WO2017156653A1 - 基于太赫兹波远距离检测危险气体的装置 - Google Patents
基于太赫兹波远距离检测危险气体的装置 Download PDFInfo
- Publication number
- WO2017156653A1 WO2017156653A1 PCT/CN2016/000611 CN2016000611W WO2017156653A1 WO 2017156653 A1 WO2017156653 A1 WO 2017156653A1 CN 2016000611 W CN2016000611 W CN 2016000611W WO 2017156653 A1 WO2017156653 A1 WO 2017156653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terahertz
- gas
- signal receiver
- mirror
- delay module
- Prior art date
Links
- 231100001261 hazardous Toxicity 0.000 title claims abstract description 7
- 238000001514 detection method Methods 0.000 title abstract description 9
- 239000000203 mixture Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 61
- 238000001228 spectrum Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- -1 inflammable Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
Definitions
- the invention relates to a gas detecting device, in particular to a device for detecting dangerous gases based on a long distance of terahertz waves.
- the special electromagnetic spectrum position of the terahertz wave makes it have many unique advantages, such as low photon energy. On the order of millielectron volts, it does not produce harmful photoionization to biological tissues. Many substances are strong in this band. Absorption and dispersion can be used to identify different substances and the like.
- the invention is directed to the problem that the current close-range detection of dangerous gas is dangerous to the human body and the remote distance cannot be detected or the detection accuracy is too low, and a device based on the long-distance detection of dangerous gas by the terahertz wave is proposed, which adopts the terahertz
- the emission source and signal receiver, high-speed delay module, closed gas box, vacuum pump, and air valve can draw dangerous gas into the closed gas box through the long-distance vacuum pipeline, so that the terahertz wave can detect the dangerous gas at a long distance.
- the technical scheme of the invention is: a device for detecting dangerous gas based on terahertz wave remote distance, comprising a terahertz generating source, two parabolic mirrors, a high-speed delay module, two mirrors, a terahertz signal receiver, a vacuum pump , two air valves, switch controllers, long distance vacuum pipes and closed gas boxes, of which The source, the two parabolic mirrors, the high-speed delay module, the two mirrors, and the terahertz signal receiver are in a closed gas box.
- the switch controller outputs control signals to control the vacuum pump and two gas valves.
- the switch controller receives too The signal output by the Hertz signal receiver, the first gas valve is connected to the pipe connecting the vacuum pump and the closed gas box, and the second gas valve is at the connection port of the long distance vacuum pipe and the closed gas box, and the terahertz wave generated by the source of the terahertz occurs.
- the rectangular prism on the high-speed delay module is reflected to the first plane mirror, and then reflected by the first plane mirror to the terahertz wave of the second mirror and then reflected back.
- Hertz wave is used as a reference signal, and then imported from a long-distance vacuum pipeline into a terahertz signal in a long-range hazardous gas atmosphere in a closed gas box.
- Retractor obtained terahertz wave, a terahertz wave obtained were compared hazardous gas content of the composition and concentration of the gas introduced into the closed box ratio.
- the invention has the beneficial effects that the invention is based on the device for detecting dangerous gas by the terahertz wave remote distance, and avoids the absorption effect of the water vapor in the atmosphere on the light wave caused by the long-distance transmission of the probe light in the atmosphere in a common method;
- the dangerous gas can be sucked into the closed gas box through the long-distance vacuum pipeline to realize long-distance detection, which can reduce the dangers in the dangerous gas detection process, high resolution, simple device, easy operation and wide application range.
- FIG. 1 is a schematic structural view of a device for detecting a dangerous gas based on a long distance of a terahertz wave according to the present invention.
- the device for detecting dangerous gas based on the terahertz wave remote distance as shown in FIG. 1 includes a terahertz generating source 1, a first parabolic mirror 2, a high-speed delay module 3, a second mirror 4, a first mirror 5, and a second a parabolic mirror 6, a terahertz signal receiver 7, a vacuum pump 8, a first gas valve 9, a switch controller 10, a second gas valve 11, a long distance vacuum line 12, and a closed gas box 13, wherein the terahertz generation source 1, A parabolic mirror 2, a high-speed delay module 3, a second mirror 4, a first mirror 5, a second parabolic mirror 6, a terahertz signal receiver 7 in a sealed gas box 13, the switch controller 10 outputs a control signal The vacuum pump 8, the first gas valve 9 and the second gas valve 11 are controlled, and the switch controller 10 receives the signal output from the terahertz signal receiver 7, and the first gas valve 9 is on the pipe connecting the vacuum pump 8 and the closed gas box 13,
- the air pump 8 evacuates the gas originally existing inside the sealed gas box 13, turns off the first gas valve 9, and the terahertz generating source 1 generates a terahertz wave, which is reflected by the first parabolic mirror 2 onto the right-angle prism on the high-speed delay module 3. After being reflected by the right angle prism on the high speed delay module 3 to the first plane mirror 5, the terahertz wave reflected by the first plane mirror to the second mirror 4 is reflected back to the first mirror 5 and the high speed delay module 3 again.
- the right angle prism, the terahertz wave reaching the right angle prism is reflected to the second parabolic mirror 6, and finally converges into the terahertz signal receiver 7 to obtain a terahertz wave reference signal in a vacuum environment.
- Extending the long distance vacuum pipe to the dangerous gas 15 where the second gas valve 11 is opened the dangerous gas will be sucked into the closed gas box 13 through the long distance vacuum pipe 12 and the second gas valve 11 is closed due to the pressure difference.
- the terahertz wave spectrum of the terahertz wave in a dangerous gas atmosphere is tested, and the terahertz spectrum at this time is compared with the reference signal to obtain an absorption spectrum.
- the analysis shows the gas composition and concentration ratio at a long distance.
- a laser having an output light center wavelength of 780 nm is taken as an example, and other wavelength bands are consistent with the implementation method of the wavelength band.
- the specific realization of long-distance terahertz wave dangerous gas inspection process is as follows:
- the first air valve 9 and the vacuum pump 10 are opened by the switch controller 10, and the closed gas box 13 is evacuated to a vacuum environment, and the air valve 9 is closed.
- the laser light is irradiated on the photoconductive antenna to output an initial terahertz wave, and the first paraboloid surface is plated with gold.
- the mirror 2 is reflected onto the silver-plated right-angle prism on the upper surface of the high-speed delay module 3, and then reflected to the silver-plated first mirror 5, and the terahertz wave is reflected back to the silver-plated first through the surface-plated second mirror 4
- the mirror 5 and the silver-plated right-angle prism on the high-speed delay module 3 reflect the terahertz wave to the gold-plated second parabolic mirror 6 and finally converge into the terahertz signal receiver 7 to obtain a terahertz wave reference signal in a vacuum environment.
- the long-distance vacuum pipe is extended to the building 15 where dangerous gas may exist, and the gas valve 14 is opened.
- the terahertz spectrum in a dangerous gas atmosphere because the gas molecules have a certain absorption effect on the terahertz wave, the obtained terahertz spectrum will have an absorption peak compared with the spectrum in the presence of no gas molecules, compared with the existing database, from The absorption peak in the terahertz spectrum can infer the absorption characteristics of gas molecules, and can infer the composition and concentration ratio of the gas, so as to realize the detection of dangerous gases by long-distance terahertz waves.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
一种基于太赫兹波远距离检测危险气体的装置,包括太赫兹发生源(1)、太赫兹信号接收器(7)、高速延时模块(3)、密闭气体盒(13)、真空泵(8)、气阀(9、11),通过在真空环境下太赫兹信号接收器(7)得到的太赫兹波作为参考信号,再从长距离真空管道(12)导入密闭气体盒(13)中的远距离危险气体环境下太赫兹信号接收器(7)得到太赫兹波,比较两组太赫兹波得到导入密闭气体盒(13)中的危险气体成份和浓度含量比。
Description
本发明涉及一种气体检测装置,特别涉及一种基于太赫兹波远距离对危险气体进行检测的装置。
太赫兹波是指频率在0.1-10THz范围(波长在0.03到3mm范围)的电磁波(1THz=1012Hz),在电磁波谱中位于微波与红外辐射之间。太赫兹波特殊的电磁波谱位置使得它具有许多独特的优点,例如光子能量低,在毫电子伏特量级,不会对生物组织产生有害的光致电离、很多物质在该波段都有很强的吸收和色散,可以用于鉴别不同物质等。
大气中存在的水汽对太赫兹辐射传输而言存在一定的非协作性,即存在吸收衰减,目前所有商业工业和科研方面对太赫兹波的研究都十分注重避免水汽的影响。因此在密闭环境中隔绝或降低水汽对太赫兹波的影响对拓展太赫兹波的应用有很大优势。
目前对于易燃易爆有毒等危险气体的检测,一般是由探测人员穿戴防毒面具和防爆服近距离人工探测,这种方法一旦发生爆炸或有毒气体泄露会对人体安全存在一定危害。
发明内容
本发明是针对当前近距离检测危险气体对人体危险性较大而远距离无法检测或检测准确率过低的问题,提出了一种基于太赫兹波远距离检测危险气体的装置,采用了太赫兹发射源和信号接收器,高速延时模块,密闭气体盒,真空泵,气阀,可以通过长距离真空管道将危险气体吸入密闭气体盒,使太赫兹波对远距离危险气体进行检测。
本发明的技术方案为:一种基于太赫兹波远距离检测危险气体的装置,包括太赫兹发生源、两个抛物面镜、高速延时模块、两个反射镜、太赫兹信号接收器、一个真空泵、两个气阀、开关控制器、长距离真空管道和密闭气体盒,其中太赫
兹发生源、两个抛物面镜、高速延时模块、两个反射镜和太赫兹信号接收器在密闭的气体盒内,开关控制器输出控制信号控制真空泵和两个气阀,开关控制器接收太赫兹信号接收器输出的信号,第一气阀在真空泵和密闭气体盒连接的管道上,第二气阀在长距离真空管道与密闭气体盒连接端口处,太赫兹发生源产生的太赫兹波,经过第一抛物面镜反射到高速延时模块上的直角棱镜上,经过高速延时模块上的直角棱镜反射到第一平面镜,再经第一平面镜反射到第二反射镜的太赫兹波再反射回第一反射镜和高速延时模块上的直角棱镜,到达直角棱镜上的太赫兹波反射到第二抛物面镜,最终会聚进入太赫兹信号接收器,在真空环境下太赫兹信号接收器得到的太赫兹波作为参考信号,再从长距离真空管道导入密闭气体盒中的远距离危险气体环境下太赫兹信号接收器得到太赫兹波,比较两组太赫兹波得到导入密闭气体盒中的危险气体成份和浓度含量比。
本发明的有益效果在于:本发明基于太赫兹波远距离检测危险气体的装置,避免了常见方法中探测光在大气中远距离传输而引起的大气中的水汽对光波的吸收影响;在实际应用中,可以通过长距离真空管道把危险气体收吸入密闭气体盒,实现远距离检测,降低危险气体检测过程中可能存在的危险性,分辨率高,装置简单,容易操作,应用范围广。
图1为本发明基于太赫兹波远距离检测危险气体的装置结构示意图。
如图1所示基于太赫兹波远距离检测危险气体的装置,包括太赫兹发生源1、第一抛物面镜2、高速延时模块3、第二反射镜4、第一反射镜5、第二抛物面镜6、太赫兹信号接收器7、真空泵8、第一气阀9、开关控制器10、第二气阀11、长距离真空管道12和密闭气体盒13,其中太赫兹发生源1、第一抛物面镜2、高速延时模块3、第二反射镜4、第一反射镜5、第二抛物面镜6、太赫兹信号接收器7在密闭的气体盒13内,开关控制器10输出控制信号控制真空泵8、第一气阀9和第二气阀11,开关控制器10接收太赫兹信号接收器7输出的信号,第一气阀9在真空泵8和密闭气体盒13连接的管道上,第二气阀11在长距离真空管道12与密闭气体盒13连接端口处。通过开关控制器10打开第一气阀9和真
空泵8将密闭气体盒13内部初始存在的气体抽空,关闭第一气阀9,太赫兹发生源1产生太赫兹波,经过第一抛物面镜2反射到高速延时模块3上的直角棱镜上,经过高速延时模块3上的直角棱镜反射到第一平面镜5,再经第一平面镜反射到第二反射镜4的太赫兹波再次反射回第一反射镜5和高速延时模块3上的直角棱镜,到达直角棱镜上的太赫兹波反射到第二抛物面镜6,最终会聚进入太赫兹信号接收器7,得到在真空环境下的太赫兹波参考信号。将长距离真空管道延伸至可能存在危险气体处15,打开第二气阀11,由于压强差,危险气体将通过长距离真空管道12远距离吸入密闭气体盒13中,关闭第二气阀11,测试太赫兹波在危险气体氛围下的太赫兹波谱,将此时的太赫兹波谱与参考信号对比得到吸收光谱,由于不同气体分子对太赫兹波有着不同的吸收光谱,与已知光谱数据库对比,分析可知远距离处的气体成份和浓度含量比。在下面的实施例中,以输出光中心波长为780nm的激光器为例,其他波段与该波段的实施方法一致。
以激光器输出光中心波长为780nm,脉冲宽度为110fs,重复频率78MHz的飞秒激光,激光照射到光电导天线上辐射出太赫兹波为例,具体实现远距离太赫兹波危险气体检验过程如下:由开关控制器10打开第一气阀9和真空泵10,把密闭气体盒13抽为真空环境,关闭气阀9,激光照射在光电导天线上输出初始太赫兹波,经过表面镀金的第一抛物面镜2反射到高速延时模块3上表面镀银的直角棱镜上,再反射到表面镀银的第一反射镜5,通过表面镀银的第二反射镜4太赫兹波反射回镀银第一反射镜5和高速延时模块3上的镀银直角棱镜,将太赫兹波反射到镀金第二抛物面镜6,最终会聚进入太赫兹信号接收器7,得到在真空环境下的太赫兹波参考信号。延伸长距离真空管道至可能存在危险气体的建筑物15处,打开气阀14,由于压强差,危险气体通过长距离真空管道12被吸入密闭气体盒13中,关闭气阀14,再测试此时危险气体氛围下的太赫兹波谱,由于气体分子对太赫兹波有一定的吸收作用,得到的太赫兹波谱相比于无气体分子存在时的波谱会出现吸收峰,与已有数据库比对,从太赫兹波谱中的吸收峰可以推断出气体分子的吸收特点,可以推知气体的成份和浓度含量比等,从而实现远距离太赫兹波对危险气体的检测。
Claims (1)
- 一种基于太赫兹波远距离检测危险气体的装置,其特征在于,包括太赫兹发生源、两个抛物面镜、高速延时模块、两个反射镜、太赫兹信号接收器、一个真空泵、两个气阀、开关控制器、长距离真空管道和密闭气体盒,其中太赫兹发生源、两个抛物面镜、高速延时模块、两个反射镜和太赫兹信号接收器在密闭的气体盒内,开关控制器输出控制信号控制真空泵和两个气阀,开关控制器接收太赫兹信号接收器输出的信号,第一气阀在真空泵和密闭气体盒连接的管道上,第二气阀在长距离真空管道与密闭气体盒连接端口处,太赫兹发生源产生的太赫兹波,经过第一抛物面镜反射到高速延时模块上的直角棱镜上,经过高速延时模块上的直角棱镜反射到第一平面镜,再经第一平面镜反射到第二反射镜的太赫兹波再反射回第一反射镜和高速延时模块上的直角棱镜,到达直角棱镜上的太赫兹波反射到第二抛物面镜,最终会聚进入太赫兹信号接收器,在真空环境下太赫兹信号接收器得到的太赫兹波作为参考信号,再从长距离真空管道导入密闭气体盒中的远距离危险气体环境下太赫兹信号接收器得到太赫兹波,比较两组太赫兹波得到导入密闭气体盒中的危险气体成份和浓度含量比。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610147245.6A CN105784625B (zh) | 2016-03-15 | 2016-03-15 | 基于太赫兹波远距离检测危险气体的装置 |
CN201610147245.6 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017156653A1 true WO2017156653A1 (zh) | 2017-09-21 |
Family
ID=56393734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/000611 WO2017156653A1 (zh) | 2016-03-15 | 2016-11-07 | 基于太赫兹波远距离检测危险气体的装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105784625B (zh) |
WO (1) | WO2017156653A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108020525A (zh) * | 2018-01-11 | 2018-05-11 | 中国计量大学 | 一种危险气体高灵敏度太赫兹谱检测装置及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105784625B (zh) * | 2016-03-15 | 2018-10-12 | 上海理工大学 | 基于太赫兹波远距离检测危险气体的装置 |
CN106442379B (zh) * | 2016-10-09 | 2018-11-13 | 上海理工大学 | 基于太赫兹波的背向激光远距离检测危险物品的装置 |
CN108007897B (zh) * | 2017-11-28 | 2021-03-23 | 湖北久之洋红外系统股份有限公司 | 一种太赫兹时域光谱测量系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2874476Y (zh) * | 2006-02-10 | 2007-02-28 | 天津大学 | 基于光学整流的太赫兹时域光谱仪 |
US20120050743A1 (en) * | 2010-09-01 | 2012-03-01 | National Institute Of Information And Communications Technology | Apparatus of absorption spectroscopy for gaseous samples |
CN102770750A (zh) * | 2010-02-26 | 2012-11-07 | 爱信精机株式会社 | 涂装膜的检查装置及检查方法 |
CN103698294A (zh) * | 2013-12-19 | 2014-04-02 | 中国矿业大学 | 基于太赫兹时域光谱系统的矿井环境气体定量分析装置及方法 |
CN105158199A (zh) * | 2015-09-30 | 2015-12-16 | 上海理工大学 | 一种测试太赫兹波在不同气体环境下吸收响应的装置 |
CN105784625A (zh) * | 2016-03-15 | 2016-07-20 | 上海理工大学 | 基于太赫兹波远距离检测危险气体的装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7342229B1 (en) * | 2002-06-27 | 2008-03-11 | Smart Transitions, Llc | Spectroscopic signal processing methodology |
CN103644968B (zh) * | 2013-11-25 | 2016-04-27 | 深圳先进技术研究院 | 自动充气舱及具有自动充气舱的太赫兹时域光谱系统 |
CN204044064U (zh) * | 2014-08-21 | 2014-12-24 | 华北电力大学(保定) | 基于太赫兹时域光谱技术检测油中局放故障气体的样品池 |
CN104457991B (zh) * | 2014-12-10 | 2016-06-08 | 上海理工大学 | 通过太赫兹波检测气体里德伯态精细谱线的装置 |
CN104730026A (zh) * | 2015-03-30 | 2015-06-24 | 上海理工大学 | 基于太赫兹波的气体检测识别分类系统 |
-
2016
- 2016-03-15 CN CN201610147245.6A patent/CN105784625B/zh active Active
- 2016-11-07 WO PCT/CN2016/000611 patent/WO2017156653A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2874476Y (zh) * | 2006-02-10 | 2007-02-28 | 天津大学 | 基于光学整流的太赫兹时域光谱仪 |
CN102770750A (zh) * | 2010-02-26 | 2012-11-07 | 爱信精机株式会社 | 涂装膜的检查装置及检查方法 |
US20120050743A1 (en) * | 2010-09-01 | 2012-03-01 | National Institute Of Information And Communications Technology | Apparatus of absorption spectroscopy for gaseous samples |
CN103698294A (zh) * | 2013-12-19 | 2014-04-02 | 中国矿业大学 | 基于太赫兹时域光谱系统的矿井环境气体定量分析装置及方法 |
CN105158199A (zh) * | 2015-09-30 | 2015-12-16 | 上海理工大学 | 一种测试太赫兹波在不同气体环境下吸收响应的装置 |
CN105784625A (zh) * | 2016-03-15 | 2016-07-20 | 上海理工大学 | 基于太赫兹波远距离检测危险气体的装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108020525A (zh) * | 2018-01-11 | 2018-05-11 | 中国计量大学 | 一种危险气体高灵敏度太赫兹谱检测装置及方法 |
CN108020525B (zh) * | 2018-01-11 | 2024-03-26 | 中国计量大学 | 一种危险气体高灵敏度太赫兹谱检测装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105784625A (zh) | 2016-07-20 |
CN105784625B (zh) | 2018-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017156653A1 (zh) | 基于太赫兹波远距离检测危险气体的装置 | |
Andreeva et al. | Ultrabroad terahertz spectrum generation from an air-based filament plasma | |
WO2017054367A1 (zh) | 一种测试太赫兹波在不同气体环境下吸收响应的装置 | |
US7728295B2 (en) | Method and apparatus for detecting surface and subsurface properties of materials | |
CN105866850A (zh) | 一种基于雷达目标极化特性的远距离人体隐藏危险品检测仪 | |
CN104457991B (zh) | 通过太赫兹波检测气体里德伯态精细谱线的装置 | |
CN105758803A (zh) | 多次反射长光程高温样品室的激光气体检测平台 | |
WO2019223364A1 (zh) | 基于太赫兹频段的电磁波检测冬虫夏草质量的方法 | |
CN105300952A (zh) | 大气oh自由基测量系统和方法 | |
CN108226038A (zh) | 气体分析 | |
CN108801969A (zh) | 一种太赫兹检测装置 | |
Chernogor et al. | Features of the wave disturbances in the ionosphere during periodic heating of the plasma by the “Sura” radiation | |
CN109959938A (zh) | 基于合成孔径聚焦的聚乙烯材料太赫兹时域光谱成像方法 | |
US20190317017A1 (en) | Terahertz gas detection method and device based on gregory double reflection antenna | |
CN103872554B (zh) | 基于气体喷嘴组调节太赫兹脉冲产生强度的装置 | |
CN106442379B (zh) | 基于太赫兹波的背向激光远距离检测危险物品的装置 | |
CN205229049U (zh) | 大气oh自由基测量系统 | |
Manuilovich et al. | Propagation of ultrashort laser pulses in dry and humid air | |
CN106556938B (zh) | 基于中空光纤管的相干太赫兹超连续谱调频装置 | |
CN202403923U (zh) | 空间环境辐射模拟装置 | |
CN109360781A (zh) | 二次电喷雾离子源装置及质谱检测设备 | |
CN203642995U (zh) | 具整合式透镜天线的物位检测装置 | |
Bystrov et al. | Comparative analysis of 300 GHz and 79 GHz radar performance in fire environments | |
CN112345484A (zh) | 一种真空型太赫兹干燥探头及检测方法 | |
CN205622964U (zh) | 一种热电离等离子体生成测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16893818 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16893818 Country of ref document: EP Kind code of ref document: A1 |