WO2017051654A1 - Ringing suppression circuit - Google Patents

Ringing suppression circuit Download PDF

Info

Publication number
WO2017051654A1
WO2017051654A1 PCT/JP2016/074732 JP2016074732W WO2017051654A1 WO 2017051654 A1 WO2017051654 A1 WO 2017051654A1 JP 2016074732 W JP2016074732 W JP 2016074732W WO 2017051654 A1 WO2017051654 A1 WO 2017051654A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
terminal
flip
flop
fet
Prior art date
Application number
PCT/JP2016/074732
Other languages
French (fr)
Japanese (ja)
Inventor
卓矢 本田
磯村 博文
岸上 友久
寛之 森
森 康裕
佑樹 堀井
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016080325A external-priority patent/JP6336506B2/en
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to DE112016004308.2T priority Critical patent/DE112016004308B4/en
Priority to CN201680051456.8A priority patent/CN107950006B/en
Priority to US15/748,749 priority patent/US10164620B1/en
Publication of WO2017051654A1 publication Critical patent/WO2017051654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present disclosure relates to a ringing suppression circuit connected to a transmission line that transmits a differential signal.
  • Patent Document 1 discloses a technology for suppressing ringing by matching impedance only for a certain period that does not affect communication when the voltage level of a transmission line transitions between low and high as shown in FIG. Yes.
  • CAN Controller Area Network, registered trademark
  • low level and high level differential signals that is, data bits are referred to as recessive and dominant, respectively.
  • FIG. 23 it is assumed that the ringing waveform changes with a large amplitude of (1) dominant ⁇ (2) recessive ⁇ (3) dominant ⁇ (4) recessive.
  • the ringing suppression operation is started in response to the first change from (1) to (2), and when the predetermined time has elapsed, the suppression operation is stopped in the next (3). Then, the ringing suppression operation is restarted in response to the next change to (4). For this reason, the time from the start of the first suppression operation in (2) to the stop after (4) is prolonged. Therefore, if the next bit; dominant is transmitted during the suppression operation, the current is drawn and the signal waveform is distorted.
  • This disclosure is intended to provide a ringing suppression circuit that can always perform a ringing suppression operation according to a level change of a differential signal for a certain period of time.
  • a pair of high-potential side signal lines and low-potential side signal lines are connected to a transmission line that transmits a differential signal that changes to a binary level of high and low
  • a ringing suppression circuit that suppresses ringing that occurs during transmission detects an interline switching element connected between the pair of signal lines, and detects that the level of the differential signal has changed from high to low.
  • a control unit that turns on the switching element to fix the on state and releases the on state after measuring a predetermined time.
  • the line switching element when the control unit detects that the level of the differential signal has changed from high to low, the line switching element is turned on to fix the state, and after measuring a certain time, The on state is released.
  • the line switching element once the line switching element is turned on according to the level change of the differential signal, the state is fixed. Therefore, even if the level change of the differential signal occurs again thereafter, it is affected. Without any problem, the line-to-line switching element reliably maintains the ON state for a certain period of time. Thereby, it is possible to prevent the ringing suppression period from being unnecessarily prolonged and to perform signal transmission stably.
  • FIG. 1 is a diagram illustrating a configuration of a ringing suppression circuit according to the first embodiment.
  • FIG. 2 is an operation state transition diagram (part 1).
  • FIG. 3 is a transition diagram (part 2) of the operating state.
  • FIG. 4 is an operation state transition diagram (part 3).
  • FIG. 5 is an operation state transition diagram (Part 4).
  • FIG. 6 is an operation timing chart (part 1).
  • FIG. 7 is an operation timing chart (part 2).
  • FIG. 8 is an operation timing chart (part 3).
  • FIG. 9 is an operation timing chart corresponding to a part of FIG. 8 in the case of the configuration of Patent Document 1.
  • FIG. 1 is a diagram illustrating a configuration of a ringing suppression circuit according to the first embodiment.
  • FIG. 2 is an operation state transition diagram (part 1).
  • FIG. 3 is a transition diagram (part 2) of the operating state.
  • FIG. 4 is an operation state transition diagram (part 3).
  • FIG. 5 is an operation state transition diagram (Part 4).
  • FIG. 10 is a diagram illustrating a configuration of a ringing suppression circuit according to the second embodiment.
  • FIG. 11 is an operation timing chart (part 1).
  • FIG. 12 is an operation timing chart (part 2).
  • FIG. 13 is an operation timing chart (part 3).
  • FIG. 14 is a diagram showing a configuration of the ringing suppression circuit according to the third embodiment.
  • FIG. 15 is a diagram showing the configuration of the ringing suppression circuit according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating a configuration of a ringing suppression circuit according to the fifth embodiment.
  • FIG. 17 is a diagram illustrating a configuration of a ringing suppression circuit according to the sixth embodiment.
  • FIG. 18 is a diagram (part 1) illustrating another configuration of the line-to-line switching element; FIG.
  • FIG. 19 is a diagram (part 2) illustrating another configuration of the line switching element;
  • FIG. 20 is a diagram (part 3) illustrating another configuration of the line switching element;
  • FIG. 21 is a diagram (part 4) illustrating another configuration of the line switching element;
  • FIG. 22 is an operation timing chart corresponding to a part of FIG. 11 in the case of the configuration of Patent Document 1.
  • FIG. 23 is an operation timing chart corresponding to a part of FIG.
  • a communication bus 1 corresponding to a transmission line includes a high-potential side signal line 1H and a low-potential side signal line 1L.
  • the low-potential side signal line 1L includes five N-channel MOSFET_N0 to N4 sources. Is connected.
  • the drain of FET_N4, which is a line switching element, is connected to the high potential side signal line 1H.
  • the drain of the FET_N0 is connected to the high potential side signal line 1H via the resistance element R0, and is connected to the gates of the FET_N1 and N3.
  • FET_N0 to N3 correspond to first to fourth switching elements.
  • the source of the FET corresponds to a potential reference side conduction terminal
  • the drain corresponds to a non-reference side conduction terminal
  • the gate corresponds to a conduction control terminal.
  • the source of the P-channel MOSFET_P1 and P2 is connected to the power supply line 2 to which the power supply VCC is supplied, and the drain of the FET_P1 is connected to the drain of the FET_N1 and the gate of the FET_N2 through the resistance element R1.
  • FET_P1 and P2 correspond to the fifth and sixth switching elements.
  • the drain of the FET_P2 is connected to the gate of the FET_N0, the drains of the FET_N2 and N3, and the gate of the FET_N4 through the resistance element R2.
  • a series circuit of a resistance element R3 and an N-channel MOSFET_N6 is connected between the power supply line 2 and the low potential side signal line 1L, and the gate of the FET_N6 is connected to the gate of the FET_N0.
  • a series circuit of resistance elements R4 and R5 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to a non-inverting input terminal of the comparator COMP1.
  • the inverting input terminal of the comparator COMP1 is connected to the drain of the FET_N6.
  • FET_N6 corresponds to a detection switching element.
  • the output terminal of the comparator COMP1 is connected to the clock terminal C of the D flip-flop FF1 corresponding to the second flip-flop.
  • the resistance elements R3 to R5, FET_N6, and the comparator COMP1 constitute an ON confirmation circuit 3 corresponding to the second set signal output unit.
  • a series circuit of resistance elements R6 to R8 is connected between the high potential side signal line 1H and the low potential side signal line 1L, and the common connection point of the resistance elements R6 and R7 is a non-inverting input terminal of the comparator COMP2.
  • the common connection point of the resistance elements R7 and R8 is connected to the inverting input terminal.
  • the output terminal of the comparator COMP2 is connected to the gate of the N-channel MOSFET_N7 via the inverter gate INV0.
  • the resistance elements R6 to R7, the comparator COMP2, and the inverter gate INV0 constitute a comparison circuit 4 corresponding to the first set signal output unit.
  • FET_N7 also corresponds to the first set signal output unit.
  • the source of FET_N7 is connected to the ground, and the drain is connected to the clock terminal C of the D flip-flop FF2 corresponding to the first flip-flop via the buffer BUF1.
  • a series circuit of a resistor element R10 and a capacitor C1 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to the drain of the FET_N7.
  • the resistor element R10 and the capacitor C1 constitute a delay circuit 5 corresponding to the detection mask unit.
  • the input terminals D of the D flip-flops FF2 and FF1 are connected to the power supply line 2 via resistance elements R9 and R11, respectively.
  • the output terminal Q of the D flip-flop FF1 is connected to the gate of the N-channel MOSFET_N8 via the inverter gate INV2.
  • the source of the FET_N8 is connected to the ground, and the drain is connected to one input terminal of the NOR gate NOR2 via the buffer BUF2.
  • a series circuit of a resistor element R12 and a capacitor C2 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to the drain of the FET_N8.
  • the resistor element R12 and the capacitor C2 constitute a delay circuit 6.
  • a high-active reset signal RST is applied to the other input terminal of the NOR gate NOR2, and the output terminal of the NOR gate NOR2 is connected to the negative logic reset terminal RB of the D flip-flop FF2.
  • the output terminal Q of the D flip-flop FF2 is connected to the gate of the FET_P1, and is also connected to the gate of the FET_P2 through the inverter gate INV1. Further, the output terminal Q of the D flip-flop FF2 is connected to one of the input terminals of the NOR gate NOR1 via the inverter gate INV3. A reset signal RST is applied to the other input terminal of the NOR gate NOR1, and an output terminal of the NOR gate NOR1 is connected to a negative logic reset terminal RB of the D flip-flop FF1.
  • the delay circuits 5 and 6, the D flip-flops FF1 and FF2, and their peripheral circuits constitute the ON state holding circuit 7. Further, the FET_N0 to N5, P1 and P2, the inverter gate INV1, and the resistance element R0 constitute an on setting unit 8. Further, the control unit 9 is configured by removing the FET_N4 in the above configuration, and the ringing suppression circuit 10 is configured by the FET_N4 and the control unit 9.
  • both the D flip-flops FF1 and FF2 are reset when the reset signal RST is once activated in the initial state when the power is turned on. Thereby, FET_P1 is turned on, FET_P2 is turned off, FET_N2 is turned on, and FET_N0, N1, N3, N4, and N6 are turned off. Then, the output signal of the ON confirmation circuit 3 becomes low level.
  • indicates an ON state element or an energized element
  • X indicates an OFF state element or an unenergized element.
  • the delay circuit 5 has an effect of masking detection of the change by the D flip-flop FF1 for a time corresponding to the RC time constant.
  • the above time corresponds to the “dominant mask time” shown in FIG.
  • the control unit 9 when the control unit 9 detects that the differential signal transmitted through the transmission line 1 has changed from dominant to recessive, the control unit 9 turns on the FET_N4 to fix the state, and delays the delay. After a certain time is counted by the circuit 6, the ON state is released.
  • the FET_N4 once the FET_N4 is turned on according to the level change of the differential signal, the state is fixed. Therefore, even if the level change of the differential signal occurs again, the FET_N4 is not affected. Reliably maintains the ON state for a certain period of time. Thereby, it is possible to prevent the ringing suppression period from being unnecessarily prolonged and to perform signal transmission stably.
  • the control unit 9 includes a D flip-flop FF2, a D flip-flop FF1 that outputs a signal for resetting the D flip-flop FF2 in a set state, an output terminal Q of the D flip-flop FF1, and a D flip-flop FF2.
  • the delay circuit 6 disposed between the reset terminal RB, the comparison circuit 4 that outputs a signal for setting the D flip-flop FF2 when detecting that the differential signal has changed from recessive to dominant, the FET_N7, and the FET_N4 are turned on.
  • An ON confirmation circuit 3 that outputs a signal for setting the D flip-flop FF1 when it is detected to be ON, and an ON setting unit 8 that enables the gate of the FET_N4 to be turned ON when the D flip-flop FF2 is set. Consists of.
  • the D flip-flop FF2 After the D flip-flop FF2 is set, when the differential signal changes from dominant to recessive, the FET_N4 is turned on and the ringing suppression operation is started. At this time, the ON state of the FET_N4 is fixed by setting the D flip-flop FF2. When the D flip-flop FF2 is reset, the ON state of the FET_N4 is released and the ringing suppression operation is stopped. Therefore, the period from when the differential signal changes from dominant to recessive until the D flip-flop FF2 is reset is a ringing suppression period.
  • the D flip-flop FF2 is set by the output signal of the comparison circuit 4, the D flip-flop FF2 is reset after the delay time in the delay time 5 has elapsed. Therefore, even if the differential signal level changes during the ringing suppression period, the D flip-flop FF2 is suppressed. Is not affected by this, and the suppression period can be maintained constant.
  • the ON confirmation circuit 3 includes a FET_N6 whose drain is connected to the power supply line 2 via the resistance element R3, and whose source and gate are respectively connected to the source and gate of the FET_N4.
  • the ON setting unit 8 has FET_N0 to N3 whose sources are connected to the low potential side signal line 1L, its source connected to the power supply line 2, and its drain connected to the drain of FET_N1 and the gate of FET_N2 via the resistor element R1.
  • FET_P1 having a source connected to the power supply line 2 and a drain connected to the drain of the FET_N3 and the gate of the FET_N1 via the resistance element R2.
  • the gate of FET_N0 is connected to the gate of FET_N4, the gates of FET_N1 and N3 are connected to the drain of FET_N0 and connected to the high potential side signal line 1H via the resistance element R0, and the gate of FET_N2 is connected to the drain of FET_N1.
  • the ON setting unit 8 can set the gate of the FET_N4 to the ON level when the D flip-flop FF2 is set, and can set the gate of the FET_N4 to the OFF level when the D flip-flop FF2 is reset.
  • the delay circuit 5 detects that the level of the differential signal has changed from recessive to dominant, the delay circuit 5 delays the set signal of the D flip-flop FF2 output via the FET_N7, so that the control unit 8 The detection of the change due to is masked for a certain time.
  • the control unit 8 does not start the suppression operation at that time. . Thereby, it is possible to prevent the dominant signal waveform transmitted normally from being distorted by the influence of noise.
  • the ringing suppression circuit 11 includes an ON state holding circuit 12 in which the FET_N 7 and the delay circuit 5 are deleted from the ON state holding circuit 7.
  • the normal ringing suppression operation is performed in the same manner as in the first embodiment.
  • the ringing suppression operation is performed as in the first embodiment.
  • the ringing suppression circuit 13 of the third embodiment has a configuration in which FET_N0 to N4 are replaced with P-channel MOSFET_P0 to P4.
  • the sources of the FET_P0 to P4 are connected to the high potential side signal line 1H, and the drain of the FET_P4 that is a line switching element is connected to the low potential side signal line 1L.
  • the gates of the FET_P0 and P4 are connected to the drains of the FET_P2 and P3, and are also connected to the gate of the P-channel MOSFET_P6 that constitutes the comparison circuit 3P.
  • the drain of the FET_P0 is connected to the low-potential side signal line 1L via the resistance element R0 and to the gates of the FET_P1 and P3.
  • the FET_P1 and P2 constituting the on setting unit 8 of the first embodiment are replaced with N-channel MOSFET_N1 and N2 to constitute the on setting unit 8P.
  • the sources of FET_N1 and N2 are connected to the ground.
  • the drain of the FET_N1 is connected to the drain of the FET_P1 and the gate of the FET_P2 through the resistance element R1, and the drain of the FET_N2 is connected to the gate of the FET_P4 through the resistance element R2.
  • the comparison circuit 3 becomes the comparison circuit 3P as described above, and the series circuit of the FET_P6 and the resistance element R3 is connected between the signal line 1H and the ground, and the common connection point between them is the comparator COMP1. It is connected to the inverting input terminal.
  • the common connection point of the resistance elements R4 and R5 is connected to the non-inverting input terminal of the comparator COMP1.
  • the output terminal of the comparator COMP1 is connected to the clock terminal C of the D flip-flop FF1 via the inverter gate INV4.
  • the ringing suppression circuit 14 of the fourth embodiment shown in FIG. 15 is configured by replacing the ringing suppression circuit 11 of the second embodiment with FET_N0 to N4 by P-channel MOSFET_P0 to P4 as in the third embodiment.
  • the ON state holding circuit 12P is provided by removing the FET_N7 and the delay circuit 5 from the ON state holding circuit 7.
  • the inverter gate INV4 is inserted between the output terminal of the comparison circuit 4 and the clock terminal C of the D flip-flop FF2, but if the inverter gate INV0 of the comparison circuit 4 is deleted, the inverter gate INV4 is not necessary.
  • the inverter gate INV4 of the third embodiment is an inverter gate INV5. According to 4th Embodiment comprised as mentioned above, the effect similar to 2nd Embodiment is acquired.
  • a ringing suppression circuit 15 of the fifth embodiment shown in FIG. 16 is a combination of the first embodiment and the fourth embodiment, and the on setting unit 8P is used as the on setting unit 8N. Is added.
  • FET_N1 and N2 in the fourth embodiment are FET_N11 and N12, and resistance elements R0 to R3 are R20 to R22 and R24.
  • a resistance element R23 is inserted between the resistance element R5 and the ground.
  • the common connection point of the resistance elements R5 and R23 is connected to the non-inverting input terminal of the comparator COMP3 that constitutes the ON confirmation circuit 3P.
  • the output terminal of the comparator COMP1 is connected to one of the input terminals of the OR gate OR1, and the output terminal of the comparator COMP3 is connected to the other input terminal of the OR gate OR1 via the inverter gate INV4.
  • the output terminal of the OR gate OR1 is connected to the clock terminal C of the D flip-flop FF1.
  • a ringing suppression circuit 16 according to the sixth embodiment shown in FIG. 17 applies the configuration of the fifth embodiment to the configuration of the second embodiment, and includes ON setting units 8N and 8P. According to the sixth embodiment configured as described above, the same effects as those of the second and fifth embodiments can be obtained.
  • the FET_N4 or P4 which is a line-to-line switching element, may be configured with the elements shown in FIGS. 18 shows a configuration in which a resistance element R13 is inserted between the signal line 1H and the drain of the FET_N4, and a resistance element R14 is inserted between the source of the FET_N4 and the signal line 1L.
  • FET_N4 is replaced with FET_P4.
  • FIG. 20 shows a configuration using so-called analog switches in which FET_N4 and P4 are connected in parallel.
  • FIG. 21 shows resistance elements R13, R14 between the signal lines 1H, 1L and the analog switches, as in FIG. Is inserted.
  • the delay circuits 5 and 6 are not limited to those composed of resistance elements and capacitors, but may be composed of, for example, a combination with a constant current source.
  • Resistance elements R1, R2, R21, and R22 may be replaced with constant current sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Logic Circuits (AREA)

Abstract

A ringing suppression circuit that is connected to a transmission line for transmitting a differential signal changing between binary levels of High and Low by means of a pair of high and low potential side signal lines and that suppresses ringing incident to the transmission of the differential signal comprises: a line switching element (N4, P4) connected between the pair of signal lines; and a control unit (9) that, upon detection of a change in level of the differential signal from High to Low, turns on the line switching element, fixes the on-state and, after clocking a certain time, cancels the on-state.

Description

リンギング抑制回路Ringing suppression circuit 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年9月24日に出願された日本特許出願番号2015-186796号および2016年4月13日に出願された日本特許出願番号2016―80325号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2015-186796 filed on September 24, 2015 and Japanese Patent Application No. 2016-80325 filed on April 13, 2016, which is described herein. Incorporate content.
 本開示は、差動信号を伝送する伝送線路に接続されるリンギング抑制回路に関するものである。 The present disclosure relates to a ringing suppression circuit connected to a transmission line that transmits a differential signal.
 伝送線路を介してデジタル信号を伝送する場合、受信側においては、信号レベルが変化するタイミングで信号エネルギーの一部が反射することで、オーバーシュートやアンダーシュートのような波形の歪み,すなわちリンギングが生じる問題がある。そして、従来、波形歪みを抑制する技術については様々な提案がされている。例えば特許文献1では、図22に示すように、伝送路の電圧レベルがロー,ハイ間で遷移する際に、通信に影響しない一定期間のみインピーダンスを整合させてリンギングを抑制する技術が開示されている。 When a digital signal is transmitted through a transmission line, a part of the signal energy is reflected at the timing when the signal level changes on the receiving side, thereby causing waveform distortion such as overshoot or undershoot, that is, ringing. There are problems that arise. Conventionally, various proposals have been made on techniques for suppressing waveform distortion. For example, Patent Document 1 discloses a technology for suppressing ringing by matching impedance only for a certain period that does not affect communication when the voltage level of a transmission line transitions between low and high as shown in FIG. Yes.
 車載通信の一種であるCAN(Controller Area Network,登録商標)においては、ローレベル,ハイレベルの差動信号,つまりデータビットをそれぞれレセッシブ,ドミナントと称している。ここで、図23に示すように、リンギング波形が(1)ドミナント→(2)レセッシブ→(3)ドミナント→(4)レセッシブと大きな振幅で変化した場合を想定する。 In CAN (Controller Area Network, registered trademark), which is a kind of in-vehicle communication, low level and high level differential signals, that is, data bits are referred to as recessive and dominant, respectively. Here, as shown in FIG. 23, it is assumed that the ringing waveform changes with a large amplitude of (1) dominant → (2) recessive → (3) dominant → (4) recessive.
 すると、特許文献1の構成では、最初の(1)から(2)への変化に応じてリンギング抑制動作を開始し、一定時間が経過すれば次の(3)で抑制動作を停止する。そして、次の(4)への変化に応じてリンギング抑制動作を再開する。このため、(2)での最初の抑制動作の開始から、(4)以降の停止までの時間が長引くことになる。したがって、抑制動作の実行中に、次のビット;ドミナントが伝送されたとすると、電流が引き込まれて信号波形が歪んでしまう。 Then, in the configuration of Patent Document 1, the ringing suppression operation is started in response to the first change from (1) to (2), and when the predetermined time has elapsed, the suppression operation is stopped in the next (3). Then, the ringing suppression operation is restarted in response to the next change to (4). For this reason, the time from the start of the first suppression operation in (2) to the stop after (4) is prolonged. Therefore, if the next bit; dominant is transmitted during the suppression operation, the current is drawn and the signal waveform is distorted.
特許第5498527号公報Japanese Patent No. 5498527
 本開示は、差動信号のレベル変化に応じたリンギング抑制動作を常に一定時間とすることができるリンギング抑制回路を提供することを目的とする。 This disclosure is intended to provide a ringing suppression circuit that can always perform a ringing suppression operation according to a level change of a differential signal for a certain period of time.
 本開示の第一の態様において、一対の高電位側信号線,低電位側信号線によりハイ,ローの2値レベルに変化する差動信号を伝送する伝送線路に接続され、前記差動信号の伝送に伴い発生するリンギングを抑制するリンギング抑制回路は、前記一対の信号線間に接続される線間スイッチング素子と、前記差動信号のレベルがハイからローに変化したことを検出すると、前記線間スイッチング素子をオンさせてオン状態を固定し、一定時間を計時した後に前記オン状態を解除する制御部とを備える。 In the first aspect of the present disclosure, a pair of high-potential side signal lines and low-potential side signal lines are connected to a transmission line that transmits a differential signal that changes to a binary level of high and low, A ringing suppression circuit that suppresses ringing that occurs during transmission detects an interline switching element connected between the pair of signal lines, and detects that the level of the differential signal has changed from high to low. A control unit that turns on the switching element to fix the on state and releases the on state after measuring a predetermined time.
 上記のリンギング抑制回路によれば、制御部は、差動信号のレベルがハイからローに変化したことを検出すると、線間スイッチング素子をオンさせてその状態を固定し、一定時間を計時した後に前記オン状態を解除する。このように構成すれば、一旦差動信号のレベル変化に応じて線間スイッチング素子をオンされるとその状態が固定されるので、以降に再度差動信号のレベル変化が生じても影響を受けることなく、線間スイッチング素子はオン状態を一定時間確実に維持する。これにより、リンギング抑制期間が不要に長引くことを防止して信号伝送を安定して行うことが可能になる。 According to the ringing suppression circuit described above, when the control unit detects that the level of the differential signal has changed from high to low, the line switching element is turned on to fix the state, and after measuring a certain time, The on state is released. With this configuration, once the line switching element is turned on according to the level change of the differential signal, the state is fixed. Therefore, even if the level change of the differential signal occurs again thereafter, it is affected. Without any problem, the line-to-line switching element reliably maintains the ON state for a certain period of time. Thereby, it is possible to prevent the ringing suppression period from being unnecessarily prolonged and to perform signal transmission stably.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態であり、リンギング抑制回路の構成を示す図であり、 図2は、動作状態の遷移図(その1)であり、 図3は、動作状態の遷移図(その2)であり、 図4は、動作状態の遷移図(その3)であり、 図5は、動作状態の遷移図(その4)であり、 図6は、動作タイミングチャート(その1)であり、 図7は、動作タイミングチャート(その2)であり、 図8は、動作タイミングチャート(その3)であり、 図9は、特許文献1の構成による場合の図8の一部に相当する動作タイミングチャートであり、 図10は、第2実施形態であり、リンギング抑制回路の構成を示す図であり、 図11は、動作タイミングチャート(その1)であり、 図12は、動作タイミングチャート(その2)であり、 図13は、動作タイミングチャート(その3)であり、 図14は、第3実施形態であり、リンギング抑制回路の構成を示す図であり、 図15は、第4実施形態であり、リンギング抑制回路の構成を示す図であり、 図16は、第5実施形態であり、リンギング抑制回路の構成を示す図であり、 図17は、第6実施形態であり、リンギング抑制回路の構成を示す図であり、 図18は、線間スイッチング素子のその他の構成を示す図(その1)であり、 図19は、線間スイッチング素子のその他の構成を示す図(その2)であり、 図20は、線間スイッチング素子のその他の構成を示す図(その3)であり、 図21は、線間スイッチング素子のその他の構成を示す図(その4)であり、 図22は、特許文献1の構成による場合の図11の一部に相当する動作タイミングチャートであり、 図23は、図12の一部に相当する動作タイミングチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating a configuration of a ringing suppression circuit according to the first embodiment. FIG. 2 is an operation state transition diagram (part 1). FIG. 3 is a transition diagram (part 2) of the operating state. FIG. 4 is an operation state transition diagram (part 3). FIG. 5 is an operation state transition diagram (Part 4). FIG. 6 is an operation timing chart (part 1). FIG. 7 is an operation timing chart (part 2). FIG. 8 is an operation timing chart (part 3). FIG. 9 is an operation timing chart corresponding to a part of FIG. 8 in the case of the configuration of Patent Document 1. FIG. 10 is a diagram illustrating a configuration of a ringing suppression circuit according to the second embodiment. FIG. 11 is an operation timing chart (part 1). FIG. 12 is an operation timing chart (part 2). FIG. 13 is an operation timing chart (part 3). FIG. 14 is a diagram showing a configuration of the ringing suppression circuit according to the third embodiment. FIG. 15 is a diagram showing the configuration of the ringing suppression circuit according to the fourth embodiment. FIG. 16 is a diagram illustrating a configuration of a ringing suppression circuit according to the fifth embodiment. FIG. 17 is a diagram illustrating a configuration of a ringing suppression circuit according to the sixth embodiment. FIG. 18 is a diagram (part 1) illustrating another configuration of the line-to-line switching element; FIG. 19 is a diagram (part 2) illustrating another configuration of the line switching element; FIG. 20 is a diagram (part 3) illustrating another configuration of the line switching element; FIG. 21 is a diagram (part 4) illustrating another configuration of the line switching element; FIG. 22 is an operation timing chart corresponding to a part of FIG. 11 in the case of the configuration of Patent Document 1. FIG. 23 is an operation timing chart corresponding to a part of FIG.
  (第1実施形態)
 図1に示すように、伝送線路に相当する通信バス1は高電位側信号線1H,低電位側信号線1Lからなり、低電位側信号線1Lには、5つのNチャネルMOSFET_N0~N4のソースが接続されている。線間スイッチング素子であるFET_N4のドレインは、高電位側信号線1Hに接続されている。FET_N0のドレインは、抵抗素子R0を介して高電位側信号線1Hに接続されていると共に、FET_N1及びN3のゲートに接続されている。FET_N0~N3は、第1~第4スイッチング素子に相当する。尚、FETのソースは電位基準側導通端子,ドレインは非基準側導通端子,ゲートは導通制御端子に相当する。
(First embodiment)
As shown in FIG. 1, a communication bus 1 corresponding to a transmission line includes a high-potential side signal line 1H and a low-potential side signal line 1L. The low-potential side signal line 1L includes five N-channel MOSFET_N0 to N4 sources. Is connected. The drain of FET_N4, which is a line switching element, is connected to the high potential side signal line 1H. The drain of the FET_N0 is connected to the high potential side signal line 1H via the resistance element R0, and is connected to the gates of the FET_N1 and N3. FET_N0 to N3 correspond to first to fourth switching elements. The source of the FET corresponds to a potential reference side conduction terminal, the drain corresponds to a non-reference side conduction terminal, and the gate corresponds to a conduction control terminal.
 電源VCCが供給されている電源線2には、PチャネルMOSFET_P1及びP2のソースが接続されており、FET_P1のドレインは、抵抗素子R1を介してFET_N1のドレイン及びFET_N2のゲートに接続されている。FET_P1及びP2は、第5及び第6スイッチング素子に相当する。FET_P2のドレインは、抵抗素子R2を介してFET_N0のゲート,FET_N2及びN3のドレイン,並びにFET_N4のゲートに接続されている。 The source of the P-channel MOSFET_P1 and P2 is connected to the power supply line 2 to which the power supply VCC is supplied, and the drain of the FET_P1 is connected to the drain of the FET_N1 and the gate of the FET_N2 through the resistance element R1. FET_P1 and P2 correspond to the fifth and sixth switching elements. The drain of the FET_P2 is connected to the gate of the FET_N0, the drains of the FET_N2 and N3, and the gate of the FET_N4 through the resistance element R2.
 電源線2と低電位側信号線1Lとの間には、抵抗素子R3及びNチャネルMOSFET_N6の直列回路が接続されており、FET_N6のゲートはFET_N0のゲートに接続されている。また、電源線2とグランドとの間には、抵抗素子R4及びR5の直列回路が接続されており、それらの共通接続点はコンパレータCOMP1の非反転入力端子に接続されている。コンパレータCOMP1の反転入力端子は、FET_N6のドレインに接続されている。FET_N6は検出用スイッチング素子に相当する。 A series circuit of a resistance element R3 and an N-channel MOSFET_N6 is connected between the power supply line 2 and the low potential side signal line 1L, and the gate of the FET_N6 is connected to the gate of the FET_N0. A series circuit of resistance elements R4 and R5 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to a non-inverting input terminal of the comparator COMP1. The inverting input terminal of the comparator COMP1 is connected to the drain of the FET_N6. FET_N6 corresponds to a detection switching element.
 コンパレータCOMP1の出力端子は、第2フリップフロップに相当するDフリップフロップFF1のクロック端子Cに接続されている。抵抗素子R3~R5,FET_N6及びコンパレータCOMP1は,第2セット信号出力部に相当するON確認回路3を構成している。 The output terminal of the comparator COMP1 is connected to the clock terminal C of the D flip-flop FF1 corresponding to the second flip-flop. The resistance elements R3 to R5, FET_N6, and the comparator COMP1 constitute an ON confirmation circuit 3 corresponding to the second set signal output unit.
 高電位側信号線1H,低電位側信号線1Lとの間には、抵抗素子R6~R8の直列回路が接続されており、抵抗素子R6及びR7の共通接続点はコンパレータCOMP2の非反転入力端子に接続され、抵抗素子R7及びR8の共通接続点は同反転入力端子に接続されている。コンパレータCOMP2の出力端子は、インバータゲートINV0を介してNチャネルMOSFET_N7のゲートに接続されている。抵抗素子R6~R7,コンパレータCOMP2及びインバータゲートINV0は、第1セット信号出力部に相当する比較回路4を構成している。また、FET_N7も第1セット信号出力部に相当する。 A series circuit of resistance elements R6 to R8 is connected between the high potential side signal line 1H and the low potential side signal line 1L, and the common connection point of the resistance elements R6 and R7 is a non-inverting input terminal of the comparator COMP2. The common connection point of the resistance elements R7 and R8 is connected to the inverting input terminal. The output terminal of the comparator COMP2 is connected to the gate of the N-channel MOSFET_N7 via the inverter gate INV0. The resistance elements R6 to R7, the comparator COMP2, and the inverter gate INV0 constitute a comparison circuit 4 corresponding to the first set signal output unit. FET_N7 also corresponds to the first set signal output unit.
 FET_N7のソースはグランドに接続されており、ドレインはバッファBUF1を介して第1フリップフロップに相当するDフリップフロップFF2のクロック端子Cに接続されている。電源線2とグランドとの間には、抵抗素子R10及びコンデンサC1の直列回路が接続されており、それらの共通接続点はFET_N7のドレインに接続されている。抵抗素子R10及びコンデンサC1は、検出マスク部に相当する遅延回路5を構成している。DフリップフロップFF2及びFF1の入力端子Dは、それぞれ抵抗素子R9及びR11を介して電源線2に接続されている。 The source of FET_N7 is connected to the ground, and the drain is connected to the clock terminal C of the D flip-flop FF2 corresponding to the first flip-flop via the buffer BUF1. A series circuit of a resistor element R10 and a capacitor C1 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to the drain of the FET_N7. The resistor element R10 and the capacitor C1 constitute a delay circuit 5 corresponding to the detection mask unit. The input terminals D of the D flip-flops FF2 and FF1 are connected to the power supply line 2 via resistance elements R9 and R11, respectively.
 DフリップフロップFF1の出力端子Qは、インバータゲートINV2を介してNチャネルMOSFET_N8のゲートに接続されている。FET_N8のソースはグランドに接続されており、ドレインはバッファBUF2を介してNORゲートNOR2の入力端子の一方に接続されている。電源線2とグランドとの間には、抵抗素子R12及びコンデンサC2の直列回路が接続されており、それらの共通接続点はFET_N8のドレインに接続されている。抵抗素子R12及びコンデンサC2は、遅延回路6を構成している。NORゲートNOR2の入力端子の他方には、ハイアクティブのリセット信号RSTが与えられており、NORゲートNOR2の出力端子はDフリップフロップFF2の負論理のリセット端子RBに接続されている。 The output terminal Q of the D flip-flop FF1 is connected to the gate of the N-channel MOSFET_N8 via the inverter gate INV2. The source of the FET_N8 is connected to the ground, and the drain is connected to one input terminal of the NOR gate NOR2 via the buffer BUF2. A series circuit of a resistor element R12 and a capacitor C2 is connected between the power supply line 2 and the ground, and a common connection point thereof is connected to the drain of the FET_N8. The resistor element R12 and the capacitor C2 constitute a delay circuit 6. A high-active reset signal RST is applied to the other input terminal of the NOR gate NOR2, and the output terminal of the NOR gate NOR2 is connected to the negative logic reset terminal RB of the D flip-flop FF2.
 DフリップフロップFF2の出力端子Qは、FET_P1のゲートに接続されていると共に、インバータゲートINV1を介してFET_P2のゲートに接続されている。更に、DフリップフロップFF2の出力端子Qは、インバータゲートINV3を介してNORゲートNOR1の入力端子の一方に接続されている。NORゲートNOR1の入力端子の他方には、リセット信号RSTが与えられており、NORゲートNOR1の出力端子はDフリップフロップFF1の負論理のリセット端子RBに接続されている。 The output terminal Q of the D flip-flop FF2 is connected to the gate of the FET_P1, and is also connected to the gate of the FET_P2 through the inverter gate INV1. Further, the output terminal Q of the D flip-flop FF2 is connected to one of the input terminals of the NOR gate NOR1 via the inverter gate INV3. A reset signal RST is applied to the other input terminal of the NOR gate NOR1, and an output terminal of the NOR gate NOR1 is connected to a negative logic reset terminal RB of the D flip-flop FF1.
 以上において、遅延回路5及び6,DフリップフロップFF1及びFF2並びにそれらの周辺回路はON状態保持回路7を構成している。また、FET_N0~N5,P1及びP2並びにインバータゲートINV1,抵抗素子R0はオン設定部8を構成している。更に、以上の構成においてFET_N4を除いたものが制御部9を構成しており、FET_N4及び制御部9によりリンギング抑制回路10が構成されている。 In the above, the delay circuits 5 and 6, the D flip-flops FF1 and FF2, and their peripheral circuits constitute the ON state holding circuit 7. Further, the FET_N0 to N5, P1 and P2, the inverter gate INV1, and the resistance element R0 constitute an on setting unit 8. Further, the control unit 9 is configured by removing the FET_N4 in the above configuration, and the ringing suppression circuit 10 is configured by the FET_N4 and the control unit 9.
 次に、本実施形態の作用について説明する。尚、以下では本実施形態を前述のCANに適用した場合を想定し、差動信号のローレベルを「レセッシブ」,ハイレベルを「ドミナント」と称す。 Next, the operation of this embodiment will be described. In the following, assuming that the present embodiment is applied to the above-mentioned CAN, the low level of the differential signal is referred to as “recessive” and the high level is referred to as “dominant”.
  <初期状態;レセッシブ>
 図2に示すように、電源投入時の初期状態で、リセット信号RSTが一旦アクティブになることでDフリップフロップFF1及びFF2は何れもリセットされている。これにより、FET_P1がON,FET_P2がOFFとなり、FET_N2がON,FET_N0,N1,N3,N4及びN6がOFFとなっている。そして、ON確認回路3の出力信号はローレベルになる。尚、図中に示す○はON状態の素子又は通電されている素子を示しており、×はOFF状態の素子又は通電されていない素子を示している。
<Initial state; recessive>
As shown in FIG. 2, both the D flip-flops FF1 and FF2 are reset when the reset signal RST is once activated in the initial state when the power is turned on. Thereby, FET_P1 is turned on, FET_P2 is turned off, FET_N2 is turned on, and FET_N0, N1, N3, N4, and N6 are turned off. Then, the output signal of the ON confirmation circuit 3 becomes low level. In the figure, ◯ indicates an ON state element or an energized element, and X indicates an OFF state element or an unenergized element.
 また、FET_N7及びN8はONになるので、DフリップフロップFF2のリセットは解除されているが、インバータゲートINV3の出力信号がハイレベルであるから、DフリップフロップFF1はリセット状態が維持されている。この時、通信バス1が送信ノードによりドライブされていないレセッシブの状態であれば、比較回路4の出力信号はハイレベルになる。したがって、DフリップフロップFF1及びFF2は何れもトリガされず、リセット状態が維持されている。 Further, since FET_N7 and N8 are turned ON, the reset of the D flip-flop FF2 is released, but the output signal of the inverter gate INV3 is at a high level, so the D flip-flop FF1 is maintained in the reset state. At this time, if the communication bus 1 is in a recessive state not driven by the transmission node, the output signal of the comparison circuit 4 becomes high level. Therefore, neither D flip-flop FF1 nor FF2 is triggered and the reset state is maintained.
  <レセッシブ→ドミナント>
 次に、図3に示すように、通信バス1が送信ノードによりドライブされて差動信号がドミナントレベルになると、抵抗素子R6~R8の直列回路に電流が流れて比較回路4の出力信号がローレベルになる。すると、FET_N7がOFFになるのでコンデンサC1の充電が開始される。その後、RC時定数に応じた時間が経過してコンデンサC1の端子電圧がハイレベルまで上昇すると、DフリップフロップFF2がトリガされて出力端子Qがハイレベルになる。これにより、FET_P1がOFF,FET_P2がONに転じて、FET_N2がOFF,FET_N1及びN3がONになる。また、DフリップフロップFF1のリセットが解除される。
<Recessive → Dominant>
Next, as shown in FIG. 3, when the communication bus 1 is driven by the transmission node and the differential signal becomes the dominant level, a current flows through the series circuit of the resistance elements R6 to R8, and the output signal of the comparison circuit 4 is low. Become a level. Then, since FET_N7 is turned off, charging of the capacitor C1 is started. Thereafter, when the time corresponding to the RC time constant elapses and the terminal voltage of the capacitor C1 rises to a high level, the D flip-flop FF2 is triggered and the output terminal Q becomes a high level. Thereby, FET_P1 is turned OFF and FET_P2 is turned ON, FET_N2 is turned OFF, and FET_N1 and N3 are turned ON. Further, the reset of the D flip-flop FF1 is released.
 すなわち、遅延回路5は、通信バス1がドミナントレベルに変化した際に、DフリップフロップFF1によるその変化の検知を、RC時定数に応じた時間だけマスクする作用を成している。上記の時間は、図6に示す「ドミナントマスク時間」に対応する。 That is, when the communication bus 1 changes to a dominant level, the delay circuit 5 has an effect of masking detection of the change by the D flip-flop FF1 for a time corresponding to the RC time constant. The above time corresponds to the “dominant mask time” shown in FIG.
  <ドミナント→レセッシブ(抑制動作開始)>
 次に、図4に示すように、送信ノードが通信バス1のドライブを停止して差動信号がレセッシブレベルに戻ると、FET_N1及びN3のゲートがローレベルになり、これらがターンOFFする。この時、FET_P2がONしているのでFET_N1,N4及びN6のゲートが抵抗素子R2を介してハイレベルになり、これらがターンONする。すなわち、FET_N4がターンONすることで通信バス1のインピーダンスが低下して、リンギング抑制動作が開始される。またこの時、ON確認回路3及び比較回路4の出力信号が何れもハイレベルになる。これにより、DフリップフロップFF1がトリガされてFET_N8がターンOFFしてコンデンサC2の充電が開始される。
<Dominant → Recessive (Start of suppression operation)>
Next, as shown in FIG. 4, when the transmission node stops driving the communication bus 1 and the differential signal returns to the recessive level, the gates of the FET_N1 and N3 become the low level, and these turn off. At this time, since FET_P2 is ON, the gates of FET_N1, N4, and N6 are set to the high level via the resistance element R2, and these are turned ON. That is, when the FET_N4 is turned on, the impedance of the communication bus 1 is lowered, and the ringing suppression operation is started. At this time, the output signals of the ON confirmation circuit 3 and the comparison circuit 4 are both at a high level. As a result, the D flip-flop FF1 is triggered, the FET_N8 is turned off, and charging of the capacitor C2 is started.
  <レセッシブ(抑制動作終了)>
 その後、RC時定数に応じた時間が経過してコンデンサC2の端子電圧がハイレベルまで上昇すると、NORゲートNOR2を介してDフリップフロップFF2がリセットされる。すると、図5に示すように、出力端子Qがローレベルに転じてFET_P1がON,FET_P2がOFFとなり、図2に示す初期状態と同じ状態に戻り、FET_N4がターンOFFしてリンギング抑制動作が停止される。すなわち、リンギング抑制動作は、図4に示すように差動信号がドミナントからレセッシブに変化した時点から開始されると、その時点から遅延回路6のRC時定数に応じて付与される遅延時間が経過した時点で終了する(図6参照)。
<Recessive (Suppression operation completed)>
Thereafter, when a time corresponding to the RC time constant has elapsed and the terminal voltage of the capacitor C2 has risen to a high level, the D flip-flop FF2 is reset via the NOR gate NOR2. Then, as shown in FIG. 5, the output terminal Q turns to the low level, the FET_P1 is turned on, the FET_P2 is turned off, and the state returns to the same state as the initial state shown in FIG. Is done. That is, when the ringing suppression operation is started from the time when the differential signal changes from dominant to recessive as shown in FIG. 4, the delay time given according to the RC time constant of the delay circuit 6 elapses from that time. The process ends at the time (see FIG. 6).
 図7に示すように、リンギング抑制動作の実行中にドミナントレベルのノイズが発生すると、そのノイズ発生期間がドミナントマスク期間よりも短かければ、通信バス1のレベル変化はDフリップフロップFF2により検出されない。したがって、リンギング抑制動作は図6に示すケースと同様に実行される。 As shown in FIG. 7, when a dominant level noise occurs during the ringing suppression operation, if the noise generation period is shorter than the dominant mask period, the level change of the communication bus 1 is not detected by the D flip-flop FF2. . Therefore, the ringing suppression operation is executed in the same manner as in the case shown in FIG.
 また、図8に示すように、ドミナントの状態でレセッシブレベルのノイズが発生した場合も同様であり、そのノイズ発生期間がドミナントマスク期間よりも短かければ、通信バス1のレベル変化はDフリップフロップFF2により検出されない。したがって、特許文献1の構成に対応する図9に示すように、余分なリンギング抑制動作が開始されることはない。 Further, as shown in FIG. 8, the same is true when recessive level noise occurs in a dominant state. If the noise generation period is shorter than the dominant mask period, the level change of the communication bus 1 is D flip-flop FF2. Is not detected by. Therefore, as shown in FIG. 9 corresponding to the configuration of Patent Document 1, no extra ringing suppression operation is started.
 以上のように本実施形態によれば、制御部9は、伝送線路1において伝送される差動信号がドミナントからレセッシブに変化したことを検出すると、FET_N4をオンさせてその状態を固定し、遅延回路6により一定時間を計時した後にそのオン状態を解除する。このように構成すれば、一旦差動信号のレベル変化に応じてFET_N4をオンさせるとその状態が固定されるので、以降に再度差動信号のレベル変化が生じても影響を受けることなく、FET_N4はオン状態を一定時間確実に維持する。これにより、リンギング抑制期間が不要に長引くことを防止して信号伝送を安定して行うことが可能になる。 As described above, according to the present embodiment, when the control unit 9 detects that the differential signal transmitted through the transmission line 1 has changed from dominant to recessive, the control unit 9 turns on the FET_N4 to fix the state, and delays the delay. After a certain time is counted by the circuit 6, the ON state is released. With this configuration, once the FET_N4 is turned on according to the level change of the differential signal, the state is fixed. Therefore, even if the level change of the differential signal occurs again, the FET_N4 is not affected. Reliably maintains the ON state for a certain period of time. Thereby, it is possible to prevent the ringing suppression period from being unnecessarily prolonged and to perform signal transmission stably.
 そして、制御部9を、DフリップフロップFF2と、セット状態になるとDフリップフロップFF2をリセットするための信号を出力するDフリップフロップFF1と、DフリップフロップFF1の出力端子QとDフリップフロップFF2のリセット端子RBとの間に配置される遅延回路6と、差動信号がレセッシブからドミナントから変化したことを検出するとDフリップフロップFF2をセットする信号を出力する比較回路4及びFET_N7と、FET_N4がターンONしたことを検出するとDフリップフロップFF1をセットする信号を出力するON確認回路3と、DフリップフロップFF2がセットされるとFET_N4のゲートをONレベルにすることを可能にするオン設定部8とで構成した。 Then, the control unit 9 includes a D flip-flop FF2, a D flip-flop FF1 that outputs a signal for resetting the D flip-flop FF2 in a set state, an output terminal Q of the D flip-flop FF1, and a D flip-flop FF2. The delay circuit 6 disposed between the reset terminal RB, the comparison circuit 4 that outputs a signal for setting the D flip-flop FF2 when detecting that the differential signal has changed from recessive to dominant, the FET_N7, and the FET_N4 are turned on. An ON confirmation circuit 3 that outputs a signal for setting the D flip-flop FF1 when it is detected to be ON, and an ON setting unit 8 that enables the gate of the FET_N4 to be turned ON when the D flip-flop FF2 is set. Consists of.
 これにより、DフリップフロップFF2がセットされた後、差動信号がドミナントからレセッシブに変化するとFET_N4がターンONしてリンギング抑制動作が開始される。この時、FET_N4のON状態は、DフリップフロップFF2がセットされることで固定される。そして、DフリップフロップFF2がリセットされると、FET_N4のON状態が解除されてリンギング抑制動作が停止する。したがって、差動信号がドミナントからレセッシブに変化した時点からDフリップフロップFF2がリセットされるまでの間がリンギング抑制期間となる。 Thus, after the D flip-flop FF2 is set, when the differential signal changes from dominant to recessive, the FET_N4 is turned on and the ringing suppression operation is started. At this time, the ON state of the FET_N4 is fixed by setting the D flip-flop FF2. When the D flip-flop FF2 is reset, the ON state of the FET_N4 is released and the ringing suppression operation is stopped. Therefore, the period from when the differential signal changes from dominant to recessive until the D flip-flop FF2 is reset is a ringing suppression period.
 DフリップフロップFF2は、比較回路4の出力信号により一旦セットされると、遅延時間5における遅延時間が経過した後にリセットされるので、リンギング抑制期間に差動信号のレベルが変化した場合でも抑制動作がその影響を受けることが無く、抑制期間を一定に維持できる。 Once the D flip-flop FF2 is set by the output signal of the comparison circuit 4, the D flip-flop FF2 is reset after the delay time in the delay time 5 has elapsed. Therefore, even if the differential signal level changes during the ringing suppression period, the D flip-flop FF2 is suppressed. Is not affected by this, and the suppression period can be maintained constant.
 また、ON確認回路3は、ドレインが抵抗素子R3を介して電源線2に接続され、ソース及びゲートがそれぞれFET_N4のソース及びゲートに接続されるFET_N6を備える。オン設定部8は、ソースが低電位側信号線1Lに接続されるFET_N0~N3と、ソースが電源線2に接続され、ドレインが抵抗素子R1を介してFET_N1のドレイン及びFET_N2のゲートに接続されるFET_P1と、ソースが電源線2に接続され、ドレインが抵抗素子R2を介してFET_N3のドレイン及びFET_N1のゲートに接続されるFET_P2とを備える。 The ON confirmation circuit 3 includes a FET_N6 whose drain is connected to the power supply line 2 via the resistance element R3, and whose source and gate are respectively connected to the source and gate of the FET_N4. The ON setting unit 8 has FET_N0 to N3 whose sources are connected to the low potential side signal line 1L, its source connected to the power supply line 2, and its drain connected to the drain of FET_N1 and the gate of FET_N2 via the resistor element R1. FET_P1 having a source connected to the power supply line 2 and a drain connected to the drain of the FET_N3 and the gate of the FET_N1 via the resistance element R2.
 そして、FET_N0のゲートをFET_N4のゲートに接続し、FET_N1及びN3のゲートを、FET_N0のドレインに接続すると共に抵抗素子R0を介して高電位側信号線1Hに接続し、FET_N2のゲートをFET_N1のドレインに接続し、DフリップフロップFF2がセットされると、FET_P1はONしてFET_P2はOFFするように構成した。これにより、オン設定部8は、DフリップフロップFF2がセットされるとFET_N4のゲートをONレベルにすることを可能にし、DフリップフロップFF2がリセットされるとFET_N4のゲートをOFFレベルにできる。 Then, the gate of FET_N0 is connected to the gate of FET_N4, the gates of FET_N1 and N3 are connected to the drain of FET_N0 and connected to the high potential side signal line 1H via the resistance element R0, and the gate of FET_N2 is connected to the drain of FET_N1. When the D flip-flop FF2 is set, the FET_P1 is turned on and the FET_P2 is turned off. Thereby, the ON setting unit 8 can set the gate of the FET_N4 to the ON level when the D flip-flop FF2 is set, and can set the gate of the FET_N4 to the OFF level when the D flip-flop FF2 is reset.
 また、遅延回路5は、差動信号のレベルがレセッシブからドミナントに変化したことを検出すると、比較回路4がFET_N7を介して出力するDフリップフロップFF2のセット信号を遅延させることで、制御部8による前記変化の検出を一定時間だけマスクする。このように構成すれば、差動信号がドミナントレベルでありリンギング抑制動作が未開始の状態でレセッシブレベルのノイズが重畳されたとしても、制御部8は、その時点で抑制動作が開始することがなくなる。これにより、正常に伝送されたドミナントの信号波形がノイズの影響を受けて歪んでしまうことを防止できる。 In addition, when the delay circuit 5 detects that the level of the differential signal has changed from recessive to dominant, the delay circuit 5 delays the set signal of the D flip-flop FF2 output via the FET_N7, so that the control unit 8 The detection of the change due to is masked for a certain time. With this configuration, even if the recessive level noise is superimposed when the differential signal is at the dominant level and the ringing suppression operation is not started, the control unit 8 does not start the suppression operation at that time. . Thereby, it is possible to prevent the dominant signal waveform transmitted normally from being distorted by the influence of noise.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図10に示すように、第2実施形態のリンギング抑制回路11は、ON状態保持回路7よりFET_N7及び遅延回路5を削除した、ON状態保持回路12を備えたものである。この場合、図11に示すように、通常のリンギング抑制動作は第1実施形態と同様に行われる。また、図12に示すように、レセッシブの状態でドミナントレベルのノイズが発生した場合も、第1実施形態と同様にリンギング抑制動作が行われる。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. As shown in FIG. 10, the ringing suppression circuit 11 according to the second embodiment includes an ON state holding circuit 12 in which the FET_N 7 and the delay circuit 5 are deleted from the ON state holding circuit 7. In this case, as shown in FIG. 11, the normal ringing suppression operation is performed in the same manner as in the first embodiment. Also, as shown in FIG. 12, even when dominant level noise occurs in a recessive state, the ringing suppression operation is performed as in the first embodiment.
 但し、図13に示すように、ドミナントの状態でレセッシブレベルのノイズが発生すると、そのレベル変化に応じてリンギング抑制動作が開始されるため、ドミナントの信号波形に歪が生じる。 However, as shown in FIG. 13, when a recessive level noise is generated in a dominant state, the ringing suppression operation is started in accordance with the level change, so that the dominant signal waveform is distorted.
  (第3,第4実施形態)
 図14に示すように、第3実施形態のリンギング抑制回路13は、FET_N0~N4をPチャネルMOSFET_P0~P4に置き換えた構成である。FET_P0~P4のソースは高電位側信号線1Hに接続され、線間スイッチング素子であるFET_P4のドレインは低電位側信号線1Lに接続されている。FET_P0及びP4のゲートは、FET_P2及びP3のドレインに接続されていると共に、比較回路3Pを構成するPチャネルMOSFET_P6のゲートに接続されている。
(Third and fourth embodiments)
As shown in FIG. 14, the ringing suppression circuit 13 of the third embodiment has a configuration in which FET_N0 to N4 are replaced with P-channel MOSFET_P0 to P4. The sources of the FET_P0 to P4 are connected to the high potential side signal line 1H, and the drain of the FET_P4 that is a line switching element is connected to the low potential side signal line 1L. The gates of the FET_P0 and P4 are connected to the drains of the FET_P2 and P3, and are also connected to the gate of the P-channel MOSFET_P6 that constitutes the comparison circuit 3P.
 FET_P0のドレインは、抵抗素子R0を介して低電位側信号線1Lに接続されていると共に、FET_P1及びP3のゲートに接続されている。第1実施形態のオン設定部8を構成していたFET_P1及びP2は、NチャネルMOSFET_N1及びN2に置き換えられてオン設定部8Pを構成している。FET_N1及びN2のソースはグランドに接続されている。FET_N1のドレインは、抵抗素子R1を介してFET_P1のドレイン及びFET_P2のゲートに接続され、FET_N2のドレインは、抵抗素子R2を介してFET_P4のゲートに接続されている。 The drain of the FET_P0 is connected to the low-potential side signal line 1L via the resistance element R0 and to the gates of the FET_P1 and P3. The FET_P1 and P2 constituting the on setting unit 8 of the first embodiment are replaced with N-channel MOSFET_N1 and N2 to constitute the on setting unit 8P. The sources of FET_N1 and N2 are connected to the ground. The drain of the FET_N1 is connected to the drain of the FET_P1 and the gate of the FET_P2 through the resistance element R1, and the drain of the FET_N2 is connected to the gate of the FET_P4 through the resistance element R2.
 また、これに伴い比較回路3は上述のように比較回路3Pとなっており、信号線1H,グランド間にはFET_P6及び抵抗素子R3の直列回路が接続され、両者の共通接続点がコンパレータCOMP1の反転入力端子に接続されている。抵抗素子R4及びR5の共通接続点は、コンパレータCOMP1の非反転入力端子に接続されている。また、コンパレータCOMP1の出力端子は、インバータゲートINV4を介してDフリップフロップFF1のクロック端子Cに接続されている。以上のように構成される第3実施形態による場合も、第1実施形態と同様の効果が得られる。 Accordingly, the comparison circuit 3 becomes the comparison circuit 3P as described above, and the series circuit of the FET_P6 and the resistance element R3 is connected between the signal line 1H and the ground, and the common connection point between them is the comparator COMP1. It is connected to the inverting input terminal. The common connection point of the resistance elements R4 and R5 is connected to the non-inverting input terminal of the comparator COMP1. The output terminal of the comparator COMP1 is connected to the clock terminal C of the D flip-flop FF1 via the inverter gate INV4. In the case of the third embodiment configured as described above, the same effect as that of the first embodiment can be obtained.
 また、図15に示す第4実施形態のリンギング抑制回路14は、第2実施形態のリンギング抑制回路11を、第3実施形態のようにFET_N0~N4をPチャネルMOSFET_P0~P4に置き換えた構成であり、ON状態保持回路7よりFET_N7及び遅延回路5を削除した、ON状態保持回路12Pを備えたものである。この場合、比較回路4の出力端子と、DフリップフロップFF2のクロック端子Cとの間にインバータゲートINV4を挿入しているが、比較回路4のインバータゲートINV0を削除すればインバータゲートINV4も不要となる。尚、第3実施形態のインバータゲートINV4は、インバータゲートINV5となっている。以上のように構成される第4実施形態によれば、第2実施形態と同様の効果が得られる。 In addition, the ringing suppression circuit 14 of the fourth embodiment shown in FIG. 15 is configured by replacing the ringing suppression circuit 11 of the second embodiment with FET_N0 to N4 by P-channel MOSFET_P0 to P4 as in the third embodiment. The ON state holding circuit 12P is provided by removing the FET_N7 and the delay circuit 5 from the ON state holding circuit 7. In this case, the inverter gate INV4 is inserted between the output terminal of the comparison circuit 4 and the clock terminal C of the D flip-flop FF2, but if the inverter gate INV0 of the comparison circuit 4 is deleted, the inverter gate INV4 is not necessary. Become. Note that the inverter gate INV4 of the third embodiment is an inverter gate INV5. According to 4th Embodiment comprised as mentioned above, the effect similar to 2nd Embodiment is acquired.
  (第5実施形態)
 図16に示す第5実施形態のリンギング抑制回路15は、第1実施形態と第4実施形態との組み合わせであり、第1実施形態のオン設定部8をオン設定部8Nとして、オン設定部8Pを追加したものである。符号の重複を避けるため、第4実施形態におけるFET_N1,N2はFET_N11,N12に、抵抗素子R0~R3はR20~R22,R24としている。
(Fifth embodiment)
A ringing suppression circuit 15 of the fifth embodiment shown in FIG. 16 is a combination of the first embodiment and the fourth embodiment, and the on setting unit 8P is used as the on setting unit 8N. Is added. In order to avoid duplication of symbols, FET_N1 and N2 in the fourth embodiment are FET_N11 and N12, and resistance elements R0 to R3 are R20 to R22 and R24.
 コンパレータCOMP1を中心に構成されているON確認回路3Nでは、抵抗素子R5とグランドとの間に抵抗素子R23が挿入されている。抵抗素子R5及びR23の共通接続点は、ON確認回路3Pを構成するコンパレータCOMP3の非反転入力端子に接続されている。コンパレータCOMP1の出力端子は、ORゲートOR1の入力端子の一方に接続されており、コンパレータCOMP3の出力端子は、インバータゲートINV4を介してORゲートOR1の入力端子の他方に接続されている。そして、ORゲートOR1の出力端子がDフリップフロップFF1のクロック端子Cに接続されている。以上のように構成される第5実施形態によれば、第1及び第4実施形態と同様の効果が得られる。 In the ON confirmation circuit 3N configured around the comparator COMP1, a resistance element R23 is inserted between the resistance element R5 and the ground. The common connection point of the resistance elements R5 and R23 is connected to the non-inverting input terminal of the comparator COMP3 that constitutes the ON confirmation circuit 3P. The output terminal of the comparator COMP1 is connected to one of the input terminals of the OR gate OR1, and the output terminal of the comparator COMP3 is connected to the other input terminal of the OR gate OR1 via the inverter gate INV4. The output terminal of the OR gate OR1 is connected to the clock terminal C of the D flip-flop FF1. According to the fifth embodiment configured as described above, the same effects as those of the first and fourth embodiments can be obtained.
  (第6実施形態)
 図17に示す第6実施形態のリンギング抑制回路16は、第2実施形態の構成に第5実施形態の構成を適用し、オン設定部8N及び8Pを備えたものである。以上のように構成される第6実施形態によれば、第2及び第5実施形態と同様の効果が得られる。
(Sixth embodiment)
A ringing suppression circuit 16 according to the sixth embodiment shown in FIG. 17 applies the configuration of the fifth embodiment to the configuration of the second embodiment, and includes ON setting units 8N and 8P. According to the sixth embodiment configured as described above, the same effects as those of the second and fifth embodiments can be obtained.
  (その他の実施形態)
 線間スイッチング素子であるFET_N4又はP4を、図18~図21に示す素子で構成しても良い。図18は、信号線1HとFET_N4のドレインとの間に抵抗素子R13を挿入し、FET_N4のソースと信号線1Lとの間に抵抗素子R14を挿入した構成であり、図19は、図18のFET_N4をFET_P4に置き換えたものである。
(Other embodiments)
The FET_N4 or P4, which is a line-to-line switching element, may be configured with the elements shown in FIGS. 18 shows a configuration in which a resistance element R13 is inserted between the signal line 1H and the drain of the FET_N4, and a resistance element R14 is inserted between the source of the FET_N4 and the signal line 1L. FET_N4 is replaced with FET_P4.
 図20は、FET_N4及びP4を並列に接続した所謂アナログスイッチを用いた構成であり、図21は、図18と同様に、信号線1H,1Lと前記アナログスイッチとの間に抵抗素子R13,R14を挿入した構成である。 FIG. 20 shows a configuration using so-called analog switches in which FET_N4 and P4 are connected in parallel. FIG. 21 shows resistance elements R13, R14 between the signal lines 1H, 1L and the analog switches, as in FIG. Is inserted.
 本開示は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。 The present disclosure is not limited to the embodiment described above or illustrated in the drawings, and the following modifications or expansions are possible.
 特許文献1に開示されている各実施形態と組み合わせて実施しても良い。 It may be implemented in combination with each embodiment disclosed in Patent Document 1.
 遅延回路5及び6は、抵抗素子及びコンデンサで構成するものに限らず、例えば定電流源との組み合わせで構成しても良い。 The delay circuits 5 and 6 are not limited to those composed of resistance elements and capacitors, but may be composed of, for example, a combination with a constant current source.
 抵抗素子R1,R2,R21,R22を、定電流源に置き換えても良い。 Resistance elements R1, R2, R21, and R22 may be replaced with constant current sources.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  一対の高電位側信号線,低電位側信号線によりハイ,ローの2値レベルに変化する差動信号を伝送する伝送線路に接続され、前記差動信号の伝送に伴い発生するリンギングを抑制するリンギング抑制回路において、
     前記一対の信号線間に接続される線間スイッチング素子(N4,P4)と、
     前記差動信号のレベルがハイからローに変化したことを検出すると、前記線間スイッチング素子をオンさせてオン状態を固定し、一定時間を計時した後に前記オン状態を解除する制御部(9)とを備えるリンギング抑制回路。
    A pair of high-potential side signal lines and low-potential side signal lines are connected to a transmission line that transmits a differential signal that changes to a binary level of high and low, and ringing that occurs due to transmission of the differential signal is suppressed. In the ringing suppression circuit,
    A line switching element (N4, P4) connected between the pair of signal lines;
    When it is detected that the level of the differential signal has changed from high to low, the control unit (9) turns on the line switching element to fix the on state, and releases the on state after measuring a certain time. A ringing suppression circuit.
  2.  前記制御部は、
     初期状態でリセットされている第1フリップフロップ(FF2)と、
     初期状態でリセットされており、セット状態になると前記第1フリップフロップをリセットするためのリセット信号を出力する第2フリップフロップ(FF1)と、
     この第2フリップフロップの出力端子と前記第1フリップフロップのリセット端子との間に配置される遅延回路(6)と、
     前記差動信号のレベルがローからハイから変化したことを検出すると、前記第1フリップフロップをセットするセット信号を出力する第1セット信号出力部(4,FET_N7)と、
     前記線間スイッチング素子がターンオンしたことを検出すると、前記第2フリップフロップをセットするセット信号を出力する第2セット信号出力部(3)と、
     前記第1フリップフロップがセットされると、前記線間スイッチング素子の導通制御端子をオンレベルにすることを可能にするオン設定部(8)とを備える請求項1記載のリンギング抑制回路。
    The controller is
    A first flip-flop (FF2) reset in an initial state;
    A second flip-flop (FF1) that is reset in an initial state and outputs a reset signal for resetting the first flip-flop when in a set state;
    A delay circuit (6) disposed between an output terminal of the second flip-flop and a reset terminal of the first flip-flop;
    A first set signal output unit (4, FET_N7) for outputting a set signal for setting the first flip-flop upon detecting that the level of the differential signal has changed from low to high;
    A second set signal output unit (3) for outputting a set signal for setting the second flip-flop upon detecting that the line switching element is turned on;
    2. The ringing suppression circuit according to claim 1, further comprising: an ON setting unit that enables the conduction control terminal of the line switching element to be turned on when the first flip-flop is set. 3.
  3.  前記第2セット信号出力部は、非電位基準側導通端子が抵抗素子(R3)を介して電源に接続され、電位基準側導通端子及び導通制御端子がそれぞれ前記線間スイッチング素子の電位基準側導通端子及び導通制御端子に接続される検出用スイッチング素子(N6,P6)を備え、
     前記オン設定部は、電位基準側導通端子が前記線間スイッチング素子の電位基準側導通端子に接続される第1~第4スイッチング素子(N0~N3,P0~P3)と、
     電位基準側導通端子が電源に接続され、非基準側導通端子が抵抗素子(R1)を介して、前記第2スイッチング素子の非基準側導通端子及び前記第3スイッチング素子の導通制御端子に接続される第5スイッチング素子(P1,N1)と、
     電位基準側導通端子が電源に接続され、非基準側導通端子が抵抗素子(R2)を介して、前記第3スイッチング素子の非基準側導通端子及び前記線間スイッチング素子の導通制御端子に接続される第6スイッチング素子(P2,N2)とを備え、
     前記第1スイッチング素子の導通制御端子は、前記線間スイッチング素子の導通制御端子に接続され、
     前記第2及び第4スイッチング素子の導通制御端子は、前記第1スイッチング素子の非基準側導通端子に接続されると共に、抵抗素子(R0)を介して前記線間スイッチング素子の非基準側導通端子に接続され、
     前記第3スイッチング素子の導通制御端子は、前記第2スイッチング素子の非基準側導通端子に接続され、
     前記第1フリップフロップがセットされると、前記第5スイッチング素子はオンして前記第6スイッチング素子はオフするように構成される請求項2記載のリンギング抑制回路。
    In the second set signal output unit, the non-potential reference side conduction terminal is connected to the power source via the resistance element (R3), and the potential reference side conduction terminal and the conduction control terminal are respectively connected to the potential reference side conduction of the line-to-line switching element. A switching element for detection (N6, P6) connected to the terminal and the conduction control terminal;
    The on setting unit includes first to fourth switching elements (N0 to N3, P0 to P3) in which a potential reference side conduction terminal is connected to a potential reference side conduction terminal of the line-to-line switching element;
    The potential reference side conduction terminal is connected to the power source, and the non-reference side conduction terminal is connected to the non-reference side conduction terminal of the second switching element and the conduction control terminal of the third switching element via the resistance element (R1). A fifth switching element (P1, N1),
    The potential reference side conduction terminal is connected to the power source, and the non-reference side conduction terminal is connected to the non-reference side conduction terminal of the third switching element and the conduction control terminal of the line-to-line switching element via the resistance element (R2). A sixth switching element (P2, N2),
    The conduction control terminal of the first switching element is connected to the conduction control terminal of the line switching element,
    The conduction control terminals of the second and fourth switching elements are connected to the non-reference-side conduction terminal of the first switching element, and the non-reference-side conduction terminal of the line-to-line switching element via a resistance element (R0). Connected to
    The conduction control terminal of the third switching element is connected to the non-reference side conduction terminal of the second switching element,
    3. The ringing suppression circuit according to claim 2, wherein when the first flip-flop is set, the fifth switching element is turned on and the sixth switching element is turned off.
  4.  前記差動信号のレベルがローからハイへ変化したことを検出すると、前記制御部による前記変化の検出を一定時間だけマスクする検出マスク部(5)を備える請求項1記載のリンギング抑制回路。 The ringing suppression circuit according to claim 1, further comprising a detection mask section (5) for masking detection of the change by the control section for a predetermined time when it is detected that the level of the differential signal has changed from low to high.
  5.  前記差動信号のレベルがローからハイへ変化したことを検出すると、前記制御部による前記変化の検出を一定時間だけマスクする検出マスク部(5)を備える請求項2又は3記載のリンギング抑制回路。 The ringing suppression circuit according to claim 2 or 3, further comprising a detection mask unit (5) for masking detection of the change by the control unit for a certain period of time when detecting that the level of the differential signal has changed from low to high. .
  6.  前記検出マスク部は、第1セット信号出力部が前記第1フリップフロップに出力するセット信号を遅延させる遅延回路を備える請求項5記載のリンギング抑制回路。
     
     
    The ringing suppression circuit according to claim 5, wherein the detection mask unit includes a delay circuit that delays a set signal output from the first set signal output unit to the first flip-flop.

PCT/JP2016/074732 2015-09-24 2016-08-25 Ringing suppression circuit WO2017051654A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016004308.2T DE112016004308B4 (en) 2015-09-24 2016-08-25 RINGING SUPPRESSION CIRCUIT
CN201680051456.8A CN107950006B (en) 2015-09-24 2016-08-25 Ringing suppression circuit
US15/748,749 US10164620B1 (en) 2015-09-24 2016-08-25 Ringing suppression circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-186796 2015-09-24
JP2015186796 2015-09-24
JP2016080325A JP6336506B2 (en) 2015-09-24 2016-04-13 Ringing suppression circuit
JP2016-080325 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017051654A1 true WO2017051654A1 (en) 2017-03-30

Family

ID=58386010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074732 WO2017051654A1 (en) 2015-09-24 2016-08-25 Ringing suppression circuit

Country Status (2)

Country Link
MY (1) MY187665A (en)
WO (1) WO2017051654A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055025A (en) * 2017-11-08 2018-05-18 武汉航空仪表有限责任公司 A kind of analog electronic delay control circuit
CN108712313A (en) * 2017-04-03 2018-10-26 英飞凌科技股份有限公司 The network of electronic circuit and its operating method and suppressed ringing
US10128825B2 (en) 2015-09-01 2018-11-13 Denso Corporation Ringing suppression circuit
US10224925B2 (en) 2015-09-24 2019-03-05 Denso Corporation Communication node
CN111492629A (en) * 2017-12-25 2020-08-04 株式会社电装 Ringing suppression circuit
TWI819965B (en) * 2022-12-05 2023-10-21 晶焱科技股份有限公司 Ringing suppression circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591562A (en) * 1991-09-30 1993-04-09 Toshiba Lighting & Technol Corp Remote supervisory and control system
JP2009253498A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Communication apparatus
JP2011244347A (en) * 2010-05-20 2011-12-01 Nippon Soken Inc Differential communication device
JP2012244220A (en) * 2011-05-16 2012-12-10 Nippon Soken Inc Ringing suppression circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591562A (en) * 1991-09-30 1993-04-09 Toshiba Lighting & Technol Corp Remote supervisory and control system
JP2009253498A (en) * 2008-04-03 2009-10-29 Toyota Motor Corp Communication apparatus
JP2011244347A (en) * 2010-05-20 2011-12-01 Nippon Soken Inc Differential communication device
JP2012244220A (en) * 2011-05-16 2012-12-10 Nippon Soken Inc Ringing suppression circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128825B2 (en) 2015-09-01 2018-11-13 Denso Corporation Ringing suppression circuit
US10224925B2 (en) 2015-09-24 2019-03-05 Denso Corporation Communication node
CN108712313A (en) * 2017-04-03 2018-10-26 英飞凌科技股份有限公司 The network of electronic circuit and its operating method and suppressed ringing
CN108712313B (en) * 2017-04-03 2021-10-15 英飞凌科技股份有限公司 Electronic circuit, method of operating the same and network for suppressing ringing
CN108055025A (en) * 2017-11-08 2018-05-18 武汉航空仪表有限责任公司 A kind of analog electronic delay control circuit
CN108055025B (en) * 2017-11-08 2021-11-05 武汉航空仪表有限责任公司 Analog electronic time-delay control circuit
CN111492629A (en) * 2017-12-25 2020-08-04 株式会社电装 Ringing suppression circuit
TWI819965B (en) * 2022-12-05 2023-10-21 晶焱科技股份有限公司 Ringing suppression circuit

Also Published As

Publication number Publication date
MY187665A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2017051654A1 (en) Ringing suppression circuit
JP6336506B2 (en) Ringing suppression circuit
JP5326927B2 (en) Level shift circuit
JP5363879B2 (en) Driver circuit
US20190097681A1 (en) Ringing suppression circuit
WO2018020783A1 (en) Ringing suppression circuit
CN108322211B (en) Detection circuit and electronic system for output state of I/O interface circuit
JP6027046B2 (en) Communications system
US10560084B2 (en) Level shift circuit
JP4105082B2 (en) Input buffer
JP2013232719A (en) Isolation circuit
JP4245466B2 (en) Noise removal circuit
JP2018033130A (en) Ringing suppression circuit and ringing suppression method
KR102445169B1 (en) Semiconductor device with power gating scheme and operating method thereof
JP2020047193A (en) Constant current circuit
JP6248649B2 (en) Isolated communication device
JP2013545406A (en) Latch circuit with synchronized data loading and self-timed asynchronous data capture
JP6859945B2 (en) Ringing suppression circuit
JP2019050550A (en) Level shift circuit
JP2020022130A (en) Slave communication device and master communication device
JP2004343452A (en) High-voltage input tolerant receiver
JP4917482B2 (en) Pulse generation circuit
JP5400281B2 (en) 1-wire data communication device
JP2023046141A (en) bus buffer circuit
JP3577594B2 (en) Signal input / output circuit of semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004308

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848442

Country of ref document: EP

Kind code of ref document: A1