WO2017054130A1 - Method and system for machining - Google Patents

Method and system for machining Download PDF

Info

Publication number
WO2017054130A1
WO2017054130A1 PCT/CN2015/091072 CN2015091072W WO2017054130A1 WO 2017054130 A1 WO2017054130 A1 WO 2017054130A1 CN 2015091072 W CN2015091072 W CN 2015091072W WO 2017054130 A1 WO2017054130 A1 WO 2017054130A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
machining
work piece
machining tool
contact points
Prior art date
Application number
PCT/CN2015/091072
Other languages
French (fr)
Inventor
Shaojie Cheng
Diamond Daimeng DONG
Lei Mao
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN201580082075.1A priority Critical patent/CN107848046A/en
Priority to EP15905042.6A priority patent/EP3356070A4/en
Priority to PCT/CN2015/091072 priority patent/WO2017054130A1/en
Priority to JP2018535213A priority patent/JP6943862B2/en
Publication of WO2017054130A1 publication Critical patent/WO2017054130A1/en
Priority to US15/940,066 priority patent/US10759015B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/0075Controlling reciprocating movement, e.g. for planing-machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/12Trimming or finishing edges, e.g. deburring welded corners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0038Other grinding machines or devices with the grinding tool mounted at the end of a set of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/006Deburring or trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45062Surface finishing robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49384Control of oscillatory movement like filling a weld, weaving

Definitions

  • the present invention relates to a method and systemfor machining, and more particularly, to a method for deburring or grinding a work piece with a tooland a robot system using the same.
  • Atool path is the path that a tool may traverse to perform an operation on an object.
  • a tool path may be the path that a deburring tool moves along a work piece edge and in contact with the contour of the work piece to be deburred.
  • a tool path may comprise a series of points. Each point may correspond to a position within a reference coordinate system of the tool.
  • machining tools are required to contact directly with the work pieces to be processed.
  • a single contact point or a circle of fixed contact pointsof a tool are programmed to move through a predetermined tool path ( “normal tool path” ) during the machining process. Since the tool always contacts the work pieces by one or several fixed contact points, it gets abrasive and wornquickly and the life of the tool will also be shortened.
  • One of the objectives of the present invention is to propose asolution for generating wave tool paths of a machiningtool, so as to extend the life of the tool and ensure the processing quality.
  • a method formachining a work piece by a machining tool comprises relatively moving the machining tool against the work piece to apply machining feeds therebetween.
  • the contact points at the work piece are arranged onthe area of the work piece to be machined, andthe contact points at the machining tool form a curve on the machining tool surface.
  • the relative motion involves translational motion and/or rotational motion. Since the machining is accomplished by engaging a series of contact points arranged in a curve form on the surface of the tool rather than concentrating on one contact point or part, the effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less. Thus, the life cycle of the tool can be prolonged.
  • the machining feedsare adapted to give uniform surface finishing of the work piece.
  • the method further comprises rotating the machining tool along its axis. This makes it possible to extend the contact points on the machining tool surface to wrap the axis, thus the contact area can be enlarged.
  • At least two contact points on the curve are overlapped.
  • This curve is a continuous curve wrapped the axis of the machining tool and itcan be intersectional.
  • the contact points at the machining tool are substantially even distributed on the machining tool surface.
  • the effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less.
  • the life cycle of the tool can be prolonged.
  • the curve is a periodical wave. Due to the periodicity of the wave, this renders it more easily for offline programming to place anintersectional wave with similar wave form side by side on the machining tool surface so as to form a uniform contact area on the machining tool surface.
  • the periodical wave is sine-shaped or cosine-shaped.
  • the machining feeds are regulated by adjusting radial offset of the machining tool with respect to the contact point. Therefore, the work piece can be machined without overcutting or leaving the work piece.
  • the radial offset of the machining tool is adjusted to the radius of the machining tool with respect to the contact point.
  • a robot system which includes a manipulator, a machiningtool and a controller.
  • the controller is being adapted for controlling the manipulator to operate the machining tool according to the method as above.
  • the present disclosure is advantageous that it provides the method and systemforwave tool paths generation with easy settings, cost effectiveness and high processing quality.
  • Figure 1 illustratesa schematic diagram of a normal tool path of a machining tool
  • Figure 2 illustrates schematic diagram of a wave tool path of a machining tool generated by manual programmingaccording to an embodiment of present invention
  • Figure 3 illustratesa schematic diagram of a wave tool path of a machining tool generated by offline programmingaccording to an embodiment of present invention.
  • Figure 4A, 4B, 4C and 4D respectivelyillustrate an expanded view of a machining tool surface according to an embodiment of present invention.
  • Figure 5 illustrates a robot system performing the machining process according to an embodiment of present invention.
  • the machining tool During the machining process, the machining toolrelatively moves against the work piece to apply machining feeds therebetween. Namely the machining tool moves in translation and/or rotation while the work piece keeps still, or the work piece moves in translation and/or rotation while the machining tool keeps still, or both the machining tooland the work piece move in translation and/or rotationsimultaneously.
  • the tool is shaped like a circular truncated cone.
  • a primary motion is provided by rotating the tool around its axis and the rotating tool removes the material from the contact points at the work piece to generate a desired shape, such as a polished surface or edge of the work piece.
  • the feed motion is achieved by relative motion of the tool and the work piece in a direction of a wave form, which leaves an abrasion on a surface of the circular truncated cone of the tool.
  • the tool may have a plane end face and can be moved in a sequence of steps along the surface or edge of the work piece to be machined, wherein different parts of its plane end face are fed to thegrinding area of the work piece. Therefore, contact points of the abrasion on the tool see a curve, as well.
  • the contact points at the work piece are arranged on the area of the work piece to be machined.
  • the machining is accomplished by engaging a series of contact points arranged in a curve form on the surface of the tool rather than concentrating on one contact point or part, the effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less. Thus, the life cycle of the tool can be prolonged.
  • Figure 2 illustrates schematic diagram of a motion track of a machining tool.
  • the tool is circular truncated cone shaped.
  • the contact points 10, 20, 30, 40, 50 at the machining tool are not limited to a single contact point or a circle of fixed contact points, they form alarger contact area of the tool for machining, which enablesmore partson the toolbe involved in robotic machining process.
  • the contact points on the surface of the tool fluctuate along a direction perpendicular to the axis of the tool, thus the process of machining not only applies to the points on a sectional circle of the tool or a single point on the tool, but also contact points beyond those on the tool surface.
  • a wider contact area of the usage range of the tool renders the machining work load can be distributed among more contact points, thus reducing the average abrasion effect thereof. Furthermore, the contact points 10, 20, 30, 40, 50 at the machining tool are substantially even distributed on the machining tool surface, so that the tool can be wornevenly.
  • the contact points 10, 20, 30, 40, 50at the machining tool also form a wave form on the machining tool surface, which makes the tool path no longer a straight line but a curve similar to a wave ( “wave tool path” ) .
  • the wave on the abrasion of the machining tool surface can be a substantiallyperiodical wave, e. g. sine-shaped or cosine-shaped, which ensures that the tool is worn evenly.
  • Figure 3 illustratesa schematic diagram of a wave tool path of a machining tool generated by offline programming.
  • the machining tool relatively moves from left to right along the machining line as shown in (a) .
  • the path of the machining tool forms a sine-shaped periodical wave tool pathas shown in (b) .
  • the wave tool path solution applies, the tool moves in a wave tool path to ensure the contact area of the tool be involved in robotic machining process as broad as possible.
  • the tool keeps contacting with the work pieceto apply machining feeds no matter which part of the area of the tool is used for machining at that moment.
  • the wavetool path ofa machining tool is generated by offline programmingbygenerating and synchronizingthe following three movements: normal tool path, axial offset and radial offset.
  • the normal toolpath (hereinafter referred to as “first movement” ) definesthe area of the work piece to be machined.
  • the normal tool path is determined by contact height, which is the height from the tool tip to the default contact point that used as a single contact point or a circle of fixed contact points of the tool for machining.
  • the axial offset (hereinafter referred to as “second movement” ) is the offset from the contact height along the tool axis direction.
  • the axialoffset is determined by wave depth, which is the absolute usable rangeof the tool with default contact point as the center.
  • the wave depth defines a scope of the contact area of the tool, namely the abrasion of the tool.
  • the radialoffset (hereinafter referred to as “third movement “) is the offset movement perpendicular to the tool axis direction to ensure the tool always contacts the work piece to be machined without overcutting or leaving the work piece.
  • the radial offset is adjusted to the radius of the machining tool with respect to the contact point.
  • the contact height is the height from the tool tip to the default contact point and the axial offset is zero.
  • the contact height reaches its maximum and minimum valuerespectively and the axial offset reaches its maximum absolute value in either positive or negative direction within the wave depth.
  • the first movement and the second movement are synchronized, which means every time the first movement reaches a specific path length determined by the shape of the work piece to be machined, the second movement finishes reciprocating motion (s) along the tool axis direction within the wave depth, so as to extend the life of the tool.
  • the second movement finishes exactly one reciprocating motion the first movement reaches one cycle length along the path length, the machining tool generates one cycle of wave tool path andthe contact points at the machining tool form aperiodical wave on the machining tool surface.
  • Figure 4A, 4B, 4C and 4D respectively illustrate an expanded view of a machining tool surface.
  • the tool rotates 480degrees along its axis andthe contact points at the tool form asine-shapedperiodical wave abrasion, wrapping the axis of the tool.
  • Figures 4B, 4C and 4D respectively show abrasion of the tool under various scenarios, the tool rotation by 1440 degrees, 2880 degrees and 5760 degreesrespectivelyalong its axis within a cycle length and at least two contact pointson the curve are overlapped. In this way, the contact points at the tool are substantially even distributed on the tool surface, so that the tool can be womevenly.
  • the tool may rotate less than 360 degrees, for example, the tool rotates only 240 degrees within a cycle length.
  • the wave tool path solution further comprises a third movement working together with the first movement and the second movement.
  • the third movement may applymachining feedsthat adapted to give uniform surface finishing of the work piece.
  • the machining feeds are regulated by adjusting radial offset of the machining tool with respect to the contact point.
  • the wave tool paths are generated by computer programsbased on various parameters. These parameters may include the shape of the selected tool, the contact height, the wave depth, the cycle length, and/or other types of factors that help programmers to set up the robot system quickly and accurately.
  • Figure 5 illustrates a robot system performing the machining process according to an embodiment of present invention.
  • the robot system 5 includes a manipulator 500, a machining tool 501 and a controller 502.
  • the manipulator 500 is arranged to hold the machining tool 501 .
  • the controller 502 can be offline programmed to control the manipulator 500 to operate the machining tool 501 according to the method as described above.

Abstract

A method and a system for machining a work piece by a machining tool (501) are provided. The method comprises relatively moving the machining tool (501) against the work piece to apply machining feeds therebetween. The contact points at the work piece are arranged on the area of the work piece to be machined, and the contact points (10, 20, 30, 40, 50) at the machining tool (501) form a curve on the machining tool surface. The system includes a manipulator (500), a machining tool (501) and a controller (502) being adapted for controlling the manipulator (500) to operate the machining tool (501) according to the method as above. With this solution, the system can generate wave paths of a machining tool (501), so as to extend the life of the tool and ensure the processing quality.

Description

METHOD AND SYSTEM FOR MACHINING Technical Field
The present invention relates to a method and systemfor machining, and more particularly, to a method for deburring or grinding a work piece with a tooland a robot system using the same.
Background Art
Atool path is the path that a tool may traverse to perform an operation on an object. For example, a tool path may be the path that a deburring tool moves along a work piece edge and in contact with the contour of the work piece to be deburred. A tool path may comprise a series of points. Each point may correspond to a position within a reference coordinate system of the tool.
According to most robotic applications such as deburring or grinding, machining tools are required to contact directly with the work pieces to be processed. As shown in figure 1, normallya single contact point or a circle of fixed contact pointsof a tool are programmed to move through a predetermined tool path ( “normal tool path” ) during the machining process. Since the tool always contacts the work pieces by one or several fixed contact points, it gets abrasive and wornquickly and the life of the tool will also be shortened.
Summary of Invention
Therefore, it would be desirable to have a method and system that takes into account the issues discussed above, and defines a flexible contact area instead of a fixed contact point or part of the tool for machining.
One of the objectives of the present invention is to propose asolution for generating wave tool paths of a machiningtool, so as to extend the life of the tool and ensure the processing quality.
According to one aspect of the present invention, there is provided a method formachining a work piece by a machining tool. The method comprises relatively moving the machining tool against the work piece to apply machining feeds therebetween. The contact points at the work piece are arranged onthe area of the work piece to be machined,  andthe contact points at the machining tool form a curve on the machining tool surface. The relative motion involves translational motion and/or rotational motion. Since the machining is accomplished by engaging a series of contact points arranged in a curve form on the surface of the tool rather than concentrating on one contact point or part, the effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less. Thus, the life cycle of the tool can be prolonged.
According to one embodiment of the present invention, the machining feedsare adapted to give uniform surface finishing of the work piece.
According to one embodiment of the present invention, the method further comprises rotating the machining tool along its axis. This makes it possible to extend the contact points on the machining tool surface to wrap the axis, thus the contact area can be enlarged.
According to one embodiment of the present invention, at least two contact points on the curve are overlapped. This curve is a continuous curve wrapped the axis of the machining tool and itcan be intersectional.
According to one embodiment of the present invention, the contact points at the machining tool are substantially even distributed on the machining tool surface. The effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less. Thus, the life cycle of the tool can be prolonged.
According to one embodiment of the present invention, the curve is a periodical wave. Due to the periodicity of the wave, this renders it more easily for offline programming to place anintersectional wave with similar wave form side by side on the machining tool surface so as to form a uniform contact area on the machining tool surface.
According to one embodiment of the present invention, the periodical wave is sine-shaped or cosine-shaped.
According to one embodiment of the present invention, the machining feeds are regulated by adjusting radial offset of the machining tool with respect to the contact point. Therefore, the work piece can be machined without overcutting or leaving the work piece.
According to one embodiment of the present invention, the radial offset of the machining tool is adjusted to the radius of the machining tool with respect to the contact point.
According to another aspect of the present invention, there is provided a robot system, which includes a manipulator, a machiningtool and a controller. The controller is being  adapted for controlling the manipulator to operate the machining tool according to the method as above.
The present disclosure is advantageous that it provides the method and systemforwave tool paths generation with easy settings, cost effectiveness and high processing quality.
Brief Description of Drawings
The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments which are illustrated in the drawings, in which:
Figure 1 illustratesa schematic diagram of a normal tool path of a machining tool; and
Figure 2 illustrates schematic diagram of a wave tool path of a machining tool generated by manual programmingaccording to an embodiment of present invention; and
Figure 3illustratesa schematic diagram of a wave tool path of a machining tool generated by offline programmingaccording to an embodiment of present invention; and
Figure 4A, 4B, 4C and 4Drespectivelyillustrate an expanded view of a machining tool surface according to an embodiment of present invention.
Figure 5 illustrates a robot system performing the machining process according to an embodiment of present invention.
Preferred Embodiments of the Invention
Reference will now be made in detail to several embodiments of the present invention, example of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures, and may indicates similar or like functionality. The figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the present invention described therein.
During the machining process,the machining toolrelatively moves against the work piece to apply machining feeds therebetween. Namely the machining tool moves in translation and/or rotation while the work piece keeps still, or the work piece moves in  translation and/or rotation while the machining tool keeps still, or both the machining tooland the work piece move in translation and/or rotationsimultaneously. For example, the tool is shaped like a circular truncated cone. A primary motion is provided by rotating the tool around its axis and the rotating tool removes the material from the contact points at the work piece to generate a desired shape, such as a polished surface or edge of the work piece. The feed motion is achieved by relative motion of the tool and the work piece in a direction of a wave form, which leaves an abrasion on a surface of the circular truncated cone of the tool. As an alternative, the tool may have a plane end face and can be moved in a sequence of steps along the surface or edge of the work piece to be machined, wherein different parts of its plane end face are fed to thegrinding area of the work piece. Therefore, contact points of the abrasion on the tool see a curve, as well. When the machining tool directly contacts the work piece to be machined, the contact points at the work piece are arranged on the area of the work piece to be machined. Since the machining is accomplished by engaging a series of contact points arranged in a curve form on the surface of the tool rather than concentrating on one contact point or part, the effect of abrasion can be distributed among a multiple of contact points and each of the contact points will be worn less. Thus, the life cycle of the tool can be prolonged.
Figure 2 illustrates schematic diagram of a motion track of a machining tool. The tool is circular truncated cone shaped. The  contact points  10, 20, 30, 40, 50 at the machining tool are not limited to a single contact point or a circle of fixed contact points, they form alarger contact area of the tool for machining, which enablesmore partson the toolbe involved in robotic machining process. The contact points on the surface of the tool fluctuate along a direction perpendicular to the axis of the tool, thus the process of machining not only applies to the points on a sectional circle of the tool or a single point on the tool, but also contact points beyond those on the tool surface. A wider contact area of the usage range of the tool renders the machining work load can be distributed among more contact points, thus reducing the average abrasion effect thereof. Furthermore, the  contact points  10, 20, 30, 40, 50 at the machining tool are substantially even distributed on the machining tool surface, so that the tool can be wornevenly.
As shown in figure 2, the  contact points  10, 20, 30, 40, 50at the machining tool also form a wave form on the machining tool surface, which makes the tool path no longer a straight line but a curve similar to a wave ( “wave tool path” ) . The wave on the abrasion of the machining tool surfacecan be a substantiallyperiodical wave, e. g. sine-shaped or cosine-shaped, which ensures that the tool is worn evenly.
Human operatorsmay define a contact area of a tool by manual programming. However, manual programming has proved to be much more time-consuming and labor-intensive than desired which leads to inconsistent processing quality. Moreover, inaccurate manual programming may generate improper tool path. Therefore, an offline programming method and system that could achieve the same effect with better processing quality are required.
Figure 3 illustratesa schematic diagram of a wave tool path of a machining tool generated by offline programming. The machining toolrelatively moves from left to right along the machining line as shown in (a) . The path of the machining tool forms a sine-shaped periodical wave tool pathas shown in (b) . When the wave tool path solution applies, the tool moves in a wave tool path to ensure the contact area of the tool be involved in robotic machining process as broad as possible. At the same time, the tool keeps contacting with the work pieceto apply machining feeds no matter which part of the area of the tool is used for machining at that moment.
The wavetool path ofa machining toolis generated by offline programmingbygenerating and synchronizingthe following three movements: normal tool path, axial offset and radial offset.
The normal toolpath (hereinafter referred to as “first movement” ) definesthe area of the work piece to be machined. The normal tool path is determined by contact height, which is the height from the tool tip to the default contact point that used as a single contact point or a circle of fixed contact points of the tool for machining.
The axial offset (hereinafter referred to as “second movement” ) is the offset from the contact height along the tool axis direction. The axialoffset is determined by wave depth, which is the absolute usable rangeof the tool with default contact point as the center. In other words, the wave depth defines a scope of the contact area of the tool, namely the abrasion of the tool.
The radialoffset (hereinafter referred to as “third movement “) is the offset movement perpendicular to the tool axis direction to ensure the tool always contacts the work piece to be machined without overcutting or leaving the work piece. The radial offset is adjusted to the radius of the machining tool with respect to the contact point.
As shown in figure 3, when contact points 11, 31, 51 contact the work piece to be machined, the contact height is the height from the tool tip to the default contact point and the axial offset is zero. When the contact points 21, 41 are in use, the contact height  reaches its maximum and minimum valuerespectively and the axial offset reaches its maximum absolute value in either positive or negative direction within the wave depth. The first movement and the second movement are synchronized, which means every time the first movement reaches a specific path length determined by the shape of the work piece to be machined, the second movement finishes reciprocating motion (s) along the tool axis direction within the wave depth, so as to extend the life of the tool. When the second movement finishes exactly one reciprocating motion, the first movement reaches one cycle length along the path length, the machining tool generates one cycle of wave tool path andthe contact points at the machining tool form aperiodical wave on the machining tool surface.
Figure 4A, 4B, 4C and 4Drespectively illustrate an expanded view of a machining tool surface. As shown in figure 4A, within a cycle length, the tool rotates 480degrees along its axis andthe contact points at the tool form asine-shapedperiodical wave abrasion, wrapping the axis of the tool. In particular, when the tool rotates (1440n-1080) degrees (n=1, 2, 3......) , the contact points at the tool form {3 (n-1) +3/4} sine wave; when the tool rotates (1440n-720) degrees (n=1, 2, 3......) , the contact points at the tool form {3 (n-1) +3/2} sine wave; when the tool rotates (1440n-360) degrees (n=1, 2, 3......) , the contact points at the tool form {3 (n-1) +9/4} sine wave; when the tool rotates 1440n degrees (n=1, 2, 3......) , the contact points at the tool form {3 (n-1) +3} sine wave. Figures 4B, 4C and 4D respectively show abrasion of the tool under various scenarios, the tool rotation by 1440 degrees, 2880 degrees and 5760 degreesrespectivelyalong its axis within a cycle length and at least two contact pointson the curve are overlapped. In this way, the contact points at the tool are substantially even distributed on the tool surface, so that the tool can be womevenly. However, it should be noted that the tool may rotate less than 360 degrees, for example, the tool rotates only 240 degrees within a cycle length.
During the machining process, it is necessary to define a machining offset so that the tool may contact the work piece to be machined to remove appropriate amount of the material from the work piece without overcutting or leaving the work piece, especially when the tool tip is not cylinder. To solve this, the wave tool path solution further comprises a third movement working together with the first movement and the second movement. The third movement may applymachining feedsthat adapted to give uniform surface finishing of the work piece. The machining feedsare regulated by adjusting radial offset of the machining tool with respect to the contact point. With the involvement of the third movement, the robot system may generatea self-adaption wave tool path and ensure  the processing quality.
The wave tool paths are generated by computer programsbased on various parameters. These parameters may include the shape of the selected tool, the contact height, the wave depth, the cycle length, and/or other types of factors that help programmers to set up the robot system quickly and accurately.
Figure 5 illustrates a robot system performing the machining process according to an embodiment of present invention. As shown in figure 5, the robot system 5 includes a manipulator 500, a machining tool 501 anda controller 502. The manipulator 500 is arranged to hold the machining tool 501 . The controller 502 can be offline programmed to control the manipulator 500 to operate the machining tool 501 according to the method as described above.
Though the present invention has been described on the basis of some preferredembodiments, those skilled in the art should appreciate that those embodiments should by noway limit the scope of the present invention. Without departing from the spirit and conceptof the present invention, any variations and modifications to the embodiments should bewithin the apprehension of those with ordinary knowledge and skills in the art, and thereforefall in the scope of the present invention which is defined by the accompanied claims.

Claims (10)

  1. A method for machining a work piece by a machiningtool, comprising:
    relatively moving the machining tool against the work piece to apply machining feedstherebetween;
    wherein:
    the contact points at the work piece are arranged on the area of the work piece to be machined; and
    the contact points at the machining tool form a curve on the machining tool surface.
  2. The method according to claim 1, wherein:
    themachining feedsare adapted to give uniform surface finishing of the work piece.
  3. The method according to claim 1 or 2, further comprising:
    rotating the machining tool along its axis.
  4. The method according to claim 3, wherein:
    at least two contact points on the curve are overlapped.
  5. The method according to claims 4, wherein:
    the contact points at the machining tool are substantially even distributed on themachining tool surface.
  6. The method according to any of claims 3-5, wherein:
    thecurve is a periodical wave.
  7. The method according to claim 6, wherein:
    the periodical wave is sine-shaped or cosine-shaped.
  8. The method according to any of claims 1 to 7, wherein:
    themachining feedsare regulated by adjusting radial offset of the machining tool with respect to the contact point.
  9. The method according to claim 8, wherein:
    the radial offset of the machining tool is adjusted to the radius of the machining tool with respect to the contact point.
  10. A robot system for machining a work piece, including:
    a manipulator;
    amachiningtool; and
    a controller, being adapted for controlling the manipulator to operate the machining tool according to the method set forth in any of the preceding claims.
PCT/CN2015/091072 2015-09-29 2015-09-29 Method and system for machining WO2017054130A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580082075.1A CN107848046A (en) 2015-09-29 2015-09-29 For mach method and system
EP15905042.6A EP3356070A4 (en) 2015-09-29 2015-09-29 Method and system for machining
PCT/CN2015/091072 WO2017054130A1 (en) 2015-09-29 2015-09-29 Method and system for machining
JP2018535213A JP6943862B2 (en) 2015-09-29 2015-09-29 Methods and systems for machining
US15/940,066 US10759015B2 (en) 2015-09-29 2018-03-29 Method and system for machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/091072 WO2017054130A1 (en) 2015-09-29 2015-09-29 Method and system for machining

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/940,066 Continuation US10759015B2 (en) 2015-09-29 2018-03-29 Method and system for machining

Publications (1)

Publication Number Publication Date
WO2017054130A1 true WO2017054130A1 (en) 2017-04-06

Family

ID=58422577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091072 WO2017054130A1 (en) 2015-09-29 2015-09-29 Method and system for machining

Country Status (5)

Country Link
US (1) US10759015B2 (en)
EP (1) EP3356070A4 (en)
JP (1) JP6943862B2 (en)
CN (1) CN107848046A (en)
WO (1) WO2017054130A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079892A1 (en) 2015-11-10 2017-05-18 Abb Schweiz Ag A method and system for machining, and a robot system
JP2020044646A (en) * 2018-09-19 2020-03-26 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Machining center for timepiece components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067860A (en) * 1988-08-05 1991-11-26 Tipton Manufacturing Corporation Apparatus for removing burrs from workpieces
JPH05301156A (en) * 1992-04-27 1993-11-16 Meidensha Corp Deburring tool for robot
DE102011054885A1 (en) * 2011-10-27 2013-05-02 Hans Hermann Bergmann Trimming device for machining exhaust manifold of internal combustion engine, has spring element arranged between movable component and remaining part holder such that spindle together with movable component is moved near to holder
CN104249195A (en) * 2013-06-28 2014-12-31 发那科株式会社 Deburring device including visual sensor and force sensor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732771A (en) * 1956-01-31 kerns
BE500082A (en) * 1949-12-17
US3599531A (en) * 1969-02-19 1971-08-17 Continental Can Co Reciprocating margin-finishing apparatus
JPS6099511A (en) * 1983-10-24 1985-06-03 Mitsubishi Heavy Ind Ltd Side trimming method for band plate
JPH01171713A (en) * 1987-12-25 1989-07-06 Mitsubishi Heavy Ind Ltd Cutting method for end face
JPH03196960A (en) * 1989-12-25 1991-08-28 Toshiba Ceramics Co Ltd Ceramics compact deburring finisher
JPH04105813A (en) * 1990-08-27 1992-04-07 Hitachi Seiko Ltd Processing method for external shape of printed board
JPH08281542A (en) * 1995-04-11 1996-10-29 Toyoda Mach Works Ltd Vibrational tool
JP3579306B2 (en) * 1999-08-10 2004-10-20 株式会社日立製作所 Method and apparatus for processing outer peripheral surface of cylindrical body with projection
DE102004037454A1 (en) * 2004-08-02 2006-02-23 Carl Zeiss Ag Method for processing surfaces of workpieces
CN2780406Y (en) * 2004-11-30 2006-05-17 曹善书 Digital controlled sand rod grinding machine tool
JP4475111B2 (en) * 2004-12-14 2010-06-09 トヨタ自動車株式会社 Manufacturing method of ring member
WO2009102767A2 (en) * 2008-02-11 2009-08-20 Fanuc Robotics America, Inc. Method of controlling a robot for small shape generation
JP5549330B2 (en) * 2010-04-05 2014-07-16 株式会社Ihi Machining robot and its machining control method
JP2013099815A (en) * 2011-11-08 2013-05-23 Fanuc Ltd Robot programming device
CN103302563B (en) * 2012-03-14 2015-11-25 富泰华工业(深圳)有限公司 Sanding apparatus and use the manipulator of this sanding apparatus
US20130273818A1 (en) * 2012-04-13 2013-10-17 Hon Hai Precision Industry Co., Ltd. Manipulator and polishing mechanism thereof
US20140113525A1 (en) * 2012-10-22 2014-04-24 Apple Inc. Methods for finishing surfaces using tool center point shift techniques
DE102013002727A1 (en) * 2013-02-16 2014-08-21 Heule Werkzeug Ag Drive device for exercising a push and turn movement on a drive shaft for driving a deburring tool and method for operation
JP6123899B2 (en) * 2013-08-07 2017-05-10 旭硝子株式会社 Method for processing plate-like body and method for manufacturing electronic device
JP6457468B2 (en) * 2016-12-08 2019-01-23 ファナック株式会社 Deburring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067860A (en) * 1988-08-05 1991-11-26 Tipton Manufacturing Corporation Apparatus for removing burrs from workpieces
JPH05301156A (en) * 1992-04-27 1993-11-16 Meidensha Corp Deburring tool for robot
DE102011054885A1 (en) * 2011-10-27 2013-05-02 Hans Hermann Bergmann Trimming device for machining exhaust manifold of internal combustion engine, has spring element arranged between movable component and remaining part holder such that spindle together with movable component is moved near to holder
CN104249195A (en) * 2013-06-28 2014-12-31 发那科株式会社 Deburring device including visual sensor and force sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3356070A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079892A1 (en) 2015-11-10 2017-05-18 Abb Schweiz Ag A method and system for machining, and a robot system
EP3374128A4 (en) * 2015-11-10 2019-07-17 ABB Schweiz AG A method and system for machining, and a robot system
US10946498B2 (en) 2015-11-10 2021-03-16 Abb Schweiz Ag Method and system for machining, and a robot system
JP2020044646A (en) * 2018-09-19 2020-03-26 ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス Machining center for timepiece components
US11524381B2 (en) 2018-09-19 2022-12-13 Eta Sa Manufacture Horlogere Suisse Machining centre for timepiece components

Also Published As

Publication number Publication date
CN107848046A (en) 2018-03-27
US20180281138A1 (en) 2018-10-04
EP3356070A4 (en) 2019-07-17
US10759015B2 (en) 2020-09-01
EP3356070A1 (en) 2018-08-08
JP2018531159A (en) 2018-10-25
JP6943862B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP6831835B2 (en) Machines with highly controllable processing tools for finishing workpieces
JP2016525455A (en) Method for machining a tooth edge and a machining station designed for this purpose
JP2016525455A5 (en)
TWI664053B (en) Grinding machine and method for machining a workpiece
US10759015B2 (en) Method and system for machining
JP2018531503A6 (en) Machine with highly controllable processing tools for finishing workpieces
JP2019171503A (en) Robot processing system
JP5549330B2 (en) Machining robot and its machining control method
CN105904297A (en) Flexible grinding straight mill device for tail end of robot
JP6617454B2 (en) Cutting apparatus and cutting method
JP2009241221A (en) Cutting device and cutting program
JP6264702B2 (en) Processing equipment
CN107717462B (en) Annular element fracture knurling device and annular element fracture rose work method
JP6898299B2 (en) A tooth finishing method, a finishing machine that executes this method, and a computer program that controls this machine.
JP6766922B2 (en) Cutting equipment and cutting method
JP2018531159A6 (en) Method and system for machining
JP7051948B2 (en) Methods and systems for machining
JP6819099B2 (en) Gear processing method
JP2015139831A (en) Polishing robot and polishing robot control method
Latos et al. Surface shaping with industrial robot
JP6561596B2 (en) Cutting apparatus and cutting method
KR101896770B1 (en) Honing tool device
JP2008110458A (en) Manufacturing method of end mill having circular arc blade
JP2015006713A (en) Gear processing device
JP2016093850A (en) Profile grinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018535213

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE