WO2017054367A1 - 一种测试太赫兹波在不同气体环境下吸收响应的装置 - Google Patents

一种测试太赫兹波在不同气体环境下吸收响应的装置 Download PDF

Info

Publication number
WO2017054367A1
WO2017054367A1 PCT/CN2016/000547 CN2016000547W WO2017054367A1 WO 2017054367 A1 WO2017054367 A1 WO 2017054367A1 CN 2016000547 W CN2016000547 W CN 2016000547W WO 2017054367 A1 WO2017054367 A1 WO 2017054367A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
gas
terahertz wave
vacuum pipe
mirror
Prior art date
Application number
PCT/CN2016/000547
Other languages
English (en)
French (fr)
Inventor
彭滟
朱亦鸣
罗坤
周云燕
陈向前
苑肖嵘
马瑞杰
庄松林
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理工大学 filed Critical 上海理工大学
Publication of WO2017054367A1 publication Critical patent/WO2017054367A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the invention relates to the field of terahertz spectroscopy, in particular to a device for testing the absorption response of terahertz waves in different gas environments.
  • the special electromagnetic spectrum position of the terahertz wave makes it have many unique advantages, such as low photon energy. On the order of millielectron volts, it does not produce harmful photoionization to biological tissues. Many substances are strong in this band. Absorption and dispersion can be used to identify different substances and the like.
  • the troposphere has a very obvious continuous and absorbing effect on the terahertz, which is characterized by an oscillating distribution of the attenuation coefficient as the frequency rises slowly, and there are multiple absorption peaks and transmission windows. Since the current terahertz radiation source power cannot be sufficiently large, it is necessary to realize applications such as terahertz communication and radar in the troposphere, and to grasp the position and width of the terahertz band atmospheric window under different humidity, temperature, pressure, and composition conditions. It is the basic condition for the development of the terahertz band.
  • the gas molecules When the terahertz wave passes through the gas to be measured, the gas molecules absorb the energy of the terahertz wave. Different gas molecules have different absorption spectra for the terahertz wave, and the absorption intensity of the characteristic spectrum is related to the concentration of the gas and the ambient temperature.
  • the characteristic absorption peak of the gas molecule in the terahertz band can know the absorption response of the terahertz wave under the gas condition, and has important applications for terahertz communication and remote control.
  • the present invention is directed to the current lack of terahertz wave absorption response data in the atmosphere, and proposes a device for testing the absorption response of terahertz waves in different gas environments, using terahertz generation and detection devices, vacuum pipes (changeable length) ), vacuum pump, heating, refrigeration, pressure gauge, gas injection device, can measure the absorption response characteristics of terahertz under different temperature and different pressure gas environment.
  • the technical scheme of the invention is: a device for testing the absorption response of terahertz waves in different gas environments Placement, including laser source, splitter, first mirror, delay module, second mirror, third mirror, terahertz wave launch system, terahertz inlet window, terahertz exit window, vacuum tube, Multi-section vacuum pipe, heating zone, refrigeration unit, fourth mirror, ITO film, terahertz spectrum detection system; ultrashort pulse laser output from laser source is split into two beams via beam splitter, and transmitted beam passes through first mirror After reflection, through the delay module, through the second mirror, the third mirror and the ITO film, the terahertz wave detection light enters the terahertz wave spectrum detection system; the other part of the beam splitting beam enters the terahertz wave emission system.
  • the collimated terahertz wave enters the gas-filled vacuum tube through the terahertz inlet window, and the terahertz wave interacts with the gas molecules, exits through the terahertz exit window, passes through the fourth mirror and the ITO film. Enter the terahertz spectrum detection system;
  • the outer wall of the vacuum pipe has a heating and cooling device for controlling the real-time temperature inside the vacuum pipe;
  • the total length of the vacuum line is adjusted by inserting a multi-section vacuum line.
  • the device for testing terahertz wave absorption response under different gas environments further comprises a pressure monitoring device, a first valve, a vacuum pump, a second valve, a first valve between the vacuum pump and the vacuum pipe, and a vacuum pipe and a gas injection device There is a second valve between the pressure detecting device connected to the pipe between the first valve and the second valve for detecting the pressure in the vacuum pipe.
  • the ITO film may be replaced by a high resistance silicon wafer.
  • the terahertz wave transmitting system sequentially includes a focusing lens, a frequency doubling crystal BBO and a Teflon lens, and the reflected laser focusing lens and the frequency doubling crystal BBO form an air plasma, and the radiated conical terahertz wave passes through the Teflon lens. Become a collimated terahertz wave.
  • the gas in the vacuum pipe is any high-purity gas or a mixed gas of high-purity gas.
  • the invention has the beneficial effects that the device for measuring the absorbing response of the terahertz wave in different gas environments has high resolution, simple device, easy operation and wide application range.
  • FIG. 1 is a schematic view of a device for testing absorbing response of terahertz waves in different gas environments according to the present invention
  • FIG. 2 is a schematic view showing a multi-section small vacuum pipe device inserted into a vacuum pipe according to the present invention
  • FIG. 3 is a schematic diagram of an apparatus of a terahertz wave transmitting system of the present invention.
  • FIG. 4 is a schematic diagram of the apparatus of the terahertz spectrum detecting system of the present invention.
  • Figure 5 is a diagram of the apparatus for testing the absorption response of terahertz waves in different gas environments according to the present invention, wherein ITO is replaced by high-resistance silicon. Schematic diagram.
  • a device for measuring the absorption response of a terahertz wave in different gas environments including a laser light source 1, a beam splitter 2, a first mirror 3, a delay module 4, a second mirror 5, and a third mirror 6, terahertz wave launching system 7, terahertz inlet window 8, terahertz exit window 9, vacuum duct 10, multi-section vacuum duct 11, heating zone 12, refrigeration unit 13, pressure monitoring device 14, first valve 15
  • the ultrashort pulse laser light output from the laser light source 1 is split into two beams via the splitting sheet 2, and the transmitted light beam passes through the first mirror 3, passes through the delay module 4, and passes through the second mirror 5, the third mirror 6 and
  • the ITO film 20 enters the terahertz spectrum detecting system 21 as terahertz wave detecting light; the other part of the splitting sheet 2 reflects the light beam into the terahertz wave transmitting system 7, and the collimated terahertz wave is radiated through the terahertz inlet window 8 Vacuum line 10.
  • the gas initially stored in the vacuum pipe 10 is first evacuated by the vacuum pump 16, and after the pressure detecting device 14 detects that the inside of the vacuum pipe 10 reaches the required background pressure value, the first valve 15 between the vacuum pump 16 and the vacuum pipe 10 is closed, and then the vacuum is opened.
  • the second valve 17 between the pipe 10 and the gas injection device 18 injects gas into the vacuum pipe 10 through the gas inlet of the gas injection device 18, and the pressure detecting device 14 detects that the amount of the inflated body reaches the pressure required for detection and then closes the first Two valves 17.
  • the real-time temperature inside the vacuum duct 10 can be controlled by the heating zone 12 or the refrigerating unit 13, and the terahertz waves interact with the gas molecules in the vacuum duct 10, and the total length of the vacuum duct can be adjusted by inserting the multi-section vacuum duct 11, such as As shown in Fig. 2, the interaction distance between the terahertz wave and the gas molecules can be adjusted according to the characteristics of the gas molecules.
  • the terahertz light After passing through the terahertz exit window 9, the terahertz light passes through the fourth mirror 19 and the ITO film 20 and enters the terahertz spectrum detecting system 21.
  • the obtained terahertz spectrum has an absorption peak compared to the spectrum without gas interaction.
  • the absorption peak of the terahertz spectrum can be used to infer the absorption characteristics of the gas molecules, so as to achieve the absorption of the terahertz wave under different gas environments. response.
  • a femtosecond laser with a center wavelength of 800 nm is used to radiate terahertz waves in an environment of high-purity oxygen at normal temperature, and the principle of detecting terahertz waves by electro-optic is used as an example.
  • Other terahertz wave radiation methods and other high purity gases are consistent with this embodiment.
  • the laser output light center wavelength is 800nm, the spectral range is 780-820nm, the pulse width is 30fs, and the repetition frequency is 1KHz.
  • the adjustment process for detecting the absorption characteristics of oxygen molecules is as follows; the ultrashort pulse laser output from the laser light source 1 is transmitted through the splitting sheet 2 (The transmission and reflection ratio of the splitting is 1:9) is divided into two beams, wherein the transmitted light is reflected by the first mirror 3, passes through the delay module 4, and then passes through the second mirror 5, the third mirror 6 and The ITO film 20 enters the terahertz spectrum detecting system 21 as terahertz wave detecting light; the reflected laser light of the splitting sheet 2 directly enters the terahertz wave transmitting system 7, and sequentially passes through the internal focusing lens 7-1 and times as shown in FIG.
  • the frequency crystal BBO7-2 forms an air plasma, and the radiated conical terahertz wave passes through the Teflon lens 7-3 and becomes a collimated terahertz wave, entering the vacuum tube 10 from the terahertz inlet window 8, terahertz
  • the waves propagate inside the vacuum conduit 10. After the length of the vacuum pipe 10 is adjusted to the length required for the test by inserting the multi-section vacuum pipe 11, the vacuum pipe 10 is drawn by the vacuum pump 16 to a pressure of 10 -4 Pa (measured by the pressure detecting means 14), and the first is closed.
  • the valve 15, opens the second valve 17, and injects high purity oxygen (purity 99.999%) through the gas injection device 18.
  • the second valve 17 is closed.
  • the heating zone 12 and the refrigerating unit 13 do not function, and the test is carried out under normal temperature conditions.
  • the terahertz wave passes through the high-purity oxygen and reaches the terahertz exit window 9, continues to propagate forward, is reflected by the ITO film 20 through the fourth mirror 19, and sequentially enters the terahertz together with the probe light transmitted through the ITO film 20.
  • the electro-optical crystal ZnTe21-1, the convex lens 21-2, the quarter-wave plate 21-3, the las-pass prism 21-4, the first silicon probe 21-5 and the second silicon probe B21-6 in the spectrum detecting system Conduct electro-optic sampling detection, as shown in Figure 4.
  • the ITO film 20 can be replaced with a high-resistance silicon wafer 22, as shown in Fig. 5, after charging high-purity oxygen, the gas molecules have a certain absorption effect on the terahertz wave, and the obtained terahertz spectrum is compared with the gas-free molecule.
  • the absorption spectrum appears in the spectrum at the time of existence, and the absorption characteristics of the gas molecules can be inferred from the absorption peak in the terahertz spectrum, thereby realizing the absorption response of the tested terahertz wave under different gas environments.
  • the multi-section vacuum pipe 11 changes the propagation distance of the terahertz wave in the vacuum pipe by changing the number of inserted multi-section vacuum pipes and selecting vacuum pipes of different lengths.
  • the heating belt 12 is a metal wire which is heated by being energized on the vacuum pipe 10; the refrigeration device 13 is attached to the outer wall of the vacuum pipe 10, and liquid nitrogen or liquid helium is injected therein to achieve refrigeration.
  • the injection gas may be any high purity gas or a mixed gas of high purity gas. Such as high purity oxygen, nitrogen.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种测试太赫兹波在不同气体环境下吸收响应的装置,从激光光源(1)输出的超短脉冲激光经由分束片(2)分为两束,透射光束经第一反射镜(3)、延时模块(4)、第二反射镜(5)、第三反射镜(6)和ITO膜(20)后作为太赫兹波探测光进入太赫兹波谱探测系统(21);反射光束进入太赫兹波发射系统(7),辐射出准直的太赫兹波通过太赫兹入口窗片(8)进入充有气体的真空管道(10)中,太赫兹波和气体分子相互作用后,通过太赫兹出口窗片(9)出射后,通过第四反射镜(19)和ITO膜(20)后进入太赫兹波谱探测系统(21);真空管道(10)外壁上有制热带(12)和制冷装置(13),控制真空管道(10)内部的实时温度;真空管道(10)的总长度通过插入多节真空管道(10)进行调节。该装置可以测得太赫兹在不同温度、不同压强气体环境下的吸收响应特性。

Description

一种测试太赫兹波在不同气体环境下吸收响应的装置 技术领域
本发明涉及一种太赫兹光谱领域,特别涉及一种测试太赫兹波在不同气体环境下吸收响应的装置。
背景技术
太赫兹波是指频率在0.1-10THz范围(波长在0.03到3mm范围)的电磁波(1THz=1012Hz),在电磁波谱中位于微波与红外辐射之间。太赫兹波特殊的电磁波谱位置使得它具有许多独特的优点,例如光子能量低,在毫电子伏特量级,不会对生物组织产生有害的光致电离、很多物质在该波段都有很强的吸收和色散,可以用于鉴别不同物质等。
大气中存在各种物质,对太赫兹辐射传输而言存在一定的非协作性,即存在吸收衰减。对流层大气对太赫兹有非常明显的连续和吸收作用,表现为衰减系数随频率缓慢上升的同时呈振荡分布,存在多个吸收峰和透射窗口。由于目前太赫兹辐射源功率还无法做到足够大,因此要实现对流层中太赫兹通信及雷达等应用,掌握不同湿度、温度、压强、组分条件下的太赫兹波段大气窗口的位置和宽度,是发展利用该太赫兹波段的基础条件。
当太赫兹波通过被测气体时,气体分子吸收太赫兹波的能量,不同气体分子对太赫兹波有着不同的吸收光谱,且特征光谱的吸收强度与该气体的浓度以及环境温度等相关,利用气体分子在太赫兹波段的特征吸收峰即可以知道该气体条件下太赫兹波的吸收响应,对太赫兹通信以及远程控制等有着重要应用。
发明内容
本发明是针对目前缺乏大气中太赫兹波吸收响应数据的问题,提出了一种测试太赫兹波在不同气体环境下吸收响应的装置,采用了太赫兹产生和探测装置、真空管道(可改变长度)、真空泵、制热带、制冷装置、压力计、气体注入装置,可以测得太赫兹在不同温度、不同压强气体环境下的吸收响应特性。
本发明的技术方案为:一种测试太赫兹波在不同气体环境下吸收响应的装 置,包括激光光源,分束片,第一反射镜,延时模块,第二反射镜,第三反射镜,太赫兹波发射系统,太赫兹入口窗片,太赫兹出口窗片,真空管道,多节真空管道,制热带,制冷装置,第四反射镜,ITO膜,太赫兹波谱探测系统;从激光光源输出的超短脉冲激光经由分束片分为两束,透射光束经第一反射镜反射后,通过延时模块,再经过第二反射镜、第三反射镜和ITO膜后作为太赫兹波探测光进入太赫兹波谱探测系统;另一部分分束片反射光束进入太赫兹波发射系统,辐射出准直的太赫兹波通过太赫兹入口窗片进入充有气体的真空管道中,太赫兹波和气体分子相互作用后,通过太赫兹出口窗片出射后,通过第四反射镜和ITO膜后进入太赫兹波谱探测系统;
真空管道外壁上有制热带和制冷装置,用于控制真空管道内部的实时温度;
真空管道的总长度通过插入多节真空管道进行调节。
所述测试太赫兹波在不同气体环境下吸收响应的装置,还包括压强监测装置,第一阀门,真空泵,第二阀门,真空泵与真空管道之间有第一阀门,在真空管道与气体注入装置之间有第二阀门,压强检测装置接在第一阀门和第二阀门之间的管道上,用于检测真空管道内的压强。
所述ITO膜可由高阻硅片代替。
所述太赫兹波发射系统依次包括聚焦透镜、倍频晶体BBO和特氟龙透镜,反射激光聚焦透镜和倍频晶体BBO形成空气等离子体,辐射出的锥形太赫兹波通过特氟龙透镜后变成准直的太赫兹波。
所述真空管道内气体是任意一种高纯度气体,或者是高纯度气体的混合气体。
本发明的有益效果在于;本发明测试太赫兹波在不同气体环境下吸收响应的装置,分辨率高,装置简单,容易操作,应用范围广。
附图说明
图1为本发明测试太赫兹波在不同气体环境下吸收响应的装置示意图;
图2为本发明真空管道内插入多节小的真空管道装置示意图;
图3为本发明太赫兹波发射系统的装置示意图;
图4为本发明太赫兹波谱探测系统的装置示意图。
图5为本发明测试太赫兹波在不同气体环境下吸收响应的装置中ITO换为高阻硅 片示意图。
具体实施方式
如图1所示测试太赫兹波在不同气体环境下吸收响应的装置,包括激光光源1,分束片2,第一反射镜3,延时模块4,第二反射镜5,第三反射镜6,太赫兹波发射系统7,太赫兹入口窗片8,太赫兹出口窗片9,真空管道10,多节真空管道11,制热带12,制冷装置13,压强监测装置14,第一阀门15,真空泵16,第二阀门17,气体注入装置18,第四反射镜19,ITO膜20,太赫兹波谱探测系统21。从激光光源1输出的超短脉冲激光经由分束片2分为两束,透射光束经第一反射镜3后,通过延时模块4,再经过第二反射镜5、第三反射镜6和ITO膜20后作为太赫兹波探测光进入太赫兹波谱探测系统21;另一部分分束片2反射光束进入太赫兹波发射系统7,辐射出准直的太赫兹波通过太赫兹入口窗片8进入真空管道10。通过真空泵16先抽掉真空管道10内部初始存在的气体,压强检测装置14检测真空管道10内部达到需要的背景压强值后,关闭真空泵16与真空管道10之间的第一阀门15,再打开真空管道10与气体注入装置18之间的第二阀门17,通过气体注入装置18的气体入口向真空管道10中注入气体,压强检测装置14检测到所充气体量达到探测所需的压强后关闭第二阀门17。通过制热带12或制冷装置13可以控制真空管道10内部的实时温度,太赫兹波与气体分子在真空管道10内相互作用,而真空管道的总长度可以通过插入多节真空管道11进行调节,如图2所示,使得太赫兹波和气体分子的相互作用距离可以根据气体分子的特性进行调整。太赫兹光通过太赫兹出口窗片9出射后,通过第四反射镜19和ITO膜20后进入太赫兹波谱探测系统21。得到的太赫兹波谱相比于无气体相互作用时的波谱会出现吸收峰,从太赫兹波谱中的吸收峰可以推断出气体分子的吸收特点,从而实现测试太赫兹波在不同气体环境下的吸收响应。
在下面的实施例中,以中心波长为800nm的飞秒激光利用空气等离子体辐射出太赫兹波在高纯氧气常温条件环境下相互作用,并利用电光采用原理探测太赫兹波为例,其他波段、其他太赫兹波辐射方法以及其他高纯气体与该实施方法一致。
激光器输出光中心波长为800nm,光谱范围780-820nm,脉冲宽度为30fs, 重复频率1KHz,具体实现检测氧气分子吸收特性的调节过程如下;从激光光源1输出的超短脉冲激光经分束片2(分束的透射与反射比例为1∶9)分为两束,其中透射光被第一反射镜3反射后,通过延时模块4,再经过第二反射镜5、第三反射镜6和ITO膜20后作为太赫兹波探测光进入太赫兹波谱探测系统21;分束片2的反射激光直接进入太赫兹波发射系统7,如图3所示依次通过内部的聚焦透镜7-1和倍频晶体BBO7-2形成空气等离子体,辐射出的锥形太赫兹波通过特氟龙透镜7-3后变成准直的太赫兹波,从太赫兹入口窗片8进入真空管道10,太赫兹波在真空管道10内部传播。通过插入多节真空管道11将真空管道10的长度调整到测试需要的距离长度后,由真空泵16将真空管道10抽到成压强10-4Pa(由压强检测装置14测得),关闭第一阀门15,打开第二阀门17,通过气体注入装置18注入高纯氧气(纯度99.999%)。气体充入达到待测压强值,如一个大气压后,关闭第二阀门17。制热带12和制冷装置13不进行作用,测试在常温条件下进行。太赫兹波穿过高纯氧气后到达太赫兹出口窗片9,继续向前传播,通过第四反射镜19后被ITO膜20反射,与经由ITO膜20透射的探测光重合一起依次进入太赫兹波谱探测系统内部的电光晶体ZnTe21-1、凸透镜21-2、四分之一波片21-3、渥拉斯通棱镜21-4,第一硅探头21-5以及第二硅探头B21-6进行电光采样探测,如图4所示。这里ITO膜20可换为高阻硅片22,如图5所示,充入高纯氧气后,气体分子会对太赫兹波有一定的吸收作用,得到的太赫兹波谱相比于无气体分子存在时的波谱会出现吸收峰,从太赫兹波谱中的吸收峰可以推断出气体分子的吸收特点,从而实现测试太赫兹波在不同气体环境下的吸收响应。
所述多节真空管道11,通过改变插入多节真空管道的数量,以及选择不同长度的真空管道,从而改变太赫兹波在真空管道内的传播距离。
所述制热带12为一种金属线,缠在真空管道10上通电即可加热;制冷装置13附着在真空管道10外壁上,内部注入液氮或者液氦可实现制冷。
所述注入气体可以是任意一种高纯度气体,或者是高纯度气体的混合气体。如高纯度氧气、氮气。

Claims (5)

  1. 一种测试太赫兹波在不同气体环境下吸收响应的装置,其特征在于,包括激光光源,分束片,第一反射镜,延时模块,第二反射镜,第三反射镜,太赫兹波发射系统,太赫兹入口窗片,太赫兹出口窗片,真空管道,多节真空管道,制热带,制冷装置,第四反射镜,ITO膜,太赫兹波谱探测系统;
    从激光光源输出的超短脉冲激光经由分束片分为两束,透射光束经第一反射镜反射后,通过延时模块,再经过第二反射镜、第三反射镜和ITO膜后作为太赫兹波探测光进入太赫兹波谱探测系统;另一部分分束片反射光束进入太赫兹波发射系统,辐射出准直的太赫兹波通过太赫兹入口窗片进入充有气体的真空管道中,太赫兹波和气体分子相互作用后,通过太赫兹出口窗片出射后,通过第四反射镜和ITO膜后进入太赫兹波谱探测系统;
    真空管道外壁上有制热带和制冷装置,用于控制真空管道内部的实时温度;
    真空管道的总长度通过插入多节真空管道进行调节。
  2. 根据权利要求1所述测试太赫兹波在不同气体环境下吸收响应的装置,其特征在于,还包括压强监测装置,第一阀门,真空泵,第二阀门,真空泵与真空管道之间有第一阀门,在真空管道与气体注入装置之间有第二阀门,压强检测装置接在第一阀门和第二阀门之间的管道上,用于检测真空管道内的压强。
  3. 根据权利要求1所述测试太赫兹波在不同气体环境下吸收响应的装置,其特征在于,所述ITO膜可由高阻硅片代替。
  4. 根据权利要求1所述测试太赫兹波在不同气体环境下吸收响应的装置,其特征在于,所述太赫兹波发射系统依次包括聚焦透镜、倍频晶体BBO和特氟龙透镜,反射激光聚焦透镜和倍频晶体BBO形成空气等离子体,辐射出的锥形太赫兹波通过特氟龙透镜后变成准直的太赫兹波。
  5. 根据权利要求1所述测试太赫兹波在不同气体环境下吸收响应的装置,其特征在于,所述真空管道内气体是任意一种高纯度气体,或者是高纯度气体的混合气体。
PCT/CN2016/000547 2015-09-30 2016-09-29 一种测试太赫兹波在不同气体环境下吸收响应的装置 WO2017054367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510640531.1A CN105158199B (zh) 2015-09-30 2015-09-30 一种测试太赫兹波在不同气体环境下吸收响应的装置
CN201510640531.1 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017054367A1 true WO2017054367A1 (zh) 2017-04-06

Family

ID=54799134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000547 WO2017054367A1 (zh) 2015-09-30 2016-09-29 一种测试太赫兹波在不同气体环境下吸收响应的装置

Country Status (2)

Country Link
CN (1) CN105158199B (zh)
WO (1) WO2017054367A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188715A (zh) * 2020-09-29 2021-01-05 北京环境特性研究所 一种等离子发生装置及方法
CN112924409A (zh) * 2021-01-14 2021-06-08 南京航空航天大学 基于太赫兹波测量气固两相浓度场的装置和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158199B (zh) * 2015-09-30 2018-03-13 上海理工大学 一种测试太赫兹波在不同气体环境下吸收响应的装置
CN105784625B (zh) * 2016-03-15 2018-10-12 上海理工大学 基于太赫兹波远距离检测危险气体的装置
CN108181261A (zh) * 2017-12-27 2018-06-19 上海理工大学 基于太赫兹时域光谱检测混合气体各组分含量的装置
CN110132888A (zh) * 2019-04-30 2019-08-16 深圳市太赫兹科技创新研究院有限公司 一种光学积分球和气体样品太赫兹光谱采集装置
CN111257952B (zh) * 2020-01-20 2022-07-05 广州燃气集团有限公司 一种基于吸波材料的地下管道识别系统和方法
CN113466166A (zh) * 2021-07-08 2021-10-01 清华大学 一种气体太赫兹光谱探测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066948A1 (en) * 2007-09-07 2009-03-12 Hydroelectron Ventures, Inc. Compact Terahertz Spectrometer Using Optical Beam Recycling and Heterodyne Detection
CN100526856C (zh) * 2007-11-01 2009-08-12 浙江大学 基于太赫兹时域光谱技术的纸页定量检测装置及方法
CN102882107B (zh) * 2012-10-22 2014-06-18 上海理工大学 一种可快速连续调节太赫兹波偏振和强度的方法
CN103259161B (zh) * 2013-04-21 2014-07-23 山东科技大学 循环抽气获得高纯度太赫兹工作物质的方法和激光器
CN104390935A (zh) * 2014-12-10 2015-03-04 上海理工大学 太赫兹波段测试非线性极化系数和吸收系数的装置及方法
CN104730026A (zh) * 2015-03-30 2015-06-24 上海理工大学 基于太赫兹波的气体检测识别分类系统
CN105158199A (zh) * 2015-09-30 2015-12-16 上海理工大学 一种测试太赫兹波在不同气体环境下吸收响应的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539017A (zh) * 2008-03-17 2009-09-23 普拉德研究及开发股份有限公司 利用太赫兹辐射的油-水-气分析设备和方法
CN101393116B (zh) * 2008-10-17 2010-11-17 天津理工大学 气体浓度检测仪的标定装置及线性度标定方法
CN203324174U (zh) * 2013-06-24 2013-12-04 中国石油大学(北京) 用于太赫兹系统中的多光程气室
CN104457991B (zh) * 2014-12-10 2016-06-08 上海理工大学 通过太赫兹波检测气体里德伯态精细谱线的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066948A1 (en) * 2007-09-07 2009-03-12 Hydroelectron Ventures, Inc. Compact Terahertz Spectrometer Using Optical Beam Recycling and Heterodyne Detection
CN100526856C (zh) * 2007-11-01 2009-08-12 浙江大学 基于太赫兹时域光谱技术的纸页定量检测装置及方法
CN102882107B (zh) * 2012-10-22 2014-06-18 上海理工大学 一种可快速连续调节太赫兹波偏振和强度的方法
CN103259161B (zh) * 2013-04-21 2014-07-23 山东科技大学 循环抽气获得高纯度太赫兹工作物质的方法和激光器
CN104390935A (zh) * 2014-12-10 2015-03-04 上海理工大学 太赫兹波段测试非线性极化系数和吸收系数的装置及方法
CN104730026A (zh) * 2015-03-30 2015-06-24 上海理工大学 基于太赫兹波的气体检测识别分类系统
CN105158199A (zh) * 2015-09-30 2015-12-16 上海理工大学 一种测试太赫兹波在不同气体环境下吸收响应的装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188715A (zh) * 2020-09-29 2021-01-05 北京环境特性研究所 一种等离子发生装置及方法
CN112188715B (zh) * 2020-09-29 2022-09-06 北京环境特性研究所 一种等离子发生装置及方法
CN112924409A (zh) * 2021-01-14 2021-06-08 南京航空航天大学 基于太赫兹波测量气固两相浓度场的装置和方法
CN112924409B (zh) * 2021-01-14 2022-04-19 南京航空航天大学 基于太赫兹波测量气固两相浓度场的装置和方法

Also Published As

Publication number Publication date
CN105158199B (zh) 2018-03-13
CN105158199A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2017054367A1 (zh) 一种测试太赫兹波在不同气体环境下吸收响应的装置
CN104458634B (zh) 一种用于气体检测的脉冲式多通道光声光谱装置
Zerbs et al. The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames
CN101551273B (zh) 一种自动测量样品太赫兹波段光谱特性的系统
US20160313233A1 (en) Photoacoustic spectrometer for nondestructive aerosol absorption spectroscopy
CN103884677A (zh) 一种便于光路调整的气体分析仪样气室装置
Matynia et al. Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques
US8416408B1 (en) Terahertz-infrared ellipsometer system, and method of use
CN109994917A (zh) 一种宽频强场太赫兹脉冲辐射源产生和探测装置
CN101995384B (zh) 基于原子气体样品池内表面反射的饱和吸收谱方法及其装置
WO2017156653A1 (zh) 基于太赫兹波远距离检测危险气体的装置
Jans et al. Characterization of Shock Tunnel Free-Stream Nonequilibrium using Nanosecond Pulse-Burst Coherent Anti-Stokes Raman Scattering
Montello et al. Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel
Zheng et al. Novel gas-phase sensing scheme using fiber-coupled off-axis integrated cavity output spectroscopy (FC-OA-ICOS) and cavity-reflected wavelength modulation spectroscopy (CR-WMS)
CN206074431U (zh) 一种基于消除交叉影响的光声光谱原理变压器在线监测系统
CN113654757B (zh) 一种模拟喷管中高超声速凝结过程的装置及诊断方法
CN106442379B (zh) 基于太赫兹波的背向激光远距离检测危险物品的装置
Winter et al. Measurements of radiation heat flux to a probe surface in the NASA Ames IHF arc jet facility
CN106556938B (zh) 基于中空光纤管的相干太赫兹超连续谱调频装置
US20120261580A1 (en) Terahertz-infrared ellipsometer system, and method of use
Samuels et al. Nitric Oxide TDLAS in the Plenum Region of an Arc-Heated Tunnel
JP2013186022A (ja) Mems封止の評価方法
Ferris et al. Temperature, species, and laminar flame speed measurements in high-temperature, premixed ethane-air flames
CN114577485B (zh) 超燃冲压发动机示踪plif多参数分布测量装置及方法
Teka et al. THz-TDS Transmission Measurements of Spectroscopic Lamps Plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850002

Country of ref document: EP

Kind code of ref document: A1