WO2017052111A1 - 부스덕트 유닛 및 이를 포함하는 부스덕트 - Google Patents

부스덕트 유닛 및 이를 포함하는 부스덕트 Download PDF

Info

Publication number
WO2017052111A1
WO2017052111A1 PCT/KR2016/009956 KR2016009956W WO2017052111A1 WO 2017052111 A1 WO2017052111 A1 WO 2017052111A1 KR 2016009956 W KR2016009956 W KR 2016009956W WO 2017052111 A1 WO2017052111 A1 WO 2017052111A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus
load
busbars
conductor
bus duct
Prior art date
Application number
PCT/KR2016/009956
Other languages
English (en)
French (fr)
Inventor
임동현
김봉석
이준근
이민우
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160087077A external-priority patent/KR102554786B1/ko
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2017052111A1 publication Critical patent/WO2017052111A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars

Definitions

  • the present invention relates to a bus duct unit and a bus duct including the same, and more particularly, to prevent a safety accident by preventing the load from being concentrated on either side of the bus duct unit consisting of two or more bus ducts for supplying a large current.
  • the present invention relates to a bus duct unit capable of stable power supply and a bus duct including the same.
  • bus ducts have recently been used as substitutes for cables.
  • the bus duct has a bus bar that performs the same role as the conductor core wire included in the cable and has the advantage of allowing a large amount of current to flow.
  • bus ducts and cables have a common point in that they have conductors and insulators, cables use vinyl or rubber to protect or insulate the conductors, but the bus ducts are difficult to protect directly as insulators because they transmit large amounts of current through the conductors. The difference is that the insulator is coated on the busbar and the busbar is embedded in the metal duct.
  • booth ducts are not only easily expanded and relocated, but are also widely used in places that use a relatively large amount of power since they can be quickly recovered due to an abnormality or an accident occurring on the bus bar's power wiring.
  • booth ducts include factories, buildings, apartments, large discount marts, officetels, research complexes, department stores, golf courses, tunnels, semiconductor and LCD plants, chemicals, refineries, steelworks, skyscrapers, ultra-high voltage substations, LNG takeover bases, new airports, ports It is applied to facilities in various fields such as.
  • the busbars provided inside the bus ducts are usually provided in a state of being separated from the outside in a duct of a predetermined size because a large current flows, and the bus ducts including such bus bars are manufactured in a unit unit having a predetermined length. After installation, it is connected to the facility and power distribution design to be installed.
  • connection portion is provided so that the booth duct manufactured in the unit unit can be continuously constructed. That is, each bus duct unit is connected to each other by the conductor and the external ground is connected to each other by the connecting portion.
  • the conductor of the overloaded power line generates heat and increases the temperature, thereby causing damage to the safety of the entire booth duct unit and leading to a safety accident such as a fire.
  • Embodiments of the present invention to prevent the accident of the load and the temperature rise of the conductor in the bus duct supplying a large current to prevent safety accidents and to ensure the safety and reliability of the bus duct unit.
  • the plurality of busbars includes at least two busbars having the same phase.
  • a load branch tap electrically connected to one or more of the plurality of busbars and branched from the busbars and connected to a load for power use ;
  • at least one load equal divider for electrically distributing at least one busbar on the same phase as the busbar connected to the load branch tab to distribute the load evenly.
  • the bus duct unit may include a bus duct unit. .
  • the load equalizing distributor may include one or more conductor parts made of a metal material; It may comprise a; connecting portion for connecting the conductor portion and the busbar.
  • the conductor part may be made of a material having a specific resistance equal to or lower than that of the bus bar.
  • the conductor part may be made of the same material as the bus bar.
  • the total longitudinal area of the conductor part may be 80% or more of the cross-sectional area of the busbar to which the load branch tab is connected.
  • the width of the center of the conductor portion is equal to or less than the spacing between busbars of the same phase, the height of the center of the conductor portion is 90% to 110% of the height of the busbar, and the length of the conductor portion is 90% of the width of the busbar. It may consist of 110%.
  • the edge portion in the cross section of the conductor portion may be configured to be round or chamfered.
  • connection may be made by welding or soldering.
  • a bus duct including the bus duct unit described above may be provided.
  • Embodiments of the present invention can prevent the accident of the load and the temperature rise of the conductor in the booth duct supplying a large current can prevent safety accidents and ensure the safety and reliability of the booth duct unit.
  • FIG. 1 is a block diagram of a bus duct according to an embodiment of the present invention
  • Figure 2 is a plan view showing a power branch configuration of the bus duct unit according to an embodiment of the present invention
  • Figure 3 is a front configuration diagram showing a conductor connection configuration for the power branch of the bus duct unit according to an embodiment of the present invention
  • Figure 4 is a plan view showing a conductor connection configuration for the power branch of the bus duct unit according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing an equal load distributor according to another embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a load equalizer according to another embodiment of the present invention.
  • FIG. 7 and 8 are perspective views showing the shape of the conductor portion applied to the equal load distributor
  • FIG. 1 is a configuration diagram of a bus duct according to an embodiment of the present invention
  • Figure 2 is a plan view showing a power branch configuration of the bus duct unit according to an embodiment of the present invention
  • Figure 3 is a view of the present invention 1 is a front configuration diagram illustrating a conductor connection configuration for a power branch of a bus duct unit according to an exemplary embodiment
  • Figure 4 is a plan view showing a conductor connection configuration for the power branch of the bus duct unit according to an embodiment of the present invention.
  • the bus duct unit 10 according to the exemplary embodiment of the present invention is positioned outside the plurality of bus bars 20 and the plurality of bus bars 20 for power transmission in the same phase. Including the duct 12 to be made.
  • the plurality of busbars 20 may include at least two busbars 20 having the same phase.
  • the bus duct unit 10 is electrically connected to one or more bus bars 20 of the plurality of bus bars 20, branched from the bus bars 20, and connected to a load for power use. Tab 30; And an equal load distributor 100 electrically distributing the load evenly by electrically connecting at least one busbar 20 on the same phase as the busbar 20 to which the load branch tab 30 is connected. Can be.
  • the duct 12 is formed to form a predetermined space therein.
  • the bus bar 20 is provided inside the duct 12 to serve as a conductor core included in the cable to conduct a large amount of current.
  • the bus bar 20 is made of a conductor such as copper or aluminum.
  • a case mainly made of aluminum will be described as an example.
  • the bus bar 20 may be aluminum having a conductivity of 61% or more.
  • busbars 20 may be electrically insulated from one another by an insulating layer including an insulating material such as epoxy and PET. Since the busbar 20 typically flows a large current, the busbar 20 is primarily covered with an insulating layer and insulated from the bus bar 20.
  • tin plating is applied to the exposed conductor portion after the insulating layer is removed for the connection of the bus duct 10, and thus, it may be manufactured to have corrosion resistance even in an environment exposed to salt or various chemicals, and to have corrosion resistance. It can be used in high safety environments such as wind power, chemical and refinery plants.
  • the bus bar 20 may be disposed to be spaced apart from each other by a predetermined interval inside the duct 12 to increase insulation performance through air insulation between phases. At this time, the distance is usually spaced more than the thickness of the bus bar (20).
  • the bus bar 20 is composed of three phases consisting of three phases of R, S, and T, and the bus bar 20 includes three busbars. It can be configured in various ways.
  • the busbar 20 may be formed of four phase busbars 20 of R, S, T, and N, or five busbars 20 in which R, S, T, and two N may be combined. .
  • the bus duct unit 10 may include two or more power transmission units 22 formed by the bus bars 20 to transmit a large current of 3000 A or more. That is, as shown in FIG. 3, the busbars 20 are in a stacked form, but the three busbars 20 are provided in a stacked form at the same interval and height on one side thereof. That is, in this embodiment, two power transmission units 22 are provided to form one power line.
  • the power transmission unit 22 when the power transmission unit 22 consists of two, it is called a two-way booth duct, of course, but is not limited to this, it is also possible that two or more power transmission unit 22 is provided.
  • the duct 12 is made of a high-strength aluminum material to be configured to have a sufficient grounding capacity, the surface may be coated with an insulating coating material of corrosion resistance.
  • the duct 12 including the bus bar 20 may be manufactured by a unit unit having a predetermined length and then connected by a bus duct connection part (not shown).
  • a power transmission path formed by connecting a plurality of booth duct units 10 is referred to as a booth duct.
  • the booth duct (10a, 10b, 10c, 10d) extends from the main switchboard 1 of the electrical room, and is installed to pass through the unit distribution area through the wall of the facility.
  • the loads 5a, 5b, 5c, and 5d allocated to each unit distribution area are connected to the bus ducts 10a, 10b, 10c, and 10d passing through each unit distribution area to supply power to a power supply destination.
  • connection of the loads 5a, 5b, 5c, and 5d may be branched by applying a load branch tap 30 connected to supply power to a power supply as shown in FIG. 2.
  • the load branch tab 30 may be electrically connected to the busbar 20 in the bus duct unit 10 by the branch conductors 32 connected in the same phase to fit each phase.
  • reducer boxes (7a, 7b) are installed for each unit distribution area, so that the booth ducts 10a, 10b are adapted to each load. , 10c, 10d) are connected while gradually decreasing the capacity.
  • a load equalizer divider 100 for electrically distributing the load applied to each power line by electrically connecting the power transmission unit 22 provided with two or more.
  • the load equalizing distributor 100 may be provided at a corresponding position of a portion to which the load branch tab 30 is connected. As shown in Figure 2 and 4, the load branch tab 30 is connected in the direction perpendicular to the longitudinal direction of the bus duct 10 and electrically connected, the load equalizing divider 100 is It is located between two busbars 20 on an extension line.
  • the load equal divider 100 is provided between two power transmission units 22 formed by the stacked busbars 20.
  • the load equalizing distributor 100 is preferably provided to exactly correspond to a portion to which the load branch tap 30 is connected, but as shown in FIG. 4 (b). It is also possible to be installed at a position partially eccentric to one side.
  • the load equalizing distributor 100 may be provided in a state divided into a plurality as shown in Figure 4 (c).
  • the equal load distributor 100 is made by electrically connecting the busbars 20 of the same phase, respectively.
  • the load equalizing distributor 100 may include a welding connection unit 110 for electrically connecting the busbars 20 of the same phase by welding.
  • the busbars 20 of each power transmission unit 22 are stacked in a state spaced apart at regular intervals. And since the busbars 20 forming the same phase are positioned at the same height, the welding bars 110 are formed by welding and electrically connecting them.
  • the welding connection unit 110 is provided to have the same width and thickness as the busbar 20 to electrically connect both busbars 20. Since the weld connection part 110 substantially forms a passage for electrically connecting both busbars 20, the welding connection part 110 preferably has the same width and thickness as those of the busbars 20 to have the same capacity and electrical performance. Do.
  • FIG 5 is a cross-sectional view showing a load equalizer according to another embodiment of the present invention
  • Figure 6 is a plan view showing a load equalizer according to another embodiment of the present invention
  • Figure 7 and 8 is a load equalizer It is a perspective view which shows the shape of the conductor part applied.
  • the load equalizing distributor 100 includes one or more conductor parts 120 made of a metal material; It may include a connecting portion 130 for connecting the conductor portion 120 and the busbar 20.
  • the conductor part 120 may be formed in a bar shape having a predetermined length.
  • the conductor portion 120 is preferably made of a material having a specific resistance equal to or lower than the bus bar 20, for example, may be made of the same material as the bus bar 20.
  • the conductor portion 120 may also be made of aluminum having a conductivity of 61% or more.
  • the bus bar 20 is made of copper.
  • the conductor part 120 may also be made of copper.
  • the conductor part 120 may be made of a material having a specific resistance lower than or equal to that of the bus bar 20, thereby efficiently distributing power loads applied to both bus bars 20 evenly. have.
  • the longitudinal area (A1) of the conductor portion 120 may be made of 80% or more of the cross-sectional area (A2) of the bus bar (20).
  • the total vertical cross-sectional area may be 80% or more of the cross-sectional area A2 of the bus bar 20.
  • the conductor portion 120 has an end area A1 of less than 80% of the busbar 20 cross sectional area A2, power distribution may not be performed smoothly when a high load is applied.
  • the width W of the center of the conductor part 120 may be smaller than or equal to the distance between the busbars 20 of the same phase.
  • the conductor part 120 is positioned between the busbars 20, and then both ends thereof are connected to the connection part 130.
  • the connection part 130 may be formed by welding or soldering. After welding or soldering, it can be flattened by sanding to prevent electric field concentration.
  • the shape of the conductor part 120 may have a chamfer S formed at a corner portion of the cross section of the conductor part 120.
  • the edge portion of the conductor part 120 may be configured in a round shape (R).
  • the load branch tap 30 is electrically connected to only one power transmitter 22 so that power is uniformly supplied through both power transmitters 22. It can be supplied so that the load imbalance can be eliminated.
  • the booth duct load distribution system described above it is possible to prevent safety accidents and to ensure the safety and reliability of the booth duct unit by preventing load dropping and temperature rise of the conductor in the booth duct supplying a large amount of current.
  • a stable power supply can be realized through an even distribution of power to the power supply.

Abstract

부스덕트 유닛 및 이를 포함하는 부스덕트가 개시된다. 본 발명에 따른 부스덕트 유닛 및 이를 포함하는 부스덕트에 의하면, 대용량 전류를 공급하는 부스덕트에서 부하의 쏠림과 도체의 온도상승을 방지함으로써 안전사고를 예방하고 부스덕트 유닛의 안전성과 신뢰성을 확보할 수 있으며, 각 전력공급처로 균등한 전력 배분을 통해 안정적인 전력 공급을 실현할 수 있다.

Description

부스덕트 유닛 및 이를 포함하는 부스덕트
본 발명은 부스덕트 유닛 및 이를 포함하는 부스덕트에 관한 것으로, 더욱 상세하게는 대용량 전류를 공급하는 둘 이상의 부스덕트로 이루어진 부스덕트 유닛에서 어느 한쪽으로 부하가 집중되는 것을 방지함으로써 안전사고를 예방하고 안정적인 전력 수급이 가능한 부스덕트 유닛 및 이를 포함하는 부스덕트에 관한 것이다.
일반적으로, 전기 에너지를 전달하는 매개체로서 예전에는 케이블(cable)을 많이 사용해 왔으나, 최근에는 케이블의 대체품으로 부스덕트(bus duct)가 많이 사용되고 있다. 부스덕트는 케이블에 포함된 도체 심선과 같은 역할을 수행하는 부스바(bus bar)를 구비하고 있으며 대용량의 전류를 통전 가능한 장점이 있다.
원래, 전력 배선 방식에 있어서는 전선케이블에 의한 배선 방식이 널리 사용되어 왔으나, 고층 건물이나 대단위 공장 등의 배선 방식에서는 점차적으로 부스바(bus bar)를 구비하는 부스덕트(bus duct)에 의한 배선 방식을 채택하는 경우가 늘어나고 있다.
이러한 부스덕트와 케이블은 도체와 절연체를 가지는 점에서는 공통점이 있으나 케이블은 도체를 보호하거나 절연하기 위하여 비닐 또는 고무를 사용하지만 부스덕트는 대용량의 전류를 도체를 통해 전달하므로, 절연체로서 직접 보호하기 어려워서 절연체를 부스바에 피복함과 동시에 부스바를 금속 덕트 안에 내장하는 점에서 차이가 있다.
이러한 부스덕트는 증설과 이설이 용이할 뿐만 아니라 부스바의 전력배선 상에 이상이나 사고 발생 시 그 처리가 용이하여 신속하게 복구할 수 있으므로 비교적 많은 전력을 사용하는 장소에 널리 사용되고 있다.
더욱이 예전에 비해서 지금의 건축물의 전기공급 시스템은 점점 크고 다양한 용량의 에너지를 필요로 하고 있기 때문에 이러한 추세에 맞추어 안전하고 에너지 손실이 적은 부스덕트의 사용량이 급속하게 증가하고 있다.
예컨대, 부스덕트는 공장, 빌딩, 아파트, 대형 할인마트, 오피스텔, 연구단지, 백화점, 골프장, 터널, 반도체 및 LCD공장, 화학, 정유, 제철, 초고층빌딩, 초고압 변전소, LNG인수기지, 신공항, 항만 등의 다양한 분야의 시설물에 적용되고 있다.
부스덕트 내부에 구비된 부스바는 통상적으로 큰 전류가 흐르기 때문에 소정 크기의 덕트 내부에 외부와 격리된 상태로 구비되며, 이러한 부스바를 포함하는 부스덕트는 일정 길이를 갖는 단위 유닛(unit)으로 제조된 후 설치하고자 하는 시설 및 배전 설계에 맞추어 연결 시공된다.
이때 단위 유닛으로 제조된 부스덕트를 연속적으로 시공할 수 있도록 접속부가 구비된다. 즉, 각각의 부스덕트 유닛은 접속부에 의해 도체는 도체끼리 연결되고 외부 접지는 접지끼리 서로 접속이 이루어진다.
한편, 대용량 전류용 부스덕트의 경우에는 각 상당 2개 이상의 부스바로 전력선로를 구성하는 경우가 많은데, 각 전력공급처로 분기할 때 한쪽 부스바에서만 부하를 부기하면 심각한 부하 불균형이 발생하는 문제가 있다.
이때 과부하가 걸린 전력선로의 도체는 발열하여 온도가 상승하므로 전체 부스덕트 유닛의 안전성에 손상을 가져오며, 자칫 화재 등 안전사고로 이어질 수 있는 문제가 있다.
따라서 대용량 전류를 공급하는 둘 이상의 부스덕트 유닛으로 이루어진 부스덕트에서 어느 한쪽으로 부하가 집중되는 것을 방지함으로써 안전사고를 예방하고 안정적인 전력 수급이 가능한 부스덕트 유닛의 필요성이 대두되고 있다.
본 발명의 실시예들은 대용량 전류를 공급하는 부스덕트에서 부하의 쏠림과 도체의 온도상승을 방지함으로써 안전사고를 예방하고 부스덕트 유닛의 안전성과 신뢰성을 확보하고자 한다.
또한, 각 전력공급처로 균등한 전력 배분을 통해 안정적인 전력 공급을 실현하고자 한다.
본 발명의 일측면에 따르면, 도체로 이루어진 복수 개의 부스바와 상기 복수 개의 부스바 외측에 위치하는 덕트를 포함하는 부스덕트 유닛에 있어서, 상기 복수 개의 부스바는 동일위상을 가진 부스바를 적어도 둘 이상 포함하고, 상기 복수 개의 부스바 중 하나 이상의 부스바에 전기적으로 연결되며, 상기 부스바로부터 분기되어 전력사용을 위한 부하로 연결되는 부하 분기용 탭; 및 상기 부하 분기용 탭이 연결된 부스바와 동일위상의 부스바를 적어도 하나 이상 전기적으로 연결하여 상기 부하를 균등하게 분배시키는 하나 이상의 부하 균등 분배기;를 포함하는 것을 특징으로 하는 부스덕트 유닛이 제공될 수 있다.
상기 부하 균등 분배기는, 금속재질로 이루어진 하나 이상의 도체부; 상기 도체부와 부스바를 연결하는 연결부;를 포함하여 이루어질 수 있다.
상기 도체부는 상기 부스바와 같거나 그보다 낮은 비저항을 가지는 재질로 이루어질 수 있다.
상기 도체부는 상기 부스바와 동일 재질로 이루어질 수 있다.
상기 도체부의 총 종단면적은 상기 부하분기용탭이 연결된 부스바의 횡단면적의 80%이상으로 이루어질 수 있다.
상기 도체부 중심의 폭은 동일한 상의 부스바 간의 간격과 같거나 그보다 작고, 상기 도체부 중심의 높이는 상기 부스바 높이의 90% 내지 110%이며, 상기 도체부 길이는 상기 부스바 폭의 90% 내지 110%로 이루어질 수 있다.
상기 도체부의 단면에서 모서리 부분은 라운드 혹은 모따기 되도록 구성될 수 있다.
상기 연결부는 용접 또는 납땜으로 이루어질 수 있다.
본 발명의 다른 측면에 의하면 전술한 부스덕트 유닛을 포함하는 부스덕트가 제공될 수 있다.
본 발명의 실시예들은 대용량 전류를 공급하는 부스덕트에서 부하의 쏠림과 도체의 온도상승을 방지함으로써 안전사고를 예방하고 부스덕트 유닛의 안전성과 신뢰성을 확보할 수 있다.
또한, 각 전력공급처로 균등한 전력 배분을 통해 안정적인 전력 공급을 실현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 부스덕트의 구성도
도 2는 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기 구성을 도시한 평면구성도
도 3은 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기를 위한 도체 연결 구성을 도시한 정면구성도
도 4는 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기를 위한 도체 연결 구성을 도시한 평면구성도
도 5는 본 발명의 다른 실시예에 따른 부하 균등 분배기를 도시한 단면도
도 6은 본 발명의 다른 실시예에 따른 부하 균등 분배기를 도시한 평면도
도 7과 도 8은 부하 균등 분배기에 적용되는 도체부를 형상을 도시한 사시도
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 부스덕트의 구성도이고, 도 2는 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기 구성을 도시한 평면구성도이며, 도 3은 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기를 위한 도체 연결 구성을 도시한 정면구성도이다. 도 4는 본 발명의 일 실시예에 따른 부스덕트 유닛의 전력분기를 위한 도체 연결 구성을 도시한 평면구성도이다.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 부스덕트 유닛(10)은 동일위상의 전력전송을 위한 복수 개의 부스바(20)와 상기 복수 개의 부스바(20) 외측에 위치하는 덕트(12)를 포함하여 이루어진다.
여기서 상기 복수 개의 부스바(20)는 동일 위상을 가지는 부스바(20)를 적어도 둘 이상 포함할 수 있다.
그리고 부스덕트 유닛(10)은 상기 복수 개의 부스바(20) 중 하나 이상의 부스바(20)에 전기적으로 연결되며, 상기 부스바(20)로부터 분기되어 전력사용을 위한 부하로 연결되는 부하 분기용 탭(30); 및 상기 부하 분기용 탭(30)이 연결된 부스바(20)와 동일위상의 부스바(20)를 적어도 하나 이상 전기적으로 연결하여 상기 부하를 균등하게 분배시키는 부하 균등 분배기(100)를 포함하여 이루어질 수 있다.
본 발명의 일 실시예에 따른 부스덕트 유닛(10)의 기본구조를 살펴보면, 내부에 소정 공간을 형성하는 덕트(12)가 구비된다. 상기 덕트(12) 내부에는 케이블에 포함된 도체 심선과 같은 역할을 수행하는 부스바(20)가 구비되어 대용량의 전류를 통전하게 된다.
상기 부스바(20)는 구리나 알루미늄 등의 도체로 이루어지는데, 본 실시예에서는 주로 알루미늄으로 이루어지는 경우를 예로 들어 설명한다. 구체적으로 본 실시예에서 상기 부스바(20)는 도전율 61% 이상의 알루미늄이 적용될 수 있다.
상기 부스바(20) 표면은 각각 에폭시(epoxy),PET 등의 절연재료가 포함된 절연층에 의해 피복되어 서로 전기적으로 절연될 수 있다. 상기 부스바(20)는 통상적으로 큰 전류가 흐르기 때문에 1차적으로 절연층을 피복하여 절연하고, 상기 덕트(12) 내부에 외부와 격리된 상태로 수용하여 보호된다.
그리고 부스덕트(10)의 접속을 위해 절연층을 제거하고 노출되는 도체 부분에는 주석도금이 적용되어 염분이나 각종 화학물질에 노출되는 환경에서도 내염해, 내부식성을 갖도록 제작될 수 있으며, 그에 따라 선박이나 풍력 및 화학, 정유 플랜트 등 고도의 안전성이 요구되는 환경에서 활용 가능하다.
상기 부스바(20)는 덕트(12) 내측에 서로 일정 간격 이격되도록 배치됨으로써 각 상간의 공기 절연을 통해 절연성능을 높일 수 있다. 이때 이격되는 거리는 통상적으로 부스바(20)의 두께 이상 간격을 두게 된다.
본 실시예에서는 상기 부스바(20)가 R, S, T의 3개의 상으로 이루어져 3개가 구비되는데, 상기 부스바(20)의 구성은 부스덕트의 설치대상이나 설치환경, 공급하는 전력용량 등에 따라 다양하게 구성할 수 있다. 예를 들어 상기 부스바(20)는 R, S, T, N의 4상의 부스바(20)로 이루어지거나 R, S, T 및 2개의 N을 합쳐 5개의 부스바(20)로 이루어질 수 있다.
그리고 본 실시예에서 3000A 이상의 대용량 전류를 송전하기 위해 상기 부스덕트 유닛(10)은 부스바(20)가 이루는 전력전송부(22)가 둘 이상 구비되어 전력선로를 구성할 수 있다. 즉, 도 3에 도시된 바와 같이, 상기 부스바(20)는 3개가 적층된 형태인데 그 일측에 동일한 간격과 높이로 3개의 부스바(20)가 역시 적층된 형태로 구비된다. 즉, 본 실시예에서 상기 전력전송부(22)는 2개가 구비되어 하나의 전력선로를 이루는 것이다.
특히 전력전송부(22)가 2개로 이루어지는 경우 2way 부스덕트라 불리우는데, 물론 이에 한정되는 것은 아니며, 2개 이상의 전력전송부(22)가 구비되는 것도 가능하다.
상기 덕트(12)는 고강도의 알루미늄 재질로 이루어져 충분한 접지용량을 갖추도록 구성하고, 표면에는 내부식성의 절연성 도장재료가 도포될 수 있다. 이러한 부스바(20)를 포함하는 덕트(12)는 일정 길이를 갖는 단위 유닛(unit)으로 제조된 후, 부스덕트 접속부(미도시)에 의해 연결 설치될 수 있다.
실제 현장에서는 부스덕트 유닛, 부스덕트 등의 명칭을 구분하지 않고 부스덕트로 통칭하여 사용하지만, 본 명세서에서는 명확한 개념 정의와 설명의 편의를 위해 일정 길이를 갖는 단위 유닛으로 제조된 제품을 부스덕트 유닛(10)으로, 다수의 부스덕트 유닛(10)이 접속하여 이루어진 전력전송로를 부스덕트로 지칭하여 사용한다.
한편, 도 1에서 보는 바와 같이, 전기실의 메인 배전반(1)으로부터 부스덕트(10a, 10b, 10c, 10d)가 연장되며, 시설물의 벽체를 통과하여 단위배전영역을 경유하도록 설치된다.
각각의 단위배전영역을 통과하는 부스덕트(10a, 10b, 10c, 10d)에는 각 단위배전영역에 할당된 부하(5a, 5b, 5c, 5d)가 연결되어 전력공급처로 전력을 공급하게 된다.
상기 부하(5a, 5b, 5c, 5d)의 연결은 도 2에 도시된 바와 같이 전력공급처로 전력을 공급하도록 연결되는 부하 분기용 탭(30)이 적용되어 분기될 수 있다. 상기 부하 분기용 탭(30)은 부스덕트 유닛(10) 내부의 부스바(20)에 분기용 도체(32)가 각각의 상에 맞게 동일한 위상으로 연결됨으로써 전기적으로 연결될 수 있다.
이때 메인 배전반(1)으로부터 연장설치되는 부스덕트(10a, 10b, 10c, 10d)는 단위배전영역별로 리듀서 박스(Reducer Box, 7a, 7b)가 설치되어 각각의 부하에 맞게 부스덕트(10a, 10b, 10c, 10d)의 용량이 점차적으로 감소하면서 연결된다.
그런데 각 단위배전영역별로 부하(5a, 5b, 5c, 5d)가 연결될 때 한쪽 도체에서만 분기되기 때문에 심각한 부하 불균형이 발생하고 한쪽 도체에 과부하가 걸려 발열이 발생하게 된다.
따라서 본 발명의 실시예에서는 둘 이상이 구비된 전력전송부(22)를 전기적으로 연결하여 각 전력선로에 걸리는 부하를 균등하게 분배시키는 부하 균등 분배기(100) 구비된다.
여기서 상기 부하 균등 분배기(100)는 부하 분기용 탭(30)이 연결되는 부분의 대응되는 위치에 구비될 수 있다. 도 2와 도 4에 도시된 바와 같이, 상기 부하 분기용 탭(30)은 부스덕트(10)의 길이방향과 수직이 되는 방향으로 연결되어 전기적으로 접속하는데, 상기 부하 균등 분배기(100)는 그 연장선상에서 2개의 부스바(20) 사이에 위치하게 된다.
즉, 상기 부하 균등 분배기(100)는 적층된 부스바(20)가 형성하는 2개의 전력전송부(22)의 사이에 구비되는 것이다. 이때 상기 부하 균등 분배기(100)는 도 4(a)에 도시된 것처럼, 상기 부하 분기용 탭(30)이 연결되는 부분과 정확히 대응되도록 구비되는 것이 바람직하지만, 도 4(b)에 도시된 것처럼 일측으로 일정 부분 편심된 위치에 설치되는 것도 가능하다. 또한, 상기 부하 균등 분배기(100)는 도 4(c)에 도시된 것처럼 복수 개로 나누어진 상태로 구비될 수 있다.
상기 부하 균등 분배기(100)는 동일한 상의 부스바(20)를 각각 전기적으로 연결하여 이루어진다. 구체적으로, 상기 부하 균등 분배기(100)는 동일한 상의 부스바(20)를 용접에 의해 전기적으로 연결하는 용접연결부(110)를 포함하여 이루어질 수 있다.
도 3에서 보는 바와 같이 각 전력전송부(22)의 부스바(20)는 상하로 일정 간격으로 이격된 상태로 적층되어 구비된다. 그리고 동일한 상을 이루는 부스바(20)는 동일한 높이에 위치하므로 이들을 용접하여 전기적으로 연결함으로써 용접연결부(110)를 형성한다.
이때, 상기 용접연결부(110)는 상기 부스바(20)와 동일한 폭과 두께를 가지도록 구비되어 양측 부스바(20)를 전기적으로 연결한다. 상기 용접연결부(110)는 실질적으로 양측 부스바(20)를 전기적으로 연결하는 통로를 형성하므로, 상기 부스바(20)와 동일한 용량과 전기적 성능을 갖도록 그 폭과 두께도 동일하게 형성하는 것이 바람직하다.
도 5는 본 발명의 다른 실시예에 따른 부하 균등 분배기를 도시한 단면도이고, 도 6은 본 발명의 다른 실시예에 따른 부하 균등 분배기를 도시한 평면도이며, 도 7과 도 8은 부하 균등 분배기에 적용되는 도체부를 형상을 도시한 사시도이다.
도 5 내지 도 8을 참조하면, 본 실시예에 따른 부하 균등 분배기(100)는 금속재질로 이루어진 하나 이상의 도체부(120); 상기 도체부(120)와 부스바(20)를 연결하는 연결부(130)를 포함하여 이루어질 수 있다.
상기 도체부(120)는 일정 길이를 갖는 바(bar) 형상으로 이루어질 수 있다. 여기서 상기 도체부(120)는 상기 부스바(20)와 같거나 그보다 낮은 비저항을 가지는 재질로 이루어지는 것이 바람직하며, 예를 들어 상기 부스바(20)와 동일 재질로 이루어질 수 있다.
전술한 바와 같이, 상기 부스바(20)가 도전율 61% 이상의 알루미늄으로 이루어지는 경우에는 상기 도체부(120)도 도전율 61% 이상의 알루미늄으로 이루어질 수 있으며, 예를 들어 부스바(20)가 구리로 이루어지는 경우에는 도체부(120)도 구리로 제조될 수 있다.
어느 경우에도 상기 도체부(120)는 상기 부스바(20)와 같거나 그보다 낮은 비저항을 갖는 재질로 이루어짐으로써 양쪽 부스바(20)에 걸리는 전력 부하를 균등하게 분배하는 기능을 효율적으로 수행할 수 있다.
한편, 상기 도체부(120)의 종단면적(A1)은 상기 부스바(20)의 횡단면적(A2)의 80% 이상으로 이루어질 수 있다. 도 4(c)와 같이 복수의 부하 균등 분배기(100)가 구비될 경우 합산한 총 종단면적은 상기 부스바(20)의 횡단면적(A2)의 80% 이상으로 이루어질 수 있다. 여기서 상기 도체부(120) 길이방향 단면적(A1)이 커질수록 저항이 감소하고 그에 따라 전력 부하를 균등하게 분배하는 기능을 효율적으로 수행할 수 있다. 만일 도체부(120) 종단면적(A1)이 부스바(20) 횡단면적(A2)의 80% 미만인 경우 저항이 높아 높은 부하가 걸릴 경우 전력 분배가 원활하게 이루어지지 않을 수 있다.
상기 도체부(120) 중심의 폭(W)은 동일한 상의 부스바(20) 간의 간격과 같거나 그보다 작게 이루어질 수 있다. 이 경우 상기 도체부(120)를 부스바(20) 사이에 위치시킨 후 양단을 연결부(130)로 연결하며, 이때 상기 연결부(130)는 용접 또는 납땜으로 이루어질 수 있다. 용접 또는 납땜 이후 전계집중 방지를 위해 샌딩(sanding)작업 등을 통해 평평하게 할 수 있다.
그리고 상기 도체부(120) 중심의 높이(h1)는 상기 부스바(20) 높이(h2)의 90% 내지 110%이며, 상기 도체부(120) 길이(L1)는 상기 부스바 폭(L2)의 90% 내지 110%로 이루어질 수 있다. 90% 미만 또는 110% 초과일 경우 높이차에 의한 전계집중 현상이 발생할 수 있다. 즉, 0.9h2≤h1≤1.1h2 및 0.9L2≤L1≤1.1L2 의 관계가 성립하여야 하며, 전계집중 방지를 위해 h1=h2인 것이 바람직하고, 되도록 높이차로 인한 단차가 크지 않도록 한다.
상기 도체부(120)의 형상은 도 7에서 보는 바와 같이, 상기 도체부(120)의 단면에서 모서리 부분은 모따기(S)가 형성될 수 있다. 그리고 도 8과 같이 도체부(120)의 모서리 부분을 라운드 형상(R)으로 구성하는 것도 가능하다.
이와 같이 부하 균등 분배기(100)를 형성하면 기존에 부하 분기용 탭(30)이 한쪽 전력전송부(22)로만 전기적으로 연결되어 전력을 공급받던 것을 양쪽의 전력전송부(22)를 통해 균등하게 공급받을 수 있으므로 부하의 불균형을 해소할 수 있다.
지금까지 설명한 부스덕트 부하 균등 분배시스템에 따르면, 대용량 전류를 공급하는 부스덕트에서 부하의 쏠림과 도체의 온도상승을 방지함으로써 안전사고를 예방하고 부스덕트 유닛의 안전성과 신뢰성을 확보할 수 있으며, 각 전력공급처로 균등한 전력 배분을 통해 안정적인 전력 공급을 실현할 수 있다.
상기에서는 본 발명의 일 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (9)

  1. 도체로 이루어진 복수 개의 부스바와 상기 복수 개의 부스바 외측에 위치하는 덕트를 포함하는 부스덕트 유닛에 있어서,
    상기 복수 개의 부스바는 동일위상을 가진 부스바를 적어도 둘 이상 포함하고,
    상기 복수 개의 부스바 중 하나 이상의 부스바에 전기적으로 연결되며, 상기 부스바로부터 분기되어 전력사용을 위한 부하로 연결되는 부하 분기용 탭;
    상기 부하 분기용 탭이 연결된 부스바와 동일위상의 부스바를 적어도 하나 이상 전기적으로 연결하여 상기 부하를 균등하게 분배시키는 하나 이상의 부하 균등 분배기;를 포함하는 것을 특징으로 하는 부스덕트 유닛.
  2. 제1항에 있어서,
    상기 부하 균등 분배기는,
    금속재질로 이루어진 하나 이상의 도체부;
    상기 도체부와 부스바를 연결하는 연결부;를 포함하는 것을 특징으로 하는 부스덕트 유닛.
  3. 제2항에 있어서,
    상기 도체부는 상기 부스바와 같거나 그보다 낮은 비저항을 가지는 재질로 이루어지는 것을 특징으로 하는 부스덕트 유닛.
  4. 제2항에 있어서,
    상기 도체부는 상기 부스바와 동일 재질로 이루어지는 것을 특징으로 하는 부스덕트 유닛.
  5. 제2항에 있어서,
    상기 도체부의 총 종단면적은 상기 부하분기용탭이 연결된 부스바의 횡단면적의 80%이상인 것을 특징으로 하는 부스덕트 유닛.
  6. 제5항에 있어서,
    상기 도체부 중심의 폭은 동일한 상의 부스바 간의 간격과 같거나 그보다 작고, 상기 도체부 중심의 높이는 상기 부스바 높이의 90% 내지 110%이며, 상기 도체부 길이는 상기 부스바 폭의 90% 내지 110%인 것을 특징으로 하는 부스덕트 유닛.
  7. 제2항에 있어서,
    상기 도체부의 단면에서 모서리 부분은 라운드 혹은 모따기 된 것을 특징으로 하는 부스덕트 유닛.
  8. 제2항에 있어서,
    상기 연결부는 용접 또는 납땜으로 이루어지는 것을 특징으로 하는 부스덕트 유닛.
  9. 제1항 내지 제8항 중 어느 하나의 항에 있어서,
    상기 부스덕트 유닛을 포함하는 것을 특징으로 하는 부스덕트.
PCT/KR2016/009956 2015-09-26 2016-09-06 부스덕트 유닛 및 이를 포함하는 부스덕트 WO2017052111A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0137161 2015-09-26
KR20150137161 2015-09-26
KR1020160087077A KR102554786B1 (ko) 2015-09-26 2016-07-08 부스덕트 유닛 및 이를 포함하는 부스덕트
KR10-2016-0087077 2016-07-08

Publications (1)

Publication Number Publication Date
WO2017052111A1 true WO2017052111A1 (ko) 2017-03-30

Family

ID=58386317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009956 WO2017052111A1 (ko) 2015-09-26 2016-09-06 부스덕트 유닛 및 이를 포함하는 부스덕트

Country Status (1)

Country Link
WO (1) WO2017052111A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054950A (ja) * 2004-08-10 2006-02-23 Sumiden Asahi Industries Ltd バスダクト分岐構造
WO2007123388A1 (en) * 2006-04-24 2007-11-01 Chih Bok Lew Multiple-run bus duct system
JP2010166738A (ja) * 2009-01-16 2010-07-29 Kyodo Ky Tec Corp バスダクト壁貫通構造およびバスダクト貫通構造
KR20100117071A (ko) * 2008-01-10 2010-11-02 일렉트버스 코포레이션 고효율 짝 상 버스웨이 시스템
US20140138149A1 (en) * 2012-11-21 2014-05-22 SAI Advanced Power Solutions Bus system connecting bus bars and a method of connecting bus bars

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054950A (ja) * 2004-08-10 2006-02-23 Sumiden Asahi Industries Ltd バスダクト分岐構造
WO2007123388A1 (en) * 2006-04-24 2007-11-01 Chih Bok Lew Multiple-run bus duct system
KR20100117071A (ko) * 2008-01-10 2010-11-02 일렉트버스 코포레이션 고효율 짝 상 버스웨이 시스템
JP2010166738A (ja) * 2009-01-16 2010-07-29 Kyodo Ky Tec Corp バスダクト壁貫通構造およびバスダクト貫通構造
US20140138149A1 (en) * 2012-11-21 2014-05-22 SAI Advanced Power Solutions Bus system connecting bus bars and a method of connecting bus bars

Similar Documents

Publication Publication Date Title
US7922516B2 (en) Piercing connector for continuous flexible bus
US9997897B2 (en) Quick connect and disconnect cable junction box
US10290986B2 (en) Systems and methods for connecting power distribution devices
KR20110052526A (ko) 전력 분배 시스템
US20200137914A1 (en) Power distrubution unit with interior busbars
US20210249156A1 (en) Capacitive Power Transmission Cable
CN112425011A (zh) Pdu的插座连接架构
CN106451220A (zh) 带电更换同杆多回路杆塔上设备的旁路设备及方法
WO2017052111A1 (ko) 부스덕트 유닛 및 이를 포함하는 부스덕트
WO2009093841A2 (ko) 수평 분기형 버스바 및 이를 구비한 버스덕트
EP1648052A2 (en) A connector and cable assembly for a power distribution system
KR102554786B1 (ko) 부스덕트 유닛 및 이를 포함하는 부스덕트
CN206195248U (zh) 带电更换同杆多回路杆塔上设备的旁路设备
KR102439247B1 (ko) 부스덕트 접속부 및 그 접속방법
WO2013043005A2 (ko) 경제형 전력케이블 배전 시스템
CN207993588U (zh) 一种高海拔母线套管
CN104062502B (zh) 一种高压电缆交叉互联系统相位检查方法
CN106449301A (zh) 一种热插拔开关及电源列柜
CN206135347U (zh) 一种十字水平四通弯头
WO2012074303A2 (ko) 버스바 및 전력선으로 사용되는 고압 대전류용 이중표면도체
AU2019229408B2 (en) Contact element
EP4102665A1 (en) Electrical busway assembly
CN106253174B (zh) 一种十字水平四通弯头
EP0116044B1 (en) Distributing bus-bar
CN217115527U (zh) 一种新型母线槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848837

Country of ref document: EP

Kind code of ref document: A1