WO2017054423A1 - 电池模块充放电控制方法及电池系统 - Google Patents

电池模块充放电控制方法及电池系统 Download PDF

Info

Publication number
WO2017054423A1
WO2017054423A1 PCT/CN2016/077076 CN2016077076W WO2017054423A1 WO 2017054423 A1 WO2017054423 A1 WO 2017054423A1 CN 2016077076 W CN2016077076 W CN 2016077076W WO 2017054423 A1 WO2017054423 A1 WO 2017054423A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
charging
battery
priority level
discharge
Prior art date
Application number
PCT/CN2016/077076
Other languages
English (en)
French (fr)
Inventor
陈嘉贤
梁叔螭
Original Assignee
陈嘉贤
梁叔螭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈嘉贤, 梁叔螭 filed Critical 陈嘉贤
Priority to EP16794912.2A priority Critical patent/EP3168923B1/en
Priority to US15/306,107 priority patent/US10186876B2/en
Priority to JP2016568409A priority patent/JP6290456B2/ja
Publication of WO2017054423A1 publication Critical patent/WO2017054423A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of charge and discharge of batteries, and more particularly to a method of controlling charge and discharge of a battery module and a battery system implementing the same.
  • the present invention is based on a Chinese patent application filed on Sep. 30, 2015, the entire disclosure of which is hereby incorporated by reference.
  • the battery has the function of storing electric energy and has been widely used. Existing instruments, electronic devices, industrial devices, and even automobiles are heavily powered by batteries. However, the energy stored in a single battery is often limited, and a battery system having a plurality of battery modules is used for powering a device, a car, and the like that consume a large amount of electricity.
  • the battery module can be a single battery or a part of the battery system that can be separately removed, installed, and replaced.
  • FIG. 1 shows a battery system having a plurality of battery modules having battery modules arranged in m rows and n columns, and thus the number of battery modules is m ⁇ n. Due to the volume of the battery module, each battery module stores limited power, so it is necessary to frequently charge or replace a battery module that has been discharged. However, charging the battery module will bring up the following problems:
  • the battery modules of the battery system are usually placed in a fixed container. If the battery module needs to be charged, it is often necessary to use a special wire to connect the battery module and the charging device.
  • the battery module and the charging device The interface is often quite special. In the case of more complicated situations, it may be necessary for trained personnel to realize the connection of the battery module, the charging device and the electric wire, and the workload of connecting the electric wire is large, and the charging of the battery module is extremely inconvenient.
  • the container installed in the battery system often only has a small loading and unloading port.
  • the upper end of the battery system in Fig. 1 is the loading and unloading port of the battery module, and then installed in the container.
  • the battery module inside the bottom such as the battery module in the last row, that is, the battery modules numbered [m, 1], [m, 2], etc. are extremely difficult to assemble and disassemble.
  • replacing the battery module also requires a lot of labor, especially replacing the battery module located at the bottom of the container, for example, in FIG. 1, which is disadvantageous for long-term use of the battery system.
  • a primary object of the present invention is to provide a battery module charge and discharge control method that reduces the labor required to charge or replace a battery module.
  • Another object of the present invention is to provide a battery system that is efficient and labor intensive when charging or replacing a battery module.
  • the battery module charging and discharging control method provided by the present invention includes determining a charging priority level of a plurality of battery modules in a battery system, and increasing a charging priority level of a battery module that is difficult to disassemble and/or replace in the battery system.
  • the battery module having a higher control discharge priority level is preferentially discharged than the battery module having a lower discharge priority level.
  • a preferred solution is that the battery module with higher charging priority level is preferentially charged than the battery module with lower charging priority level: the relative charging current intensity of the battery module with higher charging priority level is controlled to be greater than the charging priority level.
  • the relative charging current intensity of the battery module, the relative charging current intensity is the ratio of the charging current intensity of the battery module to the energy storage capacity of the battery module.
  • An optional solution is that the battery module with higher charging priority level is preferentially charged than the battery module with lower charging priority level: charging the battery module with higher charging priority level while stopping charging or not charging Lower level battery modules are charged.
  • Another alternative is to control the charging and discharging of the plurality of battery modules by discharging the battery module having a higher discharge priority level to charge the battery module having a higher charging priority.
  • the method for controlling the battery module with higher discharge priority level to be preferentially discharged than the battery module with lower discharge priority level is: controlling the relative discharge current intensity of the battery module with higher discharge priority level to be greater than the discharge priority level.
  • the relative discharge current intensity of the battery module, the relative discharge current intensity is the ratio of the discharge current intensity of the battery module to the energy storage capacity of the battery module.
  • the method for controlling the battery module with higher discharge priority level to be preferentially discharged than the battery module with lower discharge priority level is: controlling the discharge of the battery module with higher discharge priority level while stopping or not allowing the discharge priority level to be lower.
  • the battery module is discharged.
  • a battery system provided by the present invention includes a plurality of battery modules and a controller for determining a charging priority level of the plurality of battery modules: a battery that is difficult to disassemble and/or replace in the battery system.
  • the charging priority level of the module, and/or the charging priority level of the battery module that is easier to disassemble and/or replace in the battery system, and the control of the battery module with higher charging priority than the charging priority level when controlling charging of the plurality of battery modules The lower battery module is preferentially charged; and/or the controller is used to determine the discharge priority level of the plurality of battery modules in the battery system: increasing the discharge priority level of the battery module that is easier to disassemble and/or replace in the battery system, and/or The discharge priority level of the battery module that is difficult to disassemble and/or replace in the battery system is reduced; when the plurality of battery modules are discharged, the battery module with a higher control priority is discharged preferentially than the battery module with a lower discharge priority.
  • the charging and/or discharging priority levels of the plurality of battery modules are determined according to the ease of disassembly and replacement of the battery module, and the battery modules that are difficult to disassemble and replace are preferentially charged during charging, and/or
  • the battery module that is easy to disassemble and replace is preferentially discharged, which improves the charging level of the battery module that is difficult to disassemble and replace, and reduces the charging level of the battery module that is easier to disassemble and replace, thus avoiding the need for frequent disassembly and assembly.
  • the disassembled battery module charges for it and/or frequently replaces the battery module that is difficult to disassemble, reducing the labor required to charge the battery module and/or replace the battery module.
  • the present invention also determines the charging current intensity for each battery module according to the charging priority level of the battery module and the energy storage capacity of the battery module, thereby adjusting the charging amount of each battery module, thereby ensuring that the charging priority level is more
  • the high battery module gets more power, which improves the charging level of the battery module that is difficult to disassemble and replace, and reduces the charging needs of the battery module that is difficult to disassemble and replace, and avoids frequent disassembly and replacement. Difficult battery modules are disassembled and replaced.
  • stopping charging or not charging the battery module with a lower priority of charging priority at an appropriate time can ensure that the battery module having a higher charging priority obtains a sufficiently large charging current intensity, thereby realizing the priority of the battery module having a higher charging priority. Charging.
  • the battery module with a higher priority of charging is charged to the battery module with a higher priority of charging to achieve priority charging of the battery module that is difficult to disassemble and replace, and the battery module that is easier to disassemble and replace can be prioritized. Discharge, can avoid the purpose of avoiding frequent disassembly and replacement of battery modules that are difficult to disassemble and replace.
  • the present invention also determines the discharge current intensity of each battery module according to the discharge priority level of the battery module and the energy storage capacity of the battery module, and can ensure that the relative discharge current intensity of the battery module having a higher discharge priority level is greater, and The battery module with lower discharge priority has lower relative discharge current intensity, thereby improving the charging level of the battery module which is difficult to disassemble and replace, and reducing the charging requirement of the battery module which is difficult to disassemble and replace, and avoid frequent Disassemble and replace the battery module that is difficult to disassemble or replace.
  • the battery module with a lower discharge priority level is stopped or discharged, and the battery module with a lower discharge priority level can be prevented from being prematurely discharged, thereby avoiding frequent replacement of a battery module that is difficult to disassemble or replace.
  • the battery system provided by the invention can control the charging priority and/or the discharge priority during the charging process of the plurality of battery modules in the battery system and/or during the discharging process, and can disassemble and replace the difficult battery module.
  • Priority charging and/or non-priority discharging are obtained, and battery modules that are difficult to disassemble and replace are preferentially discharged and/or are not preferentially charged.
  • the charging level of the battery module which is difficult to disassemble and replace is improved, and the charging requirement of the battery module which is difficult to disassemble and replace is reduced, and the battery module which is difficult to disassemble and replace is frequently removed.
  • the charging and replacement of the battery system consumes less labor, and the charging efficiency of the battery system is also higher because it usually only needs to be disassembled and replaced for the battery module that is easy to assemble and replace.
  • FIG. 1 is a block diagram showing the structure of a conventional battery system.
  • FIG. 2 is a block diagram showing the structure of an embodiment of a battery system of the present invention.
  • FIG. 3 is a flow chart of an embodiment of a battery module charging and discharging control method of the present invention.
  • the battery system of the present invention includes a plurality of battery modules that can be independently detached and installed. As shown in FIG. 2, a plurality of battery modules are arranged in m rows and n columns, and are loaded in one container. For example, when the battery system is a battery system used in an electric vehicle, a plurality of battery modules are loaded in a specific container of the electric vehicle.
  • the battery system can also be a battery system applied in other fields, such as a battery system used in various applications such as electronic equipment, instrumentation, and mechanical equipment.
  • the battery system of the present invention is further provided with a controller 10 for controlling charging and/or discharging of a plurality of battery modules.
  • the controller 10 determines each difficulty according to the ease of disassembly and replacement of each battery module.
  • the battery modules of the first row that is, the plurality of battery modules numbered [1, 1], [1, 2], ... [1, n] are located in the container.
  • the battery module of the second row that is, the plurality of battery modules numbered [2, 1], [2, 2] ... [2, n] are located at the upper end of the container, and the battery module of the last row, That is, a plurality of battery modules numbered [m, 1], [m, 2], ... [m, n] are located at the lowermost end of the container, and so on.
  • the battery module located at the uppermost end that is, a plurality of battery modules numbered [1, 1], [1, 2] ... [1, n] It is the easiest to disassemble and replace, and the battery modules in the second row, that is, the battery modules numbered [2,1], [2,2]...[2,n] are more difficult to assemble and replace than the first row.
  • the difficulty of disassembly and replacement of the battery module is slightly increased, and the difficulty of disassembly and replacement of the battery modules of the last row, that is, the battery modules numbered [m, 1], [m, 2], ...
  • the charging priority level and/or the discharging priority level of each battery module can be determined according to the foregoing principles.
  • the main idea of the present invention is to reduce the disassembly and replacement and replacement operations of the battery module that is difficult to disassemble and replace, and to increase the disassembly and replacement of the battery module that is less difficult to disassemble and replace, thereby reducing the battery.
  • the labor consumed during the disassembly and replacement of the module can also improve the charging and replacement efficiency of the battery module. Therefore, it is first necessary to classify a plurality of battery modules, that is, to determine the charging priority level and/or the discharging priority level of each battery module according to the ease of disassembly and replacement of the respective battery modules.
  • step S1 is to determine a charging priority level and a discharging priority level of the plurality of battery modules.
  • the controller 10 determines the charging priority level according to the position of each battery module, that is, according to the ease of disassembly and replacement of each battery module. For example, a battery module that is difficult to disassemble and replace is more likely to have a higher charging priority, and a battery module that is less likely to be disassembled or replaced has a lower charging priority. Therefore, in the battery system shown in FIG. 2, the battery modules of the last row, that is, the battery modules numbered [m, 1], [m, 2], ...
  • [m, n] have the highest charging priority, and the reciprocal
  • the battery module of the second row that is, the charging priority of the plurality of battery modules numbered [m-1, 1], [m-1, 2], ... [m-1, n], and the first row of battery modules , which is numbered
  • a plurality of battery modules of [1, 1], [1, 2] ... [1, n] have the lowest charging priority, and so on.
  • the charging priority of the battery module is not necessarily related to the ease of disassembly and replacement of the battery module. Therefore, the charging priority of the battery module that is difficult to disassemble and replace can be increased, and/or the disassembly and assembly can be reduced. The same effect can be achieved by replacing the charging priority of the less difficult battery module.
  • the controller 10 further determines the discharge priority level of each battery module according to the position of each battery module.
  • the battery module with difficulty in disassembling and replacing multiple battery modules has a lower discharge priority level.
  • the battery module with less difficulty in disassembly and replacement has a higher discharge priority.
  • the first row of battery modules that is, the plurality of battery modules numbered [1, 1], [1, 2], ... [1, n] have the highest discharge priority level
  • the The two-row battery module that is, the battery priority of the plurality of battery modules numbered [2, 1], [2, 2] ... [2, n] is the second, and the battery module of the last row is numbered [m
  • the battery priority of 1], [m, 2]...[m,n] has the lowest discharge priority level, and so on.
  • the discharge priority level of the battery module is not necessarily related to the ease of disassembly and replacement of the battery module, and therefore, the discharge priority level of the battery module that is less disassembling and replacing, and/or the disassembly and assembly can be reduced. The same effect can be achieved by replacing the discharge priority of the more difficult battery module.
  • step S3 After determining the charging priority level and the discharging priority level of each battery module, if the controller 10 determines in step S2 that the battery system needs to be charged, then in step S3, the charging of each battery module is controlled according to the charging priority level of each battery module, that is, charging. A higher priority battery module gets a higher charge priority, while a battery module with a lower charge priority gets a lower charge priority.
  • the priority charging of the battery module having a higher charging priority level than the battery module having a lower charging priority level can be achieved by controlling the relative charging current intensity of the battery module having a higher charging priority level to be greater than the charging priority level.
  • the relative charging current strength of the low battery module Since the energy storage capacity of different battery modules may not be exactly the same, such as loading the same charging current intensity, the battery module with smaller energy storage capacity has a higher rate of increase in charge level, and the battery module with larger energy storage capacity has higher capacity. The rate of increase in the charge level is rather low. Therefore, if only a battery module with a higher charge priority level is provided with a larger charge current intensity, there is a possibility that the battery module having a higher charge priority has a larger energy storage capacity.
  • the charging level rises at a lower rate, so it is necessary to provide a larger relative charging current intensity to the battery module with a higher charging priority.
  • one mode of the present invention is to provide a relatively large charging current intensity for a battery module having a higher charging priority level and a smaller relative charging current intensity for a battery module having a lower charging priority.
  • the relative charging current intensity of the present invention is a ratio of the charging current intensity loaded to the battery module to the energy storage capacity of the battery module, and thus the battery module having a higher charging priority level can obtain a larger relative charging current intensity.
  • the battery module of the last row in the battery system shown in FIG. 2 can be disassembled and replaced, and the battery module of the last row can obtain the maximum relative charging current intensity, and the battery module of the first row obtains the minimum relative.
  • the charging current intensity, the relative charging current intensity obtained by the battery module of the second row is slightly larger than the relative charging current intensity obtained by the battery module of the first row, and so on.
  • step S3 it is possible to stop charging or not charging a battery module having a lower charging priority level while charging a battery module having a higher charging priority. Therefore, after the controller 10 performs the step S2, if it is determined that the battery system needs to be charged, step S3 is performed, which may be to provide a relatively large charging current intensity for the battery module with a higher charging priority level, and the charging priority is lower.
  • the battery module provides a relatively small relative charging current strength, or stops charging or not charging a lower priority battery module.
  • the controller 10 controls the discharge of a plurality of battery modules, it is also necessary to determine the discharge current intensity of each battery module according to the energy storage capacity and the discharge priority level of each battery module, that is, the battery module having a higher discharge priority level.
  • the relative discharge current intensity is greater than the relative discharge current intensity of the battery module having a lower discharge priority level, and the relative discharge current intensity is a ratio of the discharge current intensity of the battery module to the energy storage capacity of the battery module. Therefore, the battery module of the last row in the battery system shown in FIG. 2 has the smallest relative discharge current intensity, and the battery module with less difficulty in disassembly and replacement, such as the first line, is disassembled and replaced.
  • the relative discharge current intensity of the battery module is the largest, and the relative discharge current intensity of the battery module of the second row is slightly smaller than the relative discharge current intensity of the battery module of the first row, and so on.
  • step S4 it is possible to control the discharge of the battery module having a higher discharge priority level while stopping or not discharging the battery module having a lower discharge priority level. Therefore, after the controller 10 performs step S4, if it is determined that the battery system needs to be discharged, step S5 is performed, and the battery module with a higher discharge priority level can be controlled to output a larger relative discharge current intensity, and the discharge priority level is controlled to be lower.
  • the battery module outputs a small relative discharge current intensity, or stops or does not discharge the battery module with a lower discharge priority.
  • the present invention can also control a battery module having a higher discharge priority level to discharge to a battery module having a higher charging priority level, and of course, a battery module having a higher charging priority level that receives a discharging current is being charged. .
  • the battery module with higher discharge priority is usually a battery module that is difficult to disassemble and replace, the battery module in the first row and the battery module in the second row in the battery system shown in FIG.
  • the battery module with high charging priority is usually a battery module that is difficult to disassemble and replace, such as the battery module in the last row. Therefore, the battery module having a higher discharge priority level is controlled to discharge to the battery module having a higher charging priority level, that is, a battery module having a higher discharge priority level in the battery system and a battery module having a higher charging priority level in another portion. Discharge, thereby realizing charging of the other part of the battery module.
  • the battery module that is difficult to disassemble and replace is preferentially charged, and in the discharging process, the battery module that is difficult to disassemble and replace is not preferentially discharged, thereby improving disassembly and assembly.
  • the charging level of the difficult battery module is replaced, and the possibility of disassembly and charging and replacement is greatly reduced.
  • the battery module that is difficult to disassemble and replace will be discharged preferentially, but it will not be preferentially charged during charging. Therefore, the charging level of the battery module with less difficulty in disassembly and replacement and replacement is reduced, and the possibility of disassembly, charging, and replacement is increased.
  • the method of the present invention can reduce the battery module during use of the battery system.
  • the labor required for disassembly, installation, and replacement also increases the charging efficiency of the battery system that needs to be disassembled and assembled to achieve charging.
  • the method of the invention can improve the use efficiency of the battery system and bring great convenience to people's use.
  • the above solution is only a preferred embodiment of the present invention, and the practical application is that there are more variations.
  • the loading and unloading port of the battery module is located on the left side of the container instead of being located.
  • the battery modules of the first column that is, the plurality of battery modules numbered [1, 1], [2, 1] ...
  • [m, 1] have a small difficulty in disassembly and assembly, and accordingly, The battery modules in the first column have the lowest charging priority, but the discharge priority is the highest; at the same time, the battery modules in the last column are numbered [1, n], [2, n]...[m,n] The battery modules have a large difficulty in disassembly and assembly, and accordingly, the battery modules in the last column have the highest charging priority, but the discharge priority is the lowest, and so on.
  • the relative charging current intensity, the relative discharge current intensity of each battery module, and/or the charging and discharging of different battery modules can be determined according to the above method to realize a battery having a large disassembly and replacement difficulty.
  • the module is preferentially charged and does not preferentially discharge, so that the battery module having a small difficulty in disassembly and replacement is preferentially discharged and is not preferentially charged, and such a change can also achieve the object of the present invention.
  • the container may be provided with two or more loading and unloading ports. If the container is provided with a plurality of loading and unloading ports, it is necessary to determine the disassembly and/or replacement of each battery module according to the mounting position of each battery module and the position of the loading and unloading port. The difficulty level.
  • the present invention does not exclude the installation position of the battery module and the position of the loading and unloading port, and there may be other factors to determine the ease of disassembly and/or replacement of each battery module.
  • the battery system of the present invention can be applied to various electronic devices, and can also be applied to electric vehicles.
  • the charging method of the battery module of the present invention is very suitable for charging a battery module of an electric vehicle, which can be greatly reduced. The labor required to disassemble and replace the battery module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

涉及电池充放电领域,具体地,提供一种电池模块充放电方法及电池系统,该方法包括确定电池系统中多个电池模块的充电优先等级(S1),增高电池系统中较难拆装和/或更换的电池模块的充电优先等级,和/或降低较易拆装和/或更换的电池模块的充电优先等级,控制多个电池模块充电时(S2),控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电(S3),和/或确定电池系统中多个电池模块的放电优先等级(S1),增高电池系统中较易拆装和/或更换的电池模块的放电优先等级,和/或降低较难拆装和/或更换的电池模块的放电优先等级;控制多个电池模块放电时(S4),控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电(S5)。

Description

电池模块充放电控制方法及电池系统 技术领域
本发明涉及电池的充放电领域,具体地,是涉及电池模块充放电的控制方法及实施这种方法的电池系统。本发明是基于申请日为2015年9月30日,申请号为201510646435.8的中国发明专利申请,该申请的内容引入本申请作为参考。
背景技术
电池具有储存电能的作用,已经得到广泛的应用。现有的仪器、电子设备、工业装置,甚至汽车都大量使用电池来供电。然而,单个电池储存的电能往往有限,对于用电量较大的设备、汽车等,均使用具有多个电池模块的电池系统来供电。电池模块可以是单个的蓄电池,也可以是电池系统内被划分出来能够单独拆卸、安装、更换的部分。
例如,图1所示的是一种具有多个电池模块的电池系统,该电池系统具有排列成m行n列的电池模块,因此电池模块的数量为m×n个。受限于电池模块的体积,每一个电池模块所储存的电能有限,因此需要经常为已经放电的电池模块充电或者更换已经无法使用的电池模块。然而,对电池模块进行充电将带来以下几个问题:
首先,电池系统的多个电池模块通常放置在固定的容器内,如需要对电池模块进行充电,往往需要使用特殊的电线连接电池模块以及充电设备,对于汽车使用的电池系统,电池模块、充电设备的接口往往较为特殊,面对较为复杂的情况,可能需要经过培训的人员才能实现电池模块、充电设备与电线的连接,而且连接电线的工作量较大,电池模块的充电极为不方便。
其次,由于电池系统内电池模块较多,而装在电池系统的容器往往只设置一个较小的装卸口,例如,图1中的电池系统上端为拆装电池模块的装卸口,则安装在容器内底部的电池模块,如最后一行的电池模块,即编号为[m,1]、[m,2]等多个电池模块的拆装极为困难。
最后,由于部分电池系统需要将电池模块拆卸之后才能充电,然而由于电池模块的重量通常较大,因此拆装电池模块需要耗费大量的劳力,且电池模块的拆装效率非常低。尤其是安装在例如图1中容器底部的电池模块的拆装更为困难,导致电池系统的充电效率非常低,而且耗费过多的劳力。
如果更换电池系统内的电池模块,则需要将电池系统内需要更换的电池模块逐一搬出,然后将用于替换的电池模块逐一安装到对应的位置。可见,更换电池模块也需要耗费大量的劳力,尤其是更换位于例如图1中容器底部的电池模块,不利于电池系统的长时间使用。
技术问题
本发明的主要目的是提供一种降低对电池系统充电或更换电池模块时耗费的劳力的电池模块充放电控制方法。
本发明的另一目的是提供一种充电或更换电池模块时效率高且耗费劳力少的电池系统。
技术解决方案
为了实现上述的主要目的,本发明提供的电池模块充放电控制方法包括确定电池系统中多个电池模块的充电优先等级,增高电池系统中较难拆装和/或更换的电池模块的充电优先等级,和/或降低电池系统中较易拆装和/或更换的电池模块的充电优先等级,控制多个电池模块充电时,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电;和/或确定电池系统中多个电池模块的放电优先等级,增高电池系统中较易拆装和/或更换的电池模块的放电优先等级,和/或降低电池系统中较难拆装和/或更换的电池模块的放电优先等级,控制多个电池模块放电时,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电。
一个优选的方案是,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电的方法是:控制充电优先等级较高的电池模块的相对充电电流强度大于充电优先等级较低的电池模块的相对充电电流强度,相对充电电流强度是电池模块的充电电流强度与该电池模块的能量存储容量的比值。
一个可选的方案是,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电的方法是:向充电优先等级较高的电池模块充电的同时停止向或者不向充电优先等级较低的电池模块充电。
另一个可选的方案是,控制多个电池模块的充电及放电的方法是:由放电优先等级较高的电池模块放电从而向充电优先等级较高的电池模块充电。
可选的方案是,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电的方法是:控制放电优先等级较高的电池模块的相对放电电流强度大于放电优先等级较低的电池模块的相对放电电流强度,相对放电电流强度是电池模块的放电电流强度与该电池模块的能量存储容量的比值。
可选地,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电的方法是:控制放电优先等级较高的电池模块放电的同时停止或者不让放电优先等级较低的电池模块放电。
为实现上述的另一目的,本发明提供的电池系统包括多个电池模块以及控制器,控制器用于确定多个电池模块的充电优先等级:增高电池系统中较难拆装和/或更换的电池模块的充电优先等级,和/或降低电池系统中较易拆装和/或更换的电池模块的充电优先等级,控制多个电池模块充电时,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电;和/或控制器用于确定电池系统中多个电池模块的放电优先等级:增高电池系统中较易拆装和/或更换的电池模块的放电优先等级,和/或降低电池系统中较难拆装和/或更换的电池模块的放电优先等级;控制多个电池模块放电时,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电。
有益效果
本发明是根据电池模块的拆装、更换的难易程度决定多个电池模块的充电和/或放电优先等级,并且在充电时优先给予拆装、更换较难的电池模块充电,和/或让拆装、更换较易的电池模块优先放电,这样提高较难拆装、更换的电池模块的充电水平,降低较易拆装、更换的电池模块的充电水平,从而避免需要频繁地拆装较难拆装的电池模块以为其充电和/或频繁地更换较难拆装的电池模块,降低对电池模块充电和/或更换电池模块时耗费的劳力。
并且,本发明还根据电池模块的充电优先等级以及该电池模块的能量存储容量来确定给每一电池模块的充电电流强度,进而可以调节每一电池模块的充电量,可以确保为充电优先等级更高的电池模块得到更多的电能,从而提高较难拆装、更换的电池模块的充电水平,且減小较难拆装、更换的电池模块的充电需要,避免频繁地对拆装、更换较难的电池模块进行拆装、更换操作。
另外,在适当的时候停止向或者不向充电优先等级较低的电池模块充电可以确保充电优先等级较高的电池模块获得足够大的充电电流强度,从而实现充电优先等级较高的电池模块的优先充电。
此外,通过放电优先等级较高的电池模块向充电优先等级较高的电池模块充电来实现较难拆装、更换的电池模块的优先充电,并且可以实现较容易拆装、更换的电池模块的优先放电,可以实现避免频繁拆装、更换较难拆装、更换的电池模块的目的。
而且,本发明还根据电池模块的放电优先等级以及该电池模块的能量存储容量来确定每一电池模块的放电电流强度,可以确保放电优先等级较高的电池模块的相对放电电流强度较大,而放电优先等级较低的电池模块的相对放电电流强度较小,从而提高较难拆装、更换的电池模块的充电水平,且減小较难拆装、更换的电池模块的充电需要,避免频繁地对拆装、更换较难的电池模块进行拆装、更换操作。
另外,在特定的场合下停止或者不让放电优先等级较低的电池模块放电,可以避免放电优先等级较低的电池模块过早放电,从而避免频繁地更换较难拆装、更换的电池模块。
本发明提供的电池系统通过控制器控制电池系统中多个电池模块的充电过程中和/或放电过程中的充电优先和/或放电优先的操作,可以让拆装、更换难度较大的电池模块得到优先的充电和/或不优先放电,而拆装、更换难度较小的电池模块得到优先放电和/或不优先充电。这样,提高拆装、更换难度较大的电池模块的充电水平,且減小拆装、更换难度较大的电池模块的充电需要,避免对拆装、更换难度较大的电池模块进行频繁的拆装、更换,电池系统的充电、更换所耗费的劳力较小,且电池系统的充电效率也因为通常只需要对拆装、更换较易的电池模块进行拆装、更换而变得更高。
附图说明
图1是现有电池系统的结构框图。
图2是本发明电池系统实施例的结构框图。
图3是本发明电池模块充放电控制方法实施例的流程图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
本发明的电池系统包括多个可以独立拆卸、安装的电池模块,如图2所示,多个电池模块排列成m行n列,并且装载在一个容器内。例如,电池系统为电动汽车使用的电池系统时,则多个电池模块装载在电动汽车特定的容器内。当然,电池系统也可以是应用在其他领域上的电池系统,如应用在电子设备、仪表仪器、机械装备等多种场合的电池系统。
本发明的电池系统还设有一个控制器10,用于控制多个电池模块的充电和/或放电,具体的,控制器10是根据每个电池模块的拆装、更换的难易程度确定每一个电池模块的充电优先等级和/或放电优先等级,并且根据每一个电池模块的充电优先等级、放电优先等级来确定每一个电池模块的充电、放电。
本实施例中,排列成m行n列的电池模块中,第一行的电池模块,即编号为[1,1]、[1,2]…[1,n]的多个电池模块位于容器的最上端,第二行的电池模块,即编号为[2,1]、[2,2]…[2,n]的多个电池模块位于容器的较为上端的位置,最后一行的电池模块,即编号为[m,1]、[m,2]…[m,n]的多个电池模块位于容器的最下端,如此类推。
并且,由于容器的上端为拆装、更换电池模块的装卸口,因此,位于最上端的电池模块,即编号为[1,1]、[1,2]…[1,n]的多个电池模块最容易拆装、更换,而第二行的电池模块,即编号为[2,1]、[2,2]…[2,n]的多个电池模块的拆装、更换难度比第一行的电池模块的拆装、更换难度稍微增加,而最后一行的电池模块,即编号为[m,1]、[m,2]…[m,n]的多个电池模块的拆装、更换难度最大,倒数第二行,即编号为[m-1,1]、[m-1,2]…[m-1,n]的多个电池模块的拆装、更换难度仅次于最后一行的电池模块的拆装、更换难度。
当然,电池系统中,每一行可以仅设置一个电池模块,这样,在装卸口位于容器的上端的情况下,最上端的电池模块就是最容易拆装、更换的电池模块,而最下端的电池模块就是最困难拆装、更换的电池模块,并且,电池模块的拆装、更换的难易程度随其在容器中的位置改变而改变。这种情况下,可以根据前述的原理确定各个电池模块的充电优先等级和/或放电优先等级。
本发明的主要构思是尽可能减小拆装、更换难度较大的电池模块的拆装、更换操作,而增加拆装、更换难度较小的电池模块的拆装、更换操作,从而减小电池模块的拆装、更换操作过程中所消耗的劳力,也可以提高电池模块的充电、更换效率。因此,首先需要对多个电池模块进行分级,也就是根据各个电池模块的拆装、更换的难易程度确定各个电池模块的充电优先等级和/或放电优先等级。
图3所示的是控制器10控制多个电池模块充电以及放电的方法流程图,其中步骤S1是确定多个电池模块的充电优先等级以及放电优先等级。本实施例中,控制器10根据各个电池模块的位置,也就是根据各个电池模块的拆装、更换难易程度确定其充电优先等级。例如,拆装、更换难度较大的电池模块的充电优先等级较高,而拆装、更换难度较小的电池模块的充电优先等级较低。因此,图2所示的电池系统中,最后一行的电池模块,即编号为[m,1]、[m,2]…[m,n]的多个电池模块的充电优先等级最高,而倒数第二行的电池模块,即编号为[m-1,1]、[m-1,2]…[m-1,n]的多个电池模块的充电优先等级其次,而第一行电池模块,即编号为 [1,1]、[1,2]…[1,n]的多个电池模块的充电优先等级最低,如此类推。
当然,电池模块的充电优先等级并不一定仅与电池模块的拆装、更换难易程度有关,因此,可以增加拆装、更换难度较大的电池模块的充电优先等级,和/或降低拆装、更换难度较小的电池模块的充电优先等级,也能实现相同的效果。
并且,控制器10还根据各个电池模块的位置确定各个电池模块的放电优先等级,与充电优先等级确定方法相反,多个电池模块中拆装、更换难度较大的电池模块的放电优先等级较低,而拆装、更换难度较小的电池模块的放电优先等级较高。例如,图2所示的电池系统中,第一行电池模块,即编号为[1,1]、[1,2]…[1,n]的多个电池模块的放电优先等级最高,而第二行电池模块,即编号为[2,1]、[2,2]…[2,n]的多个电池模块的放电优先等级次之,而最后一行的电池模块,即编号为[m,1]、[m,2]…[m,n]的多个电池模块的放电优先等级最低,如此类推。
当然,电池模块的放电优先等级并不一定仅与电池模块的拆装、更换难易程度有关,因此,可以增加拆装、更换难度较小的电池模块的放电优先等级,和/或降低拆装、更换难度较大的电池模块的放电优先等级,也能实现相同的效果。
确定了各个电池模块的充电优先等级以及放电优先等级后,如控制器10在步骤S2判断电池系统需要充电时,则在步骤S3根据各个电池模块的充电优先等级控制各个电池模块的充电,即充电优先等级较高的电池模块获得较高的充电优先,而充电优先等级较低的电池模块获得较低的充电优先。
本发明中,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块的优先充电可以通过以下方式实现:控制充电优先等级较高的电池模块的相对充电电流强度大于充电优先等级较低的电池模块的相对充电电流强度。由于不同电池模块的能量存储容量有可能并不完全相同,如加载相同的充电电流强度,则能量存储容量较小的电池模块的充电水平上升速率更高,而能量存储容量较大的电池模块的充电水平上升速率反而变低,因此,如果只是给充电优先等级较高的电池模块提供较大的充电电流强度,则有可能因为充电优先等级较高的电池模块具有较大的能量存储容量而导致充电水平上升速率更低,因此需要给充电优先等级较高的电池模块提供较大的相对充电电流强度。
因此,本发明的一种方式是为充电优先等级较高的电池模块提供较大的相对充电电流强度,而为充电优先等级较低的电池模块提供较小的相对充电电流强度。本发明的相对充电电流强度是加载到电池模块的充电电流强度与该电池模块的能量存储容量的比值,因而充电优先等级越高的电池模块可以获得越大的相对充电电流强度。
根据上述的方案,拆装、更换难度较大的电池模块,如图2所示的电池系统中最后一行的电池模块可以获得最大的相对充电电流强度,而第一行的电池模块获得最小的相对充电电流强度,第二行的电池模块获得的相对充电电流强度比第一行的电池模块获得的相对充电电流强度稍大,如此类推。
在本发明的另一种方式中,可以为充电优先等级较高的电池模块充电的同时,停止向或者不向充电优先等级较低的电池模块充电。因此,控制器10执行步骤S2后,如判断需要向电池系统充电,则执行步骤S3,可以是为充电优先等级较高的电池模块提供较大的相对充电电流强度,并为充电优先等级较低的电池模块提供较小的相对充电电流强度,或者是停止向或者不向充电优先等级较低的电池模块充电。
类似地,控制器10控制多个电池模块放电时,也是需要根据各个电池模块的能量存储容量、放电优先等级来确定各个电池模块的放电电流强度,也就是具有较高的放电优先等级的电池模块的相对放电电流强度大于具有较低的放电优先等级的电池模块的相对放电电流强度,相对放电电流强度是该电池模块的放电电流强度与该电池模块的能量存储容量的比值。因此,拆装、更换难度较大的电池模块,如图2所示的电池系统中最后一行的电池模块的相对放电电流强度最小,而拆装、更换难度较小的电池模块,如第一行的电池模块的相对放电电流强度最大,第二行的电池模块的相对放电电流强度比第一行的电池模块的相对放电电流强度稍小,如此类推。
在本发明的另一种方式中,可以控制放电优先等级较高的电池模块放电的同时,停止或者不让放电优先等级较低的电池模块放电。因此,控制器10执行步骤S4后,如判断电池系統需要放电,则执行步骤S5,可以是控制放电优先等级较高的电池模块输出较大的相对放电电流强度,并控制放电优先等级较低的电池模块输出较小的相对放电电流强度,或者是停止或者不让放电优先等级较低的电池模块放电。
除此之外,本发明还可以控制具有较高放电优先等级的电池模块向具有较高充电优先等级的电池模块放电,当然,接收放电电流的具有较高充电优先等级的电池模块即为正在充电。
由于具有较高放电优先等级的电池模块通常是拆装、更换难度较小的电池模块,如图2所示的电池系统中第一行的电池模块、第二行的电池模块等,而具有较高充电优先等级的电池模块通常是拆装、更换难度较大的电池模块,如最后一行的电池模块。因此,控制具有较高放电优先等级的电池模块向具有较高充电优先等级的电池模块放电,就是电池系统中一部分具有较高放电优先等级的电池模块向另一部分具有较高充电优先等级的电池模块放电,从而实现该另一部分的电池模块进行充电。
通过本发明的方案,在电池系统中,拆装、更换难度较大的电池模块获得优先充电,并且在放电过程中,拆装、更换难度较大的电池模块没有被优先放电,这样提高拆装、更换难度较大的电池模块的充电水平,并且需要拆卸充电、更换的可能性将大大降低。而拆装、更换难度较小的电池模块将优先放电,但充电时沒有被优先充电,因此減低拆装、更换难度较小的电池模块的充电水平,且需要拆卸充电、更换的可能性增多。由于这些电池模块的拆装、更换的难度较小,耗费的劳力也较小,拆装、更换所花费的时间也较少,因此本发明的方法可以减小电池系统使用过程中因电池模块的拆卸、安装、更换所耗费的劳力,也提高需要拆装电池模块来实现充电的电池系统的充电效率。
对于电能消耗量大、电池系统体积庞大的设备,如电动汽车、大型电动设备等,本发明的方法可以提高电池系统的使用效率,给人们的使用带来极大的方便。
当然,上述的方案只是本发明优选的实施方案,实际应用是还可以有更多的变化,例如,图2所示的电池系统中,如电池模块的装卸口位于容器的左侧,而不是位于容器的顶部,则第一列的电池模块,即编号为[1,1]、[2,1]…[m,1]的多个电池模块具有较小的拆装、更换难度,相应地,第一列的电池模块的充电优先等级最低,但放电优先等级最高;与此同时,最后一列的电池模块,即编号为[1,n]、[2,n]…[m,n]的多个电池模块具有较大的拆装、更换难度,相应地,最后一列的电池模块的充电优先等级最高,但放电优先等级最低,如此类推。在上述情况下,仍可以根据上述的方法确定每一电池模块的相对充电电流强度、相对放电电流强度和/或控制不同电池模块的充电、放电来实现让具有较大拆装、更换难度的电池模块优先充电且不优先放电,让具有较小拆装、更换难度的电池模块优先放电且不优先充电,这样的改变也能实现本发明的目的。此外,容器可以设置两个或两个以上的装卸口,如容器设置多个装卸口,则需要根据每个电池模块的安装位置以及装卸口的位置确定每个电池模块的拆装和/或更换的难易程度。另外,本发明不排除电池模块的安装位置以及装卸口的位置之外,可以有其他因素确定每个电池模块的拆装和/或更换的难易程度。
工业实用性
本发明的电池系统可以应用在各种电子设备上,并且还可以应用在电动汽车上,尤其是本发明的电池模块的充电方法非常适合应用在对电动汽车的电池模块进行充电,可以大大减小拆装、更换电池模块时所消耗劳力。

Claims (10)

  1. 电池模块充放电控制方法,其特征在于,包括:
    确定电池系统中多个电池模块的充电优先等级,增高所述电池系统中较难拆装和/或更换的电池模块的充电优先等级,和/或降低所述电池系统中较易拆装和/或更换的电池模块的充电优先等级;
    控制多个电池模块充电时,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电;和/或
    确定所述电池系统中多个电池模块的放电优先等级,增高所述电池系统中较易拆装和/或更换的电池模块的放电优先等级,和/或降低所述电池系统中较难拆装和/或更换的电池模块的放电优先等级;
    控制多个电池模块放电时,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电。
  2. 根据权利要求1所述的电池模块充放电控制方法,其特征在于:
    控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电的方法是:控制充电优先等级较高的电池模块的相对充电电流强度大于充电优先等级较低的电池模块的相对充电电流强度,所述相对充电电流强度是电池模块的充电电流强度与该电池模块的能量存储容量的比值。
  3. 根据权利要求1所述的电池模块充放电控制方法,其特征在于:
    控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电的方法是:向充电优先等级较高的电池模块充电的同时停止向或者不向充电优先等级较低的电池模块充电。
  4. 根据权利要求1所述的电池模块充放电控制方法,其特征在于:
    控制多个电池模块的充电及放电的方法是:由放电优先等级较高的电池模块放电从而向充电优先等级较高的电池模块充电。
  5. 根据权利要求1至4任一项所述的电池模块充放电控制方法,其特征在于:
    控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电的方法是:控制放电优先等级较高的电池模块的相对放电电流强度大于放电优先等级较低的电池模块的相对放电电流强度,所述相对放电电流强度是电池模块的放电电流强度与该电池模块的能量存储容量的比值。
  6. 根据权利要求1至4任一项所述的电池模块充放电控制方法,其特征在于:
    控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电的方法是:控制放电优先等级较高的电池模块放电的同时停止或者不让放电优先等级较低的电池模块放电。
  7. 电池系统,包括
    多个电池模块;
    其特征在于:
    所述电池系统还包括控制器,用于确定多个电池模块的充电优先等级:增高所述电池系统中较难拆装和/或更换的电池模块的充电优先等级,和/或降低所述电池系统中较易拆装和/或更换的电池模块的充电优先等级;
    所述控制器控制多个电池模块充电时,控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电;和/或
    所述控制器用于确定所述电池系统中多个电池模块的放电优先等级,增高所述电池系统中较易拆装和/或更换的电池模块的放电优先等级,和/或降低所述电池系统中较难拆装和/或更换的电池模块的放电优先等级;
    所述控制器控制多个电池模块放电时,控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电。
  8. 根据权利要求7所述的电池系统,其特征在于:
    所述控制器控制充电优先等级较高的电池模块比充电优先等级较低的电池模块优先充电时,控制充电优先等级较高的电池模块的相对充电电流强度大于充电优先等级较低的电池模块的相对充电电流强度,所述相对充电电流强度是电池模块的充电电流强度与该电池模块的能量存储容量的比值。
  9. 根据权利要求7所述的电池系统,其特征在于:
    所述控制器控制多个电池模块的充电及放电时,由放电优先等级较高的电池模块放电从而向充电优先等级较高的电池模块充电。
  10. 根据权利要求7至9任一项所述的电池系统,其特征在于:
    所述控制器控制放电优先等级较高的电池模块比放电优先等级较低的电池模块优先放电时,控制放电优先等级较高的电池模块的相对放电电流强度大于放电优先等级较低的电池模块的相对放电电流强度,所述相对放电电流强度是电池模块的放电电流强度与该电池模块的能量存储容量的比值。
PCT/CN2016/077076 2015-09-30 2016-03-23 电池模块充放电控制方法及电池系统 WO2017054423A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16794912.2A EP3168923B1 (en) 2015-09-30 2016-03-23 Battery module charging and discharging control method and battery system
US15/306,107 US10186876B2 (en) 2015-09-30 2016-03-23 Battery module charging and discharging control method and a battery system
JP2016568409A JP6290456B2 (ja) 2015-09-30 2016-03-23 バッテリモジュールを充電及び放電する方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510646435.8 2015-09-30
CN201510646435.8A CN105262162B (zh) 2015-09-30 2015-09-30 电池模块充放电控制方法及电池系统

Publications (1)

Publication Number Publication Date
WO2017054423A1 true WO2017054423A1 (zh) 2017-04-06

Family

ID=55101716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077076 WO2017054423A1 (zh) 2015-09-30 2016-03-23 电池模块充放电控制方法及电池系统

Country Status (7)

Country Link
US (1) US10186876B2 (zh)
EP (1) EP3168923B1 (zh)
JP (1) JP6290456B2 (zh)
CN (1) CN105262162B (zh)
AU (2) AU2016100986A4 (zh)
HK (1) HK1220047A1 (zh)
WO (1) WO2017054423A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262162B (zh) * 2015-09-30 2017-07-11 陈嘉贤 电池模块充放电控制方法及电池系统
CN106992325B (zh) * 2016-09-18 2020-05-12 陈嘉贤 电池模块充放电控制方法及充放电控制系统
CN106712159B (zh) * 2016-11-23 2020-06-26 广州达天计算机科技有限公司 一种锂电池快速充放电装置及方法
US10901476B2 (en) * 2017-07-06 2021-01-26 DOOSAN Heavy Industries Construction Co., LTD Method for predicting power demand and controlling ESS charge/discharge based on the predicted demand, and apparatus using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474121A (zh) * 2010-01-05 2012-05-23 三菱重工业株式会社 作业车的二次电池充电管理方法及作业车的二次电池充电系统
CN102593907A (zh) * 2012-02-29 2012-07-18 华为技术有限公司 一种供电方法、供电设备及基站
CN104865821A (zh) * 2015-06-18 2015-08-26 四川分享微联科技有限公司 一种太阳能充电手表
CN105262162A (zh) * 2015-09-30 2016-01-20 陈嘉贤 电池模块充放电控制方法及电池系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119283A1 (de) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
US20090251100A1 (en) * 2008-04-02 2009-10-08 Pratt & Whitney Rocketdyne, Inc. Stackable battery module
US7915837B2 (en) * 2008-04-08 2011-03-29 Lumetric, Inc. Modular programmable lighting ballast
JP5340627B2 (ja) * 2008-04-15 2013-11-13 住友重機械工業株式会社 ハイブリッド式建設機械
DE102009016869A1 (de) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Verfahren zum Betreiben eines Fahrzeugs
CN101989752B (zh) * 2009-07-31 2014-04-23 王知康 多单元轮换充放电控制集成电路
EP2355229A1 (de) 2010-02-08 2011-08-10 Fortu Intellectual Property AG Hochstrombatteriesystem und Verfahren zur Steuerung eines Hochstrombatteriesystems
US20150130421A1 (en) 2013-11-08 2015-05-14 John Joseph Bevilacqua, III Battery management electronics with configurable battery module bypass control
EP3114750A4 (en) * 2014-03-03 2017-12-06 Robert Bosch GmbH Hybird storage system
DE102014210187A1 (de) * 2014-05-28 2015-12-03 Robert Bosch Gmbh Verfahren zum Betreiben einer Sekundärbatterie
US20160105044A1 (en) * 2014-10-08 2016-04-14 Panasonic Intellectual Property Management Co., Ltd. Power-storage-system control method and power-storage-system control apparatus
KR102332337B1 (ko) * 2015-01-30 2021-11-29 삼성에스디아이 주식회사 배터리 시스템 및 이를 포함하는 에너지 저장 시스템
CN104795831B (zh) * 2015-05-12 2017-08-29 山东建筑大学 基于变下垂控制的电池储能系统充放电控制方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474121A (zh) * 2010-01-05 2012-05-23 三菱重工业株式会社 作业车的二次电池充电管理方法及作业车的二次电池充电系统
CN102593907A (zh) * 2012-02-29 2012-07-18 华为技术有限公司 一种供电方法、供电设备及基站
CN104865821A (zh) * 2015-06-18 2015-08-26 四川分享微联科技有限公司 一种太阳能充电手表
CN105262162A (zh) * 2015-09-30 2016-01-20 陈嘉贤 电池模块充放电控制方法及电池系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAN, V.K.Y. ET AL.: "Novel, Low-Cost Alternative Technologies to Tackle Practical, Industrial Conundrums-a Case Study of Batteries", MATEC WEB OF CONFERENCES, vol. 44, no. 02096, 8 March 2016 (2016-03-08), pages 1 - 5, XP055371612 *
See also references of EP3168923A4 *

Also Published As

Publication number Publication date
AU2016100986A4 (en) 2016-08-04
CN105262162B (zh) 2017-07-11
US20170271885A1 (en) 2017-09-21
AU2016101725A4 (en) 2016-11-03
US10186876B2 (en) 2019-01-22
CN105262162A (zh) 2016-01-20
JP2017539044A (ja) 2017-12-28
EP3168923B1 (en) 2021-06-16
JP6290456B2 (ja) 2018-03-07
EP3168923A4 (en) 2017-08-16
HK1220047A1 (zh) 2017-04-21
EP3168923A1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2017054423A1 (zh) 电池模块充放电控制方法及电池系统
TWI393325B (zh) 電池單元平衡電路、電池單元平衡系統、及電池單元平衡方法
WO2013081222A1 (ko) 다기종 배터리 사용이 가능한 단말케이스
CN105703447A (zh) 充电电池组的直接平衡充电装置及方法
US20150214770A1 (en) System and method supporting hybrid power/battery scheme
WO2016134658A1 (zh) 智能电池、电能分配总线系统、电池充放电方法以及电能分配方法
EP1990892A3 (en) Battery discharge current sharing in a tightly regulated power system
CN101873061B (zh) 供电系统
JP2019030214A (ja) 太陽光発電蓄電システムの蓄電池均等化方法及び装置並びに該太陽光発電蓄電システム
WO2013133592A1 (ko) 주파수 제어 시스템 및 방법
CN108275012A (zh) 带有均衡电源的主动均衡电路
WO2020004963A1 (ko) 스마트 홈 구축을 위한 iot 조명 스위치 모듈
WO2016041422A1 (zh) 一种用于平衡电网负荷的电池储能装置及方法
KR20200099057A (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
CN114335765A (zh) 一种电池模组、储能设备及均衡控制方法
TWM483892U (zh) 智慧型電動車電池並聯裝置
WO2018190512A1 (ko) 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
CN210577836U (zh) 一种带并联均流和监控功能的充放电电池模块
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
WO2011126221A2 (en) Power control system by using distributed generation
CN210246350U (zh) 一种usb多口输出电源管理装置
CN101798038A (zh) 电梯控制系统
CN106935919B (zh) 一种锂电池组能量均衡系统
WO2018139695A1 (ko) 태양광 에너지를 이용한 수질 관리 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15306107

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016568409

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016794912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016794912

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE