WO2017054345A1 - 两轮平衡车的控制方法及装置 - Google Patents

两轮平衡车的控制方法及装置 Download PDF

Info

Publication number
WO2017054345A1
WO2017054345A1 PCT/CN2015/099062 CN2015099062W WO2017054345A1 WO 2017054345 A1 WO2017054345 A1 WO 2017054345A1 CN 2015099062 W CN2015099062 W CN 2015099062W WO 2017054345 A1 WO2017054345 A1 WO 2017054345A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
wheel
type
balance vehicle
height
Prior art date
Application number
PCT/CN2015/099062
Other languages
English (en)
French (fr)
Inventor
刘华一君
唐明勇
陈涛
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Priority to KR1020167009249A priority Critical patent/KR101878082B1/ko
Priority to RU2016118866A priority patent/RU2647360C2/ru
Priority to JP2016519845A priority patent/JP2017536275A/ja
Priority to MX2016004498A priority patent/MX2016004498A/es
Publication of WO2017054345A1 publication Critical patent/WO2017054345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3225Systems specially adapted for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present disclosure relates to the field of automatic control, and in particular, to a two-wheel balance vehicle control method and apparatus.
  • the two-wheeled balance car also known as the two-wheeled electric balance car, is a new type of short-distance vehicle.
  • Two-wheeled balance vehicles usually have two wheel and turn control assemblies that are juxtaposed, and are driven forward or backward by the drive of the internal drive motor. During the forward or reverse process, the user can control the two-wheel balance vehicle to turn through the turn control assembly. If one wheel of a two-wheeled balance car has an obstacle in front of it, blocking or jamming the wheel, and the other wheel continues to advance, a "centrifugal motion" may occur, which may cause the driver to fall.
  • the present disclosure provides a control method of a two-wheel balance vehicle.
  • the technical solution is as follows:
  • a method of controlling a two-wheel balance vehicle for use in a two-wheel balance vehicle including two wheel and turn control assemblies juxtaposed comprising:
  • Identify the type of obstacle in front of any wheel including: an insurmountable obstacle;
  • control the two-wheel balance vehicle to decelerate and shield the turn control assembly.
  • the type further includes: a barrier that can be exceeded; and the method further includes:
  • the type of obstacle is a barrier that can be overcome, increase the driving force of the two-wheeled balance car and move on.
  • identify the type of obstacle in front of any wheel including:
  • the obstacle is identified as an insurmountable type.
  • identify the type of obstacle in front of any wheel including:
  • the obstacle is identified as an insurmountable type.
  • the method further includes:
  • the step of controlling the two-wheel balance vehicle to decelerate and shielding the turn control assembly is performed.
  • the method further includes:
  • the obstacle is prompted by a predetermined method
  • the predetermined manner includes: playing a prompt tone, vibrating at least one of a predetermined component on the two-wheel balance vehicle, and a blinking signal light.
  • a control device for a two-wheel balance vehicle for use in a two-wheel balance vehicle including two wheel and turn control assemblies juxtaposed, the device comprising:
  • An identification module configured to identify a type of obstacle in front of any of the wheels, the type comprising: an insurmountable obstacle;
  • the control module is configured to control the two-wheel balance vehicle to decelerate and shield the turn control component when the type of the obstacle recognized by the identification module is an insurmountable obstacle.
  • the type further includes: a barrier that can be exceeded; the device further includes:
  • the acceleration module is configured to increase the driving force of the two-wheeled balance vehicle to continue if the type of the obstacle recognized by the identification module is an obstacle that can be exceeded.
  • the identification module includes:
  • a height measurement sub-module configured to measure a height of an obstacle in front of any of the wheels by the ranging component
  • a first detecting submodule configured to detect whether a height of an obstacle measured by the height measuring submodule is higher than a predetermined threshold
  • the first identification sub-module is configured to identify the obstacle as an insurmountable type when the height of the obstacle detected by the first detection sub-module is above a predetermined threshold.
  • the identification module further includes:
  • An image acquisition sub-module configured to acquire an image frame in front of any wheel through an image acquisition component
  • An image recognition sub-module configured to identify an obstacle in an image frame acquired by the image acquisition sub-module
  • a height calculation sub-module configured to calculate a height of an obstacle recognized by the image recognition sub-module
  • a second detecting submodule configured to detect whether a height of the obstacle calculated by the height calculating submodule is higher than a predetermined threshold
  • the second identification sub-module is configured to identify the obstacle as an insurmountable type when the height of the obstacle detected by the second detection sub-module is above a predetermined threshold.
  • the device further includes:
  • a distance measuring module configured to measure the distance of the obstacle from the two-wheel balance vehicle
  • a distance detecting module configured to detect whether a distance measured by the distance measuring module is less than a predetermined distance
  • the control module is configured to control the two-wheel balance vehicle to decelerate when the distance detecting module detects that the distance is less than a predetermined distance, and shield the turning control component.
  • the device further includes:
  • a prompting module configured to pass the predetermined party if the type of the obstacle identified by the identification module is an insurmountable obstacle Obstruction of obstacles;
  • the predetermined manner includes: playing a prompt tone, vibrating at least one of a predetermined component on the two-wheel balance vehicle, and a blinking signal light.
  • a two-wheel balance vehicle including two wheels that are juxtaposed, the two-wheel balance vehicle including:
  • a memory for storing controllable instructions of the chip
  • control chip is configured to:
  • Identify the type of obstacle in front of any wheel including: an insurmountable obstacle;
  • control the two-wheel balance vehicle to decelerate and shield the turn control assembly.
  • the technical solution provided by the embodiment of the present disclosure may include the following beneficial effects: by identifying the type of obstacle in front of any wheel, if the type of the obstacle is an insurmountable obstacle, controlling the two-wheel balance vehicle to decelerate, and shielding the turn
  • the control component solves the problem that once the front of one of the wheels of the two-wheeled balance car has an insurmountable obstacle, the wheel is blocked or stuck, and the other wheel continues to advance to generate a "centrifugal motion", causing the driver to fall. Problem; achieved the effect of avoiding the user falling down because one of the wheels was stuck during the two-wheel balance car.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a method of controlling a two-wheel balance vehicle according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment
  • FIG. 3 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment
  • FIG. 4 is an implementation effect diagram of a ranging component identifying an obstacle according to an exemplary embodiment
  • FIG. 5 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment
  • FIG. 6 is an implementation effect diagram of identifying an obstacle in an image frame, according to an exemplary embodiment
  • FIG. 7 is a flowchart of a control device for a two-wheel balance vehicle according to an exemplary embodiment
  • FIG. 8 is a flowchart of a control device for a two-wheel balance vehicle according to another exemplary embodiment
  • FIG. 9 is a block diagram of a two-wheel balance car according to an exemplary embodiment.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a method for controlling a two-wheeled balance vehicle according to an exemplary embodiment of the present disclosure.
  • the implementation environment may be a two-wheel balance vehicle, and the two wheels are balanced.
  • the vehicle includes two side-by-side wheels 110 and 120, two corresponding wheel housings 150 and 160 above the wheel, a turn control assembly 130, a load bearing pedal 140, and obstacle recognition assemblies 170 and 180.
  • the turn control assembly 130 is coupled to the load bearing pedal 140 and can be used to control the turning of the two-wheel balance vehicle.
  • the turning control component 130 can be implemented by manual control or by the leg motion control, which is not limited in this embodiment.
  • the obstacle recognition unit 170 is configured to recognize an obstacle in front of the right wheel of the two-wheel balance vehicle in the forward direction; the obstacle recognition unit 180 is configured to recognize an obstacle in front of the left wheel in the forward direction of the two-wheel balance vehicle.
  • the obstacle recognition components 170 and 180 may be any ranging component having the ability to recognize the size and distance of the object, such as an infrared sensing device, an ultrasonic sensing device, a laser range finder, etc.; the obstacle recognition components 170 and 180 may also have an image capturing The ability to capture any component, such as a camera.
  • obstacle recognition assembly 170 is merely illustratively disposed at position 1 of wheel housing 150
  • obstacle recognition assembly 180 is merely illustratively disposed at position 2 of wheel housing 160.
  • the obstacle recognition assemblies 170 and 180 can also be placed at any possible location of a two-wheel balance vehicle that can be foreseen by those skilled in the art, such as where the weight bearing pedal 140 and the turning control assembly 130 are engaged.
  • the number of the obstacle recognition components 170 and 180 is only exemplarily given in the embodiment, and the number thereof is at least one, which is not limited in this embodiment.
  • the two-wheel balance car may also include other components such as a control chip, a memory, a drive motor, etc. (not shown in the drawings).
  • the control chip is connected to the driving motor, the turning control component 130, the obstacle recognition components 170 and 180, and controls the forward, backward, stop and turn of the two-wheel balance vehicle according to the executable instructions stored in the memory, and the implementation of the present disclosure This section does not expand the content of this section.
  • FIG. 2 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment. As shown in FIG. 2, the present embodiment applies the control method of the two-wheel balance vehicle to the implementation shown in FIG. In the two-wheeled balance car in the environment, the control method of the two-wheel balance car includes the following steps.
  • step 201 the type of obstacle in front of any of the wheels is identified, the type including: an insurmountable obstacle.
  • control chip identifies the type of obstacle in front of any of the wheels through the obstacle recognition component.
  • the obstacle recognition component comprises: a ranging component, and/or an image acquisition component.
  • step 202 if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to decelerate, and the turn control assembly is shielded.
  • the control method of the two-wheeled balance vehicle determines the type of the obstacle in front of any wheel, and if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to be decelerated. And shielding the turning control component; solving the problem that one of the two wheels of the two-wheeled balance car has an insurmountable obstacle, blocking the wheel Or stuck, and the other wheel continues to move forward to produce "centrifugal motion", causing the driver to fall over; the effect of the user falling down due to one of the wheels being stuck in the process of avoiding the use of the two-wheeled balance car is achieved. .
  • step 201 there are two methods for identifying the type of obstacle in front of any wheel in step 201:
  • the first is to identify the type of obstacle by the ranging component, which is explained below using the embodiment shown in FIG.
  • the second is to identify the type of obstacle by the image acquisition component, which is explained below using the embodiment shown in FIG.
  • FIG. 3 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment. As shown in FIG. 3 , the present embodiment uses the control method of the two-wheel balance vehicle to be applied to the implementation shown in FIG. 1 . By way of example in the environment, the method includes the following steps.
  • step 301 the height of the obstacle in front of any of the wheels is measured by the ranging assembly.
  • the control chip of the two-wheeled balance car controls the ranging component to transmit a detection signal to the outside every predetermined time interval, and the detection signal may be laser, infrared, ultrasonic, or the like.
  • the reflected signal is returned when the probe signal encounters an obstacle. Therefore, when the ranging component receives the reflected signal, it indicates that there is an obstacle ahead.
  • a distance measuring component is respectively mounted on the two wheel housings of the two-wheel balancing vehicle. If the distance measuring component on one of the two wheel balancing vehicles receives the reflection signal, there is an obstacle in front of the wheel. Things.
  • the height of the obstacle is not lower than the mounting height of the ranging assembly, that is, the mounting height of the ranging assembly determines the detectable height of the obstacle.
  • the distance measuring component mounted on the wheel housing of the two-wheel balancing vehicle is located 5 cm away from the ground. If any wheel of the two-wheel balancing vehicle receives a reflection signal of the transmitting signal, it indicates that there is a height of at least 5 cm in front of the wheel. Obstacle; if any wheel of the two-wheel balance car does not receive a reflection signal, it means that there is no obstacle with a height of more than 5cm in front of the wheel.
  • the distance measuring component can also be installed at the position where the weight-bearing pedal and the turning control component are connected, and the position of the obstacle can be judged to be located in the two-wheel balance by receiving the reflected signal from the left side or from the right side.
  • the left side wheel of the vehicle is also the right side wheel, which is not limited in this embodiment.
  • step 302 it is detected whether the height of the obstacle is above a predetermined threshold.
  • the distance measuring assembly mounted on the two-wheel balance vehicle wheel housing is placed at a predetermined threshold from the ground.
  • the predetermined threshold is the maximum height of the obstacle that the two-wheeled balance vehicle can override.
  • the predetermined threshold may be 1/x of the height of the tire or other values, which is not limited in this embodiment.
  • the ranging component continuously emits a detection signal.
  • receives the reflected signal of the detection signal it indicates that there is an obstacle in front of the wheel whose height exceeds a predetermined threshold; if no reflection signal is received, it indicates that there is no height in front of the wheel. An obstacle that exceeds a predetermined threshold.
  • two distance measuring assemblies can be respectively installed in the vertical direction of the two wheel housings of the two-wheel balancing vehicle, and the two distance measuring assemblies on each wheel are vertically connected, and the connecting line is perpendicular to the ground.
  • the height of the measuring component located above from the ground is a predetermined threshold, and the height of the distance measuring component located below from the ground can be the height of the largest obstacle that the two-wheeled balance car can overcome without acceleration.
  • the distance measuring component corresponding to any of the two wheels When the distance measuring component corresponding to any of the two wheels receives the reflected signal, it indicates that there are two obstacles in front of the wheel that are insurmountable.
  • the distance measuring component corresponding to any of the two wheels does not receive the reflected signal, but the measuring component located below receives the reflected signal, it indicates that there is an obstacle in front of the wheel that requires two-wheel balancing vehicle acceleration to pass. Things.
  • This embodiment only gives a method of detecting the height of the front obstacle by the distance measuring assembly, but does not limit how to use the distance measuring assembly to detect the height of the front obstacle.
  • the two ranging components 42 and 43 on the wheel 41 emit a detection signal outward, wherein the ranging component 42 does not receive the transmission signal, and the ranging component 43 receives the reflection signal, then There is a barrier that can be crossed in front of the wheel 41.
  • step 303 if the height of the obstacle is above a predetermined threshold, the obstacle is identified as an insurmountable type.
  • the ranging component on any wheel housing of the two-wheel balance vehicle When the ranging component on any wheel housing of the two-wheel balance vehicle receives the reflection signal of the detection signal, it indicates that there is an obstacle in front of the wheel whose height reaches a predetermined threshold. At this time, the two-wheel balance vehicle recognizes the obstacle as An insurmountable type of obstacle.
  • step 305 When the obstacle is an insurmountable type, proceed to step 305.
  • step 304 if the height of the obstacle is below a predetermined threshold, the obstacle is identified as a passable type.
  • the obstacle When there is an obstacle in front of any of the wheels and the height of the obstacle is below a predetermined threshold, the obstacle is identified as a passable type.
  • step 309 When the obstacle is of a passable type, the process proceeds to step 309.
  • step 305 when the obstacle is of an insurmountable type, the distance between the obstacle and the two-wheel balance vehicle is measured.
  • control chip measures the distance between the obstacle in front of any wheel and the two-wheel balance vehicle through the distance measuring component. For example, the control chip calculates the distance according to the time when the detection signal is sent to the time when the reflected signal is received, and the distance of the two-wheeled balance vehicle is calculated. This embodiment is not limited.
  • step 306 it is detected if the distance is less than a predetermined distance.
  • the control chip detects whether the distance between the obstacle and the two-wheel balance vehicle is less than a predetermined distance.
  • the predetermined distance is the maximum distance required for the two-wheel balance car to turn.
  • the predetermined distance may be x times the diameter of the tire, or other values, which are not limited in this embodiment.
  • step 307 If the distance is less than the predetermined distance, proceed to step 307; if the distance is greater than the predetermined distance, proceed to step 308.
  • step 307 if the distance is less than the predetermined distance, the two-wheel balance vehicle is controlled to decelerate, and the turn control assembly is shielded, and the obstacle is presented in a predetermined manner.
  • control chip controls the two-wheel balance vehicle to decelerate until it stops.
  • a two-wheeled balance car collides with an obstacle during deceleration.
  • the control chip also shields the turning control component. At this time, the user will not be able to control the two-wheel balance car to make a turn. Even if the two-wheeled balance car collides with obstacles during deceleration, the user is in the process of collision Because the body is out of control and the turning control component is mishandled, the control chip does not respond to the erroneous operation.
  • control chip further performs an obstacle prompting in a predetermined manner, wherein the predetermined manner includes: playing a prompt sound, vibrating at least one of a predetermined component on the two-wheel balance vehicle, and a flashing signal light.
  • the two-wheeled balance vehicle issues " ⁇ , ⁇ , ⁇ " Prompt tone.
  • step 308 if the distance is greater than the predetermined distance, the two-wheel balance vehicle is controlled to continue.
  • step 309 if the type of the obstacle is an obstacle that can be exceeded, the driving force of the two-wheeled balance vehicle is increased to continue.
  • the control chip controls the drive motor to increase the driving force of the two-wheel balance vehicle.
  • the control method of the two-wheeled balance vehicle determines the type of the obstacle in front of any wheel, and if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to be decelerated. And shielding the turning control component; solving the problem that once the front of one of the wheels of the two-wheeled balance car has an insurmountable obstacle, the wheel is blocked or stuck, and the other wheel continues to advance to generate "centrifugal motion", resulting in driving The problem of falling; reaching the effect of avoiding the use of two-wheeled balance car, the user fell because one of the wheels was stuck.
  • the control method of the two-wheeled balance vehicle measures the height and distance of the obstacle through the distance measuring component, thereby enabling the two-wheel balance vehicle to recognize the type of the obstacle, and according to the obstacle and the two-wheel balance vehicle The distance between them is used to decelerate and shield the action of the turning control unit.
  • the control method of the two-wheel balance vehicle provided by the embodiment further shields the turning control component when the distance between the obstacle and the two-wheel balance vehicle is less than a predetermined distance, so that even if the two-wheel balance vehicle collides during the deceleration process Obstacle, the user mishandled the turning control component during the collision because the body could not control, and the control chip did not respond to the erroneous operation, effectively reducing the possibility of the user falling.
  • FIG. 5 is a flowchart of a method for controlling a two-wheel balance vehicle according to an exemplary embodiment. As shown in FIG. 5 , the present embodiment uses the control method of the two-wheel balance vehicle to be applied to the implementation shown in FIG. 1 . By way of example in the environment, the method includes the following steps.
  • step 501 an image frame in front of any of the wheels is acquired by the image acquisition component.
  • the image acquisition assembly can be mounted on the two wheel housings of a two-wheel balancer or on the interface between the load-bearing pedal and the turn control assembly.
  • the control chip controls the image acquisition component to collect images of the front of the two wheels to form a continuous frame of image frames.
  • step 502 an obstacle in the image frame is identified.
  • the ground and other objects in the image frame can be determined from the changes in the pixels in the image frame.
  • the control chip after acquiring the image frame 60 acquired by the image acquisition component, the control chip performs binarization processing on the image frame 60 according to the color difference to obtain the first region 62 and the second region 64.
  • a junction of a region 62 and a second region 64 forms a road line 66.
  • the control chip detects whether there is a bump 68 on the road line 66. If the road line 66 is stored At the bump 68, the control chip identifies the bump 68 as an obstacle.
  • step 503 the height of the identified obstacle is calculated.
  • the control chip calculates the height of the obstacle according to the height of the obstacle in the image frame and a predetermined scale. For example, if the predetermined scale is 1:3, the height of the obstacle in the image frame is At 1 cm, the calculated height of the obstacle is 3 cm. When the obstacle is getting closer to the two-wheeled balance car, the calculated height of the obstacle is getting closer.
  • the two-wheel balance vehicle is further provided with a distance measuring component, and the distance measuring component can measure the distance between the obstacle and the two-wheel balance vehicle, and the control chip first searches for the distance corresponding to the distance.
  • a scale and calculating a degree of coverage of the obstacle according to a height of the obstacle in the image frame corresponding to the distance, for example, a scale corresponding to the distance is 1:5, and the height of the obstacle in the image frame At 1 cm, the calculated height of the obstacle is 5 cm.
  • control chip can calculate the convexity (ie, obstacle) and binocular imaging principle in the two image frames collected by the two image acquisition components. The actual height of the obstacle.
  • the embodiment does not limit the manner in which the control chip calculates the height of the obstacle.
  • step 504 it is detected whether the height of the obstacle is above a predetermined threshold.
  • the control chip detects whether the calculated obstacle height is above a predetermined threshold.
  • the predetermined threshold is a maximum height of an obstacle that the two-wheeled balance vehicle can override.
  • step 505 If the height of the obstacle is greater than a predetermined threshold, proceed to step 505;
  • step 506 is entered.
  • step 505 if the height of the obstacle is above a predetermined threshold, the obstacle is identified as an insurmountable type.
  • step 506 if the height of the obstacle is less than a predetermined threshold, the obstacle is identified as a passable type.
  • step 511 When the obstacle is of a passable type, the process proceeds to step 511.
  • step 507 when the obstacle is of an insurmountable type, the distance between the obstacle and the two-wheel balance vehicle is measured.
  • control chip measures the distance between the obstacle and the two-wheel balance vehicle through the image acquisition component.
  • the control chip can calculate the distance between the obstacle and the two-wheel balance vehicle according to the image frame and the binocular imaging principle respectively acquired by the two image acquisition components.
  • control chip measures the distance between the obstacle in front of any wheel and the two-wheel balance vehicle through the distance measuring component. For example, the control chip calculates the distance according to the time when the detection signal is sent to the time when the reflected signal is received, and the distance of the two-wheeled balance vehicle is calculated. This embodiment is not limited.
  • step 508 it is detected if the distance is less than a predetermined distance.
  • the control chip detects whether the distance between the obstacle and the two-wheel balance vehicle is less than a predetermined distance.
  • the predetermined distance is the maximum distance required for the two-wheel balance car to turn.
  • the predetermined distance may be x times the diameter of the tire, or other values, which are not limited in this embodiment.
  • step 509 If the distance is less than the predetermined distance, proceed to step 509; if the distance is greater than the predetermined distance, proceed to step 510.
  • step 509 if the distance is less than the predetermined distance, the two-wheel balance vehicle is controlled to decelerate, and the turn control assembly is shielded, and the obstacle is presented in a predetermined manner.
  • control chip controls the two-wheel balance vehicle to decelerate until it stops.
  • a two-wheeled balance car collides with an obstacle during deceleration.
  • the control chip also shields the turning control component. At this time, the user will not be able to control the two-wheel balance car to make a turn. Even if the two-wheeled balance car collides with an obstacle during the deceleration, the user mishandles the turning control component during the collision because the body cannot control, and the control chip does not respond to the misoperation.
  • control chip further performs an obstacle prompting in a predetermined manner, wherein the predetermined manner includes: playing a prompt sound, vibrating at least one of a predetermined component on the two-wheel balance vehicle, and a flashing signal light.
  • the two-wheeled balance vehicle issues a prompt "there is an obstacle in front" sound.
  • step 510 if the distance is greater than the predetermined distance, the two-wheel balance vehicle is controlled to continue.
  • step 511 if the type of the obstacle is an obstacle that can be exceeded, the driving force of the two-wheeled balance vehicle is increased to continue.
  • the control chip controls the drive motor to increase the driving force of the two-wheel balance vehicle.
  • the control method of the two-wheeled balance vehicle determines the type of the obstacle in front of any wheel, and if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to be decelerated. And shielding the turning control component; solving the problem that once the front of one of the wheels of the two-wheeled balance car has an insurmountable obstacle, the wheel is blocked or stuck, and the other wheel continues to advance to generate "centrifugal motion", resulting in driving The problem of falling; reaching the effect of avoiding the use of two-wheeled balance car, the user fell because one of the wheels was stuck.
  • the control method of the two-wheeled balance vehicle measures the height and distance of the obstacle through the image acquisition component, thereby enabling the two-wheel balance vehicle to recognize the type of the obstacle, and according to the obstacle and the two-wheel balance vehicle The distance between them is used to decelerate and shield the action of the turning control unit.
  • the control method of the two-wheel balance vehicle provided by the embodiment further shields the turning control component when the distance between the obstacle and the two-wheel balance vehicle is less than a predetermined distance, so that even if the two-wheel balance vehicle collides during the deceleration process Obstacle, the user mishandled the turning control component during the collision because the body could not control, and the control chip did not respond to the erroneous operation, effectively reducing the possibility of the user falling.
  • FIG. 7 is a block diagram of a control device for a two-wheel balance vehicle according to an exemplary embodiment. As shown in FIG. 7 , the control device of the two-wheel balance vehicle is applied to one of the implementation environments shown in FIG. 1 . In the control method of the two-wheeled balance vehicle, the control device of the two-wheel balance vehicle includes but is not limited to: an identification module 710 and a control module 720.
  • the identification module 710 is configured to identify a type of obstacle in front of any of the wheels, the type including: insurmountable obstacle;
  • the control module 720 is configured to control the two-wheel balance vehicle to decelerate and shield the turn control component when the type of the obstacle identified by the identification module 710 is an insurmountable obstacle.
  • the control device for the two-wheeled balance vehicle determines the type of the obstacle in front of any wheel, and if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to decelerate. And shielding the turning control component; solving the problem that once the front of one of the wheels of the two-wheeled balance car has an insurmountable obstacle, the wheel is blocked or stuck, and the other wheel continues to advance to generate "centrifugal motion", resulting in driving The problem of falling; reaching the effect of avoiding the use of two-wheeled balance car, the user fell because one of the wheels was stuck.
  • FIG. 8 is a block diagram of a control device for a two-wheel balance vehicle according to another exemplary embodiment. As shown in FIG. 8 , the control device of the two-wheel balance vehicle is applied to the implementation environment shown in FIG. 1 . In the control method of the two-wheel balance vehicle, the control device of the two-wheel balance vehicle includes but is not limited to: an identification module 810 and a control module 820.
  • the identification module 810 is configured to identify a type of obstacle in front of any of the wheels, the type comprising: an insurmountable obstacle;
  • the control module 820 is configured to control the two-wheel balance vehicle to decelerate and shield the turn control component when the type of the obstacle identified by the identification module 810 is an insurmountable obstacle.
  • the type further includes: an obstacle that can be exceeded; the device further includes: an acceleration module 830.
  • the acceleration module 830 is configured to increase the driving force of the two-wheel balance vehicle to continue to advance if the type of the obstacle recognized by the identification module 810 is an obstacle that can be exceeded.
  • the identification module 810 includes: a height measurement sub-module 811, a first detection sub-module 812, and a first identification sub-module 813.
  • the height measuring sub-module 811 is configured to measure the height of an obstacle in front of any wheel by the ranging component
  • the first detecting sub-module 812 is configured to detect whether the height of the obstacle measured by the height measuring sub-module 811 is higher than a predetermined threshold;
  • the first identification sub-module 813 is configured to identify the obstacle as an insurmountable type when the height of the obstacle detected by the first detection sub-module 812 is above a predetermined threshold.
  • the identification module 810 further includes: an image collection sub-module 814, an image recognition sub-module 815, a height calculation sub-module 816, a second detection sub-module 817, and a second identification sub-module 818.
  • the image acquisition sub-module 814 is configured to acquire an image frame in front of any wheel through the image acquisition component
  • the image recognition sub-module 815 is configured to identify an obstacle in an image frame acquired by the image acquisition sub-module 814;
  • the height calculation sub-module 816 is configured to calculate a height of the obstacle recognized by the image recognition sub-module 815;
  • the second detecting sub-module 817 is configured to detect whether the height of the obstacle calculated by the height calculating sub-module 816 is higher than a predetermined threshold;
  • the second identification sub-module 818 is configured to detect that the height of the obstacle detected by the second detection sub-module 818 is higher than a predetermined At the threshold, the obstacle is identified as an insurmountable type.
  • control device of the two-wheel balance vehicle further includes: a distance measurement module 840, a distance detection module 850, and a control module 820.
  • the distance measuring module 840 is configured to measure a distance of the obstacle from the two-wheel balance vehicle
  • the distance detecting module 850 is configured to detect whether the distance measured by the distance measuring module 840 is less than a predetermined distance
  • the control module 820 is configured to control the two-wheel balance vehicle to decelerate when the distance detecting module 850 detects that the distance is less than a predetermined distance, and shield the turning control component.
  • control device of the two-wheel balance vehicle further includes: a prompting module 860.
  • the prompting module 860 is configured to perform an obstacle prompting by a predetermined manner if the type of the obstacle identified by the identification module 810 is an insurmountable obstacle;
  • the predetermined manner includes: playing a prompt tone, vibrating at least one of a predetermined component on the two-wheel balance vehicle, and a blinking signal light.
  • the control device for the two-wheeled balance vehicle determines the type of the obstacle in front of any wheel, and if the type of the obstacle is an insurmountable obstacle, the two-wheel balance vehicle is controlled to decelerate. And shielding the turning control component; solving the problem that once the front of one of the wheels of the two-wheeled balance car has an insurmountable obstacle, the wheel is blocked or stuck, and the other wheel continues to advance to generate "centrifugal motion", resulting in driving The problem of falling; reaching the effect of avoiding the use of two-wheeled balance car, the user fell because one of the wheels was stuck.
  • the control method of the two-wheeled balance vehicle measures the height and distance of the obstacle through the image acquisition component, thereby enabling the two-wheel balance vehicle to recognize the type of the obstacle, and according to the obstacle and the two-wheel balance vehicle The distance between them is used to decelerate and shield the action of the turning control unit.
  • the control method of the two-wheel balance vehicle provided by the embodiment further shields the turning control component when the distance between the obstacle and the two-wheel balance vehicle is less than a predetermined distance, so that even if the two-wheel balance vehicle collides during the deceleration process Obstacle, the user mishandled the turning control component during the collision because the body could not control, and the control chip did not respond to the erroneous operation, effectively reducing the possibility of the user falling.
  • An exemplary embodiment of the present disclosure provides a two-wheel balance vehicle including two wheels that are juxtaposed to implement a two-wheel balance vehicle control method provided by the present disclosure.
  • the balance car includes: a control chip, a memory for storing executable instructions of the control chip, and a turn control component connected to the control chip.
  • control chip is configured to:
  • Identify the type of obstacle in front of any wheel including: an insurmountable obstacle;
  • the two-wheel balance vehicle is controlled to decelerate and the turn control assembly is shielded.
  • FIG. 9 is a block diagram of a two-wheel balance car according to an exemplary embodiment.
  • the two-wheel balance vehicle 900 can include one or more of the following components: a control chip 902, a memory 904, a power supply component 906, an image acquisition component 908, a ranging component 910, an input/output (I/O) interface 912, Sensor assembly 914, and turn control assembly 916.
  • a control chip 902 a memory 904
  • a power supply component 906 an image acquisition component 908, a ranging component 910, an input/output (I/O) interface 912, Sensor assembly 914, and turn control assembly 916.
  • I/O input/output
  • Control chip 902 typically controls the overall operation of two-wheel balancer 900, such as operations associated with forward, reverse, acceleration, and deceleration.
  • control chip 902 can include one or more modules to facilitate control of interaction between chip 902 and other components.
  • control chip 902 can include an image acquisition module to facilitate interaction between image acquisition component 908 and control chip 902.
  • the memory 904 is configured to store various types of data to support operation of the two-wheel balance vehicle 900. Examples of such data include instructions for any two-wheel balance car operating on a two-wheel balance vehicle 900, image data, distance data, and the like.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power supply assembly 906 provides power to various components of two-wheel balance vehicle 900.
  • Power component 906 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for two-wheel balance vehicle 900.
  • Image capture assembly 908 is included in two-wheel balance vehicle 900.
  • image acquisition component 908 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera can receive external multimedia data.
  • Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the ranging component 910 is configured to transmit and/or receive a sounding signal.
  • the ranging component 910 includes a laser emitter that is configured to receive a reflected signal of the probe signal when the two-wheel balancer 900 is in an operational mode, such as receiving a reflected laser.
  • the received reflected signal can be further stored in memory 904.
  • the I/O interface 912 provides an interface between the control chip 902 and the peripheral interface module, and the peripheral interface module may be a USB flash drive, an audio player, or the like.
  • Sensor assembly 914 includes one or more sensors for providing a status assessment of various aspects to two-wheel balance vehicle 900.
  • sensor assembly 914 can detect an open/closed state of two-wheel balancer 900, and sensor assembly 914 can detect two-wheel balance vehicle 900 orientation or acceleration/deceleration changes.
  • Sensor assembly 914 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the turn control assembly 916 is configured to facilitate turn control of the two-wheel balance vehicle 900.
  • the turn control component 916 can be a manually controlled turn control assembly or a leg controlled turn control assembly.
  • the two-wheel balance vehicle 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the above two-wheel balancing vehicle control method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the above two-wheel balancing vehicle control method.

Abstract

一种两轮平衡车的控制方法及装置,用于包括有并列的两个车轮(110、120)和转弯控制组件(130)的两轮平衡车中,属于自动控制领域。所述方法包括:识别任一车轮前方的障碍物的类型,若障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件(130)。所述装置包括:识别模块(710,810),被配置为识别任一车轮前方的障碍物的类型;控制模块(720,820),被配置为在识别模块(710,810)识别的障碍物的类型是不可逾越障碍物时,控制两轮平衡车进行减速,且屏蔽转弯控制组件(130)。所述方法及装置解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生"离心式运动",导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。

Description

两轮平衡车的控制方法及装置
本申请基于申请号为201510626948.2、申请日为2015年9月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及自动控制领域,特别涉及一种两轮平衡车控制方法及装置。
背景技术
两轮平衡车又称两轮电动平衡车,是目前新兴的一种短距离交通工具
两轮平衡车通常具有并列的两个车轮和转弯控制组件,通过内部的驱动马达的驱动进行前进或后退,在前进或后退过程中,用户可以通过转弯控制组件来控制两轮平衡车进行转弯。若两轮平衡车的一个车轮的前方具有障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进,就会产生“离心式运动”,则可能会让驾驶者摔倒。
发明内容
为了解决相关技术中的问题,本公开提供一种两轮平衡车的控制方法。所述技术方案如下:
根据本公开实施例的第一方面,提供一种两轮平衡车的控制方法,用于包括有并列的两个车轮和转弯控制组件的两轮平衡车中,该方法包括:
识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物;
若障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
可选的,该类型还包括:可逾越障碍物;方法还包括:
若障碍物的类型是可逾越障碍物,则增加两轮平衡车的驱动力继续前进。
可选的,识别任一车轮前方的障碍物的类型,包括:
通过测距组件测量任一车轮前方的障碍物的高度;
检测障碍物的高度是否高于预定阈值;
若障碍物的高度高于预定阈值,则将障碍物识别为不可逾越类型。
可选的,识别任一车轮前方的障碍物的类型,包括:
通过图像采集组件采集任一车轮前方的图像帧;
识别图像帧中的障碍物;
计算识别出障碍物的高度;
检测障碍物的高度是否高于预定阈值;
若障碍物的高度高于预定阈值,则将障碍物识别为不可逾越类型。
可选的,该方法还包括:
测量障碍物离两轮平衡车的距离;
检测距离是否小于预定距离;
若距离小于预定距离,则执行控制两轮平衡车进行减速,且屏蔽转弯控制组件的步骤。
可选的,该方法还包括:
若障碍物的类型是不可逾越障碍物,则通过预定方式进行障碍物提示;
其中,预定方式包括:播放提示音、震动两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
根据本公开实施例的第二方面,提供一种两轮平衡车的控制装置,用于包括有并列的两个车轮和转弯控制组件的两轮平衡车中,该装置包括:
识别模块,被配置为识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物;
控制模块,被配置为在识别模块识别的障碍物的类型是不可逾越障碍物时,控制两轮平衡车进行减速,且屏蔽转弯控制组件。
可选的,该类型还包括:可逾越障碍物;该装置还包括:
加速模块,被配置为若识别模块识别的障碍物的类型是可逾越障碍物,则增加两轮平衡车的驱动力继续前进。
可选的,识别模块,包括:
高度测量子模块,被配置为通过测距组件测量任一车轮前方的障碍物的高度;
第一检测子模块,被配置为检测高度测量子模块测量的障碍物的高度是否高于预定阈值;
第一识别子模块,被配置为在第一检测子模块检测的障碍物的高度高于预定阈值时,将障碍物识别为不可逾越类型。
可选的,识别模块,还包括:
图像采集子模块,被配置为通过图像采集组件采集任一车轮前方的图像帧;
图象识别子模块,被配置为识别图像采集子模块采集的图像帧中的障碍物;
高度计算子模块,被配置为计算识别出图像识别子模块识别出的障碍物的高度;
第二检测子模块,被配置为检测高度计算子模块计算出的障碍物的高度是否高于预定阈值;
第二识别子模块,被配置为在第二检测子模块检测的障碍物的高度高于预定阈值时,将障碍物识别为不可逾越类型。
可选的,该装置还包括:
距离测量模块,被配置为测量障碍物离两轮平衡车的距离;
距离检测模块,被配置为检测距离测量模块测量的距离是否小于预定距离;
控制模块,被配置为在距离检测模块检测到距离小于预定距离时,控制两轮平衡车进行减速,且屏蔽转弯控制组件。
可选的,该装置还包括:
提示模块,被配置为若识别模块识别的障碍物的类型是不可逾越障碍物,则通过预定方 式进行障碍物提示;
其中,该预定方式包括:播放提示音、震动两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
根据本公开实施例的第三方面,提供一种两轮平衡车,该两轮平衡车包括有并列的两个车轮,该两轮平衡车包括:
控制芯片;
用于存储控制芯片可执行指令的存储器;
与控制芯片相连的转弯控制组件;
其中,控制芯片被配置为:
识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物;
若障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
本公开实施例提供的技术方案可以包括以下有益效果:通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据本公开示例性实施例示出的两轮平衡车的控制方法所涉及的一种实施环境的示意图;
图2是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图;
图3是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图;
图4是根据一示例性实施例示出的测距组件识别障碍物的实施效果图;
图5是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图;
图6是根据一示例性实施例示出的识别图像帧中的障碍物的实施效果图;
图7是根据一示例性实施例示出的一种两轮平衡车的控制装置的流程图;
图8是根据另一示例性实施例示出的一种两轮平衡车的控制装置的流程图;
图9是根据一示例性实施例示出的一种两轮平衡车的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述 的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的方法和装置的例子。
图1是根据本公开一示例性实施例示出的两轮平衡车的控制方法所涉及的实施环境的示意图,如图1所示,该实施环境可以是一台两轮平衡车,该两轮平衡车包括两个并列的车轮110和120、两个并列的车轮上方对应的车轮外壳150和160、转弯控制组件130、承重踏板140、以及障碍物识别组件170和180。
转弯控制组件130与承重踏板140相连接,可以用于对两轮平衡车的转弯进行控制。该转弯控制组件130可以通过手动控制实现,也可以通过腿动控制实现,本实施例不做限定。
障碍物识别组件170用于对两轮平衡车前进方向的右侧车轮前的障碍物进行识别;障碍物识别组件180用于对两轮平衡车前进方向的左侧车轮前的障碍物进行识别。障碍物识别组件170和180可以是具有识别物体大小和距离能力的任意测距组件,如红外线感应装置、超声波感应装置、激光测距仪等;障碍物识别组件170和180也可以为具有图像拍摄能力的任一图像采集组件,如摄像头。
在图1中,障碍物识别组件170只是示例性地设置在车轮外壳150的位置1上,障碍物识别组件180只是示例性地设置在车轮外壳160的位置2上。障碍物识别组件170和180还可以设置在本领域技术人员可以预见的两轮平衡车的任意可能部位上,如承重踏板140和转弯控制组件130衔接的位置。此外,,障碍物识别组件170和180的数量在本实施例中也只是示例性地给出两个,它的数量至少为一个,本实施例不做限定。
需要补充说明的是,两轮平衡车还可以包括其它部件,比如,控制芯片、存储器、驱动马达等(图中均未示出)。其中,控制芯片与驱动马达、上述转弯控制组件130、障碍物识别组件170和180相连,并根据存储器中存储的可执行指令来控制两轮平衡车的前进、后退、停止和转弯,本公开实施例不对此部分内容进行展开叙述。
图2是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图,如图2所示,本实施例以该两轮平衡车的控制方法应用于图1所示的实施环境中的两轮平衡车中来举例说明,该两轮平衡车的控制方法包括以下步骤。
在步骤201中,识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物。
可选地,控制芯片通过障碍物识别组件识别任一车轮前方的障碍物的类型。
可选地,该障碍物识别组件包括:测距组件,和/或,图像采集组件。
在步骤202中,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
综上所述,本实施例提供的两轮平衡车的控制方法,通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡 或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
可选的,步骤201中的识别任一车轮前方的障碍物的类型的方法有两种:
第一种为通过测距组件识别障碍物的类型,下面采用图3所示实施例进行阐述。
第二种为通过图像采集组件识别障碍物的类型,下面采用图4所示实施例进行阐述。
图3是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图,如图3所示,本实施例以该两轮平衡车的控制方法应用于图1所示的实施环境中来举例说明,该方法包括以下步骤。
在步骤301中,通过测距组件测量任一车轮前方的障碍物的高度。
两轮平衡车的控制芯片控制测距组件每隔预定时间间隔向外界发射探测信号,该探测信号可以为激光,红外线、超声波等。当探测信号遇到障碍物时会返回反射信号。因此,当测距组件接收到反射信号时,说明前方存在障碍物。
可选地,在两轮平衡车的两个车轮外壳上分别安装有一个测距组件,若两轮平衡车的其中一个车轮上的测距组件接收到反射信号,则说明该车轮前方存在一个障碍物。该障碍物的高度不低于测距组件的安装高度,也即,测距组件的安装高度决定了障碍物的可检测高度。
例如,安装在两轮平衡车的车轮外壳的测距组件位于距离地面5cm的位置上,若两轮平衡车任一车轮接收到发射信号的反射信号,说明该车轮前方存在一个高度至少为5cm的障碍物;若两轮平衡车任一车轮未接收到反射信号,说明该车轮前方不存在高度超过5cm的障碍物。
实际实现时,该测距组件也可安装在承重踏板和转弯控制组件衔接的位置上,可以通过接收到的反射信号是来自左侧还是来自右侧,来判断障碍物的位置是位于两轮平衡车的左侧车轮还是右侧车轮,本实施例不做限定。
在步骤302中,检测该障碍物的高度是否高于预定阈值。
将安装在两轮平衡车车轮外壳上的测距组件设置在距离地面为预定阈值的位置上。该预定阈值为两轮平衡车能逾越的障碍物的最大高度。该预定阈值可以为轮胎高度的1/x或者其他数值,本实施例不做限定。
该测距组件不断向外发射探测信号,当接收到该探测信号的反射信号时,说明该车轮前方存在高度超过预定阈值的障碍物;若没有接收到反射信号,则说明该车轮前方不存在高度超过预定阈值的障碍物。
可选的,可在两轮平衡车的两个车轮外壳沿竖直方向上分别安装两个测距组件,每个车轮上的两个测距组件一上一下,连线与地面垂直。位于上方的测量组件距离地面的高度为预定阈值,位于下方的测距组件距离地面的高度可以为两轮平衡车不用加速就可逾越的最大的障碍物的高度。
当两车轮中任一车轮对应的位于上方的测距组件接收到反射信号时,说明该车轮前方存在两轮平衡车不可逾越的障碍物。
当两车轮中任一车轮对应的位于上方的测距组件未接收到反射信号,但位于下方的测距组件接收到反射信号时,说明该车轮前方存在需要两轮平衡车加速才可逾越的障碍物。
当两车轮中任一车轮对应的两个测距组件均未接收到反射信号时,可以认为该车轮前方不存在障碍物。
本实施例仅给出示例性地给出了一种通过测距组件来检测前方障碍物高度的方法,但对如何使用测距组件来检测前方障碍物的高度不做限定。
可选地,如图4所示,车轮41上的两个测距组件42和43向外发射探测信号,其中,测距组件42未接收到发射信号,测距组件43接收到反射信号,则车轮41前方存在可逾越障碍物。
在步骤303中,若该障碍物的高度高于预定阈值,则将该障碍物识别为不可逾越类型。
当两轮平衡车的任一车轮外壳上的测距组件接收到探测信号的反射信号时,说明该车轮前方存在高度达到预定阈值的障碍物,此时,两轮平衡车将该障碍物识别为不可逾越类型的障碍物。
当障碍物是不可逾越类型时,进入步骤305。
在步骤304中,若该障碍物的高度低于预定阈值,则将该障碍物识别为可逾越类型。
当任一车轮前方存在障碍物且该障碍物的高度低于预定阈值,则将该障碍物识别为可逾越类型。
当障碍物是可逾越类型时,进入步骤309。
在步骤305中,当障碍物是不可逾越类型时,测量该障碍物与两轮平衡车之间的距离。
可选地,控制芯片通过测距组件测量任一车轮前方的障碍物与两轮平衡车之间的距离。比如,控制芯片根据探测信号的发出时刻到反射信号的接收时刻,再结合两轮平衡车的行进速度计算得知该距离,本实施例不做限定。
在步骤306中,检测该距离是否小于预定距离。
控制芯片检测障碍物与两轮平衡车之间的距离是否小于预定距离。
可选地,该预定距离为两轮平衡车转弯时需要的最大距离。预定距离可以为轮胎直径的x倍,或者其他数值,本实施例不做限定。
若该距离小于预定距离,则进入步骤307;若该距离大于预定距离,则进入步骤308。
在步骤307中,若该距离小于预定距离,则控制两轮平衡车进行减速,且屏蔽转弯控制组件,且通过预定方式进行障碍物提示。
若该距离小于预定距离,则控制芯片控制两轮平衡车进行减速,直至停止。但是,也有可能发生两轮平衡车在减速过程中碰撞到障碍物的情形
同时,若该距离小于预定距离,则控制芯片还将转弯控制组件屏蔽。这时,用户将不能控制两轮平衡车进行转弯。即便两轮平衡车在减速过程中碰撞到障碍物,用户在碰撞过程中 因为身体无法控制而对转弯控制组件进行了误操作,控制芯片也不对该误操作进行响应。
可选地,控制芯片还通过预定方式进行障碍物提示,其中,预定方式包括:播放提示音、震动两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
例如,当识别到两轮平衡车的其中一轮前方存在不可逾越的障碍物,且不可逾越的障碍物与两轮平衡车达到预定距离时,两轮平衡车发出“嘀、嘀、嘀”的提示音。
在步骤308中,若该距离大于预定距离,则控制两轮平衡车继续前进。
在步骤309中,若障碍物的类型是可逾越障碍物,则增加两轮平衡车的驱动力继续前进。
若识别两轮平衡车任一车轮前方的障碍物为可逾越障碍物时,则控制芯片控制驱动马达增加两轮平衡车的驱动力前进。
综上所述,本实施例提供的两轮平衡车的控制方法,通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
本实施例提供的两轮平衡车的控制方法,通过测距组件来测量障碍物的高度和距离,进而使得两轮平衡车能够识别障碍物的类型,并根据该障碍物与两轮平衡车之间的距离作出减速和屏蔽转弯控制部件的动作。
本实施例提供的两轮平衡车的控制方法,还通过在障碍物与两轮平衡车之间的距离小于预定距离时,屏蔽转弯控制部件,从而使得即便两轮平衡车在减速过程中碰撞到障碍物,用户在碰撞过程中因为身体无法控制而对转弯控制组件进行了误操作,控制芯片也不对该误操作进行响应,有效减少了用户摔倒的可能性。
图5是根据一示例性实施例示出的一种两轮平衡车的控制方法的流程图,如图5所示,本实施例以该两轮平衡车的控制方法应用于图1所示的实施环境中来举例说明,该方法包括以下步骤。
在步骤501中,通过图像采集组件采集任一车轮前方的图像帧。
图像采集组件可以安装在两轮平衡车的两个车轮外壳上,也可安装在承重踏板与转弯控制组件的衔接部分。
控制芯片控制图像采集组件对两个车轮前方的图像进行采集,形成连续的一帧帧图像帧。
在步骤502中,识别该图像帧中的障碍物。
由于大地和处于地面上的其他物体颜色区别十分明显,因此可以根据图像帧中像素的变化确定图像帧中的地面和其他物体。
可选地,如图6所示,控制芯片在获取到图像采集组件采集到的图像帧60后,对图像帧60按照颜色差异进行二值化处理得到第一区域62和第二区域64,第一区域62和第二区域64的交汇处形成道路线66。控制芯片检测该道路线66是否存在凸起68。若该道路线66存 在凸起68,则控制芯片将该凸起68识别为障碍物。
在步骤503中,计算识别出的该障碍物的高度。
作为第一种可能的实现方式,控制芯片根据该障碍物在图像帧中的高度和预定比例尺计算该障碍物的高度,比如预定比例尺为1:3,则该障碍物在图像帧中的高度为1厘米时,计算出的该障碍物的高度为3厘米。当该障碍物离两轮平衡车的距离越来越近时,计算出的该障碍物的高度也越来越近。
作为第二种可能的实现方式,两轮平衡车上还设置有测距组件,该测距组件能够测量得到该障碍物与两轮平衡车之间的距离,控制芯片先查找与该距离对应的比例尺,再根据该障碍物在图像帧中的高度与该距离对应的比例尺计算该障碍物的盖度,比如,与该距离对应的比例尺为1:5,则该障碍物在图像帧中的高度为1厘米时,计算出的该障碍物的高度为5厘米。
作为第三种可能的实现方式,图像采集组件为两个,则控制芯片可以根据两个图像采集组件采集到的两帧图像帧中的凸起(也即障碍物)和双眼成像原理,计算出该障碍物的实际高度。
需要说明的是,本实施例不对控制芯片计算该障碍物的高度的方式进行限定。
在步骤504中,检测该障碍物的高度是否高于预定阈值。
控制芯片检测计算出的障碍物高度是否高于预定阈值。
可选地,该预定阈值为两轮平衡车能逾越的障碍物的最大高度。
若该障碍物的高度大于预定阈值,则进入步骤505;
若该障碍物的高度小于预定阈值,则进入步骤506。
在步骤505中,若该障碍物的高度高于预定阈值,则将该障碍物识别为不可逾越类型。
当障碍物是不可逾越类型时,进入步骤507。
在步骤506中,若该障碍物的高度小于预定阈值,则将该障碍物识别为可逾越类型。
当障碍物是可逾越类型时,进入步骤511。
在步骤507中,当障碍物是不可逾越类型时,测量该障碍物与两轮平衡车之间的距离。
可选地,控制芯片通过图像采集组件测量该障碍物与两轮平衡车之间的距离。作为可能的实现方式,图像采集组件为两个,控制芯片可以根据两个图像采集组件各自采集到的图像帧和双眼成像原理,计算出该障碍物与两轮平衡车之间的距离。
可选地,控制芯片通过测距组件测量任一车轮前方的障碍物与两轮平衡车之间的距离。比如,控制芯片根据探测信号的发出时刻到反射信号的接收时刻,再结合两轮平衡车的行进速度计算得知该距离,本实施例不做限定。
在步骤508中,检测该距离是否小于预定距离。
控制芯片检测障碍物与两轮平衡车之间的距离是否小于预定距离。
可选地,该预定距离为两轮平衡车转弯时需要的最大距离。预定距离可以为轮胎直径的x倍,或者其他数值,本实施例不做限定。
若该距离小于预定距离,则进入步骤509;若该距离大于预定距离,则进入步骤510。
在步骤509中,若该距离小于预定距离,则控制两轮平衡车进行减速,且屏蔽转弯控制组件,且通过预定方式进行障碍物提示。
若该距离小于预定距离,则控制芯片控制两轮平衡车进行减速,直至停止。但是,也有可能发生两轮平衡车在减速过程中碰撞到障碍物的情形
同时,若该距离小于预定距离,则控制芯片还将转弯控制组件屏蔽。这时,用户将不能控制两轮平衡车进行转弯。即便两轮平衡车在减速过程中碰撞到障碍物,用户在碰撞过程中因为身体无法控制而对转弯控制组件进行了误操作,控制芯片也不对该误操作进行响应。
可选地,控制芯片还通过预定方式进行障碍物提示,其中,预定方式包括:播放提示音、震动两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
例如,当识别到两轮平衡车的其中一轮前方存在不可逾越的障碍物,且不可逾越的障碍物与两轮平衡车达到预定距离时,两轮平衡车发出“前方存在障碍物”的提示音。
在步骤510中,若该距离大于预定距离,则控制两轮平衡车继续前进。
在步骤511中,若障碍物的类型是可逾越障碍物,则增加两轮平衡车的驱动力继续前进。
若识别两轮平衡车任一车轮前方的障碍物为可逾越障碍物时,则控制芯片控制驱动马达增加两轮平衡车的驱动力前进。
综上所述,本实施例提供的两轮平衡车的控制方法,通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
本实施例提供的两轮平衡车的控制方法,通过图像采集组件来测量障碍物的高度和距离,进而使得两轮平衡车能够识别障碍物的类型,并根据该障碍物与两轮平衡车之间的距离作出减速和屏蔽转弯控制部件的动作。
本实施例提供的两轮平衡车的控制方法,还通过在障碍物与两轮平衡车之间的距离小于预定距离时,屏蔽转弯控制部件,从而使得即便两轮平衡车在减速过程中碰撞到障碍物,用户在碰撞过程中因为身体无法控制而对转弯控制组件进行了误操作,控制芯片也不对该误操作进行响应,有效减少了用户摔倒的可能性。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7是根据一示例性实施例示出的一种两轮平衡车的控制装置的框图,如图7所示,该一种两轮平衡车的控制装置应用于图1所示实施环境中的一种两轮平衡车的控制方法中,该一种两轮平衡车的控制装置包括但不限于:识别模块710、控制模块720。
该识别模块710,被配置为识别任一车轮前方的障碍物的类型,该类型包括:不可逾越 障碍物;
该控制模块720,被配置为在识别模块710识别的障碍物的类型是不可逾越障碍物时,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
综上所述,本实施例提供的两轮平衡车的控制装置,通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
图8是根据另一示例性实施例示出的一种两轮平衡车的控制装置的框图,如图8所示,该一种两轮平衡车的控制装置应用于图1所示实施环境中的一种两轮平衡车的控制方法中,该一种两轮平衡车的控制装置包括但不限于:识别模块810、控制模块820。
该识别模块810,被配置为识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物;
该控制模块820,被配置为在识别模块810识别的障碍物的类型是不可逾越障碍物时,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
可选的,该类型还包括:可逾越障碍物;该装置还包括:加速模块830。
该加速模块830,被配置为若识别模块810识别的障碍物的类型是可逾越障碍物,则增加两轮平衡车的驱动力继续前进。
可选的,该识别模块810,包括:高度测量子模块811、第一检测子模块812、第一识别子模块813。
该高度测量子模块811,被配置为通过测距组件测量任一车轮前方的障碍物的高度;
该第一检测子模块812,被配置为检测高度测量子模块811测量的障碍物的高度是否高于预定阈值;
该第一识别子模块813,被配置为在第一检测子模块812检测的障碍物的高度高于预定阈值时,将该障碍物识别为不可逾越类型。
可选的,该识别模块810,还包括:图像采集子模块814、图象识别子模块815、高度计算子模块816、第二检测子模块817、第二识别子模块818。
该图像采集子模块814,被配置为通过图像采集组件采集任一车轮前方的图像帧;
该图象识别子模块815,被配置为识别图像采集子模块814采集的图像帧中的障碍物;
该高度计算子模块816,被配置为计算识别出图像识别子模块815识别出的该障碍物的高度;
该第二检测子模块817,被配置为检测高度计算子模块816计算出的障碍物的高度是否高于预定阈值;
该第二识别子模块818,被配置为在第二检测子模块818检测的障碍物的高度高于预定 阈值时,将该障碍物识别为不可逾越类型。
可选的,该两轮平衡车的控制装置还包括:距离测量模块840、距离检测模块850、控制模块820。
该距离测量模块840,被配置为测量障碍物离两轮平衡车的距离;
该距离检测模块850,被配置为检测距离测量模块840测量的距离是否小于预定距离;
该控制模块820,被配置为在距离检测模块850检测到距离小于预定距离时,控制两轮平衡车进行减速,且屏蔽转弯控制组件。
可选的,该两轮平衡车的控制装置还包括:提示模块860。
该提示模块860,被配置为若识别模块810识别的障碍物的类型是不可逾越障碍物,则通过预定方式进行障碍物提示;
其中,预定方式包括:播放提示音、震动两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
综上所述,本实施例提供的两轮平衡车的控制装置,通过识别任一车轮前方的障碍物的类型,若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件;解决了两轮平衡车的其中一个车轮的前方一旦具有不可逾越的障碍物,将该车轮阻挡或卡住,而另一个车轮继续前进产生“离心式运动”,导致驾驶者摔倒的问题;达到了尽量避免使用两轮平衡车过程中,用户因其中一个车轮被卡住而摔倒的效果。
本实施例提供的两轮平衡车的控制方法,通过图像采集组件来测量障碍物的高度和距离,进而使得两轮平衡车能够识别障碍物的类型,并根据该障碍物与两轮平衡车之间的距离作出减速和屏蔽转弯控制部件的动作。
本实施例提供的两轮平衡车的控制方法,还通过在障碍物与两轮平衡车之间的距离小于预定距离时,屏蔽转弯控制部件,从而使得即便两轮平衡车在减速过程中碰撞到障碍物,用户在碰撞过程中因为身体无法控制而对转弯控制组件进行了误操作,控制芯片也不对该误操作进行响应,有效减少了用户摔倒的可能性。关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种两轮平衡车,该两轮平衡车包括有并列的两个车轮,能够实现本公开提供的一种两轮平衡车的控制方法,该一种两轮平衡车包括:控制芯片、用于存储控制芯片可执行指令的存储器、与控制芯片相连的转弯控制组件。
其中,控制芯片被配置为:
识别任一车轮前方的障碍物的类型,该类型包括:不可逾越障碍物;
若该障碍物的类型是不可逾越障碍物,则控制两轮平衡车进行减速,且屏蔽转弯控制组件。
图9是根据一示例性实施例示出的一种两轮平衡车的框图。
参照图9,两轮平衡车900可以包括以下一个或多个组件:控制芯片902,存储器904,电源组件906,图像采集组件908,测距组件910,输入/输出(I/O)接口912,传感器组件914,以及转弯控制组件916。
控制芯片902通常控制两轮平衡车900的整体操作,诸如与前进、后退、加速,减速相关联的操作。此外,控制芯片902可以包括一个或多个模块,便于控制芯片902和其他组件之间的交互。例如,控制芯片902可以包括图像采集模块,以方便图像采集组件908和控制芯片902之间的交互。
存储器904被配置为存储各种类型的数据以支持在两轮平衡车900的操作。这些数据的示例包括用于在两轮平衡车900上操作的任何两轮平衡车的指令,图像数据,距离数据等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为两轮平衡车900的各种组件提供电力。电源组件906可以包括电源管理系统,一个或多个电源,及其他与为两轮平衡车900生成、管理和分配电力相关联的组件。
图像采集组件908包括在两轮平衡车900中。在一些实施例中,图像采集组件908包括一个前置摄像头和/或后置摄像头。当两轮平衡车900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
测距组件910被配置为发射和/或接收探测信号。例如,测距组件910包括一个激光发射器,当两轮平衡车900处于操作模式,如接收反射激光时,激光发射器被配置为接收探测信号的反射信号。所接收的反射信号可以被进一步存储在存储器904中。
I/O接口912为控制芯片902和外围接口模块之间提供接口,上述外围接口模块可以是U盘,音频播放器等。
传感器组件914包括一个或多个传感器,用于为两轮平衡车900提供各个方面的状态评估。例如,传感器组件914可以检测到两轮平衡车900的打开/关闭状态,传感器组件914可以检测两轮平衡车900方位或加速/减速变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
转弯控制组件916被配置为便于对两轮平衡车900进行转弯控制。该转弯控制组件916可以是手动控制的转弯控制组件,还可以是腿部控制的转弯控制组件。
在示例性实施例中,两轮平衡车900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述两轮平衡车的控制方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种两轮平衡车的控制方法,其特征在于,用于包括有并列的两个车轮和转弯控制组件的两轮平衡车中,所述方法包括:
    识别任一车轮前方的障碍物的类型,所述类型包括:不可逾越障碍物;
    若所述障碍物的类型是所述不可逾越障碍物,则控制所述两轮平衡车进行减速,且屏蔽所述转弯控制组件。
  2. 根据权利要求1所述的方法,其特征在于,所述类型还包括:可逾越障碍物;
    所述方法还包括:
    若所述障碍物的类型是所述可逾越障碍物,则增加所述两轮平衡车的驱动力继续前进。
  3. 根据权利要求1或2所述的方法,其特征在于,所述识别任一车轮前方的障碍物的类型,包括:
    通过测距组件测量任一车轮前方的障碍物的高度;
    检测所述障碍物的高度是否高于预定阈值;
    若所述障碍物的高度高于所述预定阈值,则将所述障碍物识别为所述不可逾越类型。
  4. 根据权利要求1或2所述的方法,其特征在于,所述识别任一车轮前方的障碍物的类型,包括:
    通过图像采集组件采集任一车轮前方的图像帧;
    识别所述图像帧中的障碍物;
    计算识别出所述障碍物的高度;
    检测所述障碍物的高度是否高于预定阈值;
    若所述障碍物的高度高于所述预定阈值,则将所述障碍物识别为所述不可逾越类型。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    测量所述障碍物离所述两轮平衡车的距离;
    检测所述距离是否小于预定距离;
    若所述距离小于所述预定距离,则执行所述控制所述两轮平衡车进行减速,且屏蔽所述转弯控制组件的步骤。
  6. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    若所述障碍物的类型是所述不可逾越障碍物,则通过预定方式进行障碍物提示;
    其中,所述预定方式包括:播放提示音、震动所述两轮平衡车上的预定部件、闪烁信号 灯中的至少一种。
  7. 一种两轮平衡车的控制装置,其特征在于,用于包括有并列的两个车轮和转弯控制组件的两轮平衡车中,所述装置包括:
    识别模块,被配置为识别任一车轮前方的障碍物的类型,所述类型包括:不可逾越障碍物;
    控制模块,被配置为在所述识别模块识别的所述障碍物的类型是所述不可逾越障碍物时,控制所述两轮平衡车进行减速,且屏蔽所述转弯控制组件。
  8. 根据权利要求7所述的装置,其特征在于,所述类型还包括:可逾越障碍物;
    所述装置还包括:
    加速模块,被配置为在所述识别模块识别的所述障碍物的类型是所述可逾越障碍物时,增加所述两轮平衡车的驱动力继续前进。
  9. 根据权利要求7或8所述的装置,其特征在于,所述识别模块,包括:
    高度测量子模块,被配置为通过测距组件测量任一车轮前方的障碍物的高度;
    第一检测子模块,被配置为检测所述高度测量子模块测量的所述障碍物的高度是否高于预定阈值;
    第一识别子模块,被配置为在所述第一检测子模块检测的所述障碍物的高度高于所述预定阈值时,将所述障碍物识别为所述不可逾越类型。
  10. 根据权利要求7或8所述的装置,其特征在于,所述识别模块,还包括:
    图像采集子模块,被配置为通过图像采集组件采集任一车轮前方的图像帧;
    图象识别子模块,被配置为识别所述图像采集子模块采集的所述图像帧中的障碍物;
    高度计算子模块,被配置为计算识别出所述图像识别子模块识别出的所述障碍物的高度;
    第二检测子模块,被配置为检测所述高度计算子模块计算出的所述障碍物的高度是否高于预定阈值;
    第二识别子模块,被配置为在所述第二检测子模块检测的所述障碍物的高度高于所述预定阈值时,将所述障碍物识别为所述不可逾越类型。
  11. 根据权利要求7至10任一所述的装置,其特征在于,所述装置还包括:
    距离测量模块,被配置为测量所述障碍物离所述两轮平衡车的距离;
    距离检测模块,被配置为检测所述距离测量模块测量的所述距离是否小于预定距离;
    所述控制模块,还被配置为在所述距离检测模块检测到所述距离小于所述预定距离时, 控制所述两轮平衡车进行减速,且屏蔽所述转弯控制组件。
  12. 根据权利要求7至10任一所述的装置,其特征在于,所述装置还包括:
    提示模块,被配置为在所述识别模块识别的所述障碍物的类型是所述不可逾越障碍物时,通过预定方式进行障碍物提示;
    其中,所述预定方式包括:播放提示音、震动所述两轮平衡车上的预定部件、闪烁信号灯中的至少一种。
  13. 一种两轮平衡车,其特征在于,所述两轮平衡车包括有并列的两个车轮,所述两轮平衡车包括:
    控制芯片;
    用于存储所述处理器可执行指令的存储器;
    与所述控制芯片相连的转弯控制组件;
    其中,所述控制芯片被配置为:
    识别任一车轮前方的障碍物的类型,所述类型包括:不可逾越障碍物;
    若所述障碍物的类型是所述不可逾越障碍物,则控制所述两轮平衡车进行减速,且屏蔽所述转弯控制组件。
PCT/CN2015/099062 2015-09-28 2015-12-25 两轮平衡车的控制方法及装置 WO2017054345A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167009249A KR101878082B1 (ko) 2015-09-28 2015-12-25 이륜 밸런스 카 제어 방법 및 장치
RU2016118866A RU2647360C2 (ru) 2015-09-28 2015-12-25 Двухколесная тележка с противовесом, способ и устройство управления двухколесной тележкой с противовесом
JP2016519845A JP2017536275A (ja) 2015-09-28 2015-12-25 平衡二輪車の制御方法および制御装置
MX2016004498A MX2016004498A (es) 2015-09-28 2015-12-25 Metodo y aparato de control para un vehiculo de equilibrio de dos ruedas.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510626948.2A CN105270525B (zh) 2015-09-28 2015-09-28 两轮平衡车的控制方法及装置
CN201510626948.2 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017054345A1 true WO2017054345A1 (zh) 2017-04-06

Family

ID=55140541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099062 WO2017054345A1 (zh) 2015-09-28 2015-12-25 两轮平衡车的控制方法及装置

Country Status (8)

Country Link
US (1) US9827984B2 (zh)
EP (1) EP3147740B1 (zh)
JP (1) JP2017536275A (zh)
KR (1) KR101878082B1 (zh)
CN (1) CN105270525B (zh)
MX (1) MX2016004498A (zh)
RU (1) RU2647360C2 (zh)
WO (1) WO2017054345A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843765B2 (en) * 2015-08-04 2020-11-24 Shane Chen Two-wheel self-balancing vehicle with platform borne sensor control
CN105223952B (zh) * 2015-09-28 2019-03-29 小米科技有限责任公司 平衡车的控制方法及装置
WO2017206170A1 (zh) * 2016-06-03 2017-12-07 尚艳燕 一种电动平衡车的控制方法和控制装置
CN105966538B (zh) * 2016-06-03 2018-12-07 尚艳燕 一种电动平衡车的控制方法和控制装置
WO2018006300A1 (zh) * 2016-07-06 2018-01-11 尚艳燕 一种平衡车载物的方法和平衡车
CN106371437B (zh) * 2016-08-30 2020-02-11 尚艳燕 一种平衡车在狭窄空间的自动驻车方法和装置
WO2018039908A1 (zh) * 2016-08-30 2018-03-08 尚艳燕 一种平衡车自动驻车的方法和装置
CN106292667B (zh) * 2016-08-30 2019-06-18 深圳市汲众科技开发有限公司 一种平衡车自动驻车的方法和装置
WO2018039909A1 (zh) * 2016-08-30 2018-03-08 尚艳燕 一种平衡车在狭窄空间的自动驻车方法和装置
CN106741399B (zh) * 2016-11-18 2019-06-04 速珂智能科技(上海)有限公司 一种智能型代步装置
CN107224363A (zh) * 2017-05-05 2017-10-03 深圳市元征科技股份有限公司 轮椅控制方法及装置
CN107168322A (zh) * 2017-06-05 2017-09-15 深圳飞亮智能科技有限公司 轮式工具转弯减速的控制系统及方法
US11586211B2 (en) 2017-10-25 2023-02-21 Lg Electronics Inc. AI mobile robot for learning obstacle and method of controlling the same
US11535323B2 (en) * 2018-05-18 2022-12-27 Shimano Inc. Telescopic apparatus for human-powered vehicle, height adjustable seatpost, and bicycle component control system
CN110967689B (zh) * 2018-09-28 2022-03-18 广州小鹏汽车科技有限公司 一种目标对象高度的确定方法、装置及车载雷达设备
CN109955978A (zh) * 2019-03-27 2019-07-02 深圳市乐骑智能科技有限公司 一种平衡车防止碰撞系统及其工作方法
CN113052888B (zh) * 2020-11-03 2021-12-17 杭州尽享科技有限公司 异常环境实时监测系统
TWI825374B (zh) * 2020-12-22 2023-12-11 緯創資通股份有限公司 移動式輔具及其障礙克服方法
CN113419528A (zh) * 2021-06-22 2021-09-21 广西科技大学 一种无接触智能配送车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230341A (en) * 1978-09-25 1980-10-28 Caterpillar Tractor Co. Vehicle suspension system
CN101056680A (zh) * 2004-09-13 2007-10-17 德卡产品有限公司 一种基于用户位置的个人运输车的控制
US20110190935A1 (en) * 2006-11-02 2011-08-04 Hutcheson Timothy L Reconfigurable balancing robot and method for moving over large obstacles
CN203268232U (zh) * 2013-01-30 2013-11-06 杭州亿脑智能科技有限公司 智能平衡车平衡控制装置及智能平衡车
CN204423150U (zh) * 2015-02-05 2015-06-24 重庆交通大学 基于图像的两轮平衡车控制系统
CN204440053U (zh) * 2015-02-05 2015-07-01 重庆交通大学 两轮平衡车控制系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000754A1 (en) * 2001-06-07 2003-01-02 Daudt Stephen William Powered lightweight personal transportation vehicle
US6842692B2 (en) * 2002-07-02 2005-01-11 The United States Of America As Represented By The Department Of Veterans Affairs Computer-controlled power wheelchair navigation system
JP4411867B2 (ja) * 2003-06-04 2010-02-10 トヨタ自動車株式会社 重心移動により操舵可能な車両
JP2005006436A (ja) * 2003-06-12 2005-01-06 Sony Corp 同軸二輪車
US7246671B2 (en) * 2005-01-10 2007-07-24 Michael Goren Stair-climbing human transporter
EP1901257A4 (en) 2005-06-24 2013-02-20 Equos Res Co Ltd VEHICLE
JP4956962B2 (ja) * 2005-10-31 2012-06-20 トヨタ自動車株式会社 走行装置及びその制御方法
JP2007219986A (ja) * 2006-02-20 2007-08-30 Toyota Motor Corp 倒立移動装置及びその制御方法
JP5133632B2 (ja) * 2007-08-24 2013-01-30 トヨタ自動車株式会社 倒立型移動体
US20090242285A1 (en) * 2008-04-01 2009-10-01 Whetstone Jr Henry M Transportation cart with extendable arm and a throttle coupled thereto for controlling a motor and associated methods
US20090242284A1 (en) * 2008-04-01 2009-10-01 Whetstone Jr Henry M Transportation cart with electronic controls, steering and brakes selectively configured for riding and walking modes of use
JP5088211B2 (ja) * 2008-04-07 2012-12-05 株式会社エクォス・リサーチ 車両
MX2012002126A (es) * 2009-08-18 2012-04-11 Crown Equip Corp Correccion de direccion para un vehiculo de manejo de materiales remotamente operado.
JP2011131620A (ja) * 2009-12-22 2011-07-07 Toyota Motor Corp 倒立二輪車、その制御方法及び制御プログラム
WO2012031150A2 (en) * 2010-09-01 2012-03-08 Timothy Huntzinger Personal mobility vehicle
US8924218B2 (en) * 2010-11-29 2014-12-30 Greg L. Corpier Automated personal assistance system
JP2012126224A (ja) * 2010-12-15 2012-07-05 Bosch Corp 倒立振子型移動体
US20130081885A1 (en) * 2011-10-03 2013-04-04 Robert A. Connor Transformability(TM): personal mobility with shape-changing wheels
JP5873879B2 (ja) * 2011-12-09 2016-03-01 株式会社日立製作所 倒立振子型移動装置
US20140018994A1 (en) * 2012-07-13 2014-01-16 Thomas A. Panzarella Drive-Control Systems for Vehicles Such as Personal-Transportation Vehicles
CN103558778B (zh) 2013-11-01 2016-08-17 深圳乐行天下科技有限公司 一种两轮平衡车的状态检测方法和系统
CN103770872B (zh) 2014-02-20 2016-08-17 深圳乐行天下科技有限公司 一种两轮平衡车的转向控制方法
CN204110256U (zh) * 2014-09-04 2015-01-21 深圳路帝科技有限公司 带健康指数检测装置的双轮平衡车
CN104386183A (zh) * 2014-11-17 2015-03-04 韩莹光 两轮平衡车
CN104571104A (zh) * 2014-11-19 2015-04-29 广西大学 智能探险车及智能探险方法
CN104765367B (zh) * 2014-11-27 2015-12-02 无锡美联动线智能科技有限公司 实现智能化越障的服务机器人
CN104443140A (zh) * 2014-12-10 2015-03-25 柳州铁道职业技术学院 平衡车障碍检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230341A (en) * 1978-09-25 1980-10-28 Caterpillar Tractor Co. Vehicle suspension system
CN101056680A (zh) * 2004-09-13 2007-10-17 德卡产品有限公司 一种基于用户位置的个人运输车的控制
US20110190935A1 (en) * 2006-11-02 2011-08-04 Hutcheson Timothy L Reconfigurable balancing robot and method for moving over large obstacles
CN203268232U (zh) * 2013-01-30 2013-11-06 杭州亿脑智能科技有限公司 智能平衡车平衡控制装置及智能平衡车
CN204423150U (zh) * 2015-02-05 2015-06-24 重庆交通大学 基于图像的两轮平衡车控制系统
CN204440053U (zh) * 2015-02-05 2015-07-01 重庆交通大学 两轮平衡车控制系统

Also Published As

Publication number Publication date
CN105270525A (zh) 2016-01-27
KR101878082B1 (ko) 2018-07-13
US9827984B2 (en) 2017-11-28
RU2016118866A (ru) 2017-12-07
CN105270525B (zh) 2018-02-02
RU2647360C2 (ru) 2018-03-15
KR20180050186A (ko) 2018-05-14
EP3147740B1 (en) 2020-05-06
EP3147740A1 (en) 2017-03-29
JP2017536275A (ja) 2017-12-07
US20170088131A1 (en) 2017-03-30
MX2016004498A (es) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2017054345A1 (zh) 两轮平衡车的控制方法及装置
RU2651945C2 (ru) Тележка с противовесом, способ и устройство управления тележкой с противовесом
US10594920B2 (en) Glass detection with time of flight sensor
JP5071945B2 (ja) 移動装置及び方法
KR20140025812A (ko) 졸음 운전 감지 장치 및 방법
RU2016108813A (ru) Транспортное средство, система выявления объектов в углублении для ног в полу кузова и способ для выявления объектов в углублении для ног в полу кузова
JP2020139810A (ja) 測定装置および測距装置
CN113524265A (zh) 机器人防跌落方法、机器人及可读存储介质
JP6703471B2 (ja) 物体検知装置
JP7073949B2 (ja) 避難誘導装置、避難誘導システム、および制御プログラム
CN104931024B (zh) 障碍物检测装置
JP2014016962A (ja) 車両周辺監視システム
KR102135369B1 (ko) 거리 검출 장치 및 그 방법
CN203982189U (zh) 一种自动导引车两级复合避障装置
KR20170073917A (ko) 운전지원장치 및 운전지원방법
KR101076984B1 (ko) 다수의 레이저 빔을 이용한 차선 이탈 방지 장치
KR20170027182A (ko) 알림제어장치 및 알림제어방법
KR102299793B1 (ko) 운전지원장치 및 운전지원방법
TW201323262A (zh) 車輛輔助系統及車輛輔助方法
KR20160083486A (ko) 카메라를 이용한 이동 물체 감지 장치
JP5651649B2 (ja) 物体位置検知装置
JP2015139204A (ja) ネズミ検出システムの評価方法
KR20230092079A (ko) 센서 융합형 타겟 감지 장치 및 방법
JP2020177437A (ja) 周辺状況認識装置および周辺状況認識方法
TWM519093U (zh) 倒車影像擷取裝置及其系統

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016519845

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167009249

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/004498

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016118866

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905255

Country of ref document: EP

Kind code of ref document: A1