WO2017051705A1 - Machine tool control device, and machine tool equipped with said control device - Google Patents

Machine tool control device, and machine tool equipped with said control device Download PDF

Info

Publication number
WO2017051705A1
WO2017051705A1 PCT/JP2016/076233 JP2016076233W WO2017051705A1 WO 2017051705 A1 WO2017051705 A1 WO 2017051705A1 JP 2016076233 W JP2016076233 W JP 2016076233W WO 2017051705 A1 WO2017051705 A1 WO 2017051705A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
machine tool
control device
cutting tool
rotation
Prior art date
Application number
PCT/JP2016/076233
Other languages
French (fr)
Japanese (ja)
Inventor
尊一 中谷
一彦 三宮
篠原 浩
Original Assignee
シチズン時計株式会社
シチズンマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社, シチズンマシナリー株式会社 filed Critical シチズン時計株式会社
Priority to CN201680055296.4A priority Critical patent/CN108025413B/en
Priority to JP2017541505A priority patent/JP6783238B2/en
Priority to KR1020187009267A priority patent/KR102623128B1/en
Priority to EP16848493.9A priority patent/EP3354402B1/en
Priority to US15/761,595 priority patent/US10744611B2/en
Publication of WO2017051705A1 publication Critical patent/WO2017051705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0009Energy-transferring means or control lines for movable machine parts; Control panels or boxes; Control parts
    • B23Q1/0045Control panels or boxes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49055Remove chips from probe, tool by vibration

Definitions

  • the present invention relates to a control device for a machine tool that processes a workpiece while sequentially cutting chips at the time of cutting, and a machine tool provided with the control device.
  • a workpiece holding means for holding a workpiece, a tool rest for holding a cutting tool for cutting the workpiece, and a relative movement of the workpiece holding means and the tool rest to fix the cutting tool to the workpiece.
  • the workpiece holding means and the tool post are relatively repeated by repeating the relative movement along the machining feed direction at a first speed and a second speed different from each other.
  • a machine tool is known that includes repetitive movement means for moving the workpiece and rotation means for relatively rotating the workpiece and the cutting tool (see, for example, Patent Document 1).
  • the control device of the machine tool drives and controls the rotating means, the feeding means, and the repetitive moving means, the relative rotation between the workpiece and the cutting tool, and the cutting tool relative to the workpiece.
  • the machine tool is caused to perform machining of the workpiece by the feeding operation accompanied by the repetitive movement in the machining feeding direction.
  • the operation command by the control device is issued at a predetermined cycle.
  • the repetitive movement frequency for relatively repetitively moving the workpiece holding means and the tool rest is a limited value resulting from a period in which an operation command can be given by the control device.
  • the conventional machine tool does not consider the repetitive movement frequency, the number of repetitive movements of the repetitive movement of the cutting tool relative to the work per work rotation with respect to the rotation speed of the relative arbitrary rotation. There is a problem in that the repetitive movement may not be possible under the conditions described above.
  • the present invention solves the problems of the prior art as described above, i.e., the object of the present invention is to feed the cutting tool in the process feed direction while repetitively moving it, while cutting the chips or It is an object to provide a machine tool control device and a machine tool provided with the control device that can smoothly cut a workpiece while easily cutting chips.
  • the invention according to claim 1 is a cutting tool for cutting a workpiece, a rotating means for relatively rotating the cutting tool and the workpiece, and feeding the cutting tool and the workpiece in a predetermined machining feed direction.
  • a machine tool comprising feeding means and repetitive movement means for relatively repetitively moving the cutting tool and the workpiece by repeating relative movement at first and second speeds different from each other;
  • a machine tool control device having control means for causing the machine tool to process the workpiece by a relative rotation between the cutting tool and the workpiece and a feed operation involving reciprocal vibration of the cutting tool with respect to the workpiece.
  • the control means in accordance with a repetitive movement frequency caused by a period in which an operation command is possible, the rotation speed of the relative rotation when the machining of the workpiece is performed, and the relative rotation By determining the said number of repetitions of iterative movement per rotation of, it is to solve the aforementioned problems.
  • the machine tool control device according to claim 2 is configured such that the repetitive moving means is arranged along the machining feed direction with the cutting tool.
  • the machine tool control device is configured to control the relative rotation when the machining of the workpiece is performed.
  • a setting means for setting a value of at least one parameter using the rotation speed, the number of repetitions of the repetitive movement per rotation of the relative rotation, and the repetitive movement frequency as parameters, and an unset parameter Is set to a predetermined value, and a correcting means for correcting the parameter value set by the setting means based on the parameter value is provided, thereby solving the above-mentioned problems.
  • the machine tool control device according to claim 4 is configured such that the first speed is the second speed. The above-mentioned problem is further solved.
  • the machine tool control device is configured such that the repetitive moving means is subjected to cutting during relative movement at the first speed.
  • the above-described problem is further solved by adopting a configuration in which the cutting tool and the workpiece are relatively repetitively moved so that the portion and the cutting portion at the time of relative movement at the second speed overlap each other. Is.
  • the correction unit includes the repetitive moving frequency in addition to the configuration of the machine tool control device according to any one of claims 3 to 5.
  • the unset parameter is set to a predetermined value so that the rotation speed and the number of repetitions are inversely proportional to each other, and the value of the set parameter is corrected. It solves the problems that have been solved.
  • the machine tool control device is a parameter that is set by the setting means.
  • the number of repetitions is set to a predetermined number of predetermined values
  • the repetitive movement frequency is set to a predetermined value inherent in the control device, and set by the setting unit.
  • the above-described problem is further solved by correcting the value of the number of rotations based on the value of the number of repetitions and a repetitive moving frequency determined.
  • the machine tool control device is a parameter set by the setting means, The number of rotations and the number of repetitions are set, and the correction unit corrects the set number of rotations and the number of repetitions to the value of the number of rotations and the number of repetitions determined based on the repetitive movement frequency.
  • the machine tool according to claim 9 is provided with the control device according to any one of claims 1 to 8, thereby solving the above-described problem.
  • the machine tool control device of the present invention is a condition that is determined by the control means, while the cutting tool is repeatedly moved to the machine tool in the process feed direction, while cutting the chips or making the chips easy to be cut, The workpiece can be cut smoothly.
  • the machine tool of the present invention can smoothly cut the workpiece while the chips are divided or the chips are easily divided by the control device of the machine tool.
  • the present invention is different from a cutting tool for cutting a workpiece, a rotating unit for relatively rotating the cutting tool and the workpiece, and a feeding unit for feeding the cutting tool and the workpiece in a predetermined processing feed direction.
  • a machine tool having repetitive moving means for relatively repetitively moving the cutting tool and the workpiece by repeating relative movement at the first speed and the second speed
  • the control means has a cycle in which an operation command can be issued.
  • the relative rotation speed when performing workpiece machining and the number of repetitive movement repetitions per one rotation of the relative rotation are determined.
  • the cutting tool is smoothly moved to the machine tool while feeding the cutting tool in the process feed direction, while cutting the chips or cutting the chips easily. Any specific embodiment may be used as long as it can be used.
  • FIG. 1 is a diagram schematically illustrating a machine tool 100 including a control device C according to an embodiment of the present invention.
  • the machine tool 100 includes a main shaft 110 and a cutting tool table 130A.
  • the spindle 110 holds the workpiece W via the chuck 120 as a workpiece holding means.
  • the main shaft 110 is supported by the main shaft 110A so as to be rotationally driven by the power of a main shaft motor (not shown).
  • a main spindle motor a conventionally known built-in motor formed between the main spindle 110A and the main spindle 110 in the main spindle 110A can be considered.
  • the headstock 110A is mounted on the bed side of the machine tool 100 so as to be movable in the Z-axis direction, which is the axial direction of the main shaft 110, by the Z-axis direction feed mechanism 160.
  • the spindle 110 is moved in the Z-axis direction by the Z-axis direction feed mechanism 160 via the spindle stock 110A.
  • the Z-axis direction feed mechanism 160 constitutes a main shaft moving mechanism that moves the main shaft 110 in the Z-axis direction.
  • the Z-axis direction feed mechanism 160 includes a base 161 integrated with a fixed side of the Z-axis direction feed mechanism 160 such as the bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. Yes.
  • a Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
  • a mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.
  • the headstock 110 ⁇ / b> A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is driven to move in the Z-axis direction by driving the linear servo motor 165. As the Z-axis direction feed table 163 moves, the headstock 110A moves in the Z-axis direction, and the spindle 110 moves in the Z-axis direction.
  • the cutting tool base 130 ⁇ / b> A constitutes a tool rest on which a cutting tool 130 such as a cutting tool for processing the workpiece W is mounted and holds the cutting tool 130.
  • An X-axis direction feed mechanism 150 is provided on the bed side of the machine tool 100.
  • the X-axis direction feed mechanism 150 includes a base 151 that is integral with the bed side, and an X-axis direction guide rail 152 that extends in the X-axis direction perpendicular to the Z-axis direction in the vertical direction.
  • the X-axis direction guide rail 152 is fixed to the base 151, and an X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via the X-axis direction guide 154.
  • a cutting tool base 130A is mounted on the X-axis direction feed table 153.
  • the linear servo motor 155 includes a mover 155a and a stator 155b.
  • the mover 155a is provided on the X-axis direction feed table 153
  • the stator 155b is provided on the base 151.
  • the X-axis direction feed table 153 is moved in the X-axis direction along the X-axis direction guide rail 152 by driving the linear servo motor 155
  • the cutting tool base 130A is moved in the X-axis direction
  • the cutting tool 130 is moved in the X-axis direction.
  • a Y-axis direction feed mechanism may be provided.
  • the Y-axis direction is a direction orthogonal to the illustrated Z-axis direction and X-axis direction.
  • the Y-axis direction feed mechanism can have the same structure as the X-axis direction feed mechanism 150.
  • the Y-axis direction feed table is moved in the Y-axis direction by driving the linear servo motor, and the cutting tool base 130A is moved in the X-axis direction.
  • the cutting tool 130 can be moved in the X-axis direction and the Y-axis direction by moving in the Y-axis direction.
  • the Y-axis direction feed mechanism may be mounted on the bed via the X-axis direction feed mechanism 150, and the cutting tool table 130A may be mounted on the Y-axis direction feed table.
  • the turret moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism) and the main shaft moving mechanism (Z-axis direction feeding mechanism 160) cooperate with each other by the X-axis direction feeding mechanism 150 and the Y-axis direction feeding mechanism.
  • the cutting mounted on the cutting tool table 130A by the movement of the cutting tool table 130A in the X-axis direction and the Y-axis direction and the movement of the main shaft table 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160.
  • the tool 130 is fed in an arbitrary machining feed direction relative to the workpiece W.
  • the rotation of the main shaft 110 and the movement of the X-axis direction feed mechanism 150, the Z-axis direction feed mechanism 160, and the like are controlled by the control device C.
  • the main shaft 110 and the cutting tool base 130A are moved by the feeding means composed of the main shaft moving mechanism (Z-axis direction feeding mechanism 160) and the tool post moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism).
  • the main shaft moving mechanism Z-axis direction feeding mechanism 160
  • the tool post moving mechanism X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism.
  • both the headstock 110A and the cutting tool base 130A are moved.
  • the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool post moving mechanism.
  • the cutting tool base 130A may be configured to move in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the feeding means is composed of a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and is fixedly positioned and rotated relative to the main spindle 110.
  • the cutting tool base 130A may be fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism may be configured to move the spindle base 110A in the X axis direction, the Y axis direction, and the Z axis direction.
  • the feed means is composed of a spindle stock moving mechanism that moves the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the X-axis direction feed mechanism 150, the Y-axis direction feed mechanism, and the Z-axis direction feed mechanism 160 are configured to be driven by a linear servo motor.
  • a linear servo motor conventionally known ball screws and servo motors are used. It is also possible to drive by.
  • the rotating means that relatively rotates the workpiece W and the cutting tool 130 is constituted by the main shaft motor such as the built-in motor, and the relative rotation between the work W and the cutting tool 130 is performed by the main shaft.
  • the rotation is performed by 110.
  • the workpiece W is rotated with respect to the cutting tool 130.
  • the cutting tool 130 may be rotated with respect to the workpiece W.
  • the cutting tool 130 may be a rotary tool such as a drill.
  • the rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are driven and controlled by the control unit C 1 using the control unit C 1 included in the control device C as control means.
  • control unit C1 uses the feeding mechanisms as repetitive moving means at a second speed slower than the first speed.
  • the spindle 110 and the cutting tool base 130A are controlled to move in the respective directions while the spindle 110 and the cutting tool 130 are relatively repetitively moved by repeating the relative movement.
  • each feed mechanism is controlled by the control unit C ⁇ b> 1 to move the spindle 110 or the cutting tool base 130 ⁇ / b> A by a predetermined advance amount as a relative movement at the first speed in one repetitive movement. After moving forward in the moving direction, it stops in each moving direction as a relative movement at the second speed, is moved in each moving direction by the amount of advance, and cooperates to process the cutting tool 130 with respect to the workpiece W. Send in the feed direction.
  • the machine tool 100 includes a Z-axis direction feed mechanism 160, an X-axis direction feed mechanism 150, and a Y-axis direction feed mechanism, while the cutting tool 130 moves repeatedly along the machining feed direction,
  • the workpiece W is machined by being fed in the machining feed direction using the amount per rotation of the spindle, that is, the amount when the spindle phase changes from 0 degrees to 360 degrees as the feed amount.
  • the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) moves while being repetitively moved, and the cutting tool 130 forms the outer shape of the work W into a predetermined shape.
  • the peripheral surface of the workpiece W is cut into a curved shape along a waveform of repetitive movement.
  • the change amount of the position when the main axis phase changes from 0 degree to 360 degrees indicates the feed amount.
  • the phase of the peripheral shape of the workpiece W to be turned by the n-th rotation (n is an integer of 1 or more) of the main shaft 110 and the n + 1-th cutting tool 130 is shifted in the main-axis phase direction (horizontal axis direction of the graph).
  • the position of the valley of the phase at the (n + 1) th rotation is the phase at the nth rotation. Is shifted in the main axis phase direction with respect to the position of the valley (curved portion protruding upward in FIG. 4 of the solid line waveform graph).
  • the relative movement at the first speed such as the forward movement of FIG. 4 and the relative movement at the second speed are replaced with the first speed in the machining feed direction instead of the stop of FIG.
  • the movement at a speed slower than the first speed in the same direction as the movement direction may be repeated.
  • the distance between the movement locus (solid line waveform graph) of the n-th rotation cutting tool 130 and the movement locus (dotted line waveform graph) of the (n + 1) -th rotation cutting tool 130 is the same as in FIG. ,
  • the part which becomes short arises.
  • the chips are easily divided so that the chips are broken at this part.
  • the second speed in the machining feed direction may be zero, and the relative movement at the second speed is in the same direction as the relative movement at the first speed.
  • the direction of relative movement at the second speed may be opposite to the direction of relative movement at the first speed, and reciprocal vibration in the machining feed direction may be used.
  • the trajectory of the cutting tool 130 at the time of backward movement (relative movement at the second speed) at the (n + 1) th rotation of the workpiece circumferential surface is controlled by the control unit C1 at the nth rotation of the workpiece circumferential surface.
  • the cutting portion at the time of relative movement at the first speed and the cutting portion at the time of relative movement at the second speed come into contact with each other, that is, it is possible to partially overlap. It becomes.
  • the cutting part at the time of relative movement at the first speed of the cutting tool 130 includes the cutting part at the time of relative movement at the second speed as a theoretical “point”.
  • the phases of the shapes turned by the cutting tool 130 on the workpiece W at the n-th rotation and the n + 1-th rotation do not have to be the same (same phase), and are not necessarily 180 degrees. There is no need to reverse it.
  • the number N of repeated movements per rotation can be 1.1, 1.25, 2.6, 3.75, or the like. It is also possible to set so that repetitive movement less than one time (0 ⁇ the number of repetitions N ⁇ 1.0) is performed by one rotation of the workpiece W. As a result, the main shaft 110 rotates by one or more rotations per one repetitive movement (the repetitive movement is repeated once for many rotations).
  • the operation command by the control unit C1 is performed at a predetermined command cycle.
  • the repetitive movement of the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) can be operated at a predetermined frequency based on the command cycle.
  • the frequency (repetitive movement frequency) f (Hz) of the repetitive movement of the main spindle 110A (the main spindle 110) or the cutting tool base 130A (the cutting tool 130) is determined to a value selected from the above frequencies.
  • the command cycle can be set by a multiple other than an integer multiple of the reference cycle (4 ms). In this case, the frequency according to this command cycle can be set as the repetitive movement frequency f.
  • the rotational speed S, the number of repetitions N, and the repetitive movement frequency f are used as parameters, and the user sets two of the rotational speed S and the number of repetitions N of the three parameters by the user.
  • the control unit C1 can be set via the numerical value setting unit C2 or the like.
  • the setting of the number of revolutions S or the number of repetitions N to the control unit C1 can be performed by inputting the number of revolutions S or the value of the number of repetitions N as a parameter value to the control unit C1, for example, the number of revolutions S or the number of repetitions.
  • the value of the number of times N can be set and described in a machining program, or the number of times of repetition N can be set as an argument in a program block (one line of the program).
  • the setting means is configured so that the number of repetitions N can be set as an argument in the program block of the machining program, the rotation speed S of the spindle 110 generally described on the machining program and the program block A user can easily set the number of rotations S and the number of repetitions N from the machining program based on the number of repetitions N described as an argument.
  • the setting by the setting means may be made by a program, or may be set by the user via the numerical value setting unit C2.
  • the peripheral speed and the workpiece diameter can be set and inputted via a machining program or the like, and the rotational speed S can be calculated and set based on the peripheral speed and the workpiece diameter.
  • the setting means so as to calculate the rotational speed S based on the peripheral speed set and inputted through a machining program or the like and the workpiece diameter, the material of the workpiece W, the type, shape, and material of the cutting tool 130 are configured.
  • the rotation speed S can be easily set without the user being aware of the peripheral speed determined according to the above.
  • the control unit C1 rotates the spindle 110 at the rotation speed S based on the set rotation speed S and the repetition number N, and at this repetition number N, the cutting tool 130 is repetitively along the machining feed direction. Control is performed so that the head stock 110A or the cutting tool base 130A is moved while being repetitively moved so as to be fed in the machining feed direction while moving.
  • the control unit C1 sets the set rotation speed S and the repetition number N to the repetitive movement frequency f. Correction means for correcting based on this is provided.
  • the machine tool 100 can perform the Z-axis direction feed mechanism 160, X
  • the axial feed mechanism 150 and the Y-axis direction feed mechanism feed the cutting tool 130 in the machining feed direction while repetitively moving along the machining feed direction, while cutting the chips or making the chips easy to cut.
  • the cutting of W can be performed smoothly, and in some cases, for example, the life of the cutting tool 130 can be extended.
  • the workpiece W can be machined under conditions relatively close to the rotational speed S and the number of repetitions N intended by the user.
  • the correction condition can be changed by preferentially correcting either the rotation speed S or the number of repetitions N or correcting both according to the processing conditions.
  • the repetitive movement frequency f used by the setting means may be set in advance on the user side, and the repetition number N and the rotation speed S may be corrected according to the set repetitive movement frequency f. .
  • the cutting tool 130 is repeatedly moved along the processing feed direction while being fed in the processing feed direction, while cutting the chips or making the chips easy to be cut, The external cutting of the workpiece W can be performed smoothly and stably.
  • the setting means so as to set the number of repetitions N with the number of rotations S of the spindle 110 per one repetitive movement, the setting for increasing the number of rotations S can be easily performed.
  • the main shaft 110 can be rotated at high speed.
  • the number of repetitions N needs to be set to such an extent that the processing is not adversely affected.
  • the number of repetitions N and the number of rotations S among the three parameters are configured to be set in the control unit C1 via the numerical value setting unit C2 or the like.
  • the value is fixed and no input is required, the user sets only the rotation speed S as one of the three parameters, and the repetitive movement frequency f is set according to the rotation speed S and the repetition number N. Then, the rotation speed S or the number of repetitions N may be corrected.
  • the control unit C1 sets the vibration frequency corresponding to each repetitive movement frequency with respect to the set rotation speed S. It is also possible to set the number of repetitions N so that the chips are divided by the reciprocating vibration of the cutting tool 130 without correcting the set rotation speed S. In this case, the control unit C1 executes the reciprocating vibration of the cutting tool 130 at a repetitive moving frequency f that is the number of repetitions N set by the control unit C1 with respect to the rotation speed S set by the user. However, if it is difficult to set the number of repetitions N such that the chips are divided as described above due to the rotational speed S set by the user or the repetitive moving frequency that can be operated, the reciprocating vibration is performed by the control unit C1. It is also possible to configure so that the amplitude of is adjusted to a value such that chips are divided.
  • the correction means of the control unit C1 is configured to correct the set rotational speed S based on the repetitive movement frequency f, and as shown in FIG. 8, the control unit C1 performs the repetition per one rotation of the main shaft.
  • the rotational speeds S11, S12, S13,... Of the main shaft 110 corresponding to the repetitive movement numbers N1, N2, N3,..., And the repetitive movement frequencies f1, f2, f3,. .., S31... May be provided, and the correction means may correct the value of the rotation speed S set by the user to the value of the rotation speed S in the table.

Abstract

The present invention feeds a cutting tool in the machining feed direction while repetitively moving the cutting tool on the basis of the conditions set by a user, and smoothly cuts a workpiece while separating chips or facilitating the separation of chips. In a machine tool (100) and a control device (C) for the machine tool (100), a control means C1 sets, according to the repetitive movement frequency caused by an operation instruction cycle, the rotational speed of relative rotation while executing the machining of a workpiece W and the repeat count of the repetitive movement per revolution of the relative rotation.

Description

工作機械の制御装置及びこの制御装置を備えた工作機械Machine tool control device and machine tool equipped with the control device
 本発明は、切削加工時の切屑を順次分断しながらワークの加工を行う工作機械の制御装置及びこの制御装置を備えた工作機械に関する。 The present invention relates to a control device for a machine tool that processes a workpiece while sequentially cutting chips at the time of cutting, and a machine tool provided with the control device.
 従来、ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によって、前記ワークに対して前記切削工具を所定の加工送り方向に送り動作させる送り手段と、互いに異なる第1速度と第2速度での前記加工送り方向に沿った前記相対移動を繰り返して前記ワーク保持手段と前記刃物台とを相対的に反復的移動させる反復的移動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備えた工作機械が知られている(例えば、特許文献1参照)。
 この工作機械の制御装置は、前記回転手段と、前記送り手段と、前記反復的移動手段とを駆動制御し、前記ワークと前記切削工具との相対的な回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記反復的移動を伴う送り動作とによって前記工作機械に、前記ワークの加工を実行させる。
Conventionally, a workpiece holding means for holding a workpiece, a tool rest for holding a cutting tool for cutting the workpiece, and a relative movement of the workpiece holding means and the tool rest to fix the cutting tool to the workpiece. The workpiece holding means and the tool post are relatively repeated by repeating the relative movement along the machining feed direction at a first speed and a second speed different from each other. 2. Description of the Related Art A machine tool is known that includes repetitive movement means for moving the workpiece and rotation means for relatively rotating the workpiece and the cutting tool (see, for example, Patent Document 1).
The control device of the machine tool drives and controls the rotating means, the feeding means, and the repetitive moving means, the relative rotation between the workpiece and the cutting tool, and the cutting tool relative to the workpiece. The machine tool is caused to perform machining of the workpiece by the feeding operation accompanied by the repetitive movement in the machining feeding direction.
特許5033929号公報(段落0049参照)Japanese Patent No. 5033929 (see paragraph 0049)
 従来の工作機械において、制御装置による動作指令は、所定の周期で行われる。
 このため前記ワーク保持手段と前記刃物台とを相対的に反復的移動させる反復的移動周波数は、前記制御装置による動作指令が可能な周期に起因する限られた値となる。
 しかしながら、従来の工作機械は、前記反復的移動周波数が考慮されないため、前記相対的な任意の回転の回転数に対して、ワーク1回転当たりのワークに対する切削工具の任意の反復的移動の繰り返し回数の条件で前記反復的移動させることができない場合があるという問題があった。
In the conventional machine tool, the operation command by the control device is issued at a predetermined cycle.
For this reason, the repetitive movement frequency for relatively repetitively moving the workpiece holding means and the tool rest is a limited value resulting from a period in which an operation command can be given by the control device.
However, since the conventional machine tool does not consider the repetitive movement frequency, the number of repetitive movements of the repetitive movement of the cutting tool relative to the work per work rotation with respect to the rotation speed of the relative arbitrary rotation. There is a problem in that the repetitive movement may not be possible under the conditions described above.
 そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、切削工具を反復的移動させながら加工送り方向に送り、切屑を分断しながら又は切屑を分断されやすくしながら、ワークの切削加工を円滑に行うことができる工作機械の制御装置及びこの制御装置を備えた工作機械を提供することである。 Therefore, the present invention solves the problems of the prior art as described above, i.e., the object of the present invention is to feed the cutting tool in the process feed direction while repetitively moving it, while cutting the chips or It is an object to provide a machine tool control device and a machine tool provided with the control device that can smoothly cut a workpiece while easily cutting chips.
 本請求項1に係る発明は、ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具とワークとを所定の加工送り方向に送り動作させる送り手段と、互いに異なる第1速度と第2速度での相対的な移動を繰り返して前記切削工具とワークとを相対的に反復的移動させる反復的移動手段とを備えた工作機械に設けられ、前記切削工具とワークとの相対的な回転と、前記ワークに対する前記切削工具の往復振動を伴う送り動作とによって、前記工作機械に前記ワークの加工を実行させる制御手段を有する工作機械の制御装置において、前記制御手段が、動作指令が可能な周期に起因する反復的移動周波数に応じて、前記ワークの加工を実行する際の前記相対的な回転の回転数と、前記相対的な回転の1回転当たりの前記反復的移動の繰り返し回数とを定めることにより、前述した課題を解決するものである。 The invention according to claim 1 is a cutting tool for cutting a workpiece, a rotating means for relatively rotating the cutting tool and the workpiece, and feeding the cutting tool and the workpiece in a predetermined machining feed direction. Provided in a machine tool comprising feeding means and repetitive movement means for relatively repetitively moving the cutting tool and the workpiece by repeating relative movement at first and second speeds different from each other; In a machine tool control device having control means for causing the machine tool to process the workpiece by a relative rotation between the cutting tool and the workpiece and a feed operation involving reciprocal vibration of the cutting tool with respect to the workpiece. The control means, in accordance with a repetitive movement frequency caused by a period in which an operation command is possible, the rotation speed of the relative rotation when the machining of the workpiece is performed, and the relative rotation By determining the said number of repetitions of iterative movement per rotation of, it is to solve the aforementioned problems.
 本請求項2に係る工作機械の制御装置は、請求項1に記載された工作機械の制御装置の構成に加えて、前記反復的移動手段を、前記加工送り方向に沿って、前記切削工具とワークとを相対的に反復的移動させる構成としたことにより、前述した課題を解決するものである。 In addition to the configuration of the machine tool control device according to claim 1, the machine tool control device according to claim 2 is configured such that the repetitive moving means is arranged along the machining feed direction with the cutting tool. By adopting a configuration in which the workpiece is relatively repetitively moved, the above-described problems are solved.
 本請求項3に係る工作機械の制御装置は、請求項1または請求項2に記載された工作機械の制御装置の構成に加えて、前記ワークの加工を実行する際の前記相対的な回転の回転数と、前記相対的な回転の1回転当たりの前記反復的移動の繰り返し回数と、前記反復的移動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段と、未設定のパラメータを所定の値に定め、該パラメータの値に基づいて、前記設定手段によって設定されたパラメータの値を補正する補正手段とを設けたことにより、前述した課題を解決するものである。 In addition to the configuration of the machine tool control device according to claim 1, the machine tool control device according to claim 3 is configured to control the relative rotation when the machining of the workpiece is performed. A setting means for setting a value of at least one parameter using the rotation speed, the number of repetitions of the repetitive movement per rotation of the relative rotation, and the repetitive movement frequency as parameters, and an unset parameter Is set to a predetermined value, and a correcting means for correcting the parameter value set by the setting means based on the parameter value is provided, thereby solving the above-mentioned problems.
 本請求項4に係る工作機械の制御装置は、請求項1乃至請求項3のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記第1速度が、前記第2速度に対して大きく設定されたことにより、前述した課題をさらに解決するものである。 In addition to the configuration of the machine tool control device according to any one of claims 1 to 3, the machine tool control device according to claim 4 is configured such that the first speed is the second speed. The above-mentioned problem is further solved.
 本請求項5に係る工作機械の制御装置は、請求項4に記載された工作機械の制御装置の構成に加えて、前記反復的移動手段を、前記第1速度での相対移動時の切削加工部分と、前記第2速度での相対移動時の切削加工部分とが重複するように、前記切削工具とワークとを相対的に反復的移動させる構成としたことにより、前述した課題をさらに解決するものである。 In addition to the configuration of the machine tool control device according to claim 4, the machine tool control device according to claim 5 is configured such that the repetitive moving means is subjected to cutting during relative movement at the first speed. The above-described problem is further solved by adopting a configuration in which the cutting tool and the workpiece are relatively repetitively moved so that the portion and the cutting portion at the time of relative movement at the second speed overlap each other. Is.
 本請求項6に係る工作機械の制御装置は、請求項3乃至請求項5のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記補正手段が、前記反復的移動周波数に基づいた定数で、前記回転数と前記繰り返し回数とが反比例するように、未設定のパラメータを所定の値に定めるとともに、設定されたパラメータの値を補正するように構成されたことにより、前述した課題をさらに解決するものである。 In addition to the configuration of the machine tool control device according to any one of claims 3 to 5, the correction unit includes the repetitive moving frequency in addition to the configuration of the machine tool control device according to any one of claims 3 to 5. The unset parameter is set to a predetermined value so that the rotation speed and the number of repetitions are inversely proportional to each other, and the value of the set parameter is corrected. It solves the problems that have been solved.
 本請求項7に係る工作機械の制御装置は、請求項3乃至請求項6のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記設定手段により設定されるパラメータを前記回転数とし、前記補正手段が、前記繰り返し回数を予め定められた複数の所定の値に定め、前記反復的移動周波数を、前記制御装置が固有に備える所定の値に定め、前記設定手段によって設定された前記回転数の値を、各繰り返し回数の値と定められた反復的移動周波数とに基づき補正するように構成されたことにより、前述した課題をさらに解決するものである。 In addition to the configuration of the machine tool control device according to any one of claims 3 to 6, the machine tool control device according to claim 7 is a parameter that is set by the setting means. The number of repetitions is set to a predetermined number of predetermined values, and the repetitive movement frequency is set to a predetermined value inherent in the control device, and set by the setting unit. The above-described problem is further solved by correcting the value of the number of rotations based on the value of the number of repetitions and a repetitive moving frequency determined.
 本請求項8に係る工作機械の制御装置は、請求項3乃至請求項6のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記設定手段により設定されるパラメータを、前記回転数と前記繰り返し回数とし、前記補正手段が、設定された前記回転数と前記繰り返し回数を、前記反復的移動周波数に基づいて定まる前記回転数と前記繰り返し回数の値に補正するように構成されたことにより、前述した課題をさらに解決するものである。 In addition to the configuration of the machine tool control device according to any one of claims 3 to 6, the machine tool control device according to claim 8 is a parameter set by the setting means, The number of rotations and the number of repetitions are set, and the correction unit corrects the set number of rotations and the number of repetitions to the value of the number of rotations and the number of repetitions determined based on the repetitive movement frequency. As a result, the above-described problems are further solved.
 本請求項9に係る工作機械は、請求項1乃至請求項8のいずれか1つに記載の制御装置を備えたことによって、前述した課題を解決するものである。 The machine tool according to claim 9 is provided with the control device according to any one of claims 1 to 8, thereby solving the above-described problem.
 本発明の工作機械の制御装置は、制御手段が定めた条件で、工作機械に、切削工具を反復的移動させながら加工送り方向に送り、切屑を分断しながら又は切屑を分断されやすくしながら、ワークの切削加工を円滑に行わせることができる。 The machine tool control device of the present invention is a condition that is determined by the control means, while the cutting tool is repeatedly moved to the machine tool in the process feed direction, while cutting the chips or making the chips easy to be cut, The workpiece can be cut smoothly.
 また、本発明の工作機械は、上記工作機械の制御装置によって、切屑を分断しながら又は切屑を分断されやすくしながら、ワークの切削加工を円滑に行うことができる。 Also, the machine tool of the present invention can smoothly cut the workpiece while the chips are divided or the chips are easily divided by the control device of the machine tool.
本発明の実施例の工作機械の概略を示す図。The figure which shows the outline of the machine tool of the Example of this invention. 本発明の実施例の切削工具とワークとの関係を示す概略図。Schematic which shows the relationship between the cutting tool of an Example of this invention, and a workpiece | work. 本発明の実施例の切削工具の反復的移動および位置を示す図。The figure which shows the repetitive movement and position of the cutting tool of the Example of this invention. 本発明の実施例の主軸n回転目、n+1回転目、n+2回転目の関係を示す図。The figure which shows the relationship of the spindle nth rotation of the Example of this invention, n + 1st rotation, n + 2 rotation. 図4に示す反復的移動波形の変形例を示す図。The figure which shows the modification of the repetitive movement waveform shown in FIG. 本発明の実施例の指令周期と反復的移動周波数との関係を示す図。The figure which shows the relationship between the command period of the Example of this invention, and a repetitive movement frequency. 本発明の実施例の主軸1回転当たりの反復的移動の繰り返し回数と回転数と反復的移動周波数との関係を示す図。The figure which shows the relationship between the frequency | count of repetition of the repetitive movement per main shaft rotation of the Example of this invention, the rotation speed, and the repetitive movement frequency. 本発明の実施例の補正手段による補正の変形例として示す前記繰り返し回数と反復的移動周波数とに対応する回転数のテーブル。The rotation speed table corresponding to the said repetition frequency and repetitive movement frequency shown as a modification of the correction | amendment by the correction | amendment means of the Example of this invention.
 本発明は、ワークを切削加工する切削工具と、この切削工具とワークとを相対的に回転させる回転手段と、切削工具とワークとを所定の加工送り方向に送り動作させる送り手段と、互いに異なる第1速度と第2速度での相対的な移動を繰り返して切削工具とワークとを相対的に反復的移動させる反復的移動手段とを備えた工作機械に設けられ、切削工具とワークとの相対的な回転と、ワークに対する切削工具の往復振動を伴う送り動作とによって、工作機械にワークの加工を実行させる制御手段を有する工作機械の制御装置において、制御手段が、動作指令が可能な周期に起因する反復的移動周波数に応じて、ワークの加工を実行する際の相対的な回転の回転数と、相対的な回転の1回転当たりの反復的移動の繰り返し回数とを定めることにより、制御手段が定めた条件で、工作機械に、切削工具を反復的移動させながら加工送り方向に送り、切屑を分断しながら又は切屑を分断されやすくしながら、ワークの切削加工を円滑に行わせるものであれば、その具体的な実施態様は、如何なるものであっても構わない。 The present invention is different from a cutting tool for cutting a workpiece, a rotating unit for relatively rotating the cutting tool and the workpiece, and a feeding unit for feeding the cutting tool and the workpiece in a predetermined processing feed direction. Provided in a machine tool having repetitive moving means for relatively repetitively moving the cutting tool and the workpiece by repeating relative movement at the first speed and the second speed, In a control device for a machine tool having a control means for causing the machine tool to process the workpiece by a general rotation and a feed operation accompanied by a reciprocating vibration of the cutting tool with respect to the workpiece, the control means has a cycle in which an operation command can be issued. In accordance with the resulting repetitive movement frequency, the relative rotation speed when performing workpiece machining and the number of repetitive movement repetitions per one rotation of the relative rotation are determined. Thus, under the conditions determined by the control means, the cutting tool is smoothly moved to the machine tool while feeding the cutting tool in the process feed direction, while cutting the chips or cutting the chips easily. Any specific embodiment may be used as long as it can be used.
 図1は、本発明の実施例の制御装置Cを備えた工作機械100の概略を示す図である。
 工作機械100は、主軸110と、切削工具台130Aとを備えている。
 主軸110は、ワーク保持手段としてチャック120を介してワークWを保持する。
 主軸110は、図示しない主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
 前記主軸モータとして主軸台110A内において、主軸台110Aと主軸110との間に形成される従来公知のビルトインモータ等が考えられる。
FIG. 1 is a diagram schematically illustrating a machine tool 100 including a control device C according to an embodiment of the present invention.
The machine tool 100 includes a main shaft 110 and a cutting tool table 130A.
The spindle 110 holds the workpiece W via the chuck 120 as a workpiece holding means.
The main shaft 110 is supported by the main shaft 110A so as to be rotationally driven by the power of a main shaft motor (not shown).
As the main spindle motor, a conventionally known built-in motor formed between the main spindle 110A and the main spindle 110 in the main spindle 110A can be considered.
 主軸台110Aは、工作機械100のベッド側に、Z軸方向送り機構160によって主軸110の軸線方向となるZ軸方向に移動自在に搭載されている。
 主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、前記Z軸方向に移動する。
 Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
The headstock 110A is mounted on the bed side of the machine tool 100 so as to be movable in the Z-axis direction, which is the axial direction of the main shaft 110, by the Z-axis direction feed mechanism 160.
The spindle 110 is moved in the Z-axis direction by the Z-axis direction feed mechanism 160 via the spindle stock 110A.
The Z-axis direction feed mechanism 160 constitutes a main shaft moving mechanism that moves the main shaft 110 in the Z-axis direction.
 Z軸方向送り機構160は、前記ベッド等のZ軸方向送り機構160の固定側と一体的なベース161と、ベース161に設けられたZ軸方向に延びるZ軸方向ガイドレール162とを備えている。
 Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
 Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
The Z-axis direction feed mechanism 160 includes a base 161 integrated with a fixed side of the Z-axis direction feed mechanism 160 such as the bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. Yes.
A Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
A mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.
 Z軸方向送りテーブル163に主軸台110Aが搭載され、リニアサーボモータ165の駆動によってZ軸方向送りテーブル163が、Z軸方向に移動駆動される。
 Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
The headstock 110 </ b> A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is driven to move in the Z-axis direction by driving the linear servo motor 165.
As the Z-axis direction feed table 163 moves, the headstock 110A moves in the Z-axis direction, and the spindle 110 moves in the Z-axis direction.
 切削工具台130Aは、ワークWを加工するバイト等の切削工具130が装着され、切削工具130を保持する刃物台を構成している。
 X軸方向送り機構150が、工作機械100のベッド側に設けられている。
The cutting tool base 130 </ b> A constitutes a tool rest on which a cutting tool 130 such as a cutting tool for processing the workpiece W is mounted and holds the cutting tool 130.
An X-axis direction feed mechanism 150 is provided on the bed side of the machine tool 100.
 X軸方向送り機構150は、前記ベッド側と一体的なベース151と、Z軸方向に対して上下方向で直交するX軸方向に延びるX軸方向ガイドレール152とを備えている。
 X軸方向ガイドレール152はベース151に固定され、X軸方向ガイドレール152には、X軸方向送りテーブル153がX軸方向ガイド154を介してスライド自在に支持されている。
 X軸方向送りテーブル153には、切削工具台130Aが搭載される。
The X-axis direction feed mechanism 150 includes a base 151 that is integral with the bed side, and an X-axis direction guide rail 152 that extends in the X-axis direction perpendicular to the Z-axis direction in the vertical direction.
The X-axis direction guide rail 152 is fixed to the base 151, and an X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via the X-axis direction guide 154.
A cutting tool base 130A is mounted on the X-axis direction feed table 153.
 リニアサーボモータ155は可動子155aおよび固定子155bを有し、可動子155aはX軸方向送りテーブル153に設けられ、固定子155bはベース151に設けられている。
 X軸方向送りテーブル153がリニアサーボモータ155の駆動によってX軸方向ガイドレール152に沿ってX軸方向に移動すると、切削工具台130AがX軸方向に移動し、切削工具130がX軸方向に移動する。
 なお、Y軸方向送り機構を設けてもよい。
 Y軸方向は、図示のZ軸方向およびX軸方向に直交する方向である。
 前記Y軸方向送り機構は、X軸方向送り機構150と同様の構造とすることができる。
The linear servo motor 155 includes a mover 155a and a stator 155b. The mover 155a is provided on the X-axis direction feed table 153, and the stator 155b is provided on the base 151.
When the X-axis direction feed table 153 is moved in the X-axis direction along the X-axis direction guide rail 152 by driving the linear servo motor 155, the cutting tool base 130A is moved in the X-axis direction, and the cutting tool 130 is moved in the X-axis direction. Moving.
A Y-axis direction feed mechanism may be provided.
The Y-axis direction is a direction orthogonal to the illustrated Z-axis direction and X-axis direction.
The Y-axis direction feed mechanism can have the same structure as the X-axis direction feed mechanism 150.
 X軸方向送り機構150をY軸方向送り機構を介してベッドに搭載することにより、Y軸方向送りテーブルをリニアサーボモータの駆動によってY軸方向に移動させ、切削工具台130AをX軸方向に加えてY軸方向に移動させ、切削工具130をX軸方向およびY軸方向に移動させることができる。 By mounting the X-axis direction feed mechanism 150 on the bed via the Y-axis direction feed mechanism, the Y-axis direction feed table is moved in the Y-axis direction by driving the linear servo motor, and the cutting tool base 130A is moved in the X-axis direction. In addition, the cutting tool 130 can be moved in the X-axis direction and the Y-axis direction by moving in the Y-axis direction.
 前記Y軸方向送り機構を、X軸方向送り機構150を介してベッドに搭載し、前記Y軸方向送りテーブルに切削工具台130Aを搭載してもよい。 The Y-axis direction feed mechanism may be mounted on the bed via the X-axis direction feed mechanism 150, and the cutting tool table 130A may be mounted on the Y-axis direction feed table.
 刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)と前記主軸移動機構(Z軸方向送り機構160)とが協動し、X軸方向送り機構150とY軸方向送り機構によるX軸方向とY軸方向への切削工具台130Aの移動と、Z軸方向送り機構160による主軸台110A(主軸110)のZ軸方向への移動によって、切削工具台130Aに装着されている切削工具130は、ワークWに対して相対的に任意の加工送り方向に送られる。
 主軸110の回転、X軸方向送り機構150やZ軸方向送り機構160等の移動は、制御装置Cで制御される。
The turret moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism) and the main shaft moving mechanism (Z-axis direction feeding mechanism 160) cooperate with each other by the X-axis direction feeding mechanism 150 and the Y-axis direction feeding mechanism. The cutting mounted on the cutting tool table 130A by the movement of the cutting tool table 130A in the X-axis direction and the Y-axis direction and the movement of the main shaft table 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160. The tool 130 is fed in an arbitrary machining feed direction relative to the workpiece W.
The rotation of the main shaft 110 and the movement of the X-axis direction feed mechanism 150, the Z-axis direction feed mechanism 160, and the like are controlled by the control device C.
 前記主軸移動機構(Z軸方向送り機構160)と前記刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)とから構成される送り手段により、主軸110と切削工具台130Aとを相対的に移動させ、切削工具130を、ワークWに対して相対的に任意の加工送り方向に送ることによって、図2に示すように、ワークWは、前記切削工具130により任意の形状に切削加工される。 The main shaft 110 and the cutting tool base 130A are moved by the feeding means composed of the main shaft moving mechanism (Z-axis direction feeding mechanism 160) and the tool post moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism). By moving the cutting tool 130 in an arbitrary processing feed direction relative to the workpiece W, the workpiece W is cut into an arbitrary shape by the cutting tool 130 as shown in FIG. Processed.
 なお本実施形態においては、主軸台110Aと切削工具台130Aの両方を移動するように構成しているが、主軸台110Aを工作機械100のベッド側に移動しないように固定し、刃物台移動機構を、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
 この場合、前記送り手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
In the present embodiment, both the headstock 110A and the cutting tool base 130A are moved. However, the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool post moving mechanism. The cutting tool base 130A may be configured to move in the X-axis direction, the Y-axis direction, and the Z-axis direction.
In this case, the feeding means is composed of a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and is fixedly positioned and rotated relative to the main spindle 110. By moving the cutting tool base 130A, the cutting tool 130 can be processed and fed to the workpiece W.
 また切削工具台130Aを工作機械100のベッド側に移動しないように固定し、主軸移動機構を、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
 この場合、前記送り手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
Further, the cutting tool base 130A may be fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism may be configured to move the spindle base 110A in the X axis direction, the Y axis direction, and the Z axis direction. .
In this case, the feed means is composed of a spindle stock moving mechanism that moves the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction. By moving 110 </ b> A, the cutting tool 130 can be processed and fed with respect to the workpiece W.
 なお本実施形態においては、X軸方向送り機構150、Y軸方向送り機構、Z軸方向送り機構160は、リニアサーボモータによって駆動されるように構成されているが、従来公知のボールネジとサーボモータとによる駆動等とすることもできる。 In this embodiment, the X-axis direction feed mechanism 150, the Y-axis direction feed mechanism, and the Z-axis direction feed mechanism 160 are configured to be driven by a linear servo motor. However, conventionally known ball screws and servo motors are used. It is also possible to drive by.
 本実施形態においては、ワークWと切削工具130とを相対的に回転させる回転手段が、前記ビルトインモータ等の前記主軸モータによって構成され、ワークWと切削工具130との相対的な回転は、主軸110の回転駆動によって行われる。
 本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
 この場合切削工具130としてドリル等の回転工具が考えられる。
 主軸110の回転、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構は、制御装置Cが有する制御部C1を制御手段として、制御部C1によって駆動制御される。
 制御部C1は、各送り機構を反復的移動手段として、各々対応する移動方向に沿って第1速度での相対移動およびこの第1速度での相対移動と異なり第1速度より遅い第2速度での相対移動を繰り返して主軸110と切削工具130とを相対的に反復的移動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御するように予め設定されている。
In the present embodiment, the rotating means that relatively rotates the workpiece W and the cutting tool 130 is constituted by the main shaft motor such as the built-in motor, and the relative rotation between the work W and the cutting tool 130 is performed by the main shaft. The rotation is performed by 110.
In the present embodiment, the workpiece W is rotated with respect to the cutting tool 130. However, the cutting tool 130 may be rotated with respect to the workpiece W.
In this case, the cutting tool 130 may be a rotary tool such as a drill.
The rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are driven and controlled by the control unit C 1 using the control unit C 1 included in the control device C as control means.
Unlike the relative movement at the first speed and the relative movement at the first speed, the control unit C1 uses the feeding mechanisms as repetitive moving means at a second speed slower than the first speed. The spindle 110 and the cutting tool base 130A are controlled to move in the respective directions while the spindle 110 and the cutting tool 130 are relatively repetitively moved by repeating the relative movement.
 各送り機構は、制御部C1の制御により、図3に示すように、主軸110又は切削工具台130Aを、1回の反復的移動において、第1速度での相対移動として所定の前進量だけ各移動方向に前進移動してから第2速度での相対移動として各移動方向に停止し、その進行量だけ各移動方向に移動させ、協動してワークWに対して前記切削工具130を前記加工送り方向に送る。 As shown in FIG. 3, each feed mechanism is controlled by the control unit C <b> 1 to move the spindle 110 or the cutting tool base 130 </ b> A by a predetermined advance amount as a relative movement at the first speed in one repetitive movement. After moving forward in the moving direction, it stops in each moving direction as a relative movement at the second speed, is moved in each moving direction by the amount of advance, and cooperates to process the cutting tool 130 with respect to the workpiece W. Send in the feed direction.
 工作機械100は、図4に示すように、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130が前記加工送り方向に沿った反復的移動しながら、主軸1回転分当たりの量、すなわち、主軸位相0度から360度まで変化したとき当たりの量を送り量として、加工送り方向に送られることによって、ワークWの加工を行う。 As shown in FIG. 4, the machine tool 100 includes a Z-axis direction feed mechanism 160, an X-axis direction feed mechanism 150, and a Y-axis direction feed mechanism, while the cutting tool 130 moves repeatedly along the machining feed direction, The workpiece W is machined by being fed in the machining feed direction using the amount per rotation of the spindle, that is, the amount when the spindle phase changes from 0 degrees to 360 degrees as the feed amount.
 ワークWが回転した状態で、主軸台110A(主軸110)又は切削工具台130A(切削工具130)が、反復的移動しながら移動し、切削工具130によって、ワークWを所定の形状に外形切削加工する場合、ワークWの周面は、反復的移動の波形に沿った曲線状に切削される。
 なお曲線状の波形の谷を通過する仮想線(1点鎖線)において、主軸位相0度から360度まで変化したときの位置の変化量が、前記送り量を示す。
 図4に示されるように、ワークWの1回転当たりの主軸台110A(主軸110)又は切削工具台130Aの反復的移動の繰り返し回数Nが、1.5回(1回転当たりの反復的移動の繰り返し回数N=1.5)を例に説明する。
While the workpiece W is rotated, the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) moves while being repetitively moved, and the cutting tool 130 forms the outer shape of the work W into a predetermined shape. In this case, the peripheral surface of the workpiece W is cut into a curved shape along a waveform of repetitive movement.
In addition, in the virtual line (one-dot chain line) passing through the valley of the curved waveform, the change amount of the position when the main axis phase changes from 0 degree to 360 degrees indicates the feed amount.
As shown in FIG. 4, the repetition number N of the repetitive movement of the head stock 110A (main shaft 110) or the cutting tool base 130A per rotation of the workpiece W is 1.5 times (repetitive movement per rotation). The number of repetitions N = 1.5) will be described as an example.
 この場合、主軸110のn回転目(nは1以上の整数)とn+1回転目の切削工具130により旋削されるワークW周面形状の位相が、主軸位相方向(グラフの横軸方向)でずれる。
 このためn+1回転目の前記位相の谷(点線波形グラフの第1速度での相対移動から第2速度ゼロで停止に切り替わる図4上向きに凸の曲線部分)の位置が、n回転目の前記位相の谷(実線波形グラフの図4上向きに凸の曲線部分)の位置に対して、主軸位相方向でずれる。
In this case, the phase of the peripheral shape of the workpiece W to be turned by the n-th rotation (n is an integer of 1 or more) of the main shaft 110 and the n + 1-th cutting tool 130 is shifted in the main-axis phase direction (horizontal axis direction of the graph). .
For this reason, the position of the valley of the phase at the (n + 1) th rotation (the upwardly convex curve portion in FIG. 4 where the movement is switched from the relative movement at the first speed to the stop at the second speed in the dotted waveform graph) is the phase at the nth rotation. Is shifted in the main axis phase direction with respect to the position of the valley (curved portion protruding upward in FIG. 4 of the solid line waveform graph).
 これにより、n回転目の切削工具130の移動軌跡(実線波形グラフ)と、n+1回転目の切削工具130の移動軌跡(点線波形グラフ)との間の距離が、短くなる箇所が生じる。
 この箇所においては、ワークWから生じる切屑の幅が狭くなるため、この箇所で切粉が折れるように分断されやすくなる。
Thereby, the location where the distance between the movement locus (solid line waveform graph) of the cutting tool 130 at the nth rotation and the movement locus (dotted line waveform graph) of the cutting tool 130 at the (n + 1) th rotation is shortened occurs.
In this part, since the width of the chips generated from the workpiece W is narrowed, the chips are easily divided so that the chips are broken at this part.
 また、図5に示すように、図4の前進移動のような第1速度での相対移動と、第2速度での相対移動として図4の停止に代えて加工送り方向において第1速度での移動方向と同じ方向へ第1速度より遅い速度での移動とを繰り返してもよい。
 これにより、図4に示す反復的移動と比べて、送り量を多くして切削効率を高めることができる。
Further, as shown in FIG. 5, the relative movement at the first speed such as the forward movement of FIG. 4 and the relative movement at the second speed are replaced with the first speed in the machining feed direction instead of the stop of FIG. The movement at a speed slower than the first speed in the same direction as the movement direction may be repeated.
Thereby, compared with the repetitive movement shown in FIG. 4, it is possible to increase the feed amount and increase the cutting efficiency.
 図5に示すように、図4と同様、n回転目の切削工具130の移動軌跡(実線波形グラフ)と、n+1回転目の切削工具130の移動軌跡(点線波形グラフ)との間の距離が、短くなる箇所が生じる。
 この箇所においては、ワークWから生じる切屑の幅が狭くなるため、この箇所で切粉が折れるように分断されやすくなる。
 このように、本発明の反復的移動手段による反復的移動について、加工送り方向への第2速度はゼロでもよいし、第2速度での相対移動は、第1速度での相対移動と同じ向きでもよいし、また、第2速度での相対移動の方向を第1速度での相対移動の方向と逆向きにして加工送り方向への往復振動としてもよい。
As shown in FIG. 5, the distance between the movement locus (solid line waveform graph) of the n-th rotation cutting tool 130 and the movement locus (dotted line waveform graph) of the (n + 1) -th rotation cutting tool 130 is the same as in FIG. , The part which becomes short arises.
In this part, since the width of the chips generated from the workpiece W is narrowed, the chips are easily divided so that the chips are broken at this part.
As described above, for the repetitive movement by the repetitive movement means of the present invention, the second speed in the machining feed direction may be zero, and the relative movement at the second speed is in the same direction as the relative movement at the first speed. Alternatively, the direction of relative movement at the second speed may be opposite to the direction of relative movement at the first speed, and reciprocal vibration in the machining feed direction may be used.
 この往復振動の場合、制御部C1の制御により、ワーク周面のn+1回転目における復動時(第2速度での相対移動時)の切削工具130の軌跡を、ワーク周面のn回転目における切削工具130の軌跡まで到達させることにより、第1速度での相対移動時の切削加工部分と、第2速度での相対移動時の切削加工部分とが接する、すなわち、一部重複することが可能となる。
 これによって、1反復的移動において切削工具130の第1速度での相対移動時の切削加工部分に、第2速度での相対移動時の切削加工部分が理論上「点」として含まれ、第2速度での相対移動中に切削工具130がワークWから離れる空振り動作が「点」で生じることにより、切削加工時にワークWから生じる切屑は、前記空振り動作(第1速度での相対移動時の切削加工部分と、第2速度での相対移動時の切削加工部分とが接する点)によって順次分断される。
In the case of this reciprocating vibration, the trajectory of the cutting tool 130 at the time of backward movement (relative movement at the second speed) at the (n + 1) th rotation of the workpiece circumferential surface is controlled by the control unit C1 at the nth rotation of the workpiece circumferential surface. By reaching the trajectory of the cutting tool 130, the cutting portion at the time of relative movement at the first speed and the cutting portion at the time of relative movement at the second speed come into contact with each other, that is, it is possible to partially overlap. It becomes.
As a result, in the repetitive movement, the cutting part at the time of relative movement at the first speed of the cutting tool 130 includes the cutting part at the time of relative movement at the second speed as a theoretical “point”. Since the idle swinging operation in which the cutting tool 130 moves away from the workpiece W occurs at the “point” during the relative movement at the speed, the chips generated from the workpiece W at the time of the cutting are removed by the above-described swinging motion (the cutting at the relative movement at the first speed). The processing part and the cutting part at the time of relative movement at the second speed contact each other in order).
 なお、n回転目とn+1回転目との関係について、n回転目とn+1回転目のワークWにおける切削工具130により旋削される形状の位相が一致(同位相)とならなければよく、必ずしも180度反転させる必要はない。
 例えば1回転当たりの反復的移動の繰り返し回数Nは、1.1や1.25、2.6、3.75等とすることができる。
 ワークWの1回転で1回より少ない反復的移動(0<前記繰り返し回数N<1.0)を行うように設定することもできる。
 これにより、1反復的移動に対して1回転以上主軸110が回転する(多数回転に対して反復的移動の繰り返し回数が1回)。
As for the relationship between the n-th rotation and the n + 1-th rotation, the phases of the shapes turned by the cutting tool 130 on the workpiece W at the n-th rotation and the n + 1-th rotation do not have to be the same (same phase), and are not necessarily 180 degrees. There is no need to reverse it.
For example, the number N of repeated movements per rotation can be 1.1, 1.25, 2.6, 3.75, or the like.
It is also possible to set so that repetitive movement less than one time (0 <the number of repetitions N <1.0) is performed by one rotation of the workpiece W.
As a result, the main shaft 110 rotates by one or more rotations per one repetitive movement (the repetitive movement is repeated once for many rotations).
 工作機械100において、制御部C1による動作指令は、所定の指令周期で行われる。
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)の反復的移動は、前記指令周期に基づく所定の周波数で動作が可能となる。
 例えば、制御部C1によって1秒間に250回の指令を送ることが可能な工作機械100の場合、制御部C1による動作指令は、1÷250=4(ms)周期(基準周期)で行われる。
In the machine tool 100, the operation command by the control unit C1 is performed at a predetermined command cycle.
The repetitive movement of the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) can be operated at a predetermined frequency based on the command cycle.
For example, in the case of the machine tool 100 that can send a command 250 times per second by the control unit C1, the operation command by the control unit C1 is performed in a cycle of 1/250 = 4 (ms) (reference cycle).
 前記指令周期は前記基準周期に基づいて定まり、一般的には前記基準周期の整数倍となる。
 前記指令周期の値に応じた周波数で反復的移動を実行させることが可能となる。
 図6に示されるように、例えば前記基準周期(4(ms))の4倍の16(ms)を指令周期とすると、16(ms)毎に第1速度での相対移動と第2速度での相対移動とを実行させることになり、1÷(0.004×4)=62.5(Hz)で主軸台110A(主軸110)又は切削工具台130A(切削工具130)を反復的移動させることができる。
The command period is determined based on the reference period, and is generally an integer multiple of the reference period.
It becomes possible to execute repetitive movement at a frequency corresponding to the value of the command period.
As shown in FIG. 6, for example, when 16 (ms), which is four times the reference period (4 (ms)), is used as the command period, the relative movement at the first speed and the second speed are performed every 16 (ms). Relative movement of the spindle head 110A (spindle 110) or the cutting tool stage 130A (cutting tool 130) is repeatedly moved at 1 ÷ (0.004 × 4) = 62.5 (Hz). be able to.
 その他、1÷(0.004×5)=50(Hz),1÷(0.004×6)=41.666(Hz),1÷(0.004×7)=35.714(Hz),1÷(0.004×8)=31.25(Hz)等の複数の所定の飛び飛びの周波数でのみ、主軸台110A(主軸110)又は切削工具台130A(切削工具130)を反復的移動させることができる。 Others 1 ÷ (0.004 × 5) = 50 (Hz), 1 ÷ (0.004 × 6) = 41.666 (Hz), 1 ÷ (0.004 × 7) = 35.714 (Hz) , 1 ÷ (0.004 × 8) = 31.25 (Hz), etc., the headstock 110A (spindle 110) or the cutting tool base 130A (cutting tool 130) is repeatedly moved only at a plurality of predetermined jumping frequencies. Can be made.
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)の反復的移動の周波数(反復的移動周波数)f(Hz)は、上記周波数から選択される値に定まる。
 なお制御装置C(制御部C1)によっては、前記基準周期(4ms)の整数倍以外の倍数で指令周期を設定することができる。
 この場合、この指令周期に応じた周波数を反復的移動周波数fとすることができる。
The frequency (repetitive movement frequency) f (Hz) of the repetitive movement of the main spindle 110A (the main spindle 110) or the cutting tool base 130A (the cutting tool 130) is determined to a value selected from the above frequencies.
Depending on the control device C (control unit C1), the command cycle can be set by a multiple other than an integer multiple of the reference cycle (4 ms).
In this case, the frequency according to this command cycle can be set as the repetitive movement frequency f.
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)を反復的移動させる場合、主軸110の回転数をS(r/min)とすると、1回転当たりの反復的移動の繰り返し回数Nは、N=f×60/Sと定まる。
 図7に示すように、回転数Sと前記繰り返し回数Nとは、反復的移動周波数fを定数として反比例する。
 主軸110は、反復的移動周波数fを高くとるほど、また前記繰り返し回数Nを小さくするほど高速回転することができる。
When the spindle stock 110A (spindle 110) or the cutting tool stand 130A (cutting tool 130) is repeatedly moved, if the rotation speed of the spindle 110 is S (r / min), the number N of repeated movements per rotation is N. Is determined as N = f × 60 / S.
As shown in FIG. 7, the number of rotations S and the number of repetitions N are inversely proportional with the repetitive movement frequency f as a constant.
The main shaft 110 can rotate at a higher speed as the repetitive moving frequency f is increased and as the number N of repetitions is decreased.
 本実施例の工作機械100では、回転数Sと前記繰り返し回数Nと反復的移動周波数fとをパラメータとし、ユーザによって、3つのパラメータうちの回転数Sと前記繰り返し回数Nとの2つを、数値設定部C2等を介して制御部C1に設定することができるように構成されている。
 回転数S又は前記繰り返し回数Nの制御部C1への設定は、回転数S又は前記繰り返し回数Nの値を、制御部C1にパラメータ値として入力することができる他、例えば回転数Sや前記繰り返し回数Nの値を加工プログラムに記載して設定したり、プログラムブロック(プログラムの1行)において前記繰り返し回数Nを引数として設定したりすることができる。
In the machine tool 100 of the present embodiment, the rotational speed S, the number of repetitions N, and the repetitive movement frequency f are used as parameters, and the user sets two of the rotational speed S and the number of repetitions N of the three parameters by the user. The control unit C1 can be set via the numerical value setting unit C2 or the like.
The setting of the number of revolutions S or the number of repetitions N to the control unit C1 can be performed by inputting the number of revolutions S or the value of the number of repetitions N as a parameter value to the control unit C1, for example, the number of revolutions S or the number of repetitions. The value of the number of times N can be set and described in a machining program, or the number of times of repetition N can be set as an argument in a program block (one line of the program).
 特に前記繰り返し回数Nを加工プログラムのプログラムブロックにおいて引数として設定することができるように、設定手段を構成すると、一般的に加工プログラム上に記載される主軸110の回転数Sと、プログラムブロックでの引数として記載される前記繰り返し回数Nとによって、加工プログラムから容易に回転数Sと前記繰り返し回数Nとをユーザが設定することができる。
 なお、前記設定手段による設定は、プログラムによるものでもよいし、ユーザが数値設定部C2を介して設定するものでもよい。
In particular, if the setting means is configured so that the number of repetitions N can be set as an argument in the program block of the machining program, the rotation speed S of the spindle 110 generally described on the machining program and the program block A user can easily set the number of rotations S and the number of repetitions N from the machining program based on the number of repetitions N described as an argument.
The setting by the setting means may be made by a program, or may be set by the user via the numerical value setting unit C2.
 また周速とワーク径を、加工プログラム等を介して設定入力することができるように構成し、前記周速とワーク径に基づき回転数Sを算出させて設定することもできる。
 加工プログラム等を介して設定入力される周速とワーク径とに基づき回転数Sを算出するように、前記設定手段を構成することで、ワークWの材質や切削工具130の種類や形状、材質等に応じて定められる周速に応じて、ユーザが意識することなく容易に回転数Sを設定することができる。
Further, the peripheral speed and the workpiece diameter can be set and inputted via a machining program or the like, and the rotational speed S can be calculated and set based on the peripheral speed and the workpiece diameter.
By configuring the setting means so as to calculate the rotational speed S based on the peripheral speed set and inputted through a machining program or the like and the workpiece diameter, the material of the workpiece W, the type, shape, and material of the cutting tool 130 are configured. The rotation speed S can be easily set without the user being aware of the peripheral speed determined according to the above.
 制御部C1は、設定された回転数Sと前記繰り返し回数Nとに基づき、この回転数Sで主軸110を回転させ、この前記繰り返し回数Nで切削工具130が前記加工送り方向に沿って反復的移動しながら加工送り方向に送られるように、主軸台110Aまたは切削工具台130Aを反復的移動しながら移動させるように制御する。 The control unit C1 rotates the spindle 110 at the rotation speed S based on the set rotation speed S and the repetition number N, and at this repetition number N, the cutting tool 130 is repetitively along the machining feed direction. Control is performed so that the head stock 110A or the cutting tool base 130A is moved while being repetitively moved so as to be fed in the machining feed direction while moving.
 ただし回転数Sと前記繰り返し回数Nは前述のように反復的移動周波数fに起因して定まるため、制御部C1は、設定された回転数Sと前記繰り返し回数Nとを反復的移動周波数fに基づいて補正する補正手段を備える。
 補正手段は、反復的移動周波数fを、N=60f/Sに基づいて、設定された前記繰り返し回数Nと回転数Sから算出される値に近い値を持つものに設定し、設定された反復的移動周波数fによって、前記繰り返し回数Nと回転数Sとをそれぞれ設定された値に近い値に補正するように構成することができる。
However, since the rotation speed S and the repetition number N are determined due to the repetitive movement frequency f as described above, the control unit C1 sets the set rotation speed S and the repetition number N to the repetitive movement frequency f. Correction means for correcting based on this is provided.
The correcting means sets the repetitive moving frequency f to a value having a value close to a value calculated from the set number of repetitions N and the number of rotations S based on N = 60 f / S, The number of repetitions N and the number of revolutions S can be corrected to values close to the set values according to the target moving frequency f.
 例えば、ユーザによって、S=3000(r/min)、N=1.5と設定されたとする。
 この場合、S=3000(r/min)、N=1.5から反復的移動周波数の値が75(Hz)となるため、補正手段は、例えば、反復的移動周波数f=62.5(Hz)に設定する。
 補正手段は、設定された反復的移動周波数(62.5Hz)に基づき、例えば、回転数S(3000(r/min))を維持して前記繰り返し回数N=1.25と補正したり、前記繰り返し回数N(1.5)を維持して回転数S=2500(r/min)と補正したりする。
 また反復的移動周波数f=50(Hz)に設定し、回転数S=2400(r/min)、前記繰り返し回数N=1.25と両方を補正することもできる。
For example, assume that the user sets S = 3000 (r / min) and N = 1.5.
In this case, since the value of the repetitive moving frequency is 75 (Hz) from S = 3000 (r / min) and N = 1.5, the correcting means is, for example, the repetitive moving frequency f = 62.5 (Hz). ).
Based on the set repetitive movement frequency (62.5 Hz), for example, the correction means maintains the rotation speed S (3000 (r / min)) and corrects the number of repetitions N = 1.25, The number of rotations N (1.5) is maintained and the number of revolutions S is corrected to 2500 (r / min).
It is also possible to correct both the repetitive movement frequency f = 50 (Hz), the rotational speed S = 2400 (r / min), and the number of repetitions N = 1.25.
 補正手段による回転数Sと前記繰り返し回数Nとの補正によって、設定手段により設定された前記繰り返し回数Nと回転数Sとに基づいた条件で、工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130を前記加工送り方向に沿った反復的移動させながら加工送り方向に送り、切屑を分断しながら又は切屑を分断されやすくしながら、ワークWの切削加工を円滑に行うことができ、場合によっては、例えば切削工具130の寿命を延長させることも可能となる。
 これによりユーザが意図した回転数Sおよび前記繰り返し回数Nに比較的近い条件でワークWの加工を行うことができる。
Under the condition based on the number of repetitions N and the number of rotations S set by the setting unit by correcting the number of rotations S and the number of repetitions N by the correcting unit, the machine tool 100 can perform the Z-axis direction feed mechanism 160, X The axial feed mechanism 150 and the Y-axis direction feed mechanism feed the cutting tool 130 in the machining feed direction while repetitively moving along the machining feed direction, while cutting the chips or making the chips easy to cut. The cutting of W can be performed smoothly, and in some cases, for example, the life of the cutting tool 130 can be extended.
As a result, the workpiece W can be machined under conditions relatively close to the rotational speed S and the number of repetitions N intended by the user.
 この際、加工条件等に応じて、回転数Sや前記繰り返し回数Nのいずれかを優先して補正したり、両方を補正したりして、補正条件を変更することもできる。
 なお前記設定手段によって使用する反復的移動周波数fを予めユーザ側において設定し、設定された反復的移動周波数fに応じて、前記繰り返し回数Nや回転数Sを補正するように構成することもできる。
At this time, the correction condition can be changed by preferentially correcting either the rotation speed S or the number of repetitions N or correcting both according to the processing conditions.
The repetitive movement frequency f used by the setting means may be set in advance on the user side, and the repetition number N and the rotation speed S may be corrected according to the set repetitive movement frequency f. .
 この場合、制御部C1を特に安定した制御状態として、切削工具130を前記加工送り方向に沿った反復的移動させながら加工送り方向に送り、切屑を分断しながら又は切屑を分断されやすくしながら、ワークWの外形切削加工を円滑に且つ安定的に行わせることができる。 In this case, with the control unit C1 being in a particularly stable control state, the cutting tool 130 is repeatedly moved along the processing feed direction while being fed in the processing feed direction, while cutting the chips or making the chips easy to be cut, The external cutting of the workpiece W can be performed smoothly and stably.
 一方加工のサイクルタイムを縮めるためには、主軸110の回転をできるだけ高速に設定することが望ましい。
 このためには、反復的移動周波数fをできる限り高くする必要があるが、安定制御等の観点から必要以上に高く設定することは容易ではない。
 このため前記繰り返し回数Nをできる限り小さくすることで、回転数Sを可能な限り大きくすることが可能となる。
On the other hand, in order to shorten the machining cycle time, it is desirable to set the rotation of the spindle 110 as fast as possible.
For this purpose, it is necessary to make the repetitive movement frequency f as high as possible, but it is not easy to set it higher than necessary from the viewpoint of stable control and the like.
For this reason, it is possible to increase the number of revolutions S as much as possible by making the number of repetitions N as small as possible.
 この際、1反復的移動当たりの主軸110の回転数Sで前記繰り返し回数Nを設定するように前記設定手段を構成することによって、容易に回転数Sを上昇させる設定を行うことができる。
 1反復的移動当たりの主軸110の回転数Sが1回以上に設定され、前記繰り返し回数Nが0より大きい1未満の数に設定されることによって、主軸110を高速回転させることが可能となる。
 ただし、分断される切屑の長さは比較的長くなるため、前記繰り返し回数Nは、前記加工に悪影響が出ない程度に設定する必要がある。
At this time, by setting the setting means so as to set the number of repetitions N with the number of rotations S of the spindle 110 per one repetitive movement, the setting for increasing the number of rotations S can be easily performed.
By setting the number of rotations S of the main shaft 110 per one repetitive movement to 1 or more and setting the number of repetitions N to a number greater than 0 and less than 1, the main shaft 110 can be rotated at high speed. .
However, since the length of the chips to be divided becomes relatively long, the number of repetitions N needs to be set to such an extent that the processing is not adversely affected.
 なお、本実施例では、3つのパラメータうち前記繰り返し回数Nや回転数Sを、数値設定部C2等を介して制御部C1に設定するように構成したが、例えば、予め繰り返し回数Nを所定の値に固定して、入力不要にしておき、3つのパラメータうち1つとして回転数Sのみをユーザが設定して、この回転数Sと前記繰り返し回数Nとに応じて反復的移動周波数fを設定し、回転数S又は前記繰り返し回数Nを補正するようにしてもよい。 In the present embodiment, the number of repetitions N and the number of rotations S among the three parameters are configured to be set in the control unit C1 via the numerical value setting unit C2 or the like. The value is fixed and no input is required, the user sets only the rotation speed S as one of the three parameters, and the repetitive movement frequency f is set according to the rotation speed S and the repetition number N. Then, the rotation speed S or the number of repetitions N may be corrected.
 さらに、3つのパラメータうち1つとして回転数Sのみをユーザが設定する場合、制御部C1を、設定された回転数Sに対して各反復的移動周波数に対応する振動数を各反復的移動周波数毎に算出し、設定された回転数Sを補正することなく、切削工具130の前記往復振動によって切屑が分断されるような繰り返し回数Nを設定するように構成することもできる。
 この場合、制御部C1は、ユーザによって設定された回転数Sに対して、制御部C1が設定した繰り返し回数Nとなる反復的移動周波数fで、切削工具130の前記往復振動を実行する。ただし、ユーザによって設定された回転数Sや動作可能な反復的移動周波数によって、前記のように切屑が分断されるような繰り返し回数Nの設定が困難な場合は、制御部C1によって、前記往復振動の振幅を、切屑が分断されるような値に調節設定するように構成することもできる。
Further, when the user sets only the rotation speed S as one of the three parameters, the control unit C1 sets the vibration frequency corresponding to each repetitive movement frequency with respect to the set rotation speed S. It is also possible to set the number of repetitions N so that the chips are divided by the reciprocating vibration of the cutting tool 130 without correcting the set rotation speed S.
In this case, the control unit C1 executes the reciprocating vibration of the cutting tool 130 at a repetitive moving frequency f that is the number of repetitions N set by the control unit C1 with respect to the rotation speed S set by the user. However, if it is difficult to set the number of repetitions N such that the chips are divided as described above due to the rotational speed S set by the user or the repetitive moving frequency that can be operated, the reciprocating vibration is performed by the control unit C1. It is also possible to configure so that the amplitude of is adjusted to a value such that chips are divided.
 また、制御部C1の補正手段を、設定された回転数Sを反復的移動周波数fに基づいて補正するように構成し、図8に示すように、制御部C1が、主軸1回転当たりの反復的移動の反復的移動数N1、N2、N3…と、動作指令が可能な周期に起因する反復的移動周波数f1、f2、f3…とに対応する主軸110の回転数S11、S12、S13…、S21…、S31…のテーブルを有して、補正手段が、ユーザによって設定された回転数Sの値を、前記テーブル内の回転数Sの値に補正するようにしてもよい。 Further, the correction means of the control unit C1 is configured to correct the set rotational speed S based on the repetitive movement frequency f, and as shown in FIG. 8, the control unit C1 performs the repetition per one rotation of the main shaft. The rotational speeds S11, S12, S13,... Of the main shaft 110 corresponding to the repetitive movement numbers N1, N2, N3,..., And the repetitive movement frequencies f1, f2, f3,. .., S31... May be provided, and the correction means may correct the value of the rotation speed S set by the user to the value of the rotation speed S in the table.
100 ・・・ 工作機械
110 ・・・ 主軸
110A・・・ 主軸台
120 ・・・ チャック
130 ・・・ 切削工具
130A・・・ 切削工具台
150 ・・・ X軸方向送り機構
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
C   ・・・ 制御装置
C1  ・・・ 制御部
C2  ・・・ 数値設定部
W   ・・・ ワーク
DESCRIPTION OF SYMBOLS 100 ... Machine tool 110 ... Spindle 110A ... Spindle 120 ... Chuck 130 ... Cutting tool 130A ... Cutting tool stand 150 ... X-axis direction feed mechanism 151 ... Base 152 ... X-axis direction guide rail 153 ... X-axis direction feed table 154 ... X-axis direction guide 155 ... Linear servo motor 155a ... Movable element 155b ... Stator 160 ... Z-axis Direction feed mechanism 161 ... Base 162 ... Z-axis direction guide rail 163 ... Z-axis direction feed table 164 ... Z-axis direction guide 165 ... Linear servo motor 165a ... Movable element 165b ...・ Stator C ・ ・ ・ Control device C1 ・ ・ ・ Control part C2 ・ ・ ・ Numerical value setting part W ・ ・ ・ Workpiece

Claims (9)

  1.  ワークを切削加工する切削工具と、該切削工具とワークとを相対的に回転させる回転手段と、前記切削工具とワークとを所定の加工送り方向に送り動作させる送り手段と、互いに異なる第1速度と第2速度での相対的な移動を繰り返して前記切削工具とワークとを相対的に反復的移動させる反復的移動手段とを備えた工作機械に設けられ、
     前記切削工具とワークとの相対的な回転と、前記ワークに対する前記切削工具の往復振動を伴う送り動作とによって、前記工作機械に前記ワークの加工を実行させる制御手段を有する工作機械の制御装置において、
     前記制御手段が、動作指令が可能な周期に起因する反復的移動周波数に応じて、前記ワークの加工を実行する際の前記相対的な回転の回転数と、前記相対的な回転の1回転当たりの前記反復的移動の繰り返し回数とを定める工作機械の制御装置。
    A cutting tool for cutting a workpiece, a rotating means for relatively rotating the cutting tool and the workpiece, a feed means for feeding the cutting tool and the workpiece in a predetermined machining feed direction, and different first speeds And a repetitive moving means for relatively repetitively moving the cutting tool and the workpiece by repeating relative movement at the second speed, and provided in a machine tool,
    In a machine tool control device having control means for causing the machine tool to process the workpiece by a relative rotation between the cutting tool and the workpiece and a feed operation involving reciprocal vibration of the cutting tool with respect to the workpiece. ,
    According to the repetitive moving frequency resulting from the period in which the operation command can be issued, the control means performs the rotation of the relative rotation when performing machining of the workpiece, and per rotation of the relative rotation. A machine tool control device for determining the number of repetitive movements.
  2.  前記反復的移動手段を、前記加工送り方向に沿って、前記切削工具とワークとを相対的に反復的移動させる構成とした請求項1に記載の工作機械の制御装置。 2. The machine tool control device according to claim 1, wherein the repetitive movement means is configured to relatively repetitively move the cutting tool and the workpiece along the machining feed direction.
  3.  前記ワークの加工を実行する際の前記相対的な回転の回転数と、前記相対的な回転の1回転当たりの前記反復的移動の繰り返し回数と、前記反復的移動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段と、
     未設定のパラメータを所定の値に定め、該パラメータの値に基づいて、前記設定手段によって設定されたパラメータの値を補正する補正手段とを設けた請求項1または請求項2に記載の工作機械の制御装置。
    The number of rotations of the relative rotation when performing machining of the workpiece, the number of repetitions of the repetitive movement per rotation of the relative rotation, and the repetitive movement frequency are parameters, and at least 1 A setting means for setting the values of two parameters;
    The machine tool according to claim 1 or 2, further comprising: a correcting unit that sets an unset parameter to a predetermined value and corrects the parameter value set by the setting unit based on the parameter value. Control device.
  4.  前記第1速度が、前記第2速度に対して大きく設定された請求項1乃至請求項3のいずれか1つに記載の工作機械の制御装置。 The machine tool control device according to any one of claims 1 to 3, wherein the first speed is set to be larger than the second speed.
  5.  前記反復的移動手段を、前記第1速度での相対移動時の切削加工部分と、前記第2速度での相対移動時の切削加工部分とが重複するように、前記切削工具とワークとを相対的に反復的移動させる構成とした請求項4に記載の工作機械の制御装置。 The repetitive moving means moves the cutting tool and the workpiece relative to each other so that a cutting portion at the time of relative movement at the first speed overlaps with a cutting portion at the time of relative movement at the second speed. The machine tool control device according to claim 4, wherein the control device is configured to repetitively move.
  6.  前記補正手段が、前記反復的移動周波数に基づいた定数で、前記回転数と前記繰り返し回数とが反比例するように、未設定のパラメータを所定の値に定めるとともに、設定されたパラメータの値を補正するように構成された請求項3乃至請求項5のいずれか1つに記載の工作機械の制御装置。 The correction means is a constant based on the repetitive moving frequency, and sets an unset parameter to a predetermined value and corrects the set parameter value so that the rotation speed and the repetition count are inversely proportional to each other. 6. The machine tool control device according to claim 3, wherein the machine tool control device is configured to perform the control.
  7.  前記設定手段により設定されるパラメータを前記回転数とし、
     前記補正手段が、前記繰り返し回数を予め定められた複数の所定の値に定め、前記反復的移動周波数を、前記制御装置が固有に備える所定の値に定め、前記設定手段によって設定された前記回転数の値を、各繰り返し回数の値と定められた反復的移動周波数とに基づき補正するように構成された請求項3乃至請求項6のいずれか1つに記載の工作機械の制御装置。
    The parameter set by the setting means is the rotation speed,
    The correction means sets the number of repetitions to a predetermined number of predetermined values, sets the repetitive movement frequency to a predetermined value inherent in the control device, and sets the rotation set by the setting means The machine tool control device according to any one of claims 3 to 6, wherein the number value is corrected based on a value of each number of repetitions and a predetermined repetitive movement frequency.
  8.  前記設定手段により設定されるパラメータを、前記回転数と前記繰り返し回数とし、
     前記補正手段が、設定された前記回転数と前記繰り返し回数を、前記反復的移動周波数に基づいて定まる前記回転数と前記繰り返し回数の値に補正するように構成された請求項3乃至請求項6のいずれか1つに記載の工作機械の制御装置。
    The parameters set by the setting means are the number of rotations and the number of repetitions,
    The said correction | amendment means is comprised so that it may correct | amend the said rotation speed and the said repetition frequency which were set to the value of the said rotation frequency and the said repetition frequency determined based on the said repetitive movement frequency. The machine tool control device according to any one of the above.
  9.  請求項1乃至請求項8のいずれか1つに記載の制御装置を備えた工作機械。
     
    A machine tool comprising the control device according to any one of claims 1 to 8.
PCT/JP2016/076233 2015-09-24 2016-09-07 Machine tool control device, and machine tool equipped with said control device WO2017051705A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680055296.4A CN108025413B (en) 2015-09-24 2016-09-07 Control device for machine tool and machine tool provided with same
JP2017541505A JP6783238B2 (en) 2015-09-24 2016-09-07 Machine tool control device and machine tool equipped with this control device
KR1020187009267A KR102623128B1 (en) 2015-09-24 2016-09-07 Control device for machine tools and machine tools equipped with this control device
EP16848493.9A EP3354402B1 (en) 2015-09-24 2016-09-07 Machine tool control device, and machine tool equipped with said control device
US15/761,595 US10744611B2 (en) 2015-09-24 2016-09-07 Machine tool control device and machine tool equipped with said control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187072 2015-09-24
JP2015-187072 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051705A1 true WO2017051705A1 (en) 2017-03-30

Family

ID=58386561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076233 WO2017051705A1 (en) 2015-09-24 2016-09-07 Machine tool control device, and machine tool equipped with said control device

Country Status (7)

Country Link
US (1) US10744611B2 (en)
EP (1) EP3354402B1 (en)
JP (1) JP6783238B2 (en)
KR (1) KR102623128B1 (en)
CN (1) CN108025413B (en)
TW (1) TWI697379B (en)
WO (1) WO2017051705A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843314B1 (en) * 2019-09-11 2021-03-17 三菱電機株式会社 Numerical control device, numerical control method and machine learning device
JPWO2021153483A1 (en) * 2020-01-28 2021-08-05
WO2022075178A1 (en) * 2020-10-05 2022-04-14 ファナック株式会社 Numerical control device that controls relative positional relationship between working tool and workpiece

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199271B1 (en) * 2014-09-22 2020-08-12 Citizen Watch Co., Ltd. Machine tool and control device for machine tool
JP6991774B2 (en) * 2017-08-01 2022-01-13 シチズン時計株式会社 Machine tool controls and machine tools
JP7156897B2 (en) * 2018-10-10 2022-10-19 シチズン時計株式会社 Machine Tools
JP7264643B2 (en) * 2019-01-10 2023-04-25 シチズン時計株式会社 Machine tool controls and machine tools
TWI739468B (en) * 2020-06-09 2021-09-11 新代科技股份有限公司 Chip breaking control system and the control method thereof
TWI739469B (en) * 2020-06-09 2021-09-11 新代科技股份有限公司 Thread processing chip breaking control system and the control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069459A1 (en) * 2003-02-06 2004-08-19 Mitsubishi Denki Kabushiki Kaisha Threading control method and controller
JP2006312223A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Cutting apparatus and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197172B1 (en) * 1985-04-09 1988-07-27 Wilhelm Hegenscheidt Gesellschaft mbH Device to obtain broken chips during the machining of work pieces
JP2510980B2 (en) * 1985-10-21 1996-06-26 株式会社安川電機 Screw cutting control method
JPH0569275A (en) * 1991-09-12 1993-03-23 Fanuc Ltd Numerical control device
JP3038160B2 (en) * 1996-12-10 2000-05-08 ファナック株式会社 Re-threading method for lathe
DE19900117A1 (en) * 1999-01-05 2000-07-06 Walter Ag Virtual teach-in system
JP2002144101A (en) * 2000-11-02 2002-05-21 Canon Inc Vibration cutting apparatus and method
US7508116B2 (en) * 2005-09-07 2009-03-24 Panasonic Corporation Method and apparatus for vibration machining with two independent axes
US8240234B2 (en) * 2007-10-16 2012-08-14 University Of North Carolina At Charlotte Methods and systems for chip breaking in turning applications using CNC toolpaths
CN101866163B (en) * 2007-11-02 2014-09-10 株式会社牧野铣床制作所 Numerical control machine tool and numerical control device
US9110459B2 (en) * 2008-07-10 2015-08-18 Citizen Machinery Co., Ltd. Interference check device, interference check method, and machine tool having the interference check device
TWM350420U (en) * 2008-10-29 2009-02-11 Tong Tai Machine & Amp Tool Co Ltd Mechanism for increasing moving speed and machine tool with the same
DE102011077568B4 (en) * 2011-06-15 2023-12-07 Dmg Mori Ultrasonic Lasertec Gmbh Machine tool, workpiece machining process
JP5033929B1 (en) * 2011-11-10 2012-09-26 ハリキ精工株式会社 Machine Tools
TW201321125A (en) * 2011-11-25 2013-06-01 Metal Ind Res & Dev Ct High-frequency oscillation spindle device
JP5139591B1 (en) 2012-09-12 2013-02-06 ハリキ精工株式会社 Machine Tools

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069459A1 (en) * 2003-02-06 2004-08-19 Mitsubishi Denki Kabushiki Kaisha Threading control method and controller
JP2006312223A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Cutting apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354402A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843314B1 (en) * 2019-09-11 2021-03-17 三菱電機株式会社 Numerical control device, numerical control method and machine learning device
JPWO2021153483A1 (en) * 2020-01-28 2021-08-05
WO2021153483A1 (en) * 2020-01-28 2021-08-05 ファナック株式会社 Machine tool control device
JP7324316B2 (en) 2020-01-28 2023-08-09 ファナック株式会社 machine tool controller
WO2022075178A1 (en) * 2020-10-05 2022-04-14 ファナック株式会社 Numerical control device that controls relative positional relationship between working tool and workpiece

Also Published As

Publication number Publication date
JPWO2017051705A1 (en) 2018-07-12
US20180345434A1 (en) 2018-12-06
KR20180055839A (en) 2018-05-25
TW201711793A (en) 2017-04-01
EP3354402A1 (en) 2018-08-01
TWI697379B (en) 2020-07-01
US10744611B2 (en) 2020-08-18
EP3354402B1 (en) 2024-04-17
JP6783238B2 (en) 2020-11-11
CN108025413B (en) 2020-09-18
EP3354402A4 (en) 2019-06-05
CN108025413A (en) 2018-05-11
KR102623128B1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP6416217B2 (en) Machine tool control device and machine tool equipped with the control device
JP7304315B2 (en) Machine tools and controllers for these machine tools
WO2017051705A1 (en) Machine tool control device, and machine tool equipped with said control device
JP7096227B2 (en) Machine tool and control device for this machine tool
WO2017051745A1 (en) Machine tool control device, and machine tool equipped with said control device
JP6416218B2 (en) Machine tool control device and machine tool equipped with the control device
JP6470085B2 (en) Machine tool and control device for this machine tool
JP6297711B2 (en) Machine tool and control device for this machine tool
WO2018181447A1 (en) Control device for machine tool and machine tool
JP6289766B2 (en) Machine tool control device, machine tool
WO2016152768A1 (en) Machine tool and control device for said machine tool
JP6517060B2 (en) Machine tool and control device for the machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009267

Country of ref document: KR

Kind code of ref document: A