机上的压力采集模拟量端子,实时采集电流、电压和压力值,并通过
    Figure PCTCN2016096815-appb-100001
    来得到空压机能耗功率P,T为交流电信号的周期,u(t)为时刻t的瞬时电压,i(t)为时刻t的瞬时电流,接着通过W=ηP·t*cosΦ得到电量W的值,其中η为效率值,cosΦ为电机功率因数,另外通过压力值来得到用气量。
  5. 根据权利要求4所述的空压机驱动智能节能一体机的方法,其特征在于所述的方法能手动控制或者自动控制;所述的加载压力为功能码设定的加载压力。
PCT/CN2016/096815 2015-09-28 2016-08-26 空压机驱动智能节能一体机及其方法 WO2017054596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510627280.3A CN105240302B (zh) 2015-09-28 2015-09-28 空压机驱动智能节能一体机及其方法
CN201510627280.3 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017054596A1 true WO2017054596A1 (zh) 2017-04-06

Family

ID=55038079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096815 WO2017054596A1 (zh) 2015-09-28 2016-08-26 空压机驱动智能节能一体机及其方法

Country Status (2)

Country Link
CN (1) CN105240302B (zh)
WO (1) WO2017054596A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032013A (zh) * 2018-07-30 2018-12-18 广西真龙实业有限责任公司 配电房与空压机的云端监控装置
CN112906306A (zh) * 2021-03-24 2021-06-04 青岛洪锦智慧能源技术有限公司 一种空压站空压机组能耗的预测方法
CN113050573A (zh) * 2021-03-26 2021-06-29 山东莱钢永锋钢铁有限公司 一种基于生产节奏的空压机节能的方法
CN114483557A (zh) * 2022-02-10 2022-05-13 宁波中科绿色电力有限公司 一种压缩空气系统及方法
CN114645844A (zh) * 2022-05-23 2022-06-21 蘑菇物联技术(深圳)有限公司 确定空压站的流量状态的方法、计算设备和计算机介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240302B (zh) * 2015-09-28 2018-11-02 苏州艾克威尔科技有限公司 空压机驱动智能节能一体机及其方法
CN106438314A (zh) * 2016-11-10 2017-02-22 周顺新 空气压缩机节能运行用星形/三角形无缝对接智能控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201297251Y (zh) * 2008-11-13 2009-08-26 无锡五洋赛德压缩机有限公司 使用智能控制器控制运行状态的压缩机
KR101064538B1 (ko) * 2011-05-25 2011-09-14 주식회사 건영기계 지능형 에어 컴프레셔 시스템
CN202789472U (zh) * 2012-09-17 2013-03-13 浙江神典机电设备有限公司 一种环保节能型空压机的控制系统
CN203009254U (zh) * 2013-01-23 2013-06-19 深圳市大众新源节能科技有限公司 空压机节能控制装置
CN103256483A (zh) * 2012-12-20 2013-08-21 济南吉利汽车有限公司 一种生产线压缩空气节能控制方法
CN203453027U (zh) * 2013-09-13 2014-02-26 重庆杰控电气自动化有限公司 空压机安全智能控制系统
CN104141604A (zh) * 2014-06-30 2014-11-12 深圳市英威腾电气股份有限公司 空压机专用变频器及空压机变频驱动控制系统
CN105240302A (zh) * 2015-09-28 2016-01-13 苏州艾克威尔科技有限公司 空压机驱动智能节能一体机及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201297251Y (zh) * 2008-11-13 2009-08-26 无锡五洋赛德压缩机有限公司 使用智能控制器控制运行状态的压缩机
KR101064538B1 (ko) * 2011-05-25 2011-09-14 주식회사 건영기계 지능형 에어 컴프레셔 시스템
CN202789472U (zh) * 2012-09-17 2013-03-13 浙江神典机电设备有限公司 一种环保节能型空压机的控制系统
CN103256483A (zh) * 2012-12-20 2013-08-21 济南吉利汽车有限公司 一种生产线压缩空气节能控制方法
CN203009254U (zh) * 2013-01-23 2013-06-19 深圳市大众新源节能科技有限公司 空压机节能控制装置
CN203453027U (zh) * 2013-09-13 2014-02-26 重庆杰控电气自动化有限公司 空压机安全智能控制系统
CN104141604A (zh) * 2014-06-30 2014-11-12 深圳市英威腾电气股份有限公司 空压机专用变频器及空压机变频驱动控制系统
CN105240302A (zh) * 2015-09-28 2016-01-13 苏州艾克威尔科技有限公司 空压机驱动智能节能一体机及其方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109032013A (zh) * 2018-07-30 2018-12-18 广西真龙实业有限责任公司 配电房与空压机的云端监控装置
CN112906306A (zh) * 2021-03-24 2021-06-04 青岛洪锦智慧能源技术有限公司 一种空压站空压机组能耗的预测方法
CN113050573A (zh) * 2021-03-26 2021-06-29 山东莱钢永锋钢铁有限公司 一种基于生产节奏的空压机节能的方法
CN114483557A (zh) * 2022-02-10 2022-05-13 宁波中科绿色电力有限公司 一种压缩空气系统及方法
CN114645844A (zh) * 2022-05-23 2022-06-21 蘑菇物联技术(深圳)有限公司 确定空压站的流量状态的方法、计算设备和计算机介质
CN114645844B (zh) * 2022-05-23 2022-07-19 蘑菇物联技术(深圳)有限公司 确定空压站的流量状态的方法、计算设备和计算机介质

Also Published As

Publication number Publication date
CN105240302B (zh) 2018-11-02
CN105240302A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017054596A1 (zh) 空压机驱动智能节能一体机及其方法
CN104990211B (zh) 多机头变频离心式中央空调机组的控制方法
CN102220961B (zh) 空压机节能与稳压控制系统及空压机
CN208365626U (zh) 一种热泵采暖变频系统
CN105667429A (zh) 车载发电机自动稳压控制保护方法、装置及系统
CN201556078U (zh) 抽油烟机节能降噪控制系统
CN202869095U (zh) 一种能量调节制冷装置
KR20170043796A (ko) 공기압축기 구동 스마트 절전 일체형 기기 및 그 방법
CN107725274B (zh) 基于风力动能的空气储能发电系统
CN107612004B (zh) 自适应风力发电蓄能系统
CN104373330A (zh) 一种空压机控制装置及控制方法
CN206175190U (zh) 可视化空压机节能一体机
CN201763583U (zh) 一控多空压机节电装置
CN204494712U (zh) 智能风机变频节能控制系统
WO2015014234A1 (zh) 空气能电动混合型发动机
CN104153979A (zh) 一种动力用空气压缩机的运行控制方法及其压缩机
CN203742991U (zh) 一种螺杆式空气压缩机能效提升结构
CN200979667Y (zh) 具有智能内部结露点预测的前端设备控制器
CN206801877U (zh) 一种空气动力智能流量控制系统控制电路
CN201347875Y (zh) 一种冷却塔风机的控制系统
CN205315268U (zh) 一种模糊化控制螺杆空压机的控制器
CN104208963A (zh) 一种pm2.5自适应空气净化器及其工作方法
CN203962358U (zh) 一种动力用空气压缩机
CN201875838U (zh) 中央空调节电器
CN107131118B (zh) 一种压风机组联动混杂控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: "NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - EPO FORM 1205 (24.08.2018)"

122 Ep: pct application non-entry in european phase

Ref document number: 16850220

Country of ref document: EP

Kind code of ref document: A1