WO2017051862A1 - 液晶ポリエステル組成物、成形体及びコネクター - Google Patents

液晶ポリエステル組成物、成形体及びコネクター Download PDF

Info

Publication number
WO2017051862A1
WO2017051862A1 PCT/JP2016/077995 JP2016077995W WO2017051862A1 WO 2017051862 A1 WO2017051862 A1 WO 2017051862A1 JP 2016077995 W JP2016077995 W JP 2016077995W WO 2017051862 A1 WO2017051862 A1 WO 2017051862A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
group
inorganic filler
plate
Prior art date
Application number
PCT/JP2016/077995
Other languages
English (en)
French (fr)
Inventor
宏充 枌
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US15/761,652 priority Critical patent/US20180346642A1/en
Priority to CN201680054981.5A priority patent/CN108137906B/zh
Priority to KR1020187008368A priority patent/KR102524697B1/ko
Priority to JP2017502742A priority patent/JP6175720B1/ja
Publication of WO2017051862A1 publication Critical patent/WO2017051862A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/50Bases; Cases formed as an integral body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/06Joints for connecting lengths of protective tubing or channels, to each other or to casings, e.g. to distribution boxes; Ensuring electrical continuity in the joint
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K2003/343Peroxyhydrates, peroxyacids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/18Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing bases or cases for contact members

Definitions

  • the present invention relates to a liquid crystal polyester composition, a molded body formed by molding the same, and a connector.
  • This application claims priority based on Japanese Patent Application No. 2015-187546 for which it applied to Japan on September 25, 2015, and uses the content here.
  • Liquid crystalline polyester is excellent in melt fluidity and has high heat resistance, strength, and rigidity, so it is suitably used as an injection molding material for manufacturing electrical and electronic parts. is there.
  • liquid crystal polyester has a problem in that its molecular chain is easily oriented in the flow direction at the time of molding, so that the molded body is likely to have shrinkage / expansion rate and mechanical property anisotropy.
  • it has been studied to perform injection molding using a liquid crystal polyester composition obtained by blending mica with liquid crystal polyester (see, for example, Patent Document 1).
  • the conventional liquid crystal polyester composition containing the liquid crystal polyester as described above and a plate-like inorganic filler such as mica gives a molded product in which the occurrence of anisotropy is suppressed, but the molded product has a sufficient bending strength. There was a problem that it was not.
  • the present invention has been made in view of the above circumstances, and includes a liquid crystal polyester composition that includes a liquid crystal polyester and a plate-like inorganic filler and gives a molded body having high bending strength, and a molded body formed by molding the liquid crystal polyester composition. It is an issue to provide.
  • a liquid crystal polyester composition comprising a liquid crystal polyester and a plate-like inorganic filler, wherein a signal of a component contained in the plate-like inorganic filler is detected by fluorescent X-ray analysis, and the intensity of the signal for each component In the plate-like inorganic filler, a ratio of iron signal intensity to silicon signal intensity is 1 to 2.5 in the plate-like inorganic filler.
  • the liquid crystal polyester composition according to [1] wherein the content of the plate-like inorganic filler is 10 to 250 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the liquid crystalline polyester composition according to [1] or [2], wherein the ratio of the signal intensity of titanium to the signal intensity of silicon is 0 to 0.08 in the plate-like inorganic filler.
  • the liquid crystalline polyester comprises a repeating unit represented by the following general formula (1), a repeating unit represented by the following general formula (2), and a repeating unit represented by the following general formula (3).
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4).
  • X and Y each independently represent an oxygen atom or an imino group.
  • One or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 are independently substituted with a halogen atom, an alkyl group having 1 to 28 carbon atoms or an aryl group having 6 to 12 carbon atoms. May be.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group having 1 to 28 carbon atoms.
  • a liquid crystal polyester composition containing a liquid crystal polyester and a plate-like inorganic filler and giving a molded article having high bending strength, a molded article formed by molding the liquid crystal polyester composition, and molding the liquid crystal polyester composition A connector is provided.
  • FIG. 1 It is a perspective view showing typically the connector of one embodiment of the present invention. It is an enlarged front view which shows the principal part of the connector shown in FIG.
  • the liquid crystal polyester composition of the present embodiment is a liquid crystal polyester composition containing a liquid crystal polyester and a plate-like inorganic filler, and detects a signal of a component contained in the plate-like inorganic filler by fluorescent X-ray analysis.
  • the ratio of the iron signal intensity to the silicon signal intensity in the plate-like inorganic filler is 1 to 2.5.
  • the liquid crystal polyester composition of the present embodiment has high bending strength if silicon and iron satisfying the above relationship are used as the plate-like inorganic filler in consideration of the amount of the plate-like inorganic filler used as a molded body. It can be set as a molded body. As will be described later, a proportional relationship is established between the intensity of the fluorescent X-ray signal of the component (element) detected by fluorescent X-ray analysis and the content of the component of the plate-like inorganic filler, and is detected. Since the components have quantitativeness, it can be said that the plate-like inorganic filler has a content ratio of silicon and iron within a specific range.
  • the bending strength of a molded body obtained using a plate-like inorganic filler containing silicon varies even when a plate-like inorganic filler having a similar size and composition is used, This is because the cause of the fluctuation is based on the difference in the amount of the specific component contained in the plate-like inorganic filler and the fact that the specific component is mainly iron.
  • the liquid crystalline polyester is a liquid crystalline polyester that exhibits liquid crystallinity in a molten state.
  • the liquid crystalline polyester is preferably melted at a temperature of 450 ° C. or lower.
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are condensed to at least one compound.
  • polyester such as polyethylene terephthalate and aromatic hydroxycarboxylic acid.
  • aromatic hydroxycarboxylic acid the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are used independently of each other, instead of a part or all of the polymerizable derivatives. Also good.
  • Examples of polymerizable derivatives of a compound having a carboxy group are those obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), Examples include those obtained by converting a carboxy group to a haloformyl group (acid halide), and those obtained by converting a carboxy group to an acyloxycarbonyl group (acid anhydride).
  • Examples of polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols or aromatic hydroxyamines, are those obtained by acylating a hydroxy group and converting it to an acyloxy group (acylated product) ).
  • Examples of the polymerizable derivative of a compound having an amino group, such as aromatic hydroxyamine and aromatic diamine include those obtained by acylating an amino group to convert it to an acylamino group (acylated product).
  • the liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”).
  • the repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (—NH—).
  • One or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 are independently substituted with a halogen atom, an alkyl group having 1 to 28 carbon atoms or an aryl group having 6 to 12 carbon atoms. May be.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group having 1 to 28 carbon atoms.
  • Examples of the alkyl group having 1 to 28 carbon atoms that can be substituted with a hydrogen atom include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • Examples of the aryl group having 6 to 12 carbon atoms that can be substituted with a hydrogen atom include a monocyclic aromatic group such as a phenyl group, an o-tolyl group, an m-tolyl group, or a p-tolyl group, or , 1-naphthyl group, 2-naphthyl group, and the like.
  • the number of substitutions is represented by Ar 1 , Ar 2 or Ar 3.
  • the number is preferably 1 or 2 and more preferably 1 independently of each other.
  • alkylidene group having 1 to 28 carbon atoms examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group.
  • the alkylidene group preferably has 1 to 10 carbon atoms.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), or Ar 1 is a 2,6-naphthylene group (6-hydroxy Preferred is a repeating unit derived from -2-naphthoic acid.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 is a 1,4-phenylene group (repeating unit derived from terephthalic acid), Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid) ), Ar 2 is a 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), or Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl ether-4, 4′-dicarboxylic acid-derived repeating units) are preferred.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxyamine or aromatic diamine.
  • Ar 3 is a 1,4-phenylene group (repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), or Ar 3 is a 4,4′-biphenylylene group. (Repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • the content of the repeating unit (1) of the liquid crystalline polyester is the total amount of all repeating units constituting the liquid crystalline polyester (by dividing the mass of each repeating unit constituting the liquid crystalline polyester by the formula weight of each repeating unit, The amount corresponding to the substance amount (mole) of the unit is obtained, and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65 mol%.
  • the content of the repeating unit (1) increases, the liquid crystalline polyester tends to improve the melt fluidity, heat resistance, strength and rigidity. When the content is too high, such as when it exceeds 80 mol%, the melting temperature and the melt viscosity are likely to increase, and the temperature required for molding tends to increase.
  • the content of the repeating unit (2) of the liquid crystal polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, and still more preferably 15 to 30 with respect to the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% particularly preferably 17.5 to 27.5 mol%.
  • the content of the repeating unit (3) in the liquid crystal polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, and still more preferably 15 to 30 with respect to the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% particularly preferably 17.5 to 27.5 mol%.
  • the ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is [content of repeating unit (2)] / [content of repeating unit (3)] (mol / Mol), preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98. It is.
  • the liquid crystalline polyester may have one or more repeating units (1) to (3) independently of each other.
  • the liquid crystalline polyester may have one or more repeating units other than the repeating units (1) to (3), and the content thereof is preferably 0 to the total amount of all repeating units. It is 10 mol%, more preferably 0 to 5 mol%.
  • the liquid crystal polyester preferably has a repeating unit (3) in which X and Y are each an oxygen atom. Having a repeating unit (3) in which X and Y are each an oxygen atom means having a repeating unit derived from a predetermined aromatic diol. This configuration is preferable because the melt viscosity of the liquid crystal polyester tends to be low. It is more preferable that the repeating unit (3) has only those in which X and Y are each an oxygen atom.
  • the liquid crystalline polyester can be produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystalline polyester and solid-phase polymerizing the obtained polymer (hereinafter sometimes referred to as “prepolymer”). preferable. Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability.
  • the melt polymerization may be performed in the presence of a catalyst.
  • the catalyst include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, or antimony trioxide and other metal compounds.
  • a nitrogen-containing heterocyclic compound such as 4- (dimethylamino) pyridine or 1-methylimidazole.
  • a nitrogen-containing heterocyclic compound is preferable.
  • the flow start temperature defined below for the liquid crystal polyester is preferably 270 ° C. or more, more preferably 270 to 400 ° C., and further preferably 280 to 400 ° C. Since the liquid polyester has higher heat resistance, strength and rigidity as the flow start temperature is higher, the flow start temperature is preferably 270 ° C. or higher. If the flow start temperature is too high, such as when it exceeds 400 ° C, a high temperature is required to melt, and heat deterioration tends to occur at the time of molding, or the viscosity at the time of melting increases and the fluidity decreases. .
  • the flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used.
  • the liquid crystal polyester contained in the liquid crystal polyester composition may be one kind or two or more kinds.
  • liquid crystal polyester composition contains two or more liquid crystal polyesters
  • liquid crystal polyester (A) and the liquid crystal polyester (B) having different flow start temperatures are included.
  • the flow start temperature of the liquid crystalline polyester (A) is preferably 310 to 400 ° C., more preferably 320 to 400 ° C., and further preferably 330 to 400 ° C.
  • the heat resistance of liquid crystal polyester (A) becomes higher because a flow start temperature is more than the said lower limit.
  • the flow start temperature of the liquid crystalline polyester (B) is preferably 270 to 370 ° C, more preferably 280 to 370 ° C, and further preferably 300 to 370 ° C.
  • the heat resistance of liquid crystal polyester (B) becomes higher because a flow start temperature is more than the said lower limit.
  • the difference between the flow start temperature of the liquid crystal polyester (A) and the flow start temperature of the liquid crystal polyester (B) is preferably 10 to 60 ° C, more preferably 20 to 60 ° C, and more preferably 25 to 60 ° C. More preferably it is.
  • the difference in the flow start temperature is within such a range, the thin-wall flowability of the liquid crystal polyester composition becomes higher and the moldability becomes better.
  • the content of the liquid crystal polyester (B) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the liquid crystal polyester (A). More preferred is 10 to 120 parts by mass.
  • the content of the liquid crystal polyester (B) is in such a range, the thin film fluidity of the liquid crystal polyester composition becomes higher and the moldability becomes better.
  • the liquid crystal polyester composition may or may not contain other liquid crystal polyesters. . More preferably, the liquid crystal polyester other than the liquid crystal polyester (A) or the liquid crystal polyester (B) is not included.
  • liquid crystal polyester (A) and the liquid crystal polyester (B) may be only one kind. Two or more kinds may be used. And liquid crystalline polyester other than liquid crystalline polyester (A) or liquid crystalline polyester (B) which the said liquid crystalline polyester composition contains may be only 1 type, and 2 or more types may be sufficient as it.
  • the plate-like inorganic filler contains silicon and iron, and the content thereof satisfies a specific condition. That is, when the signal of a component contained in the plate-like inorganic filler is detected by fluorescent X-ray analysis and the intensity of the signal is obtained for each component, the signal strength of silicon is determined in the plate-like inorganic filler.
  • the ratio of the iron signal intensity to [Iron signal intensity] / [Silicon signal intensity] (hereinafter sometimes referred to as “Fe / Si ratio”) is 1 to 2.5. When the Fe / Si ratio is in such a range, the molded body obtained by molding the liquid crystal polyester composition has a sufficiently high bending strength.
  • the plate-like inorganic filler preferably has an Fe / Si ratio of 1 to 2, more preferably 1 to 1.85, and more preferably 1 to 1.75 from the viewpoint of increasing the above-described effect. Further preferred.
  • the ratio of the signal intensity of titanium to the signal intensity of silicon in the plate-like inorganic filler is preferably 0 to 0.08, more preferably 0 to 0.07. preferable.
  • Ti / Si ratio is equal to or less than the upper limit, the molded body obtained by molding the liquid crystal polyester composition has higher bending strength.
  • the ratio of the signal intensity of calcium to the signal intensity of silicon in the plate-like inorganic filler is preferably 0 to 0.003, more preferably 0 to 0.001. preferable.
  • the molded body obtained by molding the liquid crystal polyester composition has improved solder heat resistance and has more preferable characteristics as a molded body.
  • any one or both of the Ti / Si ratio and the Ca / Si ratio are preferably in the above numerical range, and the Fe / Si ratio, Ti It is more preferable that all of the / Si ratio and the Ca / Si ratio are in the above numerical range.
  • the content itself of the target component of the plate-like inorganic filler is usually obtained.
  • a calibration curve for the target component is prepared in advance, the target component is detected with a plate-like inorganic filler, and the plate-like inorganic is detected using the calibration curve and the detected actual measurement value of the target component.
  • the content of the target component of the filler may be obtained.
  • the plate-like inorganic filler is subjected to fluorescent X-ray analysis, there is a proportional relationship between the intensity of the fluorescent X-ray signal of the detected component (element) and the content of that component of the plate-like inorganic filler. Is established, and the component to be detected is quantitative.
  • the ratio of the signal intensity itself between the target component when the fluorescent X-ray analysis is performed and the reference component (silicon) is obtained, and the content of the target component without using the calibration curve Information is obtained, and based on this information, whether or not the use of the plate-like inorganic filler is judged, the work is simplified and the judgment is made erroneously than when the above-described calibration curve is prepared and the content is obtained.
  • the possibility can be reduced.
  • the detection of fluorescent X-ray signals of silicon, iron, titanium and calcium contained in the plate-like inorganic filler may be performed by a known method.
  • the fluorescent X-ray signals of silicon, iron, titanium, and calcium contained in the plate-like inorganic filler may be detected, for example, under the same conditions, or may be detected under different conditions, and only partially under the same conditions. It may be detected. When all the detection is performed under the same conditions, the fluorescent X-ray signals of silicon, iron, titanium, and calcium can be detected at the same time, so that the operation can be greatly improved. On the other hand, when detecting at least a part under different conditions, the intensity of the fluorescent X-ray signal is sufficiently large (for example, the maximum state) for the target components of silicon, iron, titanium, and calcium. And detection accuracy can be improved. In this embodiment, from the point of improving detection accuracy, the intensity of the fluorescent X-ray signals of silicon, iron, titanium and calcium is sufficiently large (particularly preferably, the signal intensity is maximum). It is preferable to detect under the conditions set for each component (element).
  • An example of what is important in the conditions to be adjusted in order to sufficiently increase the intensity of the fluorescent X-ray signal of silicon, iron, titanium, and calcium is the output of an X-ray tube that is an X-ray source.
  • the output of the X-ray tube may be selected with reference to a value recommended by the fluorescent X-ray analyzer to be used, but a typical example is as follows. That is, the output of the X-ray tube when detecting the K ⁇ ray of silicon and the K ⁇ ray of calcium is preferably, for example, 32 kV / 125 mA.
  • the output of the X-ray tube when detecting iron K ⁇ rays is preferably 60 kV / 66 mA, for example.
  • the output of the X-ray tube when detecting titanium K ⁇ rays is preferably 40 kV / 100 mA, for example.
  • the plate-like inorganic filler is not particularly limited as long as it satisfies the above conditions, and examples thereof include mica, graphite, wollastonite, glass flake, barium sulfate, calcium carbonate, and the like.
  • Mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
  • the plate-like inorganic filler may be used alone or in combination of two or more.
  • the plate-like inorganic filler is preferably mica.
  • the content of the plate-like inorganic filler in the liquid crystal polyester composition is preferably 10 to 250 parts by mass and more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the amount is preferably 20 to 150 parts by mass, more preferably 30 to 100 parts by mass.
  • a molded body obtained by molding the liquid crystal polyester composition has higher bending strength.
  • the content of the plate-like inorganic filler is preferably 3 to 250 parts by mass with respect to 100 parts by mass of the other composition of the liquid crystal polyester composition.
  • the liquid crystal polyester composition may contain other components in addition to the liquid crystal polyester and the plate-like inorganic filler.
  • the other components include inorganic fillers other than the plate-like inorganic filler, or additives.
  • the other components may be used alone or in combination of two or more.
  • inorganic fillers other than the plate-like inorganic filler include fibrous inorganic fillers and granular inorganic fillers.
  • fibrous inorganic filler include glass fiber; carbon fiber such as pan-based carbon fiber or pitch-based carbon fiber; ceramic fiber such as silica fiber, alumina fiber or silica-alumina fiber; or metal such as stainless fiber Fiber.
  • whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, and silicon carbide whisker.
  • the particulate inorganic filler include silica, alumina, titanium oxide, glass beads, glass balloons, boron nitride, silicon carbide, and calcium carbonate.
  • the content of the inorganic filler other than the plate-like inorganic filler is preferably 0 to 150 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the additive examples include an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant, and a colorant.
  • the content of the additive in the liquid crystal polyester composition is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the liquid crystal polyester composition can be obtained, for example, by mixing the liquid crystal polyester or the plate-like inorganic filler, or if necessary, the other components all at once or in an appropriate order.
  • the mixing method at this time is not specifically limited, The mixing method using well-known stirring apparatuses, such as a tumbler mixer or a Henschel mixer, is mentioned.
  • the obtained mixture may be melt-kneaded using an extruder or the like, the kneaded product is extruded into a strand shape, and pelletized to form the liquid crystal polyester composition.
  • the extruder preferably has a cylinder, one or more screws arranged in the cylinder, and one or more supply ports provided in the cylinder. Furthermore, the cylinder has one or more vent parts. Those provided with are more preferable.
  • the temperature at the time of melt kneading is not particularly limited, but is preferably 200 to 400 ° C, more preferably 250 to 370 ° C.
  • the molded body of this embodiment is formed by molding the liquid crystal polyester composition.
  • a melt molding method is preferable.
  • the melt molding method include an injection molding method; an extrusion molding method such as a T-die method or an inflation method; a compression molding method; a blow molding method; Vacuum forming method; or press molding method.
  • the molding method of the composition is preferably an injection molding method.
  • the molding conditions for the liquid crystal polyester composition are not particularly limited, and may be appropriately selected depending on the molding method.
  • the cylinder temperature of the injection molding machine is preferably 250 to 400 ° C. and the mold temperature is preferably 20 to 180 ° C.
  • the molded body of this embodiment has a high bending strength by using the liquid crystal polyester composition.
  • a bending test is performed according to ASTM D790.
  • the bending strength of this test piece is preferably 120 MPa or more, more preferably 125 MPa or more, and further preferably 130 MPa or more.
  • the molded body of the present embodiment has high heat resistance by selecting, for example, the type of liquid crystal polyester.
  • the load is increased to 1.82 MPa according to ASTM D648.
  • the deflection temperature under load of the test piece when measured at a temperature rate of 2 ° C./min is preferably 230 ° C. or higher, more preferably 234 ° C. or higher, for example, 270 ° C. or higher, 280 ° C. or higher. Is possible.
  • the molded body of this embodiment has high solder heat resistance, for example, by selecting the type of liquid crystal polyester.
  • a JIS K7113 (1/2) dumbbell test piece (thickness 1.2 mm), which will be described later in the examples, is manufactured as the molded body of the present embodiment, and 10 pieces of the test pieces are heated to 270 ° C. After immersing in a heated solder bath for 60 seconds and taking out, the surface of these 10 test pieces is visually observed, and when the number of blisters seen on the surface is confirmed, the number is preferably 4 or less, More preferably, it is 3 or less.
  • Examples of products, devices, parts, or members formed of the molded body of this embodiment include bobbins such as an optical pickup bobbin or a transbobbin; relay parts such as a relay case, a relay base, a relay sprue, or a relay armature A connector such as a RIMM, DDR, CPU socket, S / O, DIMM, Board to Board connector, FPC connector or card connector; a reflector such as a lamp reflector or an LED reflector; a holder such as a lamp holder or a heater holder; a speaker; Diaphragm such as diaphragm; Separation claw for copying machine or separation claw for printer; Camera module parts; Switch parts; Motor parts; Sensor parts; Hard disk drive parts; Tableware such as A; vehicle components; cell components; aircraft; or sealing member for a semiconductor device, or the sealing member such as sealing member such as a coil and the like.
  • bobbins such as an optical pickup bobbin or a transbobbin
  • relay parts such as
  • the molded body of the present embodiment is preferably a connector, and more preferably a connector obtained by molding by an injection molding method.
  • the connector mainly refers to a device used for connection between members such as an electronic device or a member used for the connection portion in those devices, and particularly refers to a member used for connection between wires such as a cord of the electronic device.
  • FIG. 1 is a perspective view schematically showing a connector according to one embodiment of the present embodiment
  • FIG. 2 is an enlarged front view showing a main part of the connector shown in FIG.
  • the connector 1 shown here is of a long type, and a large number of terminal insertion ports 11 whose openings are rectangular (rectangular) are arranged in two rows.
  • the thickness D of the connector 1 is preferably 3 to 50 mm, and more preferably 4 to 10 mm.
  • the length of the long side is L X
  • the length of the short side is L Y.
  • a portion separating the adjacent terminal insertion ports 11 is a thin portion (hereinafter referred to as “first thin portion”) 1 a. it has, and has a thickness of T 1.
  • first thin portion a thin portion that separates adjacent terminal insertion ports 11
  • second thin portion a thin portion that separates adjacent terminal insertion ports 11
  • T 2 a thin portion that separates adjacent terminal insertion ports 11
  • the side walls 1c of the connector 1 that forms part of the terminal insertion opening 11 also has a thin portion, a thickness of T 3.
  • L X is preferably 0.5 to 3 mm, more preferably 1 to 2 mm.
  • L Y is preferably 0.3 to 3 mm, and more preferably 0.5 to 2 mm.
  • T 1 is preferably 0.3 to 3 mm, and more preferably 0.5 to 2 mm.
  • T 2 is preferably 0.1 to 3 mm, and more preferably 0.3 to 2 mm.
  • T 3 is preferably 0.1 to 3 mm, and more preferably 0.3 to 2 mm.
  • the connector 1 having such a thin-walled portion is particularly prominent as a molded body because of its high bending strength.
  • the connector 1 shown in FIG. 1 is only one embodiment of the present embodiment, and the connector of the present embodiment is not limited to this.
  • the terminal insertion ports 11 may not be aligned in two rows.
  • the shape of the connector may be other than the long shape such as a plate shape.
  • Plate-like inorganic filler used in the following examples and comparative examples is shown below.
  • Plate-like inorganic filler (Plate-like inorganic filler)
  • Plate-like inorganic filler (F1) Mica (“A2000” manufactured by Nippon Mica Manufacturing Co., Ltd.).
  • Plate-like inorganic filler (F2) Mica (“YM-25S” manufactured by Yamaguchi Mica Co., Ltd.).
  • Plate-like inorganic filler (F3) Mica ("M-400” manufactured by Repco).
  • the plate-like inorganic fillers (F1) to (F5) were subjected to fluorescent X-ray analysis by the following method to obtain the Fe / Si ratio, Ti / Si ratio, and Ca / Si ratio. The results are shown in Table 1.
  • the collimator mask is 27 mm.
  • the collimator set to 300 ⁇ m, gas flow counter as detector, “pentaerythritol 002” as spectral crystal, X-ray tube output set to 32 kV / 125 mA,
  • the silicon signal strength of the plate-like inorganic filler was determined by subtracting the silicon signal strength of the reference bead sample from the silicon signal strength of the plate-like inorganic filler bead sample.
  • the collimator mask is 27 mm.
  • the collimator set to 300 ⁇ m, gas flow counter as detector, “LiF 200” as spectral crystal, X-ray tube output set to 60 kV / 66 mA,
  • the iron signal strength of the plate-like inorganic filler was determined by subtracting the iron signal strength of the reference bead sample from the iron signal strength of the plate-like inorganic filler bead sample.
  • the collimator mask is 27 mm.
  • the collimator set to 300 ⁇ m, gas flow counter as detector, “LiF 200” as spectroscopic crystal, X-ray tube output set to 40 kV / 100 mA, plate-like inorganic filler described above
  • the collimator mask is 27 mm.
  • the collimator set to 300 ⁇ m, gas flow counter as detector, “LiF 200” as spectral crystal, X-ray tube output set to 32 kV / 125 mA, plate-like inorganic filler
  • the signal intensity (unit: kilocount per second) of 2 ⁇ 113.1 ° was measured for the bead sample and the reference bead sample.
  • the calcium signal strength in the reference bead sample was subtracted from the calcium signal strength in the bead sample of the plate-like inorganic filler to obtain the calcium signal strength of the plate-like inorganic filler.
  • the signal intensity of calcium was measured by this method and the value was negative, the signal intensity was set to “0”.
  • the Fe / Si ratio was calculated by dividing the iron signal intensity of the plate-like inorganic filler obtained above by the silicon signal intensity of the plate-like inorganic filler obtained above.
  • the Ti / Si ratio was calculated by dividing the titanium signal intensity of the plate-like inorganic filler obtained above by the silicon signal intensity of the plate-like inorganic filler obtained above.
  • the Ca / Si ratio was calculated by dividing the calcium signal intensity of the plate-like inorganic filler obtained above by the silicon signal intensity of the plate-like inorganic filler obtained above.
  • this prepolymer was pulverized using a pulverizer, and the obtained pulverized product was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, and then heated from 250 ° C. to 295 ° C. over 5 hours.
  • Solid-state polymerization was performed by maintaining at 295 ° C. for 3 hours.
  • the obtained solid phase polymer was cooled to room temperature to obtain a powdered liquid crystal polyester (L1).
  • the flow start temperature of the obtained liquid crystal polyester (L1) was 327 ° C.
  • the solid phase polymerization was carried out by holding at 240 ° C. for 10 hours.
  • the obtained solid phase polymer was cooled to room temperature to obtain a powdered liquid crystal polyester (L2).
  • the flow starting temperature of the obtained liquid crystal polyester (L2) was 286 ° C.
  • Solid-state polymerization was performed by maintaining at 295 ° C. for 3 hours.
  • the obtained solid phase polymer was cooled to room temperature to obtain a powdered liquid crystal polyester (L3).
  • the flow starting temperature of the obtained liquid crystal polyester (L3) was 327 ° C.
  • Solid-state polymerization was performed by maintaining at 295 ° C. for 3 hours.
  • the obtained solid phase polymer was cooled to room temperature to obtain a powdered liquid crystal polyester (L4).
  • the flow starting temperature of the obtained liquid crystal polyester (L4) was 360 ° C.
  • Examples 3 to 4, Comparative Example 4 Using a Henschel mixer, the liquid crystal polyester of the type shown in Table 1 and the plate-like inorganic filler were mixed at the ratio shown in Table 1, and then a biaxial extruder (“PCM-30 type” manufactured by Ikekai Tekko Co., Ltd.) was used. Then, a pelletized liquid crystal polyester composition was obtained by granulating the obtained mixture at a cylinder temperature of 360 ° C.
  • PCM-30 type manufactured by Ikekai Tekko Co., Ltd.
  • the obtained molded body was bent by using the plate-like inorganic filler (F1) or (F2) as the plate-like inorganic filler.
  • the strength was high.
  • these molded products had high heat resistance and solder heat resistance, and had particularly preferable characteristics as molded products.
  • the liquid crystal polyesters (L1) and (L2) and the liquid crystal polyesters (L3) and (L4) are both related to the liquid crystal polyesters (A) and (B).
  • L4) is a more preferred combination than liquid crystalline polyesters (L1) and (L2), and Examples 3 and 4 were superior to Examples 1 and 2 in heat resistance of the molded body.
  • Comparative Examples 1 to 4 the obtained molded articles had low bending strength. More specifically, it is as follows. In Comparative Examples 1 to 3, although the same liquid crystal polyester as in Examples 1 and 2 was used in the liquid crystal polyester composition, the plate inorganic filler (F3), (F4) or (F5 ) was used, the bending strength of the obtained molded product was inferior to that of Examples 1 and 2. Further, in Comparative Examples 1 to 3, the molded body was inferior in heat resistance and solder heat resistance to Examples 1 and 2. In Comparative Example 4, the liquid crystal polyester composition was obtained by using the plate-like inorganic filler (F5) as the plate-like inorganic filler in spite of using the same liquid crystal polyester as in Examples 3 and 4.
  • the molded body was inferior to Examples 3 and 4 in bending strength and heat resistance.
  • the heat resistance and soldering heat resistance of the molded bodies are superior to those of Comparative Examples 1 to 3, and particularly the heat resistance is not the liquid crystal polyesters (L1) and (L2), This suggests that the cause is the selection of the combination of liquid crystal polyesters (L3) and (L4).
  • Example 5 After the liquid crystal polyester composition obtained in Example 1 was dried at 120 ° C. for 12 hours, the cylinder temperature was 350 ° C. and the mold temperature was 130 ° C. using an injection molding machine (Nissei Plastic Industries, Ltd. “PS40E5ASE”).
  • the connector shown in FIG. 1 was manufactured by injection molding under the following conditions. This connector is such that D is 6 mm, L X is 1.1 mm, L Y is 0.8 mm, T 1 is 0.8 mm, T 2 is 0.5 mm, and T 3 is 0.4 mm.
  • the obtained connector is excellent in bending strength like the molded bodies of Examples 1 to 4 described above.
  • the present invention can be used for molded articles that require high bending strength, such as electrical and electronic parts, particularly connectors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

液晶ポリエステル及び板状無機フィラーを含み、曲げ強度が高い成形体を与える液晶ポリエステル組成物、及び前記液晶ポリエステル組成物を成形してなる成形体の提供。液晶ポリエステル及び板状無機フィラーを含む液晶ポリエステル組成物であって、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルを検出して、その成分ごとに前記シグナルの強度を求めたときに、前記板状無機フィラーにおいて、珪素のシグナル強度に対する鉄のシグナル強度の比率が1~2.5である、液晶ポリエステル組成物;前記液晶ポリエステル組成物を成形してなる成形体;前記液晶ポリエステル組成物を成形してなるコネクター。

Description

液晶ポリエステル組成物、成形体及びコネクター
 本発明は、液晶ポリエステル組成物、これを成形してなる成形体及びコネクターに関する。
 本願は、2015年9月25日に、日本に出願された特願2015-187546号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルは、溶融流動性に優れ、耐熱性や強度・剛性が高いことから、電気・電子部品を製造するための射出成形材料として好適に用いられており、例えば、コネクター等の製造に好適である。しかし、液晶ポリエステルは、成形時にその分子鎖が流動方向に配向し易いため、成形体に収縮率・膨張率や機械物性の異方性が生じ易いという問題点がある。このような問題点を解消すべく、液晶ポリエステルにマイカを配合して得られた液晶ポリエステル組成物を用いて、射出成形を行うことが検討されている(例えば特許文献1参照)。
特開平03-167252号公報
 しかし、上述のような液晶ポリエステルと、マイカ等の板状無機フィラーとを含む従来の液晶ポリエステル組成物は、異方性の発生が抑制された成形体を与えるものの、成形体の曲げ強度が十分ではないという問題点があった。
 本発明は上記事情に鑑みてなされたものであり、液晶ポリエステル及び板状無機フィラーを含み、曲げ強度が高い成形体を与える液晶ポリエステル組成物、及び前記液晶ポリエステル組成物を成形してなる成形体を提供することを課題とする。
 上記課題を解決するため、本発明は、以下の構成を採用する。
 [1]液晶ポリエステル及び板状無機フィラーを含む液晶ポリエステル組成物であって、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルを検出して、その成分ごとに前記シグナルの強度を求めたときに、前記板状無機フィラーにおいて、珪素のシグナル強度に対する鉄のシグナル強度の比率が1~2.5である、液晶ポリエステル組成物。
 [2]前記板状無機フィラーの含有量が、前記液晶ポリエステルの含有量100質量部に対して、10~250質量部である、[1]に記載の液晶ポリエステル組成物。
 [3]前記板状無機フィラーにおいて、珪素のシグナル強度に対するチタンのシグナル強度の比率が0~0.08である、[1]又は[2]に記載の液晶ポリエステル組成物。
 [4]前記板状無機フィラーにおいて、珪素のシグナル強度に対するカルシウムのシグナル強度の比率が0~0.003である、[1]~[3]のいずれか一項に記載の液晶ポリエステル組成物。
 [5]前記板状無機フィラーがマイカである、[1]~[4]のいずれか一項に記載の液晶ポリエステル組成物。
 [6]前記液晶ポリエステルが、下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位と、下記一般式(3)で表される繰返し単位とを有する、[1]~[5]のいずれか一項に記載の液晶ポリエステル組成物。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
[式(1)~(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基を表す。X及びYは、互いに独立に、酸素原子又はイミノ基を表す。Ar、Ar又はArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~28のアルキル基又は炭素数6~12のアリール基で置換されていてもよい。]
(4)-Ar-Z-Ar
[式(4)中、Ar及びArは、互いに独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又は炭素数1~28のアルキリデン基を表す。]
 [7][1]~[6]のいずれか一項に記載の液晶ポリエステル組成物を成形してなる成形体。
 [8][1]~[6]のいずれか一項に記載の液晶ポリエステル組成物を成形してなるコネクター。 [9][1]~[6]のいずれか一項に記載の液晶ポリエステル組成物を成形して液晶ポリエステルの成形体を得る、成形体の製造方法。
 [10][1]~[6]のいずれか一項に記載の液晶ポリエステル組成物を成形してコネクターを得る、コネクターの製造方法。
 本発明によれば、液晶ポリエステル及び板状無機フィラーを含み、曲げ強度が高い成形体を与える液晶ポリエステル組成物、前記液晶ポリエステル組成物を成形してなる成形体、及び前記液晶ポリエステル組成物を成形してなるコネクターが提供される。
本発明の一実施形態のコネクターを模式的に示す斜視図である。 図1に示すコネクターの要部を示す拡大正面図である。
 以下、本発明の好適な実施形態について説明する。
<液晶ポリエステル組成物>
 本実施形態の液晶ポリエステル組成物は、液晶ポリエステル及び板状無機フィラーを含む液晶ポリエステル組成物であって、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルを検出して、その成分ごとに前記シグナルの強度を求めたときに、前記板状無機フィラーにおいて、珪素のシグナル強度に対する鉄のシグナル強度の比率が1~2.5のものである。
 本実施形態の液晶ポリエステル組成物は、成形体とするときの板状無機フィラーの使用量を考慮すると、板状無機フィラーとして珪素及び鉄が上記の関係を満たすものを用いれば、曲げ強度が高い成形体とすることができる。後述するように、蛍光X線分析で検出された成分(元素)の蛍光X線シグナルの強度と、板状無機フィラーのその成分の含有量との間には、比例関係が成立し、検出された成分には定量性があるので、前記板状無機フィラーは、珪素及び鉄の含有量の比率が特定の範囲内にあるものといえる。本実施形態は、珪素を含む板状無機フィラーを用いて得られた成形体の曲げ強度が、類似の大きさ及び組成を有する板状無機フィラーを用いた場合であっても変動すること、その変動の原因が板状無機フィラーに含まれる特定成分の量の相違に基づくこと、その特定成分が主として鉄であることを見出したことにより、為されたものである。
[液晶ポリエステル]
 前記液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルである。前記液晶ポリエステルは、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを縮重合させてなるもの、複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの、芳香族ジカルボン酸と芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなるもの、又はポリエチレンテレフタレート等のポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなるものが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、互いに独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のような、カルボキシ基を有する化合物の重合可能な誘導体の例としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシ基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、又はカルボキシ基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオール又は芳香族ヒドロキシアミンのような、ヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。芳香族ヒドロキシアミン及び芳香族ジアミンのような、アミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 液晶ポリエステルは、下記一般式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記一般式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記一般式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
[式(1)~(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基を表す。X及びYは、互いに独立に、酸素原子又はイミノ基(-NH-)を表す。Ar、Ar又はArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~28のアルキル基又は炭素数6~12のアリール基で置換されていてもよい。]
(4)-Ar-Z-Ar
[式(4)中、Ar及びArは、互いに独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又は炭素数1~28のアルキリデン基を表す。]
 水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。
 水素原子と置換可能な炭素数1~28の前記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基又はn-デシル基等が挙げられる。前記アルキル基のの炭素数は、1~10であることが好ましい。
 水素原子と置換可能な炭素数6~12の前記アリール基の例としては、フェニル基、o-トリル基、m-トリル基、若しくはp-トリル基等のような単環式芳香族基、又は、1-ナフチル基、若しくは2-ナフチル基等のような縮環式芳香族基が挙げられる。
 Ar、Ar又はArで表される前記基中の1個以上の水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArで表される前記基ごとに、互いに独立に、好ましくは1個又は2個であり、より好ましくは1個である。
 炭素数1~28の前記アルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基又は2-エチルヘキシリデン基等が挙げられる。前記アルキリデン基の炭素数は1~10であることが好ましい。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
 繰返し単位(1)としては、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位)、又はArが2,6-ナフチレン基であるもの(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。
 繰返し単位(2)としては、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、又はArがジフェニルエーテル-4,4’-ジイル基であるもの(ジフェニルエーテル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位である。
 繰返し単位(3)としては、Arが1,4-フェニレン基であるもの(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、又はArが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル若しくは4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 液晶ポリエステルの繰返し単位(1)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30~80モル%、さらに好ましくは40~70モル%、特に好ましくは45~65モル%である。
 液晶ポリエステルは、繰返し単位(1)の含有量が多いほど、溶融流動性、耐熱性、強度・剛性が向上し易い。含有量が80モル%を超える場合等のようにあまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 液晶ポリエステルの繰返し単位(2)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 液晶ポリエステルの繰返し単位(3)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 液晶ポリエステルにおいては、繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、さらに好ましくは0.98/1~1/0.98である。
 なお、前記液晶ポリエステルは、繰返し単位(1)~(3)を、互いに独立に、1種のみ有してもよいし、2種以上有してもよい。液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を1種又は2種以上有してもよいが、その含有量は、全繰返し単位の合計量に対して、好ましくは0~10モル%、より好ましくは0~5モル%である。
 液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有することが好ましい。繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有するとは、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することである。この構成により、液晶ポリエステルの溶融粘度が低くなり易いので好ましい。繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することが、より好ましい。
 液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(以下、「プレポリマー」ということがある。)を固相重合させることにより、製造することが好ましい。これにより、耐熱性、強度、及び剛性が高い高分子量の液晶ポリエステルを操作性良く製造できる。溶融重合は、触媒の存在下で行ってもよく、前記触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、若しくは三酸化アンチモン等の金属化合物、又は、4-(ジメチルアミノ)ピリジン、若しくは1-メチルイミダゾール等の含窒素複素環式化合物が挙げられる。前記触媒としては、含窒素複素環式化合物が好ましい。
 液晶ポリエステルの以下で定義される流動開始温度は、270℃以上であることが好ましく、270~400℃であることがより好ましく、280~400℃であることがさらに好ましい。液晶ポリエステルは、流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いため、流動開始温度が270℃以上であることが好ましい。流動開始温度が400℃を超える場合等のようにあまり高いと、溶融させるために高温を要し、成形時に熱劣化し易くなったり、溶融時の粘度が高くなり、流動性が低下したりする。
 なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 前記液晶ポリエステル組成物が含む液晶ポリエステルは、1種のみでもよいし、2種以上でもよい。
 前記液晶ポリエステル組成物が2種以上の液晶ポリエステルを含む場合には、流動開始温度が互いに異なる液晶ポリエステル(A)及び液晶ポリエステル(B)を少なくとも含むことが好ましい。
 液晶ポリエステル(A)の流動開始温度は、310~400℃であることが好ましく、320~400℃であることがより好ましく、330~400℃であることがさらに好ましい。流動開始温度が前記下限値以上であることで、液晶ポリエステル(A)の耐熱性がより高くなる。
 液晶ポリエステル(B)の流動開始温度は、270~370℃であることが好ましく、280~370℃であることがより好ましく、300~370℃であることがさらに好ましい。流動開始温度が前記下限値以上であることで、液晶ポリエステル(B)の耐熱性がより高くなる。
 液晶ポリエステル(A)の流動開始温度と液晶ポリエステル(B)の流動開始温度との差は、10~60℃であることが好ましく、20~60℃であることがより好ましく、25~60℃であることがさらに好ましい。流動開始温度の差がこのような範囲であることで、前記液晶ポリエステル組成物の薄肉流動性がより高くなり、成形加工性もより良好となる。
 前記液晶ポリエステル組成物における、液晶ポリエステル(B)の含有量は、液晶ポリエステル(A)の含有量100質量部に対して、10~200質量部であることが好ましく、10~150質量部であることがより好ましく、10~120質量部であることがさらに好ましい。液晶ポリエステル(B)の前記含有量がこのような範囲であることで、前記液晶ポリエステル組成物の薄肉流動性がより高くなり、成形加工性もより良好となる。
 前記液晶ポリエステル組成物は、液晶ポリエステル(A)及び液晶ポリエステル(B)のいずれか一方又は両方を含む場合、これら以外のその他の液晶ポリエステルを含んでいてもよいし、含んでいなくてもよい。液晶ポリエステル(A)又は液晶ポリエステル(B)以外の液晶ポリエステルは、含んでいないことがより好ましい。
 例えば、前記液晶ポリエステル組成物が、液晶ポリエステル(A)及び液晶ポリエステル(B)のいずれか一方又は両方を含む場合、液晶ポリエステル(A)及び液晶ポリエステル(B)は、いずれも1種のみでもよいし、2種以上でもよい。そして、前記液晶ポリエステル組成物が含む、液晶ポリエステル(A)又は液晶ポリエステル(B)以外の液晶ポリエステルも、1種のみでもよいし、2種以上でもよい。
[板状無機フィラー]
 前記板状無機フィラーは、珪素及び鉄を含むものであり、これらの含有量が特定の条件を満たすものである。すなわち、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルを検出して、その成分ごとに前記シグナルの強度を求めたときに、前記板状無機フィラーにおいては、珪素のシグナル強度に対する鉄のシグナル強度の比率([鉄のシグナル強度]/[珪素のシグナル強度]、以下、「Fe/Si比」ということがある。)が1~2.5となる。Fe/Si比がこのような範囲であることで、前記液晶ポリエステル組成物を成形して得られた成形体は、曲げ強度が十分に高くなる。
 板状無機フィラーは、前記効果がより高くなる点から、Fe/Si比が1~2であることが好ましく、1~1.85であることがより好ましく、1~1.75であることがさらに好ましい。
 上記のように、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルの強度を求めたときに、前記板状無機フィラーにおいては、珪素のシグナル強度に対するチタンのシグナル強度の比率([チタンのシグナル強度]/[珪素のシグナル強度]、以下、「Ti/Si比」ということがある。)は0~0.08であることが好ましく、0~0.07であることがより好ましい。Ti/Si比が、前記上限値以下であることで、前記液晶ポリエステル組成物を成形して得られた成形体は、曲げ強度がより高くなる。
 上記のように、蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルの強度を求めたときに、前記板状無機フィラーにおいては、珪素のシグナル強度に対するカルシウムのシグナル強度の比率([カルシウムのシグナル強度]/[珪素のシグナル強度]、以下、「Ca/Si比」ということがある。)は0~0.003であることが好ましく、0~0.001であることがより好ましい。Ca/Si比が前記上限値以下であることで、前記液晶ポリエステル組成物を成形して得られた成形体は、ハンダ耐熱性が向上し、成形体としてより好ましい特性を有するものとなる。
 前記液晶ポリエステル組成物は、Fe/Si比に加えて、さらにTi/Si比及びCa/Si比のいずれか一方又は両方も同時に、上記の数値範囲であることが好ましく、Fe/Si比、Ti/Si比及びCa/Si比のすべてが、上記の数値範囲であることがより好ましい。
 板状無機フィラーについて、その中に含まれる特定の成分の含有量に基づいて、使用の可否を判断する場合には、通常、板状無機フィラーの対象成分の含有量そのものを求める。そして、通常、その対象成分についての検量線を予め作製しておき、さらに板状無機フィラーで対象成分の検出を行い、この検量線と、対象成分の検出実測値とを用いて、板状無機フィラーの対象成分の含有量を求めてもよい。
 本実施形態では、以下の方法を用いることが好ましい。板状無機フィラーを蛍光X線分析に供した場合には、検出された成分(元素)の蛍光X線シグナルの強度と、板状無機フィラーのその成分の含有量との間には、比例関係が成立し、検出対象の成分には定量性がある。したがって、上述のように、蛍光X線分析を行ったときの対象成分と、基準となる成分(珪素)との、シグナル強度そのものの比率を求めて、検量線を用いずに対象成分の含有量に関する情報を取得し、この情報に基づいて板状無機フィラーの使用の可否を判断することで、上述の検量線を作製して含有量を求める場合よりも、作業が簡略化され、判断を誤る可能性を低減できる。本実施形態のこの方法により、検量線の作製などによる作業の煩雑や、さらに対象成分の含有量の算出精度が落ちる可能性、判断を誤る可能性が少ない。
 前記板状無機フィラーに含まれる珪素、鉄、チタン及びカルシウムの蛍光X線シグナルの検出は、公知の方法で行えばよい。例えば、これら成分(元素)については、これら成分に特有のKα線を検出することが好ましい。
 板状無機フィラーに含まれる珪素、鉄、チタン及びカルシウムの蛍光X線シグナルは、例えば、すべて同じ条件で検出してもよいし、すべて異なる条件で検出してもよく、一部のみ同じ条件で検出してもよい。すべて同じ条件で検出する場合には、珪素、鉄、チタン及びカルシウムの蛍光X線シグナルを同時に検出できるので、作業を大幅に効率化できる。一方で、少なくとも一部を異なる条件で検出する場合には、珪素、鉄、チタン及びカルシウムの対象となる成分について、蛍光X線シグナルをその強度が十分に大きい状態(例えば、最大となる状態)で検出することが可能となり、検出精度を向上させることができる。本実施形態においては、検出精度を向上させる点から、珪素、鉄、チタン及びカルシウムの蛍光X線シグナルの強度は、これらのシグナル強度が十分に大きくなる(特に好ましくはこれらのシグナル強度が最大となる)様に、成分(元素)ごとに設定した条件で検出することが好ましい。
 珪素、鉄、チタン及びカルシウムの蛍光X線シグナルの強度を十分に大きくするために調節すべき条件で重要なものの例としては、X線源であるX線管球の出力が挙げられる。
 X線管球の出力は、用いる蛍光X線分析装置で推奨されている値を参考にして選択すればよいが、典型的な例は以下のとおりである。
 すなわち、ケイ素のKα線及びカルシウムのKα線を検出するときのX線管球の出力は、例えば、32kV/125mAであることが好ましい。
 鉄のKα線を検出するときのX線管球の出力は、例えば、60kV/66mAであることが好ましい。
 チタンのKα線を検出するときのX線管球の出力は、例えば、40kV/100mAであることが好ましい。
 前記板状無機フィラーは、上述の条件を満たすものであれば特に限定されないが、その例としては、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウム又は炭酸カルシウム等が挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、又は四ケイ素雲母であってもよい。
 前記板状無機フィラーは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記の中でも、前記板状無機フィラーはマイカであることが好ましい。
 前記液晶ポリエステル組成物の前記板状無機フィラーの含有量は、前記液晶ポリエステルの含有量100質量部に対して、10~250質量部であることが好ましく、20~200質量部であることがより好ましく、20~150質量部であることがさらに好ましく、30~100質量部であることが特に好ましい。板状無機フィラーの前記含有量がこのような範囲であることで、前記液晶ポリエステル組成物を成形して得られた成形体は、曲げ強度がより高くなる。
 また、前記板状無機フィラーの含有量は、前記液晶ポリエステル組成物の他の組成100質量部に対して、3~250質量部であることが好ましい。
(他の成分)
 前記液晶ポリエステル組成物は、前記液晶ポリエステル及び板状無機フィラー以外に他の成分を含んでいてもよい。
 前記他の成分の例としては、前記板状無機フィラー以外の無機フィラー、又は添加剤等が挙げられる。
 前記他の成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 前記板状無機フィラー以外の無機フィラーの例としては、繊維状無機フィラー、又は粒状無機フィラー等が挙げられる。
 前記繊維状無機フィラーの例としては、ガラス繊維;パン系炭素繊維、若しくはピッチ系炭素繊維等の炭素繊維;シリカ繊維、アルミナ繊維、若しくはシリカアルミナ繊維等のセラミック繊維;又は、ステンレス繊維等の金属繊維が挙げられる。前記繊維状無機フィラーの例としては、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、又は炭化ケイ素ウイスカー等のウイスカーも挙げられる。
 前記粒状無機フィラーの例としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素又は炭酸カルシウム等が挙げられる。
 前記液晶ポリエステル組成物において、前記板状無機フィラー以外の無機フィラーの含有量は、液晶ポリエステルの含有量100質量部に対して、好ましくは0~150質量部である。
 前記添加剤の例としては、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤又は着色剤等が挙げられる。
 前記液晶ポリエステル組成物の前記添加剤の含有量は、液晶ポリエステルの含有量100質量部に対して、好ましくは0~5質量部である。
 前記液晶ポリエステル組成物は、例えば、前記液晶ポリエステル若しくは板状無機フィラー、又は必要に応じて前記他の成分を、一括で又は適当な順序で混合することにより得られる。このときの混合方法は特に限定されないが、タンブラーミキサー、又はヘンシェルミキサー等の公知の攪拌装置を用いる混合方法が挙げられる。
 また、得られた前記混合物を、押出機等を用いて溶融混練し、混練物をストランド状に押し出して、ペレット化したものを前記液晶ポリエステル組成物としてもよい。
 前記押出機は、シリンダーと、シリンダー内に配置された1本以上のスクリュウと、シリンダーに設けられた1箇所以上の供給口と、を有するものが好ましく、さらに、シリンダーに1箇所以上のベント部が設けられたものがより好ましい。
 溶融混練時の温度は、特に限定されないが、好ましくは200~400℃であり、より好ましくは250~370℃である。
<成形体>
 本実施形態の成形体は、前記液晶ポリエステル組成物を成形してなるものである。
 前記成形体の製造方法は、前記液晶ポリエステル組成物を成形する。前記液晶ポリエステル組成物を成形する方法としては、溶融成形法が好ましく、溶融成形法の例としては、射出成形法;Tダイ法若しくはインフレーション法等の押出成形法;圧縮成形法;ブロー成形法;真空成形法;又はプレス成形法等が挙げられる。これらの中でも、前記組成物の成形法は、射出成形法であることが好ましい。
 前記液晶ポリエステル組成物の成形条件は特に限定されず、成形法に応じて適宜選択すればよい。例えば、射出成形法で成形する場合には、射出成形機のシリンダー温度を好ましくは250~400℃、金型温度を好ましくは20~180℃として成形するとよい。
 本実施形態の成形体は、前記液晶ポリエステル組成物を用いていることで、曲げ強度が高い。例えば、本実施形態の成形体として、実施例で後述するような幅12.7mm、長さ127mm、厚さ6.4mmの棒状試験片を作製した場合、ASTM D790に従って曲げ試験を行ったときのこの試験片の曲げ強度は、好ましくは120MPa以上、より好ましくは125MPa以上、さらに好ましくは130MPa以上となる。
 また、本実施形態の成形体は、例えば、液晶ポリエステルの種類を選択することで、耐熱性が高くなる。例えば、本実施形態の成形体として、実施例で後述するような幅6.4mm、長さ127mm、厚さ12.7mmの棒状試験片を作製した場合、ASTM D648に従って、荷重1.82MPa、昇温速度2℃/分の条件で測定したときのこの試験片の荷重たわみ温度は、好ましくは230℃以上、より好ましくは234℃以上となり、例えば、270℃以上、280℃以上等とすることも可能である。
 また、本実施形態の成形体は、例えば、液晶ポリエステルの種類を選択することで、ハンダ耐熱性が高くなる。例えば、本実施形態の成形体として、実施例で後述するような、JIS K7113(1/2)号ダンベル試験片(厚さ1.2mm)を作製し、この試験片10個を、270℃に加熱したハンダ浴に60秒浸漬し、取出した後、これら10個の前記試験片の表面を目視観察し、表面にブリスターが見られるものの個数を確認した場合、前記個数は好ましくは4個以下、より好ましくは3個以下となる。
 本実施形態の成形体で構成される製品、機器、部品又は部材の例としては、光ピックアップボビン、若しくはトランスボビン等のボビン;リレーケース、リレーベース、リレースプルー、若しくはリレーアーマチャー等のリレー部品;RIMM、DDR、CPUソケット、S/O、DIMM、Board to Boardコネクター、FPCコネクター、若しくはカードコネクター等のコネクター;ランプリフレクター、若しくはLEDリフレクター等のリフレクター;ランプホルダー、若しくはヒーターホルダー等のホルダー;スピーカー振動板等の振動板;コピー機用分離爪、若しくはプリンター用分離爪等の分離爪;カメラモジュール部品;スイッチ部品;モーター部品;センサー部品;ハードディスクドライブ部品;オーブンウェア等の食器;車両部品;電池部品;航空機部品;又は、半導体素子用封止部材、若しくはコイル用封止部材等の封止部材等が挙げられる。
 なかでも、本実施形態の成形体は、コネクターであることが好ましく、射出成形法で成形して得られたコネクターであることがより好ましい。ここでコネクターは、電子機器等の部材同士の接続に用いる機器、又はそれらの機器における前記接続部分に用いる部材を主に指し、特に電子機器のコード等の配線同士の接続に用いる部材を指す。
 図1は、本実施形態の一実施形態のコネクターを模式的に示す斜視図であり、図2は、図1に示すコネクターの要部を示す拡大正面図である。
 ここに示すコネクター1は長尺型のものであり、開口部が四角形(長方形)状である端子挿入口11が2列で整列して多数配置されている。
 コネクター1の厚さDは、3~50mmであることが好ましく、4~10mmであることがより好ましい。
 端子挿入口11の開口部において、長辺の長さはLであり、短辺の長さはLである。
 コネクター1の短手方向、換言すると端子挿入口11の開口部の長辺方向において、隣り合う端子挿入口11同士を隔てる部位は、薄肉部(以下、「第1薄肉部」という。)1aとなっており、その厚さはTである。また、コネクター1の長手方向、換言すると端子挿入口11の開口部の短辺方向において、隣り合う端子挿入口11同士を隔てる部位は、薄肉部(以下、「第2薄肉部」という。)1bとなっており、その厚さはTである。
また、端子挿入口11の一部を形成しているコネクター1の側壁1cも薄肉部となっており、その厚さはTである。
 コネクター1において、Lは0.5~3mmであることが好ましく、1~2mmであることがより好ましい。また、Lは0.3~3mmであることが好ましく、0.5~2mmであることがより好ましい。
 コネクター1において、Tは0.3~3mmであることが好ましく、0.5~2mmであることがより好ましい。また、Tは0.1~3mmであることが好ましく、0.3~2mmであることがより好ましい。また、Tは0.1~3mmであることが好ましく、0.3~2mmであることがより好ましい。
 このような薄肉部を有するコネクター1は、成形体として、曲げ強度が高いという効果が特に際立つものである。
 図1に示すコネクター1は本実施形態の一実施形態に過ぎず、本実施形態のコネクターは、これに限定されず、例えば、端子挿入口11は、2列で整列していなくてもよく、その配置形態にあわせて、コネクターの形状は板状など、長尺型以外の形状であってもよい。
 以下、実施例により、本実施形態についてさらに詳しく説明する。ただし、本発明の実施形態は、以下に示す実施例に何ら限定されるものではない。
 下記実施例及び比較例で用いた板状無機フィラーを以下に示す。
(板状無機フィラー)
 板状無機フィラー(F1):マイカ((株)日本マイカ製作所製「A2000」)。
 板状無機フィラー(F2):マイカ((株)ヤマグチマイカ製「YM-25S」)。
 板状無機フィラー(F3):マイカ(レプコ(株)製「M-400」)。
 板状無機フィラー(F4):マイカ(東海工業(株)製「TK-400」)。
 板状無機フィラー(F5):マイカ((株)セイシン企業製「CS-20」)。
 板状無機フィラー(F1)~(F5)について、下記方法で蛍光X線分析を行い、Fe/Si比、Ti/Si比及びCa/Si比を求めた。結果を表1に示す。
<板状無機フィラーのFe/Si比、Ti/Si比及びCa/Si比の算出>
(板状無機フィラーのビードサンプルの作製)
 板状無機フィラー300mg、四ホウ酸リチウム6g、濃度が33質量%の臭化リチウム水溶液10μLを白金製ルツボ上で秤量し、ビードサンプラー(東京化学社製「TK4100」)を用いて、これらを750℃で2分加熱した後、1150℃で3分加熱し、さらに1150℃で揺動させながら7分加熱することで、配合成分がすべて溶解した溶液を得た。次いで、得られた前記溶液を冷却することで、板状無機フィラーのビードサンプルを作製した。
(基準ビードサンプルの作製)
 四ホウ酸リチウム6g、濃度が33質量%の臭化リチウム水溶液10μLを白金製ルツボ上で秤量し、ビードサンプラー(東京化学社製「TK4100」)を用いて、これらを750℃で2分加熱した後、1150℃で3分加熱し、さらに1150℃で揺動させながら7分加熱することで、配合成分がすべて溶解した溶液を得た。次いで、得られた前記溶液を冷却することで、基準ビードサンプルを作製した。
(蛍光X線分析による板状無機フィラーの珪素のシグナル強度の測定)
 蛍光X線分析装置(スペクトリス社製「MagiX Pro」)と、X線管球(スペクトリス社製「4kWエンドオン型ルテニウム」)とを用い、ただし管球フィルターを用いずに、コリメーターマスクを27mmに設定し、コリメーターを300μmに設定し、検出器としてガスフローカウンターを用い、分光結晶として「ペンタエリスリトール 002」を用い、X線管球の出力を32kV/125mAに設定し、上述の板状無機フィラーのビードサンプルと基準ビードサンプルについて、2θ=109.1°での珪素のシグナル強度(単位:キロカウント毎秒)を測定した。そして、板状無機フィラーのビードサンプルでの珪素のシグナル強度から、基準ビードサンプルでの珪素のシグナル強度を減じて、板状無機フィラーの珪素のシグナル強度を求めた。
(蛍光X線分析による板状無機フィラーの鉄のシグナル強度の測定)
 蛍光X線分析装置(スペクトリス社製「MagiX Pro」)と、X線管球(スペクトリス社製「4kWエンドオン型ルテニウム」)とを用い、ただし管球フィルターを用いずに、コリメーターマスクを27mmに設定し、コリメーターを300μmに設定し、検出器としてガスフローカウンターを用い、分光結晶として「LiF 200」を用い、X線管球の出力を60kV/66mAに設定し、上述の板状無機フィラーのビードサンプルと基準ビードサンプルについて、2θ=57.5°での鉄のシグナル強度(単位:キロカウント毎秒)を測定した。そして、板状無機フィラーのビードサンプルでの鉄のシグナル強度から、基準ビードサンプルでの鉄のシグナル強度を減じて、板状無機フィラーの鉄のシグナル強度を求めた。
(蛍光X線分析による板状無機フィラーのチタンのシグナル強度の測定)
 蛍光X線分析装置(スペクトリス社製「MagiX Pro」)と、X線管球(スペクトリス社製「4kWエンドオン型ルテニウム」)とを用い、ただし管球フィルターを用いずに、コリメーターマスクを27mmに設定し、コリメーターを300μmに設定し、検出器としてガスフローカウンターを用い、分光結晶として「LiF 200」を用い、X線管球の出力を40kV/100mAに設定し、上述の板状無機フィラーのビードサンプルと基準ビードサンプルについて、2θ=86.1°でのチタンのシグナル強度(単位:キロカウント毎秒)を測定した。そして、板状無機フィラーのビードサンプルでのチタンのシグナル強度から、基準ビードサンプルでのチタンのシグナル強度を減じて、板状無機フィラーのチタンのシグナル強度を求めた。
(蛍光X線分析による板状無機フィラーのカルシウムのシグナル強度の測定)
 蛍光X線分析装置(スペクトリス社製「MagiX Pro」)と、X線管球(スペクトリス社製「4kWエンドオン型ルテニウム」)とを用い、ただし管球フィルターを用いずに、コリメーターマスクを27mmに設定し、コリメーターを300μmに設定し、検出器としてガスフローカウンターを用い、分光結晶として「LiF 200」を用い、X線管球の出力を32kV/125mAに設定し、上述の板状無機フィラーのビードサンプルと基準ビードサンプルについて、2θ=113.1°のシグナル強度(単位:キロカウント毎秒)を測定した。そして、板状無機フィラーのビードサンプルでのカルシウムのシグナル強度から、基準ビードサンプルでのカルシウムのシグナル強度を減じて、板状無機フィラーのカルシウムのシグナル強度を求めた。なお、本法によりカルシウムのシグナル強度を測定した結果、値がマイナスとなった場合には、シグナル強度を「0」とすることにした。
(Fe/Si比の算出)
 上記で求められた板状無機フィラーの鉄のシグナル強度を、上記で求められた板状無機フィラーの珪素のシグナル強度で除して、Fe/Si比を算出した。
(Ti/Si比の算出]
 上記で求められた板状無機フィラーのチタンのシグナル強度を、上記で求められた板状無機フィラーの珪素のシグナル強度で除して、Ti/Si比を算出した。
(Ca/Si比の算出)
 上記で求められた板状無機フィラーのカルシウムのシグナル強度を、上記で求められた板状無機フィラーの珪素のシグナル強度で除して、Ca/Si比を算出した。
<液晶ポリエステルの製造>
[製造例1]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分還流させた。
 次いで、1-メチルイミダゾール2.4gを加え、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(L1)を得た。得られた液晶ポリエステル(L1)の流動開始温度は、327℃であった。
[製造例2]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分還流させた。
 次いで、1-メチルイミダゾール2.4gを加え、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素雰囲気下、室温から220℃まで1時間かけて昇温し、220℃から240℃まで30分かけて昇温し、240℃で10時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(L2)を得た。得られた液晶ポリエステル(L2)の流動開始温度は、286℃であった。
[製造例3]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(L3)を得た。得られた液晶ポリエステル(L3)の流動開始温度は、327℃であった。
[製造例4]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸358.8g(2.16モル)、イソフタル酸39.9g(0.24モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)及び無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、150℃で30分還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出して、室温まで冷却し、固形物であるプレポリマーを得た。
 次いで、粉砕機を用いてこのプレポリマーを粉砕し、得られた粉砕物を窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合を行った。得られた固相重合物を室温まで冷却して、粉末状の液晶ポリエステル(L4)を得た。得られた液晶ポリエステル(L4)の流動開始温度は、360℃であった。
<液晶ポリエステル組成物の製造>
[実施例1~2、比較例1~3]
 ヘンシェルミキサーを用いて、表1に示す種類の液晶ポリエステル及び板状無機フィラーを表1に示す割合で混合した後、二軸押し出し機(池貝鉄工(株)製「PCM-30型」)を用いて、シリンダー温度を330℃として得られた混合物を造粒することで、ペレット化した液晶ポリエステル組成物を得た。
[実施例3~4、比較例4]
 ヘンシェルミキサーを用いて、表1に示す種類の液晶ポリエステル及び板状無機フィラーを表1に示す割合で混合した後、二軸押し出し機(池貝鉄工(株)製「PCM-30型」)を用いて、シリンダー温度を360℃として得られた混合物を造粒することで、ペレット化した液晶ポリエステル組成物を得た。
<成形体の製造及び評価>
 上記の各実施例及び比較例で得られた液晶ポリエステル組成物から、下記方法で成形体を製造し、この成形体について、曲げ強度、耐熱性及びハンダ耐熱性を評価した。結果を表1に示す。
(成形体の曲げ強度の評価)
 射出成形機(日精樹脂工業(株)「PS40E5ASE」)を用いて、シリンダー温度350℃、金型温度130℃、射出速度60mm/秒の条件で、液晶ポリエステル組成物から成形体として、幅12.7mm、長さ127mm、厚さ6.4mmの棒状試験片を製造した。
 次いで、得られた棒状試験片について、ASTM D790に従って曲げ試験を行い、曲げ強度を測定した。
(成形体の耐熱性の評価)
 射出成形機(日精樹脂工業(株)「PS40E5ASE」)を用いて、シリンダー温度350℃、金型温度130℃、射出速度60mm/秒の条件で、液晶ポリエステル組成物から成形体として、幅6.4mm、長さ127mm、厚さ12.7mmの棒状試験片を製造した。
 次いで、得られた棒状試験片について、ASTM D648に従って、荷重1.82MPa、昇温速度2℃/分で荷重たわみ温度を測定し、耐熱性を評価した。
(成形体のハンダ耐熱性の評価)
 射出成形機(日精樹脂工業(株)「PS40E5ASE」)を用いて、シリンダー温度350℃、金型温度130℃、射出速度75mm/秒の条件で、液晶ポリエステル組成物から成形体として、JIS K7113(1/2)号ダンベル試験片(厚さ1.2mm)を製造した。
 次いで、得られたダンベル試験片10個を、270℃に加熱したハンダ浴に60秒浸漬し、取出した後、これら10個の前記試験片の表面を目視観察し、表面にブリスターが見られるものの個数を確認して、その個数から前記試験片のハンダ耐熱性を評価した。
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、実施例1~4では、液晶ポリエステル組成物において、板状無機フィラーとして板状無機フィラー(F1)又は(F2)を用いたことにより、得られた成形体は曲げ強度が高かった。また、これら成形体は、耐熱性及びハンダ耐熱性も高く、成形体として特に好ましい特性を有していた。
 なお、液晶ポリエステル(L1)及び(L2)、並びに液晶ポリエステル(L3)及び(L4)は、どちらも上述の液晶ポリエステル(A)及び(B)の関係にあるが、液晶ポリエステル(L3)及び(L4)の方が、液晶ポリエステル(L1)及び(L2)よりも好ましい組み合わせであり、実施例3及び4の方が、実施例1及び2よりも成形体の耐熱性に優れていた。
 これに対して、比較例1~4では、得られた成形体の曲げ強度が低かった。より具体的には、以下のとおりである。
 比較例1~3では、液晶ポリエステル組成物において、実施例1及び2と同じ液晶ポリエステルを用いているにも関わらず、板状無機フィラーとして板状無機フィラー(F3)、(F4)又は(F5)を用いたことにより、得られた成形体は曲げ強度が実施例1及び2よりも劣っていた。また、比較例1~3では、実施例1及び2よりも、成形体の耐熱性及びハンダ耐熱性も劣っていた。
 比較例4では、液晶ポリエステル組成物において、実施例3及び4と同じ液晶ポリエステルを用いているにも関わらず、板状無機フィラーとして板状無機フィラー(F5)を用いたことにより、得られた成形体は曲げ強度及び耐熱性が実施例3及び4よりも劣っていた。ただし、比較例4では、比較例1~3よりも成形体の耐熱性及びハンダ耐熱性に優れており、特に耐熱性に優れているのは、液晶ポリエステル(L1)及び(L2)ではなく、液晶ポリエステル(L3)及び(L4)の組み合わせを選択したことが原因であることを示唆している。
<コネクターの製造>
[実施例5]
 実施例1で得られた液晶ポリエステル組成物を120℃で12時間乾燥させた後、射出成形機(日精樹脂工業(株)「PS40E5ASE」)を用いて、シリンダー温度350℃、金型温度130℃の条件で射出成形することにより、図1に示すコネクターを製造した。このコネクターは、上述のDが6mm、Lが1.1mm、Lが0.8mm、Tが0.8mm、Tが0.5mm、Tが0.4mmのものである。得られたコネクターは、上記の実施例1~4の成形体と同様に、曲げ強度に優れる。
 本発明は、電気・電子部品、特にコネクター等の、曲げ強度が高いことが求められる成形体に利用可能である。
 1 コネクター
 11 端子挿入口
 D コネクターの厚さ
 LX 端子挿入口の開口部における長辺の長さ
 LY 端子挿入口の開口部における短辺の長さ
 1a 第1薄肉部
 1b 第2薄肉部
 1c コネクターの側壁
 T1 第1薄肉部の厚さ
 T2 第2薄肉部の厚さ
 T3 コネクターの側壁の厚さ

Claims (8)

  1.  液晶ポリエステル及び板状無機フィラーを含む液晶ポリエステル組成物であって、
     蛍光X線分析により、前記板状無機フィラーに含まれる成分のシグナルを検出して、その成分ごとに前記シグナルの強度を求めたときに、前記板状無機フィラーにおいて、珪素のシグナル強度に対する鉄のシグナル強度の比率が1~2.5である、液晶ポリエステル組成物。
  2.  前記板状無機フィラーの含有量が、前記液晶ポリエステルの含有量100質量部に対して、10~250質量部である、請求項1に記載の液晶ポリエステル組成物。
  3.  前記板状無機フィラーにおいて、珪素のシグナル強度に対するチタンのシグナル強度の比率が0~0.08である、請求項1又は2に記載の液晶ポリエステル組成物。
  4.  前記板状無機フィラーにおいて、珪素のシグナル強度に対するカルシウムのシグナル強度の比率が0~0.003である、請求項1~3のいずれか一項に記載の液晶ポリエステル組成物。
  5.  前記板状無機フィラーがマイカである、請求項1~4のいずれか一項に記載の液晶ポリエステル組成物。
  6.  前記液晶ポリエステルが、下記一般式(1)で表される繰返し単位と、下記一般式(2)で表される繰返し単位と、下記一般式(3)で表される繰返し単位とを有する、請求項1~5のいずれか一項に記載の液晶ポリエステル組成物。
    (1)-O-Ar-CO-
    (2)-CO-Ar-CO-
    (3)-X-Ar-Y-
    [式(1)~(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表す。Ar及びArは、互いに独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基を表す。X及びYは、互いに独立に、酸素原子又はイミノ基を表す。Ar、Ar又はArで表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~28のアルキル基又は炭素数6~12のアリール基で置換されていてもよい。]
    (4)-Ar-Z-Ar
    [式(4)中、Ar及びArは、互いに独立に、フェニレン基又はナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又は炭素数1~28のアルキリデン基を表す。]
  7.  請求項1~6のいずれか一項に記載の液晶ポリエステル組成物を成形してなる成形体。
  8.  請求項1~6のいずれか一項に記載の液晶ポリエステル組成物を成形してなるコネクター。
PCT/JP2016/077995 2015-09-25 2016-09-23 液晶ポリエステル組成物、成形体及びコネクター WO2017051862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/761,652 US20180346642A1 (en) 2015-09-25 2016-09-23 Liquid crystal polyester composition, molded body, and connector
CN201680054981.5A CN108137906B (zh) 2015-09-25 2016-09-23 液晶聚酯组合物、成形体和连接器
KR1020187008368A KR102524697B1 (ko) 2015-09-25 2016-09-23 액정 폴리에스테르 조성물, 성형체 및 커넥터
JP2017502742A JP6175720B1 (ja) 2015-09-25 2016-09-23 液晶ポリエステル組成物、成形体及びコネクター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187546 2015-09-25
JP2015-187546 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051862A1 true WO2017051862A1 (ja) 2017-03-30

Family

ID=58386081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077995 WO2017051862A1 (ja) 2015-09-25 2016-09-23 液晶ポリエステル組成物、成形体及びコネクター

Country Status (6)

Country Link
US (1) US20180346642A1 (ja)
JP (1) JP6175720B1 (ja)
KR (1) KR102524697B1 (ja)
CN (1) CN108137906B (ja)
TW (1) TWI689540B (ja)
WO (1) WO2017051862A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114465180A (zh) * 2022-02-17 2022-05-10 安徽凯越电力杆塔有限公司 一种高阻燃保护管及其制备方法
US11939449B2 (en) 2019-09-04 2024-03-26 Sumitomo Chemical Company, Limited Liquid crystal polyester composition and molded body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210145184A (ko) 2019-03-20 2021-12-01 티코나 엘엘씨 카메라 모듈용 액추에이터 어셈블리
JP6745008B1 (ja) * 2019-05-17 2020-08-19 住友化学株式会社 液晶ポリエステル樹脂組成物のペレット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202558A (ja) * 1990-11-30 1992-07-23 Toray Ind Inc 液晶性ポリマ樹脂組成物
JP2005145996A (ja) * 2003-11-11 2005-06-09 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物
JP2006037061A (ja) * 2004-07-30 2006-02-09 Polyplastics Co 液晶性ポリエステル樹脂組成物
JP2012116907A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167252A (ja) 1989-11-27 1991-07-19 Unitika Ltd 液晶ポリマー樹脂組成物
US5492946A (en) * 1990-06-04 1996-02-20 Amoco Corporation Liquid crystalline polymer blends and molded articles therefrom
JP2002294038A (ja) * 2001-03-28 2002-10-09 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JP4019731B2 (ja) * 2002-02-25 2007-12-12 住友化学株式会社 コネクター用液晶性ポリエステル樹脂組成物
JP2009108180A (ja) * 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 液晶性ポリエステル樹脂組成物
JP2009108179A (ja) * 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 液晶性ポリエステル樹脂組成物および当該樹脂組成物からなるコネクター
JP5165492B2 (ja) * 2008-05-23 2013-03-21 ポリプラスチックス株式会社 平面状コネクター
TWI468496B (zh) * 2008-12-25 2015-01-11 Sumitomo Chemical Co 液晶聚酯樹脂組成物和使用彼之連接器
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP5914935B2 (ja) * 2012-03-21 2016-05-11 住友化学株式会社 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202558A (ja) * 1990-11-30 1992-07-23 Toray Ind Inc 液晶性ポリマ樹脂組成物
JP2005145996A (ja) * 2003-11-11 2005-06-09 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物
JP2006037061A (ja) * 2004-07-30 2006-02-09 Polyplastics Co 液晶性ポリエステル樹脂組成物
JP2012116907A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939449B2 (en) 2019-09-04 2024-03-26 Sumitomo Chemical Company, Limited Liquid crystal polyester composition and molded body
CN114465180A (zh) * 2022-02-17 2022-05-10 安徽凯越电力杆塔有限公司 一种高阻燃保护管及其制备方法
CN114465180B (zh) * 2022-02-17 2023-11-03 安徽凯越电力杆塔有限公司 一种高阻燃保护管及其制备方法

Also Published As

Publication number Publication date
KR20180059450A (ko) 2018-06-04
TW201726787A (zh) 2017-08-01
TWI689540B (zh) 2020-04-01
JP6175720B1 (ja) 2017-08-09
CN108137906A (zh) 2018-06-08
KR102524697B1 (ko) 2023-04-21
US20180346642A1 (en) 2018-12-06
JPWO2017051862A1 (ja) 2017-09-21
CN108137906B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
JP6500140B2 (ja) 液晶ポリエステル組成物
WO2017051883A1 (ja) 液晶ポリエステル組成物、成形体及びコネクター
JP5633338B2 (ja) 液晶ポリエステル組成物
JP6175720B1 (ja) 液晶ポリエステル組成物、成形体及びコネクター
CN112969750B (zh) 液晶聚酯树脂组合物和成型品
JP5935288B2 (ja) 液晶ポリエステル組成物
JP2016014137A (ja) 液晶ポリエステル樹脂組成物、コネクターおよび液晶ポリエステル樹脂組成物の製造方法
JP6231243B1 (ja) 液晶性樹脂組成物
JP6861497B2 (ja) 液晶ポリエステル樹脂組成物
JP6112751B1 (ja) 樹脂組成物及び成形体
TW201900766A (zh) 液晶聚酯組成物
JP2012136625A (ja) 液晶ポリエステル成形材料及びその成形体
US11939449B2 (en) Liquid crystal polyester composition and molded body
JP2013209621A (ja) 樹脂組成物および成形体
JP2012193304A (ja) 液晶ポリエステル樹脂組成物、成形体
JP2012193271A (ja) 樹脂組成物および成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017502742

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187008368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848650

Country of ref document: EP

Kind code of ref document: A1